
algorithms

Article

Re-Pair in Small Space †

Dominik Köppl 1,* , Tomohiro I 2 , Isamu Furuya 3 , Yoshimasa Takabatake 2 , Kensuke Sakai 2

and Keisuke Goto 4

����������
�������

Citation: Köppl, D.; I, T.; Furuya, I.;

Takabatake, Y.; Sakai, K.; Goto, K.

Re-Pair in Small Space. Algorithms

2021, 14, 5. https://doi.org/

10.3390/a14010005

Received: 29 November 2020

Accepted: 18 December 2020

Published: 25 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
2 Kyushu Institute of Technology, Fukuoka 820-8502, Japan; tomohiro@ai.kyutech.ac.jp (T.I.);

takabatake@ai.kyutech.ac.jp (Y.T.); k_sakai@donald.ai.kyutech.ac.jp (K.S.)
3 Graduate School of IST, Hokkaido University, Hokkaido 060-0814, Japan; furuya@ist.hokudai.ac.jp
4 Fujitsu Laboratories Ltd., Kawasaki 211-8588, Japan; goto.keisuke@fujitsu.com
* Correspondence: koeppl.dsc@tmd.ac.jp; Tel.: +81-3-5280-8626
† This paper is an extended version of our paper published in the Prague Stringology Conference 2020: Prague,

Czech Republic, 31 August–2 September 2020 and at the Data Compression Conference 2020: Virtual
Conference, 24–27 March 2020.

Abstract: Re-Pairis a grammar compression scheme with favorably good compression rates. The com-
putation of Re-Pair comes with the cost of maintaining large frequency tables, which makes it
hard to compute Re-Pair on large-scale data sets. As a solution for this problem, we present,
given a text of length n whose characters are drawn from an integer alphabet with size σ = nO(1),
an O(min(n2, n2 lg logτ n lg lg lg n/ logτ n)) time algorithm computing Re-Pair with max((n/c) lg n,
ndlg τe) +O(lg n) bits of working space including the text space, where c ≥ 1 is a fixed user-defined
constant and τ is the sum of σ and the number of non-terminals. We give variants of our solution
working in parallel or in the external memory model. Unfortunately, the algorithm seems not prac-
tical since a preliminary version already needs roughly one hour for computing Re-Pair on one
megabyte of text.

Keywords: grammar compression; Re-Pair; computation in small space; broadword techniques

1. Introduction

Re-Pair [1] is a grammar deriving a single string. It is computed by replacing the
most frequent bigram in this string with a new non-terminal, recursing until no bigram
occurs more than once. Despite this simple-looking description, both the merits and the
computational complexity of Re-Pair are intriguing. As a matter of fact, Re-Pair is currently
one of the most well-understood grammar schemes.

Besides the seminal work of Larsson and Moffat [1], there are a couple of articles
devoted to the compression aspects of Re-Pair: Given a text T of length n whose characters
are drawn from an integer alphabet of size σ := nO(1), the output of Re-Pair applied to T is
at most 2nHk(T) + o(n lg σ) bits with k = o(logσ n) when represented naively as a list of
character pairs [2], where Hk denotes the empirical entropy of the k-th order. Using the
encoding of Kieffer and Yang [3], Ochoa and Navarro [4] could improve the output size to at
most nHk(T) + o(n lg σ) bits. Other encodings were recently studied by Ganczorz [5]. Since
Re-Pair is a so-called irreducible grammar, its grammar size, i.e., the sum of the symbols on
the right-hand side of all rules, is upper bounded by O(n/ logσ n) ([3], Lemma 2), which
matches the information-theoretic lower bound on the size of a grammar for a string of
length n. Comparing this size with the size of the smallest grammar, its approximation
ratio has O((n/ lg n)2/3) as an upper bound [6] and Ω(lg n/ lg lg n) as a lower bound [7].
On the practical side, Yoshida and Kida [8] presented an efficient fixed-length code for
compressing the Re-Pair grammar.

Although conceived of as a grammar for compressing texts, Re-Pair has been suc-
cessfully applied for compressing trees [9], matrices [10], or images [11]. For different

Algorithms 2021, 14, 5. https://doi.org/10.3390/a14010005 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-8721-4444
https://orcid.org/0000-0001-9106-6192
https://orcid.org/0000-0003-1918-5802
https://orcid.org/0000-0002-4566-8974
https://doi.org/10.3390/a14010005
https://doi.org/10.3390/a14010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14010005
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/14/1/5?type=check_update&version=3


Algorithms 2021, 14, 5 2 of 20

settings or for better compression rates, there is a great interest in modifications to Re-Pair.
Charikar et al. [6] (Section G) gave an easy variation to improve the size of the grammar.
Another variant, proposed by Claude and Navarro [12], runs in a user-defined working
space (>n lg n bits) and shares with our proposed solution the idea of a table that (a)
is stored with the text in the working space and (b) grows in rounds. The variant of
González et al. [13] is specialized to compressing a delta-encoded array of integers (i.e., by
the differences of subsequent entries). Sekine et al. [14] provided an adaptive variant
whose algorithm divides the input into blocks and processes each block based on the rules
obtained from the grammars of its preceding blocks. Subsequently, Masaki and Kida [15]
gave an online algorithm producing a grammar mimicking Re-Pair. Ganczorz and Jez [16]
modified the Re-Pair grammar by disfavoring the replacement of bigrams that cross Lempel–
Ziv-77 (LZ77) [17] factorization borders, which allowed the authors to achieve practically
smaller grammar sizes. Recently, Furuya et al. [18] presented a variant, called MR-Re-Pair,
in which a most frequent maximal repeat is replaced instead of a most frequent bigram.

1.1. Related Work

In this article, we focus on the problem of computing the grammar with an algorithm
working in text space, forming a bridge between the domain of in-place string algorithms,
low-memory compression algorithms, and the domain of Re-Pair computing algorithms.
We briefly review some prominent achievements in both domains:

In-place string algorithms: For the LZ77 factorization, Kärkkäinen et al. [19] presented
an algorithm computing this factorization with O(n/d) words on top of the input space
in O(dn) time for a variable d ≥ 1, achieving O(1) words with O(n2) time. For the suffix
sorting problem, Goto [20] gave an algorithm to compute the suffix array [21] with O(lg n)
bits on top of the output in O(n) time if each character of the alphabet is present in the
text. This condition was improved to alphabet sizes of at most n by Li et al. [22]. Finally,
Crochemore et al. [23] showed how to transform a text into its Burrows–Wheeler transform
by usingO(lg n) of additional bits. Due to da Louza et al. [24], this algorithm was extended
to compute simultaneously the longest common prefix (LCP) array [21] with O(lg n) bits
of additional working space.

Low-memory compression algorithms: Simple compression algorithms like run-length
compression can be computed in-place and online on the text in linear time. However, a
similar result for LZ77 is unknown: A trivial algorithm working with constant number
of words (omitting the input text) computes an LZ77 factor starting at T[i..] by linearly
scanning T[1..i− 1] for the longest previous occurrence T[j..j + `− 1] = T[i..i + `− 1] for
j < i, thus taking quadratic time. A trade-off was proposed by Kärkkäinen et al. [19],
who needed O(n lg n/d) bits of working space and O(nd lg lgn σ) time for a selectable
parameter d ≥ 1. For the particular case of d = ε−1 lg n for an arbitrary constant ε > 0,
Kosolobov [25] could improve the running time to O(n(lg σ + lg((lg n)/ε))/ε) for the
same space of O(εn) bits. Unfortunately, we are unaware of memory-efficient algorithms
computing other grammars such as longest-first substitution (LFS) [26], where a modifiable
suffix tree is used for computation.

Re-Pair computation: Re-Pair is a grammar proposed by Larsson and Moffat [1], who
presented an algorithm computing it in expected linear time with 5n + 4σ2 + 4σ′ +

√
n

words of working space, where σ′ is the number of non-terminals (produced by Re-Pair).
González et al. [13] (Section 4.1) gave another linear time algorithm using 12n + O(p)
bytes of working space, where p is the maximum number of distinct bigrams considered
at any time. The large space requirements got significantly improved by Bille et al. [27],
who presented a randomized linear time algorithm taking (1 + ε)n +

√
n words on top of

the rewritable text space for a constant ε with 0 < ε ≤ 1. Subsequently, they improved their
algorithm in [28] to include the text space within the (1 + ε)n +

√
n words of the working

space. However, they assumed that the alphabet size σ was constant and dlg σe ≤ w/2,
where w is the machine word size. They also provided a solution for ε = 0 running
in expected linear time. Recently, Sakai et al. [29] showed how to convert an arbitrary



Algorithms 2021, 14, 5 3 of 20

grammar (representing a text) into the Re-Pair grammar in compressed space, i.e., without
decompressing the text. Combined with a grammar compression that can process the text in
compressed space in a streaming fashion, this result leads to the first Re-Pair computation
in compressed space.

In a broader picture, Carrascosa et al. [30] provided a generalization called iterative
repeat replacement (IRR) , which iteratively selects a substring for replacement via a scoring
function. Here, Re-Pair and its variant MR-Re-Pair are specializations of the provided
grammar IRR-MO (IRR with maximal number of occurrences)selecting one of the most
frequent substrings that have a reoccurring non-overlapping occurrence. (As with bigrams,
we only count the number of non-overlapping occurrences.)

1.2. Our Contribution

In this article, we propose an algorithm that computes the Re-Pair grammar in
O(min(n2, n2 lg logτ n lg lg lg n/ logτ n)) time (cf. Theorems 1 and 2) with max((n/c) lg n,
ndlg τe) +O(lg n) bits of working space including the text space, where c ≥ 1 is a fixed
user-defined constant and τ is the sum of the alphabet size σ and the number of non-
terminals σ′.

We can also compute the byte pair encoding [31], which is Re-Pair with the additional
restriction that the algorithm terminates before dlg τe = dlg σe no longer holds. Hence, we
can replace τ with σ in the above space and time bounds.

Given that the characters of the text are drawn from a large integer alphabet with size
σ = Ω(n) the algorithm works in-place. (We consider the alphabet as not effective, i.e., a
character does not have to appear in the text, as this is a common setting in Unicode texts
such as Japanese text. For instance, n2 = Ω(n)∩ nO(1) 6= ∅ could be such an alphabet size.)
In this setting, we obtain the first non-trivial in-place algorithm, as a trivial approach on a
text T of length n would compute the most frequent bigram in Θ(n2) time by computing
the frequency of each bigram T[i]T[i + 1] for every integer i with 1 ≤ i ≤ n− 1, keeping
only the most frequent bigram in memory. This sums up to O(n3) total time and can be
Θ(n3) for some texts since there can be Θ(n) different bigrams considered for replacement
by Re-Pair.

To achieve our goal of O(n2) total time, we first provide a trade-off algorithm
(cf. Lemma 2) finding the d most frequent bigrams in O(n2 lg d/d) time for a trade-off
parameter d. We subsequently run this algorithm for increasing values of d and show that
we need to run it O(lg n) times, which gives us O(n2) time if d is increasing sufficiently
fast. Our major tools are appropriate text partitioning, elementary scans, and sorting steps,
which we visualize in Section 2.5 by an example and practically evaluate in Section 2.6.
When τ = o(n), a different approach using word-packing and bit-parallel techniques
becomes attractive, leading to an O(n2 lg logτ n lg lg lg n/ logτ n) time algorithm, which
we explain in Section 3. Our algorithm can be parallelized (Section 5), used in external
memory (Section 6), or adapted to compute the MR-Re-Pair grammar in small space
(Section 4). Finally, in Section 7, we study several heuristics that make the algorithm faster
on specific texts.

1.3. Preliminaries

We use the word RAM model with a word size of Ω(lg n) for an integer n ≥ 1.
We work in the restore model [32], in which algorithms are allowed to overwrite the input,
as long as they can restore the input to its original form.

Strings: Let T be a text of length n whose characters are drawn from an integer
alphabet Σ of size σ = nO(1). A bigram is an element of Σ2. The frequency of a bigram B
in T is the number of non-overlapping occurrences of B in T, which is at most |T|/2.
For instance, the frequency of the bigram aa ∈ Σ2 in the text T = a · · · a consisting of n a’s
is bn/2c.

Re-Pair: We reformulate the recursive description in the Introduction by dividing a
Re-Pair construction algorithm into turns. Stipulating that Ti is the text after the i-th turn



Algorithms 2021, 14, 5 4 of 20

with i ≥ 1 and T0 := T ∈ Σ+
0 with Σ0 := Σ, Re-Pair replaces one of the most frequent

bigrams (ties are broken arbitrarily) in Ti−1 with a non-terminal in the i-th turn. Given this
bigram is bc ∈ Σ2

i−1, Re-Pair replaces all occurrences of bc with a new non-terminal Xi in
Ti−1 and sets Σi := Σi−1 ∪ {Xi} with σi := |Σi| to produce Ti ∈ Σ+

i . Since |Ti| ≤ |Ti−1| − 2,
Re-Pair terminates after m < n/2 turns such that Tm ∈ Σ+

m contains no bigram occurring
more than once.

2. Sequential Algorithm

A major task for producing the Re-Pair grammar is to count the frequencies of the
most frequent bigrams. Our work horse for this task is a frequency table. A frequency table
in Ti of length f stores pairs of the form (bc, x), where bc is a bigram and x the frequency of
bc in Ti. It uses f

⌈
lg(σ2

i ni/2)
⌉

bits of space since an entry stores a bigram consisting of two
characters from Σi and its respective frequency, which can be at most ni/2. Throughout
this paper, we use an elementary in-place sorting algorithm like heapsort:

Lemma 1 ([33]). An array of length n can be sorted in-place in O(n lg n) time.

2.1. Trade-Off Computation

Using the frequency tables, we present a solution with a trade-off parameter:

Lemma 2. Given an integer d with d ≥ 1, we can compute the frequencies of the d most fre-
quent bigrams in a text of length n whose characters are drawn from an alphabet of size σ in
O(max(n, d)n lg d/d) time using 2d

⌈
lg(σ2n/2)

⌉
+O(lg n) bits.

Proof. Our idea is to partition the set of all bigrams appearing in T into dn/de subsets,
compute the frequencies for each subset, and finally, merge these frequencies. In detail,
we partition the text T = S1 · · · Sdn/de into dn/de substrings such that each substring has
length d (the last one has a length of at most d). Subsequently, we extend Sj to the left (only
if j > 1) such that Sj and Sj+1 overlap by one text position, for 1 ≤ j < dn/de. By doing so,
we take the bigram on the border of two adjacent substrings Sj and Sj+1 for each j < dn/de
into account. Next, we create two frequency tables F and F′, each of length d for storing the
frequencies of d bigrams. These tables are at the beginning empty. In what follows, we fill
F such that after processing Si, F stores the most frequent d bigrams among those bigrams
occurring in S1, . . . , Si while F′ acts as a temporary space for storing candidate bigrams
that can enter F.

With F and F′, we process each of the n/d substrings Sj as follows: Let us fix an
integer j with 1 ≤ j ≤ dn/de. We first put all bigrams of Sj into F′ in lexicographic order.
We can perform this within the space of F′ in O(d lg d) time since there are at most d
different bigrams in Sj. We compute the frequencies of all these bigrams in the complete
text T in O(n lg d) time by scanning the text from left to right while locating a bigram in
F′ in O(lg d) time with a binary search. Subsequently, we interpret F and F′ as one large
frequency table, sort it with respect to the frequencies while discarding duplicates such that
F stores the d most frequent bigrams in T[1..jd]. This sorting step can be done in O(d lg d)
time. Finally, we clear F′ and are done with Sj. After the final merge step, we obtain the d
most frequent bigrams of T stored in F.

Since each of theO(n/d) merge steps takesO(d lg d + n lg d) time, we need:O(max(d, n) ·
(n lg d)/d) time. For d ≥ n, we can build a large frequency table and perform one scan to
count the frequencies of all bigrams in T. This scan and the final sorting with respect to the
counted frequencies can be done in O(n lg n) time.

2.2. Algorithmic Ideas

With Lemma 2, we can compute Tm inO(mn2 lg d/d) time with additional 2d
⌈
lg(σ2

mn/2)
⌉

bits of working space on top of the text for a parameter d with 1 ≤ d ≤ n. (The variable τ



Algorithms 2021, 14, 5 5 of 20

used in the abstract and in the introduction is interchangeable with σm, i.e., τ = σm.) In the
following, we show how this leads us to our first algorithm computing Re-Pair:

Theorem 1. We can compute Re-Pair on a string of length n inO(n2) time with max((n/c) lg n,
ndlg τe) + O(lg n) bits of working space including the text space as a rewritable part in the
working space, where c ≥ 1 is a fixed constant and τ = σm is the sum of the alphabet size σ and the
number of non-terminal symbols.

In our model, we assume that we can enlarge the text Ti from nidlg σie bits to
nidlg σi+1e bits without additional extra memory. Our main idea is to store a growing
frequency table using the space freed up by replacing bigrams with non-terminals. In de-
tail, we maintain a frequency table F in Ti of length fk for a growing variable fk, which
is set to f0 := O(1) in the beginning. The table F takes fk

⌈
lg(σ2

i n/2)
⌉

bits, which is
O(lg(σ2n)) = O(lg n) bits for k = 0. When we want to query it for a most frequent bigram,
we linearly scan F in O( fk) = O(n) time, which is not a problem since (a) the number of
queries is m ≤ n and (b) we aim for O(n2) as the overall running time. A consequence is
that there is no need to sort the bigrams in F according to their frequencies, which simplifies
the following discussion.

Frequency table F: With Lemma 2, we can compute F inO(n max(n, fk) lg fk/ fk) time.
Instead of recomputing F on every turn i, we want to recompute it only when it no longer
stores a most frequent bigram. However, it is not obvious when this happens as replacing
a most frequent bigram during a turn (a) removes this entry in F and (b) can reduce the
frequencies of other bigrams in F, making them possibly less frequent than other bigrams
not tracked by F. Hence, the variable i for the i-th turn (creating the i-th non-terminal)
and the variable k for recomputing the frequency table F the (k + 1)-st time are loosely
connected. We group together all turns with the same fk and call this group the k-th round
of the algorithm. At the beginning of each round, we enlarge fk and create a new F with
a capacity for fk bigrams. Since a recomputation of F takes much time, we want to end a
round only if F is no longer useful, i.e., when we no longer can guarantee that F stores a
most frequent bigram. To achieve our claimed time bounds, we want to assign all m turns
to O(lg n) different rounds, which can only be done if fk grows sufficiently fast.

Algorithm outline: At the beginning of the k-th round and the i-th turn, we compute
the frequency table F storing fk bigrams and keep additionally the lowest frequency of F
as a threshold tk, which is treated as a constant during this round. During the computation
of the i-th turn, we replace the most frequent bigram (say, bc ∈ Σ2

i ) in the text Ti with a
non-terminal Xi+1 to produce Ti+1. Thereafter, we remove bc from F and update those
frequencies in F, which were decreased by the replacement of bc with Xi+1 and add each
bigram containing the new character Xi+1 into F if its frequency is at least tk. Whenever a
frequency in F drops below tk, we discard it. If F becomes empty, we move to the (k + 1)-st
round and create a new F for storing fk+1 frequencies. Otherwise (F still stores an entry),
we can be sure that F stores a most frequent bigram. In both cases, we recurse with the
(i + 1)-st turn by selecting the bigram with the highest frequency stored in F. We show in
Algorithm 1 the pseudo code of this outlined algorithm. We describe in the following how
we update F and how large fk+1 can become at least.



Algorithms 2021, 14, 5 6 of 20

Algorithm 1: Algorithmic outline of our proposed algorithm working on a text T with a growing frequency
table F. The constants αi and βi are explained in Section 2.3. The same section shows that the outer while loop
is executed O(lg n) times.

1 k← 0, i← 0
2 f0 ← O(1)
3 T0 ← T
4 while highest frequency of a bigram in T is greater than one do . during the k-th round
5 F ← frequency table of Lemma 2 with d := fk
6 tk ← minimum frequency stored in F
7 while F 6= ∅ do . during the i-th turn
8 bc←most frequent bigram stored in F
9 Ti+1 ← Ti.replace(bc, Xi+1) . create rule Xi+1 → bc

10 i← i + 1 . introduce the (i + 1)-th turn
11 remove all bigrams with frequency lower than tk from F
12 add new bigrams to F having Xi as left or right character and a frequency of at least tk

13 fk+1 ← fk + max(2/βi, ( fk − 1)/(2βi))/αi
14 k← k + 1 . introduce the (k + 1)-th round

15 Invariant: i = m (the number of non-terminals)

2.3. Algorithmic Details

Suppose that we are in the k-th round and in the i-th turn. Let tk be the lowest
frequency in F computed at the beginning of the k-th round. We keep tk as a constant
threshold for the invariant that all frequencies in F are at least tk during the k-th round.
With this threshold, we can assure in the following that F is either empty or stores a most
frequent bigram.

Now suppose that the most frequent bigram of Ti is bc ∈ Σ2
i , which is stored in F.

To produce Ti+1 (and hence advancing to the (i + 1)-st turn), we enlarge the space of Ti
from nidlg σie to nidlg σi+1e and replace all occurrences of bc in Ti with a new non-terminal
Xi+1. Subsequently, we would like to take the next bigram of F. For that, however, we
need to update the stored frequencies in F. To see this necessity, suppose that there is an
occurrence of abcd with two characters a, d ∈ Σi in Ti. By replacing bc with Xi+1,

1. the frequencies of ab and cd decrease by one (for the border case a = b = c (resp. b = c
= d), there is no need to decrement the frequency of ab (resp. cd)), and

2. the frequencies of aXi+1 and Xi+1d increase by one.

Updating F. We can take care of the former changes (1) by decreasing the respective
bigram in F (in the case that it is present). If the frequency of this bigram drops below the
threshold tk, we remove it from F as there may be bigrams with a higher frequency that are
not present in F. To cope with the latter changes (2), we track the characters adjacent to
Xi+1 after the replacement, count their numbers, and add their respective bigrams to F if
their frequencies are sufficiently high. In detail, suppose that we have substituted bc with
Xi+1 exactly h times. Consequently, with the new text Ti+1 we have additionally h lg σi+1
bits of free space (the free space is consecutive after shifting all characters to the left), which
we call D in the following. Subsequently, we scan the text and put the characters of Σi+1
appearing to the left of each of the h occurrences of Xi+1 into D. After sorting the characters
in D lexicographically, we can count the frequency of aXi+1 for each character a ∈ Σi+1
preceding an occurrence of Xi+1 in the text Ti+1 by scanning D linearly. If the obtained
frequency of such a bigram aXi+1 is at least as high as the threshold tk, we insert aXi+1
into F and subsequently discard a bigram with the currently lowest frequency in F if the
size of F has become fk + 1. In the case that we visit a run of Xi+1’s during the creation
of D, we must take care of not counting the overlapping occurrences of Xi+1Xi+1. Finally,
we can count analogously the occurrences of Xi+1d for all characters d ∈ Σi succeeding an
occurrence of Xi+1.



Algorithms 2021, 14, 5 7 of 20

Capacity of F: After the above procedure, we update the frequencies of F. When F
becomes empty, all bigrams stored in F are replaced or have a frequency that becomes less
than tk. Subsequently, we end the k-th round and continue with the (k + 1)-st round by (a)
creating a new frequency table F with capacity fk+1 and (b) setting the new threshold tk+1
to the minimal frequency in F. In what follows, we (a) analyze in detail when F becomes
empty (as this determines the sizes fk and fk+1) and (b) show that we can compensate
the number of discarded bigrams with an enlargement of F’s capacity from fk bigrams to
fk+1 bigrams for the sake of our aimed total running time.

Next, we analyze how many characters we have to free up (i.e., how many bigram
occurrences we have to replace) to gain enough space for storing an additional frequency.
Let δi := lg(σ2

i+1ni/2) be the number of bits needed to store one entry in F, and let
βi := min(δi/ lg σi+1, cδi/ lg n) be the minimum number of characters that need to be
freed to store one frequency in this space. To understand the value of βi, we look at the
arguments of the minimum function in the definition of βi and simultaneously at the
maximum function in our aimed working space of max(ndlg σme, (n/c) lg n) +O(lg n) bits
(cf. Theorem 1):

1. The first item in this maximum function allows us to spend lg σi+1 bits for each
freed character such that we obtain space for one additional entry in F after freeing
δi/ lg σi+1 characters.

2. The second item allows us to use lg n additional bits after freeing up c characters.
This additional treatment helps us to let fk grow sufficiently fast in the first steps to
save our O(n2) time bound, as for sufficiently small alphabets and large text sizes,
lg(σ2n/2)/ lg σ = O(lg n), which means that we might run the first O(lg n) turns
with fk = O(1) and, therefore, already spend O(n2 lg n) time. Hence, after freeing up
cδi/ lg n characters, we have space to store one additional entry in F.

With βi = min(δi/ lg σi+1, cδi/ lg n) = O(logσ n) ∩ O(logn σ) = O(1), we have the
sufficient condition that replacing a constant number of characters gives us enough space
for storing an additional frequency.

If we assume that replacing the occurrences of a bigram stored in F does not decrease
the other frequencies stored in F, the analysis is now simple: Since each bigram in F
has a frequency of at least two, fk+1 ≥ fk + fk/βi. Since βi = O(1), this lets fk grow
exponentially, meaning that we need O(lg n) rounds. In what follows, we show that this is
also true in the general case.

Lemma 3. Given that the frequency of all bigrams in F drops below the threshold tk after replacing
the most frequent bigram bc, then its frequency has to be at least max(2, |F| − 1/2), where |F| ≤ fk
is the number of frequencies stored in F.

Proof. If the frequency of bc in Ti is x, then we can reduce at most 2x frequencies of
other bigrams (both the left character and the right character of each occurrence of bc
can contribute to an occurrence of another bigram). Since a bigram must occur at least
twice in Ti to be present in F, the frequency of bc has to be at least max(2, ( fk − 1)/2) for
discarding all bigrams of F.

Suppose that we have enough space available for storing the frequencies of αi fk
bigrams, where αi is a constant (depending on σi and ni) such that F and the working
space of Lemma 2 with d = fk can be stored within this space. With βi and Lemma 3 with
|F| = fk, we have:

αi fk+1 = αi fk + max(2/βi, ( fk − 1)/(2βi))

= αi fk max(1 + 2/(αiβi fk), 1 + 1/(2αiβi)− 1/(2αiβi fk))

≥ αi fk(1 + 2/(5αiβi)) =: γiαi fk with γi := 1 + 2/(5αiβi),



Algorithms 2021, 14, 5 8 of 20

where we use the equivalence 1 + 2/(αiβi fk) = 1 + 1/(2αiβi)− 1/(2αiβi fk) ⇔ 5 = fk to
estimate the two arguments of the maximum function.

Since we let fk grow by a factor of at least γ := min1≤i≤m γi > 1 for each recomputa-
tion of F, fk = Ω(γk), and therefore, fk = Θ(n) after k = O(lg n) steps. Consequently, after
reaching k = O(lg n), we can iterate the above procedure a constant number of times to
compute the non-terminals of the remaining bigrams occurring at least twice.

Time analysis: In total, we have O(lg n) rounds. At the start of the k-th round,
we compute F with the algorithm of Lemma 2 with d = fk on a text of length at most n− fk
in O(n(n− fk) · lg fk/ fk) time with fk ≤ n. Summing this up, we get:

O
(O(lg n)

∑
k=0

n− fk
fk

n lg fk

)
= O

(
n2

lg n

∑
k

k
γk

)
= O

(
n2
)

time. (1)

In the i-th turn, we update F by decreasing the frequencies of the bigrams affected by
the substitution of the most frequent bigram bc with Xi+1. For decreasing such a frequency,
we look up its respective bigram with a linear scan in F, which takes fk = O(n) time.
However, since this decrease is accompanied with a replacement of an occurrence of bc, we
obtain O(n2) total time by charging each text position with O(n) time for a linear search
in F. With the same argument, we can bound the total time for sorting the characters in
D to O(n2) overall time: Since we spend O(h lg h) time on sorting h characters preceding
or succeeding a replaced character and O( fk) = O(n) time on swapping a sufficiently
large new bigram composed of Xi+1 and a character of Σi+1 with a bigram with the lowest
frequency in F, we charge each text position again with O(n) time. Putting all time bounds
together gives the claim of Theorem 1.

2.4. Storing the Output In-Place

Finally, we show that we can store the computed grammar in text space. More
precisely, we want to store the grammar in an auxiliary array A packed at the end of the
working space such that the entry A[i] stores the right-hand side of the non-terminal Xi,
which is a bigram. Thus, the non-terminals are represented implicitly as indices of the
array A. We therefore need to subtract 2 lg σi bits of space from our working space αi fk
after the i-th turn. By adjusting αi in the above equations, we can deal with this additional
space requirement as long as the frequencies of the replaced bigrams are at least three (we
charge two occurrences for growing the space of A).

When only bigrams with frequencies of at most two remain, we switch to a simpler
algorithm, discarding the idea of maintaining the frequency table F: Suppose that we
work with the text Ti. Let λ be a text position, which is one in the beginning, but will be
incremented in the following turns while holding the invariant T[1..λ] that does not contain
a bigram of frequency two. We scan Ti[λ..n] linearly from left to right and check, for each
text position j, whether the bigram Ti[j]Ti[j + 1] has another occurrence Ti[j′]Ti[j′ + 1] =
Ti[j]Ti[j + 1] with j′ > j + 1, and if so,

(a) append Ti[j]Ti[j + 1] to A,
(b) replace Ti[j]Ti[j + 1] and Ti[j′]Ti[j′ + 1] with a new non-terminal Xi+1 to transform

Ti to Ti+1, and
(c) recurse on Ti+1 with λ := j until no bigram with frequency two is left.

The position λ, which we never decrement, helps us to skip over all text positions
starting with bigrams with a frequency of one. Thus, the algorithm spends O(n) time for
each such text position and O(n) time for each bigram with frequency two. Since there are
at most n such bigrams, the overall running time of this algorithm is O(n2).

Remark 1 (Pointer machine model). Refraining from the usage of complicated algorithms, our
algorithm consists only of elementary sorting and scanning steps. This allows us to run our
algorithm on a pointer machine, obtaining the same time bound of O(n2). For the space bounds, we



Algorithms 2021, 14, 5 9 of 20

assume that the text is given in n words, where a word is large enough to store an element of Σm or
a text position.

2.5. Step-by-Step Execution

Here, we present an exemplary execution of the first turn (of the first round) on
the input T = cabaacabcabaacaaabcab. We visualize each step of this turn as a row in
Figure 1. A detailed description of each row follows:

Row 1: Suppose that we have computed F, which has the constant number of entries f0 = 3
(in the later turns when the size fk becomes larger, F will be put in the text space).
The highest frequency is five achieved by ab and ca. The lowest frequency repre-
sented in F is three, which becomes the threshold t0 for a bigram to be present in F
such that bigrams whose frequencies drop below t0 are removed from F. This thresh-
old is a constant for all later turns until F is rebuilt (in the following round). During
Turn 1, the algorithm proceeds now as follows:

Row 2: Choose ab as a bigram to replace with a new non-terminal X1 (break ties arbitrar-
ily). Replace every occurrence of ab with X1 while decrementing frequencies in F
according to the neighboring characters of the replaced occurrence.

Row 3: Remove from F every bigram whose frequency falls below the threshold. Obtain
space for D by aligning the compressed text T1 (the process of Row 2 and Row 3 can
be done simultaneously).

Row 4: Scan the text and copy each character preceding an occurrence of X1 in T1 to D.

Row 5: Sort characters in D lexicographically.

Row 6: Insert new bigrams (consisting of a character of D and X1) whose frequencies are
at least as large as the threshold.

Row 7: Scan the text again and copy each character succeeding an occurrence of X1 in T1
to D (symmetric to Row 4).

Row 8: Sort all characters in D lexicographically (symmetric to Row 5).

Row 9: Insert new bigrams whose frequencies are at least as large as the threshold (sym-
metric to Row 6).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 c a b a a c a b c a b a a c a a a b c a b ab:5 ca:5 aa:3

2 c X1 a a c X1 c X1 a a c a a X1 c X1 ab:0 ca:1 aa:3

3 c X1 a a c X1 c X1 a a c a a X1 c X1 aa:3

4 c X1 a a c X1 c X1 a a c a a X1 c X1 c c c a c aa:3

5 c X1 a a c X1 c X1 a a c a a X1 c X1 a c c c c aa:3

6 c X1 a a c X1 c X1 a a c a a X1 c X1 cX1:4 aa:3

7 c X1 a a c X1 c X1 a a c a a X1 c X1 a c a c cX1:4 aa:3

8 c X1 a a c X1 c X1 a a c a a X1 c X1 a a c c cX1:4 aa:3

9 c X1 a a c X1 c X1 a a c a a X1 c X1 cX1:4 aa:3

D

F

Figure 1. Step-by-step execution of the first turn of our algorithm on the string T =

cabaacabcabaacaaabcab. The turn starts with the memory configuration given in Row 1. Posi-
tions 1 to 21 are text positions, and Positions 22 to 24 belong to F ( f0 = 3, and it is assumed that a
frequency fits into a text entry). Subsequent rows depict the memory configuration during Turn 1.
A comment on each row is given in Section 2.5.

2.6. Implementation

At https://github.com/koeppl/repair-inplace, we provide a simplified implementa-
tion in C++17. The simplification is that we (a) fix the bit width of the text space to 16 bit

https://github.com/koeppl/repair-inplace


Algorithms 2021, 14, 5 10 of 20

and (b) assume that Σ is the byte alphabet. We further skip the step increasing the bit
width of the text from lg σi to lg σi+1. This means that the program works as long as the
characters of Σm fit into 16 bits. The benchmark, whose results are displayed in Table 1,
was conducted on a Mac Pro Server with an Intel Xeon CPU X5670 clocked at 2.93 GHz
running Arch Linux. The implementation was compiled with gcc-8.2.1 in the highest op-
timization mode -O3. Looking at Table 1, we observe that the running time is super-linear
to the input size on all text instances, which we obtained from the Pizza&Chili corpus
(http://pizzachili.dcc.uchile.cl/). We conducted the same experiments with an implemen-
tation of Gonzalo Navarro (https://users.dcc.uchile.cl/~gnavarro/software/repair.tgz)
in Table 2 with considerably better running times while restricting the algorithm to use
1 MB of RAM during execution. Table 3 gives some characteristics about the used data sets.
We see that the number of rounds is the number of turns plus one for every unary string
a2k

with an integer k ≥ 1 since the text contains only one bigram with a frequency larger
than two in each round. Replacing this bigram in the text makes F empty such that the
algorithm recomputes F after each turn. Note that the number of rounds can drop while
scaling the prefix length based on the choice of the bigrams stored in F.

Table 1. Experimental evaluation of our implementation and the implementation of Navarro described in Section 2.6. Table entries are
running times in seconds. The last line is the benchmark on the unary string aa · · · a.

Data Set

Our Implementation Implementation of Navarro

Prefix Size in KiB

64 128 256 512 1024 64 128 256 512 1024

ESCHERICHIA_COLI 20.68 130.47 516.67 1708.02 10,112.47 0.01 0.02 0.07 0.18 0.29
CERE 13.69 90.83 443.17 2125.17 9185.58 0.01 0.02 0.04 0.16 0.22
COREUTILS 12.88 75.64 325.51 1502.89 5144.18 0.01 0.05 0.05 0.14 0.29
EINSTEIN.DE.TXT 19.55 88.34 181.84 805.81 4559.79 0.01 0.04 0.08 0.10 0.25
EINSTEIN.EN.TXT 21.11 78.57 160.41 900.79 4353.81 0.01 0.02 0.05 0.21 0.51
INFLUENZA 41.01 160.68 667.58 2630.65 10,526.23 0.03 0.02 0.05 0.11 0.36
KERNEL 20.53 101.84 208.08 1575.48 5067.80 0.01 0.04 0.09 0.18 0.27
PARA 20.90 175.93 370.72 2826.76 9462.74 0.01 0.01 0.08 0.12 0.35
WORLD_LEADERS 11.92 21.82 167.52 661.52 1718.36 0.01 0.01 0.06 0.11 0.25

aa · · · a 0.35 0.92 3.90 14.16 61.74 0.01 0.01 0.05 0.05 0.12

Table 2. Experimental evaluation of the implementation of Navarro. Table entries are running times
in seconds.

Data Set
Prefix Size in KiB

64 128 256 512 1024

ESCHERICHIA_COLI 0.01 0.02 0.07 0.18 0.29
CERE 0.01 0.02 0.04 0.16 0.22
COREUTILS 0.01 0.05 0.05 0.14 0.29
EINSTEIN.DE.TXT 0.01 0.04 0.08 0.10 0.25
EINSTEIN.EN.TXT 0.01 0.02 0.05 0.21 0.51
INFLUENZA 0.03 0.02 0.05 0.11 0.36
KERNEL 0.01 0.04 0.09 0.18 0.27
PARA 0.01 0.01 0.08 0.12 0.35
WORLD_LEADERS 0.01 0.01 0.06 0.11 0.25

http://pizzachili.dcc.uchile.cl/
https://users.dcc.uchile.cl/~gnavarro/software/repair.tgz


Algorithms 2021, 14, 5 11 of 20

Table 3. Characteristics of our data sets used in Section 2.6. The number of turns and rounds are
given for each of the prefix sizes 128, 256, 512, and 1024 KiB of the respective data sets. The number
of turns reflecting the number of non-terminals is given in units of thousands. The turns of the unary
string aa · · · a are in plain units (not divided by thousand).

Data Set σ

Turns/1000 Rounds
Prefix Size in KiB Prefix Size in KiB

26 27 28 29 210 26 27 28 29 210

ESCHERICHIA_COLI 4 1.8 3.2 5.6 10.3 18.1 6 9 9 12 12
CERE 5 1.4 2.8 5.0 9.2 15.1 13 14 14 14 14
COREUTILS 113 4.7 6.7 10.2 16.1 26.5 15 15 15 14 14
EINSTEIN.DE.TXT 95 1.7 2.8 3.7 5.2 9.7 14 14 15 16 16
EINSTEIN.EN.TXT 87 3.3 3.5 3.8 4.5 8.6 16 15 15 15 17
INFLUENZA 7 2.5 3.7 9.5 13.4 22.1 11 12 14 13 15
KERNEL 160 4.5 8.0 13.9 24.5 43.7 10 11 14 14 13
PARA 5 1.8 3.2 5.8 10.1 17.6 12 12 13 13 14
WORLD_LEADERS 87 2.6 4.3 6.1 10.0 42.1 11 11 11 11 14

aa · · · a 1 15 16 17 18 19 16 17 18 19 20

3. Bit-Parallel Algorithm

In the case that τ = σm is o(n) (and therefore, σ = o(n)), a word-packing approach
becomes interesting. We present techniques speeding up the previously introduced opera-
tions on chunks of O(logτ n) characters from O(logτ n) time to O(lg lg lg n) time. In the
end, these techniques allow us to speed up the sequential algorithm of Theorem 1 from
O(n2) time to the following:

Theorem 2. We can compute Re-Pair on a string of length n inO(n2 lg logτ n lg lg lg n/ logτ n)
time with max((n/c) lg n, ndlg τe) + O(lg n) bits of working space including the text space,
where c ≥ 1 is a fixed constant and τ = σm is the sum of the alphabet size σ and the number of
non-terminal symbols.

Note that the O(lg lg lg n) time factor is due to the popcount function [34]
(Algorithm 1), which has been optimized to a single instruction on modern computer archi-
tectures. Our toolbox consists of several elementary instructions shown in Figure 2. There,
msb(X) can be computed in constant time algorithm using O(lg n) bits [35] (Section 5).
The last two functions in Figure 2 are explained in Figure 3.

3.1. Broadword Search

First, we deal with accelerating the computation of the frequency of a bigram in T by
exploiting broadword search thanks to the word RAM model. We start with the search of
single characters and subsequently extend this result to bigrams:

Operation Description

X � j shift X j positions to the left
X � j shift X j positions to the right
¬X bitwise NOT of X
X⊗Y bitwise XOR of X and Y
−1 bit vector consisting only of one bits
msb(X) returns the position of the most significant set bit of X, i.e., blg Xc+ 1;
rmPreRun(X) sets all bits of the maximal prefix of consecutive ones to zero
rmSufRun(X) sets all bits of the maximal suffix of consecutive ones to zero

Figure 2. Operations used in Figures 4 and 5 for two bit vectors X and Y. All operations can be
computed in constant time. See Figure 3 for an example of rmSufRun and rmPreRun.



Algorithms 2021, 14, 5 12 of 20

rmPreRun(X)

Operation Example

X 11100110
¬X 00011001
1� (1 + msb(¬X)) 00100000
(1� (1 + msb(¬X)))− 1 00011111
((1� (1 + msb(¬X)))− 1) & X 00000110

rmSufRun(X)

Operation Example

X 01100111
¬X 10011000
¬X− 1 10010111
(¬X− 1) & X 00000111
¬((¬X− 1) & X) 11111000
¬((¬X− 1) & X) & X 01100000

Figure 3. Step-by-step execution of rmPreRun(X) and rmSufRun(X) introduced in Figure 2 on a bit
vector X.

Lemma 4. We can count the occurrences of a character c ∈ Σ in a string of length O(logσ n) in
O(lg lg lg n) time.

Proof. Let q be the largest multiple of dlg σe fitting into a computer word, divided by
dlg σe. Let S ∈ Σ∗ be a string of length q. Our first task is to compute a bit mask of
length qdlg σe marking the occurrences of a character c ∈ Σ in S with a ‘1’. For that, we
follow the constant time broadword pattern matching of Knuth [36] (Section 7.1.3); see
https://github.com/koeppl/broadwordsearch for a practical implementation. Let H and
L be two bit vectors of length dlg σe having marked only the most significant or the least
significant bit, respectively. Let Hq and Lq denote the q times concatenation of H and L,
respectively. Then, the operations in Figure 4 yield an array X of length q with:

X[i] =

{
2dlg σe − 1 if S[i] = c,
0 otherwise,

(2)

where each entry of X has dlg σe bits.

Operation Description Example

read S 101010000→ S
X ← S⊗ cq match S with cq; X[i] = 0 ⇔

S[i] = c ⊗
=

101010000 = S
010010010
111000010→ X

Y ← X− Lq

−
=

111000010 = X
001001001
101111001→ Y

X ← Y &¬X X[i] & 2dlg σe − 1 = 1 ⇔
S[i] = c &

=

101111001 = Y
000111101
000111001→ X

X ← X & Hq X[i] = 0⇔ S[i] 6= c
&
=

000111001 = X
100100100
000100000→ X

X ← (X− (X � (dlg σe − 1))) | X X as in Equation (2)
−
=
|
=

000100000 = X
000001000
000011000
000100000
000111000→ X

Figure 4. Matching all occurrences of a character in a string S fitting into a computer word in constant
time by using bit-parallel instructions. For the last step, special care has to be taken when the last
character of S is a match, as shifting X dlg σe bits to the right might erase a ‘1’ bit witnessing the
rightmost match. In the description column, X is treated as an array of integers with bit width dlg σe.
In this example, S = 101010000, c has the bit representation 010 with lg σ = 3, and q = 3.

https://github.com/koeppl/broadwordsearch
https://github.com/koeppl/broadwordsearch


Algorithms 2021, 14, 5 13 of 20

To obtain the number of occurrences of c in S, we use the popcount operation returning
the number of zero bits in X and divide the result by dlg σe. The popcount instruction
takes O(lg lg lg n) time ([34] Algorithm 1).

Having Lemma 4, we show that we can compute the frequency of a bigram in T in
O(n lg lg lg n/ logσ n) time. For that, we interpret T ∈ Σn of length n as a text T ∈ (Σ2)dn/2e

of length dn/2e. Then, we partition T into strings fitting into a computer word and call
each string of this partition a chunk. For each chunk, we can apply Lemma 4 by treating
a bigram c ∈ Σ2 as a single character. The result is, however, not the frequency of the
bigram c in general. For computing the frequency a bigram bc ∈ Σ2, we distinguish the
cases b 6= c and b = c.

Case b 6= c: By applying Lemma 4 to find the character bc ∈ Σ2 in a chunk S
(interpreted as a string of length bq/2c on the alphabet Σ2), we obtain the number of
occurrences of bc starting at odd positions in S. To obtain this number for all even positions,
we apply the procedure to dS with d ∈ Σ \ {b, c}. Additional care has to be taken at the
borders of each chunk matching the last character of the current chunk and the first
character of the subsequent chunk with b and c, respectively.

Case b = c: This case is more involving as overlapping occurrences of bb can occur
in S, which we must not count. To this end, we watch out for runs of b’s, i.e., substrings of
maximal lengths consisting of the character b (here, we consider also maximal substrings
of b with length one as a run). We separate these runs into runs ending either at even or
at odd positions. We do this because the frequency of bb in a run of b’s ending at an even
(resp. odd) position is the number of occurrences of bb within this run ending at an even
(resp. odd) position. We can compute these positions similarly to the approach for b 6= c by
first (a) hiding runs ending at even (resp. odd) positions and then (b) counting all bigrams
ending at even (resp. odd) positions. Runs of b’s that are a prefix or a suffix of S are handled
individually if S is neither the first nor the last chunk of T, respectively. That is because
a run passing a chunk border starts and ends in different chunks. To take care of those
runs, we remember the number of b’s of the longest suffix of every chunk and accumulate
this number until we find the end of this run, which is a prefix of a subsequent chunk.
The procedure for counting the frequency of bb inside S is explained with an example in
Figure 5. With the aforementioned analysis of the runs crossing chunk borders, we can
extend this procedure to count the frequency of bb in T. We conclude:

Lemma 5. We can compute the frequency of a bigram in a string T of length n whose characters
are drawn from an alphabet of size σ in O(n lg lg lg n/ logσ n) time.

3.2. Bit-Parallel Adaption

Similarly to Lemma 2, we present an algorithm computing the d most frequent bigrams,
but now with the word-packed search of Lemma 5.

Lemma 6. Given an integer d with d ≥ 1, we can compute the frequencies of the d most fre-
quent bigrams in a text of length n whose characters are drawn from an alphabet of size σ in
O(n2 lg lg lg n/ logσ n) time using d

⌈
lg(σ2n/2)

⌉
+O(lg n) bits.

Proof. We allocate a frequency table F of length d. For each text position i with 1 ≤ i ≤ n−
1, we compute the frequency of T[i]T[i + 1] in O(n lg lg lg n/ logσ n) time with Lemma 5.
After computing a frequency, we insert it into F if it is one of the d most frequent bigrams
among the bigrams we have already computed. We can perform the insertion in O(lg d)
time if we sort the entries of F by their frequencies, obtaining O((n lg lg lg n/ logσ n +
lg d)n) total time.



Algorithms 2021, 14, 5 14 of 20

Operation Description Example

input S bbdbbdcbbbdbb = S
X ← find(b, S) search b in S 1101100111011→ X
X ← rmPreRun(X) erase prefix of b’s 0001100111011→ X
M← rmSufRun(X) erase suffix of b’s 0001100111000→ M
B← findBigram(01, M) & M starting of each b

run
0001000100000→ B

E← findBigram(10, M) & M end of each b run 0000100001000→ E
M← M &¬B trim head of runs 0000100011000→ M

X ← B− (E & (01)q/2) bit mask for all runs
ending at even posi-
tions

−

=

0001000100000 = B
(0000100001000&
0101010101010)
0001000011000→ X

X ← M & X occurrences of all
bs belonging to
runs ending at even
positions

&
=

0001000011000 = X
0000100011000 = M
0000000011000→ X

popcount(X & (01)q/2) frequency of all bbs
belonging to runs
ending at even po-
sitions

&
=

0000000011000 = X
0101010101010
0000000001000

X ← B− (E & (10)q/2) bit mask for all runs
ending at odd posi-
tions

−

=

0001000100000 = B
(0000100001000&
1010101010101)
0000100100000→ X

X ← M & X occurrences of all
bs belonging to
runs ending at odd
positions

&
=

0000100100000 = X
0000100011000 = M
0000100000000→ X

popcount(X & (10)q/2) frequency of all bbs
belonging to runs
ending at odd posi-
tions

&
=

0000100000000 = X
1010101010101
0000100000000

Figure 5. Finding a bigram bb in a string S of bit length q, where q is the largest multiple of 2dlg σe
fitting into a computer word, divided by dlg σe. In the example, we represent the strings M, B, E,
and X as arrays of integers with bit width x := dlg σe and write 1 and 0 for 1x and 0x, respectively.
Let findBigram(bc, X) := find(bc, X) | find(bc, dX) for d 6= b be the frequency of a bigram bc with
b 6= c as described in Section 3.1, where the function find returns the output described in Figure 4.
Each of the popcount queries gives us one occurrence as a result (after dividing the returned number
by dlg σe), thus the frequency of bb in S, without looking at the borders of S, is two. As a side note,
modern computer architectures allow us to shrink the 0x or 1x blocks to single bits by instructions
like _pext_u64 taking a single CPU cycle.

Studying the final time bounds of Equation (1) for the sequential algorithm of Section 2,
we see that we spend O(n2) time in the first turn, but spend less time in later turns. Hence,
we want to run the bit-parallel algorithm only in the first few turns until fk becomes so large
that the benefits of running Lemma 2 outweigh the benefits of the bit-parallel approach of
Lemma 6. In detail, for the k-th round, we set d := fk and run the algorithm of Lemma 6 on
the current text if d is sufficiently small, or otherwise the algorithm of Lemma 2. In total,
we obtain:



Algorithms 2021, 14, 5 15 of 20

O
(O(lg n)

∑
k=0

min
(

n− fk
fk

n lg fk,
(n− fk)2 lg lg lg n

logτ n

))
= O

(
n2

lg n

∑
k=0

min
(

k
γk ,

lg lg lg n
logτ n

))

= O
(

n2 lg logτ n lg lg lg n
logτ n

)
time in total,

(3)

where τ = σm is the sum of the alphabet size σ and the number of non-terminals, and
k/γk > lg lg lg n/ logτ n⇔ k = O(lg(lg n/(lg τ lg lg lg n))).

To obtain the claim of Theorem 2, it is left to show that the k-th round with the bit-
parallel approach uses O(n2 lg lg lg n/ logτ n) time, as we now want to charge each text
position with O(n/ logτ n) time with the same amortized analysis as after Equation (1).
We target O(n/ logτ n) time for:

(1) replacing all occurrences of a bigram,
(2) shifting freed up text space to the right,
(3) finding the bigram with the highest or lowest frequency in F,
(4) updating or exchanging an entry in F, and
(5) looking up the frequency of a bigram in F.

Let x := dlg σi+1e and q be the largest multiple of x fitting into a computer word,
divided by x. For Item (1), we partition T into substrings of length q and apply Item
(1) to each such substring S. Here, we combine the two bit vectors of Figure 5 used for
the two popcount calls by a bitwise OR and call the resulting bit vector Y. Interpreting Y
as an array of integers of bit width x, Y has q entries, and it holds that Y[i] = 2x − 1 if
and only if S[i] is the second character of an occurrence of the bigram we want to replace.
(Like in Item (1), the case in which the bigram crosses a boundary of the partition of T
is handled individually). We can replace this character in all marked positions in S by a
non-terminal Xi+1 using x bits with the instruction (S &¬Y) | ((Y & Lq) · Xi+1), where L
with |L| = x is the bit vector having marked only the least significant bit. Subsequently,
for Item (2), we erase all characters S[i] with Y[i + 1] = (Y � x)[i] = 2x − 1 and move
them to the right of the bit chunk S sequentially. In the subsequent bit chunks, we can use
word-packed shifting. The sequential bit shift costs O(|S|) = O(logσi+1

n) time, but on an
amortized view, a deletion of a character is done at most once per original text position.

For the remaining points, our trick is to represent F by a minimum and a maximum
heap, both realized as array heaps. For the space increase, we have to lower αi (and γi)
adequately. Each element of an array heap stores a frequency and a pointer to a bigram
stored in a separate array B storing all bigrams consecutively. A pointer array P stores
pointers to the respective frequencies in both heaps for each bigram of B. The total data
structure can be constructed at the beginning of the k-th round in O( fk) time and hence
does not worsen the time bounds. While B solves Item (5), the two heaps with P solve Items
(3) and (4) even in O(lg fk) time.

In the case that we want to store the output in working space, we follow the description
of Section 2.4, where we now use word-packing to find the second occurrence of a bigram
in Ti in O(n/ logσi

n) time.

4. Computing MR-Re-Pair in Small Space

We can adapt our algorithm to compute the MR-Re-Pair grammar scheme proposed
by Furuya et al. [18]. The difference to Re-Pair is that MR-Re-Pair replaces the most
frequent maximal repeat instead of the most frequent bigram, where a maximal repeat is a
reoccurring substring of the text whose frequency decreases when extending it to the left
or to the right. (Here, we naturally extended the definition of frequency from bigrams to
substrings meaning the number of non-overlapping occurrences.) Our idea is to exploit
the fact that a most frequent bigram corresponds to a most frequent maximal repeat ([18],
Lemma 2). This means that we can find a most frequent maximal repeat by extending



Algorithms 2021, 14, 5 16 of 20

all occurrences of a most frequent bigram to their left and to their right until all are no
longer equal substrings. Although such an extension can be time consuming, this time is
amortized by the number of characters that are replaced on creating an MR-Re-Pair rule.
Hence, we conclude that we can compute MR-Re-Pair in the same space and time bounds
as our algorithms (Theorems 1 and 2) computing the Re-Pair grammar.

5. Parallel Algorithm

Suppose that we have p processors on a concurrent read concurrent write (CRCW)
machine, supporting in particular parallel insertions of elements and frequency updates in
a frequency table. In the parallel setting, we allow us to spend O(p lg n) bits of additional
working space such that each processor has an extra budget of O(lg n) bits. In our com-
putational model, we assume that the text is stored in p parts of equal lengths, which we
can achieve by padding up the last part with dummy characters to have n/p characters
for each processor, such that we can enlarge a text stored in n lg σ bits to n(lg σ + 1) bits in
max(1, n/p) time without extra memory. For our parallel variant computing Re-Pair, our
working horse is a parallel sorting algorithm:

Lemma 7 ([37]). We can sort an array of length n in O(max(n/p, 1) lg2 n) parallel time with
O(p lg n) bits of working space. The work is O(n lg2 n).

The parallel sorting allows us to state Lemma 2 in the following way:

Lemma 8. Given an integer d with d ≥ 1, we can compute the frequencies of the d most fre-
quent bigrams in a text of length n whose characters are drawn from an alphabet of size σ in
O(max(n, d) max(n/p, 1) lg2 d/d) time using 2d

⌈
lg(σ2n/2)

⌉
+O(p lg n) bits. The work is

O(max(n, d)n lg2 d/d).

Proof. We follow the computational steps of Lemma 2, but (a) divide a scan into p parts,
(b) conduct a scan in parallel but a binary search sequentially, and (c) use Lemma 7 for the
sorting. This gives us the following time bounds for each operation:

Operation Lemma 2 Parallel

fill F′ with bigrams O(d) O(max(d/p, 1))

sort F′ lexicographically O(d lg d) O(max(d/p, 1) lg2 d)

compute frequencies of F′ O(n lg d) O(n/p lg d)

merge F′ with F O(d lg d) O(max(d/p, 1) lg2 d)

The O(n/d) merge steps are conducted in the same way, yielding the bounds of this
lemma.

In our sequential model, we produce Ti+1 by performing a left shift of the gained space
after replacing all occurrences of a most frequent bigram with a new non-terminal Xi+1 such
that we accumulate all free space at the end of the text. As described in our computational
model, our text is stored as a partition of p substrings, each assigned to one processor.
Instead of gathering the entire free space at T’s end, we gather free space at the end of each
of these substrings. We bookkeep the size and location of each such free space (there are at
most p many) such that we can work on the remaining text Ti+1 like it would be a single
continuous array (and not fragmented into p substrings). This shape allows us to perform
the left shift in O(n/p) time, while spending O(p lg n) bits of space for maintaining the
locations of the free space fragments.



Algorithms 2021, 14, 5 17 of 20

For p ≤ n, exchanging Lemma 2 with Lemma 8 in Equation (1) gives:

O
(O(lg n)

∑
k=0

n− fk
fk

n
p

lg2 fk

)
= O

(
n2

p

lg n

∑
k

k2

γk

)
= O

(
n2

p

)
time in total.

It is left to provide an amortized analysis for updating the frequencies in F during
the i-th turn. Here, we can charge each text position with O(n/p) time, as we have the
following time bounds for each operation:

Operation Sequential Parallel

linearly scan F O( fk) O( fk/p)

linearly scan Ti O(ni) O(ni/p)

sort D with h = |D| O(h lg h) O(max(1, h/p) lg2 h)

The first operation in the above table is used, among others, for finding the bigram
with the lowest or highest frequency in F. Computing the lowest or highest frequency in F
can be done with a single variable pointing to the currently found entry with the lowest or
highest frequency during a parallel scan thanks to the CRCW model. In the concurrent read
exclusive write (CREW) model, concurrent writes are not possible. A common strategy lets
each processor compute the entry of the lowest or highest frequency within its assigned
range in F, which is then merged in a tournament tree fashion, causing O(lg p) additional
time.

Theorem 3. We can compute Re-Pair in O(n2/p) time with p ≤ n processors on a CRCW
machine with max((n/c) lg n, ndlg τe) + O(p lg n) bits of working space including the text
space, where c ≥ 1 is a fixed constant and τ = σm is the sum of the alphabet size σ and the number
of non-terminal symbols. The work is O(n2).

6. Computing Re-Pair in External Memory

This part is devoted to the first external memory (EM) algorithms computing Re-Pair,
which is another way to overcome the memory limitation problem. We start with the
definition of the EM model, present an approach using a sophisticated heap data structure,
and another approach adapting our in-place techniques.

For the following, we use the EM model of Aggarwal and Vitter [38]. It features
fast internal memory (IM) holding up to M data words and slow EM of unbounded
size. The measure of the performance of an algorithm is the number of input and output
operations (I/Os) required, where each I/O transfers a block of B consecutive words
between memory levels. Reading or writing n contiguous words from or to disk requires
scan(n) = Θ(n/B) I/Os. Sorting n contiguous words requires sort(n) = O((n/B) ·
logM/B(n/B)) I/Os. For realistic values of n, B, and M, we stipulate that scan(n) <
sort(n)� n.

A simple approach is based on an EM heap maintaining the frequencies of all bigrams
in the text. A state-of-the-art heap is due to Jiang and Larsen [39] providing insertion,
deletion, and the retrieval of the maximum element in O(B−1 logM/B(N/B)) I/Os, where
N is the size of the heap. Since N ≤ n, inserting all bigrams takes at most sort(n) I/Os.
As there are at most n additional insertions, deletions, and maximum element retrievals,
this sums to at most 4 sort(n) I/Os. Given Re-Pair has m turns, we need to scan the text m
times to replace the occurrences of all m retrieved bigrams, triggering m ∑m

i=1 scan(|Ti|) ≤
m scan(n) I/Os.

In the following, we show an EM Re-Pair algorithm that evades the use of complicated
data structures and prioritizes scans over sorting. This algorithm is based on our Re-Pair
algorithm. It uses Lemma 2 with d := Θ(M) such that F and F′ can be kept in RAM.



Algorithms 2021, 14, 5 18 of 20

This allows us to perform all sorting steps and binary searches in IM without additional
I/O. We only trigger I/O operations for scanning the text, which is done dn/de times, since
we partition T into d substrings. In total, we spend at most mn/M scans for the algorithm
of Lemma 2. For the actual algorithm having m turns, we update F m times, during which
we replace all occurrences of a chosen bigram in the text. This gives us m scans in total.
Finally, we need to reason about D, which we create m times. However, D may be larger
than M, such that we may need to store it in EM. Given that Di is D in the i-th turn, we
sort D in EM, triggering sort(Di) I/Os. With the converse of Jensen’s inequality ([40],
Theorem B) (set there f (x) := n lg n), we obtain ∑m

i=1 sort(|Di|) ≤ sort(n) +O(n logM/B 2)
total I/Os for all instances of D. We finally obtain:

Theorem 4. We can compute Re-Pair with min(4 sort(n), (mn/M) scan(n) + sort(n) +
O(n logM/B 2)) + m scan(n) I/Os in external memory.

The latter approach can be practically favorable to the heap based approach if m =
o(lg n) and mn/M = o(lg n), or if the EM space is also of major concern.

7. Heuristics for Practicality

The achieved quadratic or near-quadratic time bounds (Theorems 1 and 2) seem
to convey the impression that this work is only of purely theoretic interest. However,
we provide here some heuristics, which can help us to overcome the practical bottleneck at
the beginning of the execution, where only O(lg n) of bits of working space are available.
In other words, we want to study several heuristics to circumvent the need to call Lemma 2
with a small parameter d, as such a case means a considerable time loss. Even a single call
of Lemma 2 with a small d prevents the computation of Re-Pair of data sets larger than 1
MiB within a reasonable time frame (cf. Section 2.6). We present three heuristics depending
on whether our space budget on top of the text space is within:

1. σ2
i lg ni bits,

2. ni lg(σi+1 + ni) bits, or
3. O(lg n) bits.

Heuristic 1. If σi is small enough such that we can spend σ2
i lg ni bits, then we can

count the frequencies of all bigrams in a table of σ2
i lg ni bits in O(n) time. Whenever we

reach a σj that lets σj lg nj grow outside of our budget, we have spent O(n) time in total
for reaching Tj from Ti as the costs for replacements can be amortized by twice of the
text length.

Heuristic 2. Suppose that we are allowed to use (ni − 1) lg(ni/2) = (ni − 1) lg ni −
ni +O(lg ni) bits in addition to the ni lg σi bits of the text Ti. We create an extra array F of
length ni − 1 with the aim that F[j] stores the frequency of T[j]T[j + 1] in T[1..j]. We can fill
the array in σi scans over Ti, costing us O(niσi) time. The largest number stored in F is the
most frequent bigram in T.

Heuristic 3. Finally, if the distribution of bigrams is skewed, chances are that one
bigram outnumbers all others. In such a case, we can use the following algorithm to find
this bigram:

Lemma 9. Given there is a bigram in Ti (0 ≤ i ≤ n) whose frequency is higher than the sum of
frequencies of all other bigrams, we can compute Ti+1 in O(n) time using O(lg n) bits.

Proof. We use the Boyer–Moore majority vote algorithm [41] for finding the most frequent
bigram in O(n) time with O(lg n) bits of working space.

A practical optimization of updating F as described in Section 2.3 could be to enlarge
F beyond fk instead of keeping its size. There, after a replacement of a bigram with a
non-terminal Xi+1, we insert those bigrams containing Xi+1 into F whose frequencies are
above tk while discarding bigrams of the lowest frequency stored in F to keep the size of F



Algorithms 2021, 14, 5 19 of 20

at fk. Instead of discarding these bigrams, we could just let F grow. We can let F grow by
using the space reserved for the frequency table F′ computed in Lemma 2 (remember the
definition of the constant αi). By doing so, we might extend the lifespan of a round.

8. Conclusions

In this article, we propose an algorithm computing Re-Pair in-place in sub-quadratic
time for small alphabet sizes. Our major tools are simple, which allows us to parallelize
our algorithm or adapt it in the external memory model.

This paper is an extended version of our paper published in The Prague Stringology
Conference 2020 [42] and our poster at the Data Compression Conference 2020 [43].

Author Contributions: Conceptualization: K.G.; formal analysis: T.I., I.F., Y.T., and D.K.; visual-
ization: K.S.; writing: T.I. and D.K. All authors read and agreed to the published version of the
manuscript.

Funding: This work is funded by the JSPS KAKENHI Grant Numbers JP18F18120 (Dominik Köppl),
19K20213 (Tomohiro I), and 18K18111 (Yoshimasa Takabatake) and the JST CREST Grant Number
JPMJCR1402 including the AIP challenge program (Keisuke Goto).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Larsson, N.J.; Moffat, A. Offline Dictionary-Based Compression. In Proceedings of the 1999 Data Compression Conference,

Snowbird, UT, USA, 29–31 March 1999; pp. 296–305.
2. Navarro, G.; Russo, L.M.S. Re-Pair Achieves High-Order Entropy. In Proceedings of the 2008 Data Compression Conference,

Snowbird, UT, USA, 25–27 March 2008; p. 537
3. Kieffer, J.C.; Yang, E. Grammar-based codes: A new class of universal lossless source codes. IEEE Trans. Inf. Theory 2000,

46, 737–754. [CrossRef]
4. Ochoa, C.; Navarro, G. RePair and All Irreducible Grammars are Upper Bounded by High-Order Empirical Entropy. IEEE Trans.

Inf. Theory 2019, 65, 3160–3164. [CrossRef]
5. Ganczorz, M. Entropy Lower Bounds for Dictionary Compression. Proc. CPM 2019, 128, 11:1–11:18.
6. Charikar, M.; Lehman, E.; Liu, D.; Panigrahy, R.; Prabhakaran, M.; Sahai, A.; Shelat, A. The smallest grammar problem. IEEE

Trans. Inf. Theory 2005, 51, 2554–2576. [CrossRef]
7. Bannai, H.; Hirayama, M.; Hucke, D.; Inenaga, S.; Jez, A.; Lohrey, M.; Reh, C.P. The smallest grammar problem revisited. arXiv

2019, arXiv:1908.06428.
8. Yoshida, S.; Kida, T. Effective Variable-Length-to-Fixed-Length Coding via a Re-Pair Algorithm. In Proceedings of the 2013 Data

Compression Conference, Snowbird, UT, USA, 20–22 March 2013; p. 532.
9. Lohrey, M.; Maneth, S.; Mennicke, R. XML tree structure compression using RePair. Inf. Syst. 2013, 38, 1150–1167. [CrossRef]
10. Tabei, Y.; Saigo, H.; Yamanishi, Y.; Puglisi, S.J. Scalable Partial Least Squares Regression on Grammar-Compressed Data Matrices.

In Proceedings of the SIGKDD, San Francisco, CA, USA, 13–17 August 2016; pp. 1875–1884.
11. De Luca, P.; Russiello, V.M.; Ciro Sannino, R.; Valente, L. A study for Image compression using Re-Pair algorithm. arXiv 2019,

arXiv 1901.10744.
12. Claude, F.; Navarro, G. Fast and Compact Web Graph Representations. TWEB 2010, 4, 16:1–16:31. [CrossRef]
13. González, R.; Navarro, G.; Ferrada, H. Locally Compressed Suffix Arrays. ACM J. Exp. Algorithmics 2014, 19, 1. [CrossRef]
14. Sekine, K.; Sasakawa, H.; Yoshida, S.; Kida, T. Adaptive Dictionary Sharing Method for Re-Pair Algorithm. In Proceedings of the

2014 Data Compression Conference, Snowbird, UT, USA, 26–28 March 2014; p. 425.
15. Masaki, T.; Kida, T. Online Grammar Transformation Based on Re-Pair Algorithm. In Proceedings of the 2016 Data Compression

Conference (DCC), Snowbird, UT, USA, 30 March–1 April 2016; pp. 349–358.
16. Ganczorz, M.; Jez, A. Improvements on Re-Pair Grammar Compressor. In Proceedings of the 2017 Data Compression Conference

(DCC), Snowbird, UT, USA, 4–7 April 2017; pp. 181–190.
17. Ziv, J.; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977, 23, 337–343. [CrossRef]
18. Furuya, I.; Takagi, T.; Nakashima, Y.; Inenaga, S.; Bannai, H.; Kida, T. MR-RePair: Grammar Compression based on Maximal

Repeats. In Proceedings of the 2019 Data Compression Conference (DCC), Snowbird, UT, USA, 26–29 March 2019; pp. 508–517.

http://dx.doi.org/10.1109/18.841160
http://dx.doi.org/10.1109/TIT.2018.2871452
http://dx.doi.org/10.1109/TIT.2005.850116
http://dx.doi.org/10.1016/j.is.2013.06.006
http://dx.doi.org/10.1145/1841909.1841913
http://dx.doi.org/10.1145/2594408
http://dx.doi.org/10.1109/TIT.1977.1055714


Algorithms 2021, 14, 5 20 of 20

19. Kärkkäinen, J.; Kempa, D.; Puglisi, S.J. Lightweight Lempel-Ziv Parsing. In Proceedings of the International Symposium on
Experimental Algorithms, Rome, Italy, 5–7 June 2013; Volume 7933, pp. 139–150.

20. Goto, K. Optimal Time and Space Construction of Suffix Arrays and LCP Arrays for Integer Alphabets. In Proceedings of the
Prague Stringology Conference 2019, Prague, Czech Republic, 26–28 August, 2019; pp. 111–125.

21. Manber, U.; Myers, E.W. Suffix Arrays: A New Method for On-Line String Searches. SIAM J. Comput. 1993, 22, 935–948.
[CrossRef]

22. Li, Z.; Li, J.; Huo, H. Optimal In-Place Suffix Sorting. In Proceedings of the International Symposium on String Processing and
Information Retrieval, Lima, Peru, 9–11 October 2018; Volume 11147, pp. 268–284.

23. Crochemore, M.; Grossi, R.; Kärkkäinen, J.; Landau, G.M. Computing the Burrows-Wheeler transform in place and in small
space. J. Discret. Algorithms 2015, 32, 44–52. [CrossRef]

24. da Louza, F.A.; Gagie, T.; Telles, G.P. Burrows-Wheeler transform and LCP array construction in constant space. J. Discret.
Algorithms 2017, 42, 14–22. [CrossRef]

25. Kosolobov, D. Faster Lightweight Lempel-Ziv Parsing. In Proceedings of the International Symposium on Mathematical
Foundations of Computer Science, Milano, Italy, 24–28 August 2015; Volume 9235, pp. 432–444.

26. Nakamura, R.; Inenaga, S.; Bannai, H.; Funamoto, T.; Takeda, M.; Shinohara, A. Linear-Time Text Compression by Longest-First
Substitution. Algorithms 2009, 2, 1429–1448. [CrossRef]

27. Bille, P.; Gørtz, I.L.; Prezza, N. Space-Efficient Re-Pair Compression. In Proceedings of the 2017 Data Compression Conference
(DCC), Snowbird, UT, USA, 4–7 April 2017; pp. 171–180.

28. Bille, P.; Gørtz, I.L.; Prezza, N. Practical and Effective Re-Pair Compression. arXiv 2017, arXiv:1704.08558.
29. Sakai, K.; Ohno, T.; Goto, K.; Takabatake, Y.; I, T.; Sakamoto, H. RePair in Compressed Space and Time. In Proceedings of the

2019 Data Compression Conference (DCC), Snowbird, UT, USA, 26–29 March 2019; pp. 518–527.
30. Carrascosa, R.; Coste, F.; Gallé, M.; López, G.G.I. Choosing Word Occurrences for the Smallest Grammar Problem. In Proceed-

ings of the International Conference on Language and Automata Theory and Applications, Trier, Germany, 24–28 May 2010;
Volume 6031, pp. 154–165.

31. Gage, P. A New Algorithm for Data Compression. C Users J. 1994, 12, 23–38.
32. Chan, T.M.; Munro, J.I.; Raman, V. Selection and Sorting in the “Restore” Model. ACM Trans. Algorithms 2018, 14, 11:1–11:18.

[CrossRef]
33. Williams, J.W.J. Algorithm 232—Heapsort. Commun. ACM 1964, 7, 347–348.
34. Vigna, S. Broadword Implementation of Rank/Select Queries. In Proceedings of the International Workshop on Experimental

and Efficient Algorithms, Provincetown, MA, USA, 30 May–1 June 2008; Volume 5038, pp. 154–168.
35. Fredman, M.L.; Willard, D.E. Surpassing the Information Theoretic Bound with Fusion Trees. J. Comput. Syst. Sci. 1993,

47, 424–436. [CrossRef]
36. Knuth, D.E. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks & Techniques; Binary Decision Diagrams, 12th ed.;

Addison-Wesley: Boston, MA, USA, 2009.
37. Batcher, K.E. Sorting Networks and Their Applications. In Proceedings of the AFIPS Spring Joint Computer Conference, Atlantic

City, NJ, USA, 30 April–2 May 1968; Volume 32, pp. 307–314.
38. Aggarwal, A.; Vitter, J.S. The Input/Output Complexity of Sorting and Related Problems. Commun. ACM 1988, 31, 1116–1127.

[CrossRef]
39. Jiang, S.; Larsen, K.G. A Faster External Memory Priority Queue with DecreaseKeys. In Proceedings of the 2019 Annual

ACM-SIAM Symposium on Discrete Algorithms, San Diego, CA, USA, 6–9 January 2019; pp. 1331–1343.
40. Simic, S. Jensen’s inequality and new entropy bounds. Appl. Math. Lett. 2009, 22, 1262–1265. [CrossRef]
41. Boyer, R.S.; Moore, J.S. MJRTY: A Fast Majority Vote Algorithm. In Automated Reasoning: Essays in Honor of Woody Bledsoe;

Automated Reasoning Series; Springer: Dordrecht, The Netherlands, 1991; pp. 105–118.
42. Köppl, D.; I, T.; Furuya, I.; Takabatake, Y.; Sakai, K.; Goto, K. Re-Pair in Small Space. In Proceedings of the Prague Stringology

Conference 2020, Prague, Czech Republic, 31 August–2 September 2020; pp. 134–147.
43. Köppl, D.; I, T.; Furuya, I.; Takabatake, Y.; Sakai, K.; Goto, K. Re-Pair in Small Space (Poster). In Proceedings of the 2020 Data

Compression Conference, Snowbird, UT, USA, 24–27 March 2020; p. 377.

http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1016/j.jda.2015.01.004
http://dx.doi.org/10.1016/j.jda.2016.11.003
http://dx.doi.org/10.3390/a2041429
http://dx.doi.org/10.1145/3168005
http://dx.doi.org/10.1016/0022-0000(93)90040-4
http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1016/j.aml.2009.01.040

	Introduction
	Related Work
	Our Contribution
	Preliminaries

	Sequential Algorithm
	Trade-Off Computation
	Algorithmic Ideas
	Algorithmic Details
	Storing the Output In-Place
	Step-by-Step Execution
	Implementation

	Bit-Parallel Algorithm
	Broadword Search
	Bit-Parallel Adaption

	Computing MR-Re-Pair in Small Space
	Parallel Algorithm
	Computing Re-Pair in External Memory
	Heuristics for Practicality
	Conclusions
	References

