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Abstract: Super points detection plays an important role in network research and application. With
the increase of network scale, distributed super points detection has become a hot research topic.
The key point of super points detection in a multi-node distributed environment is how to reduce
communication overhead. Therefore, this paper proposes a three-stage communication algorithm to
detect super points in a distributed environment, Rough Estimator based Asynchronous Distributed
super points detection algorithm (READ). READ uses a lightweight estimator, the Rough Estimator
(RE), which is fast in computation and takes less memory to generate candidate super points.
Meanwhile, the famous Linear Estimator (LE) is applied to accurately estimate the cardinality of
each candidate super point, so as to detect the super point correctly. In READ, each node scans
IP address pairs asynchronously. When reaching the time window boundary, READ starts three-
stage communication to detect the super point. This paper proves that the accuracy of READ in a
distributed environment is no less than that in the single-node environment. Four groups of 10 Gb/s
and 40 Gb/s real-world high-speed network traffic are used to test READ. The experimental results
show that READ not only has high accuracy in a distributed environment, but also has less than 5%
of communication burden compared with existing algorithms.

Keywords: super points detection; distributed computing; network measurement; network security

1. Introduction

The Internet is one of the most important infrastructures of the modern information
society. With the rapid development of China’s economy, the bandwidth of the core network
is increasing year by year. According to the latest statistics of China Internet Information
Center (CNNIC), as of December 2018, China’s international export bandwidth has reached
8,946,570 Mbps, with an annual growth rate of 22.2% [1]. It is a worldwide problem to
manage such a large-scale network effectively and ensure its safe operation.

In the face of a complex network environment, the monitoring and protection of the
backbone network is the most important and basic step [2]. Internet management under
the condition of large data-level network traffic is a hot research subject, which can be
carried out from different aspects at the industrial and academic levels. To pay more
attention to some core hosts in the network is a way to improve the efficiency of network
management [3].

The super point in the Internet is such a kind of core host [4]. It is generally believed
that a super point refers to a host that communicates with many other hosts. Super points
play important roles in the network, such as servers, proxies, scanners [5], hosts attacked
by DDoS, etc. The detection and measurement of super points are important to network
security and network management [6].

With the increase of network size, large-scale networks usually contain multiple border
entries and exits. How to detect the super point from multiple nodes is a new requirement
for super points detection. Some existing algorithms, such as Double Connection Degree
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Sketch algorithm (DCDS) [7], Vector Bloom Filter Algorithm (VBFA) [8] and Compact
Spread Estimator (CSE) [9] and so on, can realize distributed super points detection by
adding data merging process. However, in the distributed environment, DCDS, VBFA, CSE
must send all the whole used memory, which is more than 300MB for a 10Gb/s network, to
the main server. When detecting the super point, such a large data transmission between
the sub-node and the global server will cause the peak traffic of network communication
and increase the communication delay. How to reduce the communication overhead in a
distributed environment is a difficult problem in the research of distributed super points
detection.

Super points account for only a small portion of all hosts. In theory, only the data
related to the super point should be sent to the global server to complete the super points
detection. Based on this idea, a distributed super points detection algorithm, asynchronous
distributed algorithm based on rough estimator (READ), is proposed in this paper. READ
uses a lightweight rough estimator (RE) to generate candidate super points. Because RE
takes up less memory, each sub-node only needs to send a small amount of data to the
global server to generate candidate super points. READ not only reduces the detection
error rate, but also reduces the communication overhead by transferring data related to
candidate super points to the global server.

Part of this paper has been published at the conference of Algorithms and Architec-
tures for Parallel Processing 2018 [10]. This paper extends from the aspects of algorithm
introduction, theoretical analysis, and experimental demonstration.The main contributions
of this paper are as follows:

• A method of generating candidate super points in a distributed environment using
lightweight estimators is proposed.

• A distributed super points detection algorithm READ with low communication over-
head is proposed.

• Prove theoretically that READ has lower error rate in a distributed environment.
• Using the real-world high-speed network traffic to evaluate the performance of READ.

Section 2 introduces the rough estimator and the linear estimator for estimating the
host’s cardinality, as well as the existing algorithms for super points detection. Section 3
discusses the model and difficulty of distributed super points detection. Section 4 intro-
duces the operation principle of READ, and how READ works. Section 5 introduces how
to modify READ to work under a sliding time window. Section 6 shows the experiment of
READ with 10 Gb/s and 40 Gb/s real world network traffic, and analyzes the detection
accuracy of READ in a distributed environment and the communication overhead between
sub-nodes and the global server. Section 8 summarizes READ.

2. Related Work

Super points detection is a hotspot in the field of network research and management.
For the sake of narrative convenience, this section first gives relevant definitions.

2.1. Related Definitions

Information security is becoming more and more important to people’s life [11]. How
to discover abnormal traffic or hosts from a high-speed network is one of the important
topics in the field of security research. Super points detection is one of the important
methods for locating anomaly hosts [12]. All of the super points detection algorithms are
based on network traffic and belong to passive network measurement. The original data
used in the algorithm is the IP address collected from the network. For network managers,
the measuring place is usually located at the boundary of the managed network, as shown
in Figure 1. Observation node is a server beside a router, from which the packets between
two networks could be collected and inspected. The host in A communicates with those
hosts in B through the boundary router. IP address pairs such as < a,b > can be extracted
from each packet passing through the border router, where a ∈ A, b ∈ B. For the host a in
A, its cardinality is defined as follows:
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Definition 1 (Opposite host set/cardinality). In time window T , for a host a ∈ A, the set of
all hosts in B that communicating with it is called the opposite host set of a, and is denoted as SB

a,T .
The size of SB

a,T is called the cardinality of a, which is denoted as |SB
a,T |.
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Figure 1. The observation node on network boarder.

The cardinality is one of the important network attribute[13], and it is the criteria to
judge if the host is a super point.

Definition 2 (Super point). In the time window T , the host whose cardinality exceeds the
specified threshold θ is called a super point.

In this paper, without losing generality, it is assumed that the super points detection
is only for A. Threshold θ is set by the users according to different situations, such as
detecting DDoS attacks, locating servers and so on.

Cardinality estimation is the basis of super points detection. The next section will in-
troduce the commonly used algorithm for cardinality estimating in super points detection.

2.2. Cardinality Estimation

Cardinality is an important attribute in network research [14]. At the same time, the
calculation of cardinality is also the basis of super points detection [15]. Therefore, this sub
section introduces the algorithm of host’s cardinality estimating [16].

There are many cardinality estimating algorithms, such as Probabilistic Counting
Statistic Algorithm (PCSA) [17], HyperLogLog algorithm [18], Linear Estimator (LE) algo-
rithm [19] and so on. LE algorithm is widely used in super points detection because of its
high accuracy and simple operation.

Let C denote a set of bits and |C| denote the number of bits in C. LE uses C to record
and estimate the opposite hosts of a. Each bit in C is initially set to zero. For any opposite
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host b, LE maps it to a bit in C by using the hash function hLE(b) and sets the bit to 1. At
the end of time window T , LE uses the following formula to estimate |SB

a,T |.

|SB
a,T |

′ = −|C| ∗ log(n0/(|C|)) (1)

where n0 denotes the number of bits in C with value of 0. The estimation error of LE is
related to |SB

a,T | and the number of counter |C|. Define the ratio of |SB
a,T | to |C| as a load

factor, marked L. The estimated standard deviation of LE is
√

(eL−L−1)
C .

When |SB
a,T | is determined, the larger |C| is, the higher the estimation accuracy of LE

is. However, the larger |C|, the more memory space LE occupies, and the longer time it
takes to estimate the cardinality.

In order to compensate for the deficiency of LE, Jie et al. [20] proposed a lightweight
rough estimator (RE). RE only takes eight bits to determine whether a is a candidate super
point. At initialization, RE sets all eight bits to 0. For each opposite host b of a, RE maps
b to a random integer b̃ between 0 and 232 − 1 using hash function h

rand(b), and then
compares the lowest significant bit of b̃ with a real number τ. The lowest significant bit is
the position of the first bit “1” starting from the right. For example, the binary formatter
of integer 200 is “11001000”, its lowest significant bit is 3. Let R0(x) denote the lowest
significant bit of integer x. τ is used to determine whether update a bit. The definition of τ
is as follows.

τ = log2(θ/8) (2)

If R0(b̃) ≥ τ, RE maps b to one of eight bits using a hash function and sets the bit to 1.
Denote this hash function as hRE(b). When the number of bits with a value of 1 is greater
than or equal to 3, RE determines b as a candidate super point. As a lightweight estimator,
RE can quickly determine candidate super point, but it cannot accurately estimate the
cardinality. Jie et al. [21] used RE as a preliminary screening tool to reduce the range of
candidate super points, and combined with LE to realize real-time detection of super points
under a sliding time window. A detailed analysis of RE can be found in [22].

2.3. Super Points Detection

From the introduction in the previous sub section, LE and RE can estimate the cardi-
nality of a host and determine whether a host is a candidate super point. However, there
are a large number of active IPs [23] in the actual network. At the beginning of the time
window, it is not known which IP will become a super point. The task of the super points
detection algorithm is to detect the super points from these IPs based on the cardinality
estimation algorithm. In this paper, the memory that used to record the opposite hosts’
information is called a master data structure.

A simple and straightforward method of super points detection is to record each host
a and its opposite IP. However, this is unrealistic, because there are many IP addresses in
high-speed networks. Accurately recording each IP and its opposite host not only requires
a lot of memory, but also a lot of memory access times [24]. Therefore, the estimation-based
super points detection algorithms using fixed amount of memory have attracted wide
attention, and a large number of super points detection algorithms have emerged, such as
CBF [12], DCDS [7], VBFA [8] and CSE [9].

CBF [12] is a super points detection algorithm based on the principle of Bloom filter.
It uses Bloom filter to remove duplicate IP address pairs, and uses a data structure derived
from Bloom filter, called Counting Bloom filter, to record opposite IP information. The
algorithm uses Bloom filter to avoid multiple updates of the master data structure by
the same IP address pair, and improves the speed of the algorithm. When updating the
counting Bloom filter, only increment some counters with 1, and no other complicated
calculation is needed. Since each counter can be used by multiple hosts, the memory usage
of the algorithm is low. Although Bloom filter can avoid multiple updates of CBF to an
IP address pair, it may also cause omissions of some IP address pairs. In a distributed
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environment, an IP address pair will appear on different nodes, which will be updated by
different nodes many times. Therefore, CBF cannot be applied to distributed environment.

DCDS [7], VBFA [8] and CSE [9] all use LE to estimate host’s cardinality. DCDS [7]
uses China Remainder Theorem (CRT) [25] to restore candidate super point. However,
when mapping a to LE, DCDS needs to use CRT principle, which takes up more computing
time and is not conducive to the improvement of algorithm speed. VBFA does not use
computationally complex CRT to recover candidate super points, but maps a to different
LE according to the principle of Bloom filter [26]. The length of LE array used to recover
candidate super points in VBFA is fixed. As the number of host increases, each LE is used to
estimate too many hosts’ cardinalities. At this time, the number of hot LE (whose cardinality
is bigger than the threshold) in LE array increases correspondingly. The number of hot LEs
that need to be tested also increases, which increases the time to recover candidate super
points. CSE uses virtual LE to estimate the number of counterparts. CSE assigns a virtual
LE to each a. Each bit virtual LE associates with a physical bit in the bit pool. CSE achieves
bit-level sharing and makes more efficient use of memory. Each a associates with only
a virtual estimator, so only one physical bit needs to be updated when scanning each IP
address pair, and memory access times are less than DCDS and VBFA. CSE cannot generate
candidate super points after scanning all IP address pairs in a time window like DCDS
and VBFA. Therefore, CSE saves all hosts in A as candidate super points, when scanning
IP address pairs. It increases the number of candidate super points and the time used to
estimate the cardinalities of candidate super points.

DCDS, VBFA and CSE can run in a distributed environment. In a distributed environ-
ment, DCDS and VBFA collect LE from all nodes, and merge these LE sets according to
“bit or” mode; CSE collects bit pools from all nodes, and merges these bit pools according
to “bit or” mode. Then, the super points are detected according to the unioned LE set or bit
pool. Although DCDS, VBFA and CSE can run in a distributed environment, they need
to collect all LE or bit pools from each distributed node, which leads to low communica-
tion efficiency. This paper presents an algorithm that can realize distributed super points
detection by collecting only fraction of LE sets, which reduces the communication in a
distributed environment.

2.4. Notations and Symbols

To facilitate reading, Table 1 lists some commonly used symbols and abbreviations in
this article. In Table 1, RE cube, RE array, LE array are data structures used in the novel
algorithm, and they will be described in detail in Section 4.

Table 1. Notations and symbols used.

Notation Definition

A The network from which to detect super points.
B The network communicating with A through edge routers.
a or b An IP address in A or B.
T A time window.
SB
a,T Set of opposite hosts of a in T .

n The number of distributed observation nodes.
Ol The l-th observation node.
Spair

T ,l
The stream of IP pair observed on Ol in time window T .

Rl A RE cube in the l-th observation node.
r The number of right bits in a used to locate a RE array in RE cube.
La The left (32− r) bits of a.
u The number of row in a RE array.
vi The number of bits in La which is used to locate a RE in the i-th row of a RE array.
Ll A LE array in the l-th observation node.
û The number of row of a LE array.
v̂ The number of column of a LE array.
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3. Distributed Super Points Detection MODEL and Difficulty

A network connected to the Internet may have multiple border routers, as shown in
Figure 2. For example, a campus network access to multiple Internet Service Provider(ISP).
In Figure 2, there are three host in the bottom network. Each host can communicate with
the host in the other network through different routers. When detecting super points,
the opposite host set must be collected from all routers. For example, the middle host in
the bottom network communicate with more than six opposite hosts through all routers.
When the cardinality threshold is 5, the middle host in the bottom network is a super point.
Assuming that there is an observation node at each border router. Traffic can be observed
and analyzed independently on each node. This section will discuss the algorithm of super
points detection in a distributed environment.
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Network 

traffic 
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traffic 
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…… 

Network 

Figure 2. Super points detection in a distributed environment.

3.1. Detection Model

For a host a in the network, it may interact with different opposite hosts through
different border routers. At this time, only part of the traffic of a can be observed at each
observation node. Assuming that the host a communicates with other networks in the
Internet through n border routers, only part of the traffic of a is forwarded on each border
router. At this time, the cardinality of a observed at each border router may be less than
the threshold, but the cardinality of a observed from all observation nodes is larger than
the threshold, which will lead to the omission of super points. Therefore, it is a meaningful
work to detect the super point in a distributed environment.

In the distributed environment, the global server collects data from all observation
nodes and performs super points detection. The research of super points detection in
a distributed environment is to study which data the global server collects from the
observation nodes and how to detect the global super points on the global server.

3.2. Requirements and Difficulties

In order to find all super points in a distributed environment, it is necessary to detect
them globally. A simple method is to send the IP address pairs extracted from each
observation node to a global server that processes all data, and then detect the super point
on the global server. This method needs to transfer a large amount of data between the
global server and observation nodes. Therefore, the method of sending all IP addresses
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to the global server and detecting the super point on the global server cannot process the
high-speed network data in real time because of the long communication time.

Another method of super points detection in a distributed environment is to run
super points detection algorithms, such as DCDS, VBFA and CSE, at each observation
node and then send only the master data structure to the global server for super points
detection. Compared with the method of transferring all IP addresses to the global server,
the method of transferring only the master data structure to the global server reduces the
communication overhead between observation nodes and the global server.

However, when using this method, all observation nodes need to transmit the master
data structure to the global server. When the number of observation nodes increases, the
total amount of data transferred between all observation nodes and the global server will
also increase. Moreover, the size of the master data structure is related to the error rate of
the algorithm: the larger the master data structure, the lower the error rate of the algorithm.
Therefore, the communication overhead between the observation node and the master
node cannot be reduced by reducing the size of the master data structure. In addition, the
transmission of all master data structures will generate a large amount of burst traffic at
the end of the time window, which will increase the network burden.

How to avoid sending all master data structures to the global server and reduce the
communication between observation nodes and the global server is a difficult problem in a
distributed environment.

3.3. Solution of This Paper

If only part of the cardinality estimation structure at the observation node is sufficient
to detect the global super point, then there is no need to transfer all of them between
the observation node and the global server, which can further reduce the communication
overhead. Based on this idea, this paper proposes a low communication cost distributed
super points detection algorithm: Rough Estimator based Asynchronous Distributing
Algorithm (READ).

In a distributed environment, it is necessary to recover the global candidate super
points at the end of the time window according to the information recorded at all obser-
vation nodes. DCDS and VBFA have the function of recovering candidate super points.
However, DCDS and VBFA have to use LE to recover candidate super points. Although LE
has a high accuracy, it also occupies a high amount of memory, resulting in a large amount
of communication between observation nodes and the global server.

RE not only runs fast, but also occupies less memory. If RE is used to generate
candidate super points, a small amount of memory can be used to generate global candidate
super points. The global server collects LE related to candidate super points from all
observation nodes for estimating the cardinalities of candidate super points, and then
completes super points detection without transmitting all cardinality estimation structure.
The next section will describe how READ works.

4. RE Based Distributed Super Points Detection Algorithm READ

This section will introduce the novel low communication overhead distributed super
points detection algorithm Rough Estimator based Asynchronous Distributed super points
detection algorithm (READ).

4.1. Principle of READ

READ uses a data structure that can recover candidate super points to achieve dis-
tributed super points detection. It uses RE to recover candidate super points and LE to
estimate cardinality of each candidate super point. Therefore, the master data structure of
READ includes two parts: RE set and LE set. Scanning IP address pairs and estimating
cardinalities are operations on RE and LE sets. REDA contains three main steps:

• Scan IP pair on each observation node. Each observation node scans each IP address
pair passing through it and updates the RE and LE sets on it.
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• Generate candidate super points in global server. The global server collects RE sets
from all observation nodes, merges these RE sets, and generates candidate super
points using the merged RE sets.

• Estimate cardinalities and filter super points. After the candidate super points are
obtained, the global server collects LE related to each candidate super point from all
observation nodes, and estimates the cardinalities of candidate super points based on
these LE.

According to the above analysis, in READ, the communication between observation
nodes and the global server is divided into three stages:

• Each observation node sends RE set to global server;
• The global server distributes candidate super points to each observation node;
• Each observation node sends LE of every candidate super point to the global server;

For READ, the sum of the communication in the three stages above is the total
communication between an observation node and the global server in a time window. The
number of LEs sent by observation nodes to the global server equals to the number of
candidate super points. Since the number of candidate super points is less than the number
of LE in the master data structure, the amount of data sent by each observation node to the
global server is less than the size of LE set.

4.2. Scanning IP Pair in a Distributed Environment

Distributed scanning IP address pairs is to scan the IP address pairs collected at each
observation node. Let Ol denote the l-th observation node and Spair

T ,l,denote all IP address
pairs in time window T on Ol. READ uses RE estimator and LE estimator to record IP
information. Each observation node has the same cardinality estimation structure: the
same number of RE and LE, and the same number of counters in RE and LE. The basic
operation of Ol when scanning IP address pairs is to update RE and LE.

READ uses RE to generate global candidate super points, and LE to estimate the
cardinality of each global candidate super point. In a distributed environment, because
only part of the network traffic can be observed at each observation node, it is impossible to
determine whether a host is a global candidate super point according to RE when scanning
IP address pairs. In a distributed environment, the algorithm of super points detection
must be able to recover the global candidate super points directly, such as DCDS and VBFA.

In order to recover candidate super points, READ adopts a new data structure, Rough
Estimator Cube (REC). REC is a three-dimensional data structure composed of RE, as shown
in Figure 3. Inspired by VBFA, READ restores candidate super points by concatenating sub
bits of RE indexes in REC.

The basic element of REC is RE. Several RE constitutes a one-dimensional RE vector
(REV); the set of REV constitutes a two-dimensional RE array (RE Array, REA). The three-
dimensional REC can be regarded as a set of REA, which contains 2r REA and r is a positive
integer less than 32. Each REA of REC has the same structure, that is, the REA contains
the same number of REV, and the associating REV contains the same number of RE. Let u
denote the number of REV contained in REA and 2vi denote the number of RE contained
in the ith REV. Three indexes can be used to locate a RE in REC accurately.

All observation nodes have their own REC, and the structure of REC at different
observation nodes is the same, that is, the r, u , 2vi of REC at different observation nodes
are the same. When the IP address pair is scanned at the observation node, the REC at
the observation node will be updated. Let Rl denote the REC on the observation node Ol,
Rl
(i,j,k) denote the j-th RE of the i-th REV on the k-th REA, where k is an integer between 0

and 2r − 1, i is an integer between 0 and u −1, and j is an integer between 0 and 2vi − 1.
In time window T , for each IP address pair < a,b > of Spair

T ,l,, READ selects u RE from
Rl according to a, and updates u RE with b. How to map a to u RE in REC determines
whether READ can recover global candidate super points from REC.



Algorithms 2021, 14, 277 9 of 24

RE RE RE RE RE RE RE RE RE

……
……R

EV

RE RE RE RE RE RE RE RE RE

……
……

R
EV

RE RE RE RE RE RE RE RE RE

……
……

R
EV

RE RE RE RE RE RE RE RE RE

……
……

R
EV

…
…

…
…

REA

REC

IPv4 address

32-r bits r bits

Figure 3. Structure of RE cube.

The u RE associating with a are located in the same REA. READ divides A into two
parts: the first part is r bits on the right (Right Part, RP), and the second part is 32-r bits on
the left (Left Part, LP).

READ selects a REA in the REC based on the IP of a. REC has 2r REA, so the RP of a
can determine only one REA in the REC. READ divides A into 2r subsets according to r
bits on the right side of the IP address. Each subset of A associates with a REA in the REC.
During the operation of the algorithm, the number of RE in the REC is fixed, and each RE
is used to record opposite hosts of multiple a. When A contains many IP addresses, by
increasing r, the number of hosts sharing the same RE can be reduced.

The LP of a is used to select u RE in REA, i.e., one RE from each REV. Let I i
a

denote
the index of RE in the i-th REV, 0 ≤ I i

a
≤ 2vi − 1. I i

a
is an integer containing vi bits. Let

I i
a

[j] denote the j-th bit in I i
a

, 0 ≤ j ≤ vi − 1. READ selects vi bits from the LP of a as the
value of I i

a
. Let La denote the LP of a, La[i] denote the i-th bit of La, 0 ≤ i ≤ 32−r−1.

Each bit in I i
a

associates with a bit in La, as shown in Figure 4.
When selecting bits from La as I i

a
, READ first determines which bit in La is I i

a
[0],

and then calculates the other bits in I i
a

. Let bi denote the index of the 0th bit of I i
a

in La,
i.e., I i

a
[0]=La[bi]. Each bit of I i

a
is calculated according to the following formula:

I i
a
[j] = La[(bi + j)mod(32− r)], 0 ≤ j ≤ vi − 1 (3)

bi (0 ≤ i ≤ u− 1) is a parameter of READ, which is determined at the beginning of
the algorithm. In order to recover the global candidate super point from REC, bi meets the
following conditions when setting:

• b0 = 0
• bi < bi+1 < 31− r, i ∈ [0, u− 2]
• bi+1 < bi + vi − 1, i ∈ [0, u− 2]
• bu−1 + vu−1 > 31− r

The above conditions ensure that each bit in La appears in at least one I i
a

, and that
there are the same bits between two adjacent I i

a
(associating with the same bit in La).

When restoring global candidate super points, READ extracts the associating bits of La

from all I i
a

to recover La, and reduces the number of global candidate super points by
using the repeated bits between two adjacent I i

a
.
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Figure 4. Locate RE by the left part of IP address.

RE estimator only determine whether the host is a global candidate super point,
but cannot give an estimate of the cardinality. Therefore, READ uses LE to estimate the
cardinality of each global candidate super points.

READ uses LE array of û rows and v̂ columns to record the opposite hosts of a, as
shown in Figure 5.
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LE vector (LEV) contains û LE, and LEA contains u LEV. Each observation node has a
LEA, and the LEA at all observation nodes has the same structure. Let Ll denote the LEA
at the l-th observation node, and Ll

i,j denote the j-th LE in the i-th LEV of Ll.
For each a in A, READ selects one LE from each LEV of LEA to record the opposite

hosts of a. READ maps a to û LE in LEV with û random hash functions. READ uses
the hash function h

LEA
i (a) when mapping a to a LE in the i-th LEV, where hLEA

i (a) ∈
[0, v̂− 1], 0 ≤ i ≤ û− 1. The observation node Ol not only updates Rl, but also Ll when
scanning Spair

T ,l .
Algorithm 1 describes how READ scans IP address pairs in one observation node.

READ first determines the size of REC and LEA according to the parameters, allocates the
memory needed by REC and LEA, and initializes the counters of all RE and LE. Then, it
starts scanning each IP address pair in Spair

T ,l and updates REC and LEA. When scanning IP
address pairs < a,b >, READ selects a REA from the REC by using r bits on the right side
of a, and extracts 32− r bits on the left side of a as La. Then, the index of RE in each REV
is determined according to La. Here, the index of RE refers to the location of RE in REV
and takes the value between [0, 2vi − 1], where 2vi is the number of RE contained in the
REV. For the i-th REV, parameter bi specifies the bits in La associating with the first bit of
the RE index. After the index value of RE is obtained, the RE is updated with b. Compared
with updating Rl, updating Ll is much simpler, because Ll is only used to estimate the
cardinality and does not need to restore the global candidate super point.

Algorithm 1 scanIPair.

Input: r,u, {v0, v0, · · · , vu−1}, {b0, b1, · · · , bu−1}, û , v̂, |C|, {hLEA
0 ,hLEA

1 , · · · ,hLEA
û−1 }, S

pair
T ,l

Output: Rl, Ll

1: Init Rl

2: Init Ll

3: for < a,b >∈ Spair
T ,l do

4: k← right r bits of a
5: La← left 32-r bits of a
6: for i ∈ [0,u−1] do
7: j=0
8: for i1 ∈ [0, vi − 1 do
9: j = j + (La[(bi + i1)mod(32−r)] << i1)

10: end for
11: Update Rl

i,j,k with b
12: end for
13: for i ∈ [0, û− 1] do
14: j= hLEA

i (a)

15: Update Ll
i,j with b

16: end for
17: end for
18: return Rl, Ll

After the observation node scans all IP address pairs in Spair
T ,l , R

l and Ll record the
information of opposite hosts. By collecting Rl and Ll from all observation nodes, the
global candidate super points can be recovered and the cardinalities of candidate super
points can be estimated.

The next section describes how READ recovers global candidate super points in a
distributed environment.

4.3. Generate Candidate Super Points

The master data structure at the observation node consists of two parts: REC and
LEA. REC is used to recover global candidate super points, which has the advantage of
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less memory consumption; LEA is used to estimate cardinality, which has the advantage
of high estimation accuracy. Each observation node can only observe part of the opposite
hosts. In order to detect the super points accurately, it is necessary to collect the opposite
hosts information recorded by each observation node on the global server. In this paper,
the super points detected from IP address pairs of all observation nodes are called as global
super points, and the generated global candidate super points are called global candidate
super points. When generating global candidate super points, only RECs are collected
from each observation node, as shown in Figure 6.

ℝ0

𝕃0

Observation node 1

ℝ1

𝕃1

ℝ𝑛−1

𝕃𝑛−1

Global server

……

……

ℝ0
ℝ1

ℝ𝑛−1

……
Observation node 0 Observation node n-1

Figure 6. Collect REC from observation nodes.

After each observation node has scanned all IP address pairs in a time window, only
the REC needs to be sent to the global server. The global server merges all the collected REC.
The merging method is to merge the RE of different observation nodes in a “bit or” manner.
In this paper, the way of combining according to “bit or” is called external merging, and
the way of combining according to “bit and” is called internal merging. External merger of
RE is defined as follows:

Definition 3 (RE Out merging). All bits of two RE generate a new RE according to the operation
of “bit or”.

In this paper, when the operand of the operator “
⊕

” is two RE or two LE, it means to
out merge the two RE or LE; when the operand of the operator “

⊙
” is two RE or two LE, it

means to inner merge the two RE or LE.
The REC of all observation nodes are merged on the global server by outer merging,

which ensures that any bit in the REC is still 1 in the merged global REC as long as it is set to
1 at any one observation node. Since RE uses bits to record the occurrence of opposite host,
the global REC generated by outer merging contains the opposite information recorded by
all observation nodes.

In this paper, the REC used to restore the global candidate super points on the global
server is called as the global REC. The global REC has the same structure as the REC at
all observation nodes. The global REC and the REC of all observation nodes are merged
according to outer merging. There are two methods to get the global REC:

1. Before merging the REC, the global server initializes a REC with the same structure as
the REC at the observation nodes, and sets all bits in the initialized REC to 0. Then,
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the REC on the global server is merged with the REC on all observation nodes one by
one, and the results are saved to the global REC.

2. The global server takes the REC from the first observation node as the global REC,
then merges the global REC with the REC from the remaining observation nodes, and
saves the results to the global REC.

Among the two methods for merging global REC, method 2 is less computational
than method 1, because method 2 does not need to re-initialize REC. In this paper, method
2 is used to merge the REC of observation nodes into the global REC. Let R denote the
global REC, and Ri,j,k denote the j-th RE of the i-th REV in the k-th REA of R. Assuming
that the REC on Oθ is first received as one on the global server, Algorithm 2 describes the
REC merging process on the global server.

Algorithm 2 Out Merging REC.

Input: n, {R0,R1, · · · ,Rn−1}, r, u, {v0, v1, · · · , vu−1}
Output: R

1: R← R0

2: for l ∈ [1, n− 1] do
3: for k ∈ [0, 2r − 1] do
4: for i ∈ [0, 2u − 1] do
5: for j ∈ [0, 2vi − 1] do
6: Ri,j,k ← (Ri,j,k

⊕
Rl

i,j,k)

7: end for
8: end for
9: end for

10: end for
11: Return R

The first line of Algorithm 2 takes the received R0 as the global REC after the first
merge, and then merges the remaining n− 1 observation nodes into the global REC. After
merging the REC at all observation nodes, algorithm 2 outputs the global REC.

READ recovers the global candidate super points from each REA of the global REC
in turn. For the k-th REA of the global REC (denoted as Ak), READ calculates the global
candidate super points in it by the following two steps:

1. Find out all RE in Ak whose estimating cardinality is greater than the threshold.
2. From the candidate RE, 32-r bits on the left of the candidate super point are recovered,

and then concatenate with the right r bits represented by k to get the complete global
candidate super point.

The above Step 1 only needs to scan all RE in Ak once to get a candidate RE. Let Ci =
{ci

0, ci
1, ci

2, · · · } represent the index of the candidate RE in the i-th REV of Ak. Equation (3)
shows that the index of the candidate RE in Ci comes from the bits of certain IP address.
At the same time, as can be seen from Figure 4, if the two indexes ci

x and c
((i+1)mod(u))
y

of two adjacent row, i and (i + 1)mod(u) are from the same IP address, then they have
bi + vi − b((i+1)mod(u)) bits are the same. Conversely, if the left bi + vi − b((i+1)mod(u)) bits

of ci
x are different from the right bi + vi − b((i + 1)mod(u)) bits of c((i+1)mod(u))

y , then ci
x

and c
((i+1)mod(u))
y certainly do not come from the same IP address. When the u RE indexes

comes from the same IP address, the u RE indexes are called a candidate RE tuple. Inner
merge these u RE in a candidate RE tuple. If the estimated value of the inner merged RE
still exceeds the threshold, the candidate RE tuple come from a global candidate hyper
point.

When the candidate RE tuple comes from a global candidate super point, the candidate
RE tuple can recover 32-r bits to the left part of the global super point. From the setting
requirement of parameter bi, if the RE indexes in a candidate RE tuple comes from the
same IP address a, any bit of La will appear at least once in the u different candidate RE
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indexes. Therefore, 32-r bits of La can be recovered from the candidate RE tuple. Then, a
global candidate super point is obtained by concatenation with k, i.e., (La << r) + k.

Depth traversal can be used to calculate all candidate RE tuples from Ci. For example,
suppose that the parameters of REC are set to r = 2, u = 3, v0 = v1 = v2 = 14, b0=0, b1=10,
b2=20, the candidate RE indexes of A2 is C0 = {c0

0, c0
1, c0

2},C1 = {c1
0, c1

1}, C2 = {c2
0, c2

1, c2
2}.

The number values of some candidate RE are as follows:

• c0
0 = 1100 010101 0101

• c1
0 = 1100 011001 0101 ,
c1

1 = 1110 010001 1100
• c2

0 = 1001 011101 1110 ,
c2

1 = 0101 000101 1110 .

In the above example, bi+vi-bi+1=4, that is, the candidate RE indexes in the two
adjacent Ci determines whether it comes from the same IP address by the four bits on the
left and the four bits on the right (the gray part in the RE index). When the candidate RE
tuple is calculated by depth-first method, the candidate RE tuple is empty at the beginning,
and then the first RE number is c0

0. Test whether c0
0 and c1

0 come from the same IP address,
as shown in Figure 7.

𝒸0
0 𝒸1

0 𝒸2
0𝒞0

𝒸0
1 𝒸1

1𝒞1

𝒸0
2 𝒸1

2 𝒸2
2𝒞2

<𝒸0
0, 𝒸1

1>

<𝒸0
0, 𝒸1

1, 𝒸1
2 >

Figure 7. Example of restoring LP with depth-first method.

The four bits on the left of c0
0 are different from the four bits on the right of c1

0, so c0
0

and c1
0 come from different IP addresses. Then, test c0

0 and c1
1. The four bits on the left side

of c0
0 are the same as the four bits on the right side of c1

1, so c1
1 is added to the candidate RE

tuple. Then, find the RE index from C2, which comes from the same IP address with c1
1. In

C2, the four bits on the right side of c2
0 are the same as the four bits on the left side of c1

1, but
the four bits on the left side of c2

0 are not equal to the four bits on the right side of c0
0, so c2

0
cannot form a candidate RE tuple with c0

0 and c1
1. In C2, not only are the four bits on the

right side the same as the four bits on the left side of c1
1, but also the four bits on the left

side of c2
1 the same as the four bits on the right side of c0

0. Therefore, < c0
0,c1

1,c2
1 > constitutes

a candidate RE tuple.
From the values of c0

0, c1
1 and c2

1, it can be seen that the RE associating with the candidate
RE tuple is Rl

0,12629,2, Rl
1,14620,2 , Rl

2,5214,2. If the cardinality estimated from the inner merge
RE, Rl

0,12629,2
⊙

Rl
1,14620,2

⊙
Rl

2,5214,2, still over the threshold, 30 bits of the left part of a can

be recovered from < c0
0, c1

1, c2
1 >: “000101 1110 010001 1100 010101 0101 ”. A2 is the 2-th

REA in REC. The associating binary format is “10”. Thus, the global candidate super point
is “000101 1110 010001 1100 010101 0101 10”.

All REA in global REC are processed in the above way. Because the number of RE
counters is small (for IPv4 address, there are only eight counters), so it is faster to scan
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REA and calculate the candidate RE number. Furthermore, each RE only takes up one
byte of space, so REC takes up less memory and reduces the amount of data transmitted
between observation nodes and the global server. However, the cardinalities of the global
candidate super points cannot be estimated by RE. Estimating the cardinality requires the
use of the opposite host information stored in LEA. The next section describes how to
collect the opposite host information stored in LEA from the observation nodes, estimate
the cardinalities of the global candidate super points, and filter out the super points.

4.4. Estimate Cardinalities of Candidate Super Points

The LEA at each observation node is used for estimating the cardinality of global
candidate super points. A simple way is to send all LEAs at each observation node to the
global server, and then merge all LEA of observation nodes on the global server in a “bit
or” manner to get the global LEA.

In this paper, when the operand of “∑” is the LE or RE set, it means that all LE or RE
in the set are merged by outer merging method; when the operand of “∏” is the LE or RE
set, it means that all LE or RE in the set are merged by inner merging method.

Merging LEA of all observation nodes on the global server in the way of outer merging
is equivalent to sending IP address pairs directly to the global server to update the global
LEA. Because LE outer merging guarantees that any bit in the global LEA will remain 1 as
long as it is set to 1 at one or more observation nodes.

After the global LEA is generated, the cardinalities of global candidate super points
can be estimated according to the global LEA. Let q denote a global candidate super point,
Bl

i(q) denote the LE of q in the i-th LEV of the l-th observation node, i.e., Bl
i(q) = Ll

i,j,

j = h
LEA
i (q). Using hash functions hLEA

i (q), it is easy to find these LEs used by q from the
global LEA.

Let Bi(q) denote the LE associating with q in the first LEV of the global LEA. Since
global LEA is obtained by combining LEA from all observation nodes, Bi(q) = ∑n−1

l=0 Bl
i(q).

The û LE of q on the global LEA are merged into B(q) = ∏û−1
i=0 Bi(q) . Let |B(q)| denote

the number of bits with value “1” in B(q). The cardinality of q is estimated based on B(q)
by Equation (1). If the estimated result is larger than the threshold, q is reported as a super
point.

Although the above method avoids sending all IP addresses to the global server, it
still needs to send the complete LEA to the global server. In order to improve the accuracy
of cardinality estimating, the parameters of LEA are set to larger values. For example,
when û = 5, v̂ = 215, |C| = 214, LEA is 320 MB in size. When estimating cardinalities, each
observation node needs to send 320MB of data to the global server.

When estimating the cardinality of global candidate super point q, only B(q) is
needed. Based on this principle, READ first sends the global candidate super points to
each observation node from the global server, and then each observation node sends these
LE relating with candidate super points back to the global server, as shown in Figure 8.

In Figure 8, Q = {q0, q1, q2, · · · , qw−1} denotes the set of global candidate super
points, Bl denotes the set of LE used to estimate cardinalities of global candidate super
points in Q on the observation node l. For global candidate super point q, there are û LE
associating with it, i.e., {Bl

0(q),B
l
1(q), · · · ,Bl

û−1(q)}. READ does not send all of the û LE
to the global server, but the result of internal merging , Bl(q) = ∏û−1

i=0 Bl
i(q).In Figure 8,

Bl = {Bl(q0),Bl(q1),Bl(q2), · · · ,Bl(qw−1)} is the LE set to be sent to the global server
on the l-th observation node.
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Figure 8. Collect candidate LE in a distributed environment.

On the global server, B(q) = ∑n
l=0 B

l(q), which is used for estimating the cardinality
of q, is obtained by outer merging all Bl(q). Let |B(q)| denote the number of bits with
value “1” in B(q). Theorem 1 shows that B(q) can more accurately estimate the cardinality

of q than B(q).

Theorem 1. For global candidate super point q, let SBT ,q denote the set of opposite hosts of q
passing through all observation nodes in time window T , B(q) denote a LE after scanning SBT ,q,
and |B(q)| denote the number of bits with value “1” in B(q). Then, these bits with value “1” in

B(q) are still with value “1” in B(q) and B(q). Furthermore, |B(q)| ≤ |B(q)| ≤ |B(q)|.

Proof of Theorem 1. When a bit in B(q) has value “1”, there exists an IP address pair
< q,b > in SBT ,q to set the bit to “1”. In global LEA, b sets all the bits of û LE associating

with q. After inner merging in LE, the bit is “1” in B(q). At the same time, b will appear on
at least one observation node and set all the bits of û LE associating with q to “1”. Since the
bit is “1” in at least one Bl(q), the bit is still “1” after outer merging on the global server.

So, |B(q)| ≤ |B(q)| and |B(q)| ≤ |B(q)|. The next step is to proof that |B(q)| ≤ |B(q)|.
Let Bi(q) = ∑n−1

l=0 Bl
i(q), then B(q) = ∏û−1

i=0 Bi(q) = ∏û−1
i=0 ∑n−1

l=0 Bl
i(q). Let Bl(q) =

∏û−1
i=0 Bl

i(q), then B(q) = ∑n−1
l=0 Bl(q) = ∑n−1

l=0 ∏û−1
i=0 Bl

i(q). To proof that |B(q)| ≤ |B(q)|
is equivalent to proof that the number of bits with value “1” in ∑n−1

l=0 ∏û−1
i=0 Bl

i(q) is no more
than the number of bits with value “1” in ∏û−1

i=0 ∑n−1
l=0 Bl

i(q). B
l
i(q) is a LE and the number

of bits in all Bl
i(q) are the same. Let βl

i denote an arbitrary bit in Bl
i(q). All βl

i in different
observation nodes could be written as an array in the following format:

β =

 β0
0 · · · βn−1

0
...

. . .
...

β0
û−1 · · · βn−1

û−1


In β, ∏û−1

i=0 ∑n−1
l=0 βl

i represents that “bit or” operations are performed on each line, and
then “bit and” operations are performed on the results; ∑n−1

l=0 ∏û−1
i=0 βl

i represents that “bit
and” operations are performed on each line, and then “bit or” operations are performed on
the results.
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When ∏û−1
i=0 ∑n−1

l=0 βl
i = 0, at least one row has all bits equal to “0”, and the result

of “bit and” operation for each column is also 0, then ∑n−1
l=0 ∏û−1

i=0 βl
i = ∑n−1

l=0 0 = 0.
When ∏û−1

i=0 ∑n−1
l=0 βl

i = 1, there is no row whose bits are all “0”. However, ∑n−1
l=0 ∏û−1

i=0 βl
i

may still be 0. Because when each column of β contains at least one bit with value “0”,
then ∑n−1

l=0 ∏û−1
i=0 βl

i = ∑n−1
l=0 0 = 0. At this time, each row may contains one or more

bits with value “1”. For example, when n=3,û = 3,β =

1 0 0
0 1 0
0 0 1

, ∏û−1
i=0 ∑n−1

l=0 βl
i = 1,

but∑n−1
l=0 ∏û−1

i=0 βl
i = 0.

When ∑n−1
l=0 ∏û−1

i=0 βl
i = 1, ∏û−1

i=0 ∑n−1
l=0 βl

i also equals to 1. As when ∑n−1
l=0 ∏û−1

i=0 βl
i = 1,

at least one column in β has all bits with value “1”. Then, there is no row in β whose bits
are all “0”. As βl

i is an arbitrary bit in Bl
i(q), then:

• When a bit has value “1” in B(q), the bit has value “1” in B(q);

• When a bit has value “0” in B(q), the bit has value “0” in B(q);

• When a bit has value “1” in B(q), the bit may has value “0” in B(q)

So the number of bits with value “1” in B(q) is no more than that in B(q) and

|B(q)| ≤ |B(q)| ≤ |B(q)|.

LE estimates cardinality based on the number of bits with value “1”. Theorem 1 shows
that the number of bits with value “1” in B(q) is closer to the number of bits with value “1”
in the LE which is used by q exclusively. So, the accuracy of estimating cardinality by B(q)
is better.

READ not only does not need to transfer the entire LEA to the global server, but also
has a higher accuracy in estimating cardinalities of global candidate super points. When
estimating cardinalities, the amount of data transmitted between each observation node and
the global server is (32 ∗w+ |C| ∗w) bits, where w is the number of candidate super points
recovered by REC. 32 ∗w is the data size of global candidate super points transmitting to
each observation node from the global server, and |C| ∗w is the data size of LE of candidate
super points that transmitting to the global server from each observation node. When
(32 ∗w+ |C| ∗w) < û ∗ v̂ ∗ |C|, the data transmission between an observation node and the
global server is less than the data transmission of the entire LEA. Global candidate super
points account for only a small portion of all IP addresses, usually hundreds to thousands.
In order to improve the estimation accuracy, the value of û ∗ v̂ will be more than tens of
thousands. So, READ reduces the amount of data transmitted between observation nodes
and the global server. READ can also apply more powerful counters to replace bits in RE
and LE to realize the detection of super points under a sliding time window as discussed
in the next section.

5. Distributed Super Points Detection under Sliding Time Window

READ only scans IP address pairs at each observation node, so only a sliding window
counter is needed to record opposite hosts incrementally at the observation node. The
master data structure at the observation node consists of two parts: REC and LEA. The
estimators of REC and LEA are RE and LE, while the counters used by RE and LE are
bits. So, the master data structure at the observation node can be regarded as a set of bits.
Using counter DR[20] or AT[27] under sliding window instead of bit in REC and LEA at
each observation node, distributed super points detection under sliding window can be
realized.

The counter under the sliding window needs to be updated. After all LE associating
with the global candidate super points are sent to the global server, the observation node
can start to update the sliding counter. At the end of each time window, the REC on the
global server is generated by these REC collecting from all observation nodes, there is no
need to update it.
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Under the sliding time window, the observation node only needs to send the active
state of the counter to the global server, that is, at the end of the time window, each sliding
window counter can be changed into a bit: 0 for inactivity, 1 for activity. Therefore, under
sliding time window, the traffic between observation nodes and the global server is the
same as that under discrete time window.

READ can be quickly deployed to distributed networks. For example, suppose that
network A and network B communicate through three different routers. An IP address
pair in the form of < a, b> can be extracted from the IP packet on each router. On the
observation node of each router, select REs from RE cube and LEs from LE array according
to a; update the selected REs and LEs according to b. At the end of the time window, send
the RE cubes on the three router observation nodes to the global server for merging, and
generate candidate super points from the merged RE cubes. Then, the candidate super
points are sent to these three router observation nodes for LEs selection. Finally, the global
server collects the LEs of candidate super points from three router observation nodes and
filters out the super points. The following section will evaluate READ with high-speed
network traffic.

6. Experiments and Analysis

In order to test the performance of READ, four groups of high-speed network traffic
are used to carry out experiments in this section. The experiment analyzes READ from the
aspects of detection error rate, memory usage and running time. The experiment compared
READ with DCDS, VBFA, CSE and SRLA.

6.1. Experiment Data

In this paper, four groups of high-speed network traffic are used. Two of the four
sets of data come from the 10 Gb/s Caida[28]. The other two groups are from the network
boundary of the 40Gb/s CERNET in Nanjing network[29].

The Caida data acquisition dates are February 19, 2015 and January 21, 2016 (denoted
by Caida 2015_2_19 and Caida 2016_01_21), and the data acquisition dates of the two
groups of CERNET Nanjing network were October 23, 2017 and March 8, 2018 (denoted
by IPtas 2017_10_23 and IPtas 2018_03_08). The collection time of the four groups of data
is one hour from 13:00. The collected data are raw IP Trace. Caida data collected Trace
between Seattle and Chicago. In this paper, the IP on Seattle side is defined as a, and the
IP on Chicago side is defined as b. IPtas data collects traces between CERNET Nanjing
network and other networks. In this paper, the IP in Nanjing network is a, and in the other
network is b.

In the experiment of this section, the length of time window is 5 min, and the threshold
of super point is set to 1024. Therefore, each group of experimental data contains 12 time
windows. Table 2 lists the statistical information of each experimental data. The number of
a in Caida data is more than the number of a in IPtas data, which is 1.85 times more on
average. However, the average cardinality per a in Caida data is less than that in IPtas data,
only 21.389% of the latter. The number of packets per second determines the number of IP
address pairs that need to be processed per second. Therefore, packet speed (in millions
of packets per second, Mpps) is a key attribute. As can be seen from Table 2, the average
packet speed of IPtas data is 3.89 times that of Caida data. Therefore, Caida data and IPtas
data represent two different types of network data sets, which can test the effect of the
algorithm more comprehensively.
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Table 2. Statistics of experiment data.

Traffic Name Statistic Type Number of a Number of b Number of IP
Pair

Average
Cardinality

Number of
Packet(Mpkt)

Packet
Speed(Mpps)

Number of Super
Points

Caida
2015_02_19

Average 2,500,423 1,536,625 6,608,075 2.6713 268.9149 0.8964 162.1667
Max 2,844,368 1,639,128 6,965,239 3.0884 276.8782 0.9229 178
Min 2,026,263 1,490,879 6,241,517 2.4414 258.2578 0.8609 153

StandardDeviation 313,920 39,868 269,719 0.252 5.8792 0.0196 7.4203

Caida
2016_01_21

Average 2,437,770 746,177 4,800,712 1.9691 322.4348 1.0748 41.9167
Max 2,488,042 811,230 4,944,912 2.013 344.9535 1.1498 49
Min 2,382,249 702,651 4,637,869 1.9142 303.239 1.0108 36

StandardDeviation 34,286 32,638 118,781 0.0286 14.7145 0.049 3.1176

IPtas
2017_10_23

Average 1,262,184 1,588,792 15,163,646 12.0132 1354.1672 4.5139 598.8333
Max 1,262,810 1,721,288 32,847,335 26.0139 1463.4874 4.8783 662
Min 1,261,625 1,515,963 12,573,274 9.9649 1265.9158 4.2197 581

StandardDeviation 371 49,878 5,596,915 4.431 63.054 0.2102 22.1722

IPtas
2018_03_08

Average 1,406,287 1,815,909 13,429,067 9.5422 946.4292 3.1548 527.4167
Max 1,436,128 1,865,955 30,234,164 21.3223 1253.2099 4.1774 569
Min 1,378,231 1,758,650 11,299,384 7.9936 890.201 2.9673 505

StandardDeviation 18,387 30,026 5,300,542 3.7187 97.9128 0.3264 17.7787
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6.2. The Purpose and Scheme of the Experiment

The experimental purposes of this paper are as follows:

• Analyze the accuracy of READ and test whether REC can accurately generate candi-
date super points.

• Analyze the memory occupancy and running time of READ;
• Test the number of candidate super points generated by READ and the amount of data

that needs to be transmitted between each observation node and the global server.

In order to process high-speed network data in real time, this paper deploys READ,
DCDS, VBFA, CSE and SRLA algorithm on GPU platform. All the experiments in this
paper run on a server with GPU. The running environment is: Intel Xeon E5-2643 CPU, 125
GB memory, Nvidia Titan XP GPU, 12 GB memory, Debian Linux 9.6 operating system.

In the experiment, the parameters of REC are r = 6, u = 3, v0 = v1 = v2 = 14; the
parameters of LEA are û = 5,v̂ = 215 and |C| = 215. From the above parameters, it can be
seen that REC occupies 3 MB of memory and LEA occupies 320 MB of memory. Because
there is no distributed experimental data, the experiment in this section is carried out under
a single node. However, from the previous analysis of READ, it can be seen that the error
rate of READ in a distributed environment will not be higher than that in a single node
environment.

6.3. Memory and False Rate

In order to analyze the memory and false rate of READ, this section compares READ
with DCDS, VBFA, CSE and SRLA algorithm. Table 3 shows the average memory occu-
pancy and error rate of READ and comparison algorithms in different experimental data
sets. False positive rate (FPR), false negative rate (FNR) and false total rate (FTR) are three
kinds of false rates. Let N represent the number of super points, N− represent the number
of super points that are not detected out by an algorithm and N+ represent the number of
hosts whose cardinalities are less than the threshold, but detected as super points by an
algorithm. Then, FPR = 100 ∗ N+/N%, FNR = 100 ∗ N−/N%, FTR = FPN + FNR.

Table 3. Memory and false rate.

Experiment traffic Algorithm name Memory(MB) FPR(%) FNR(%) FTR(%)

Caida 2015_02_19

DCDS 384.00 0.72 0.32 1.04
VBFA 320.00 0.92 0.15 1.07
CSE 512.00 2.02 1.26 3.28

SRLA 320.63 0.76 0.83 1.59
READ 323.00 0.87 0.71 1.58

Caida 2016_01_21

DCDS 384.00 0.77 0.84 1.61
VBFA 320.00 1.78 0.40 2.18
CSE 512.00 3.86 3.21 7.07

SRLA 320.63 0.82 1.01 1.84
READ 323.00 1.03 0.40 1.42

IPtas 2017_10_23

DCDS 384.00 5.00 0.00 5.00
VBFA 320.00 5.43 0.00 5.43
CSE 512.00 1.39 1.27 2.66

SRLA 320.63 2.42 0.55 2.97
READ 323.00 2.45 0.44 2.89

IPtas 2018_03_08

DCDS 384.00 5.59 0.02 5.61
VBFA 320.00 6.56 0.00 6.56
CSE 512.00 1.44 1.40 2.84

SRLA 320.63 3.36 0.56 3.91
READ 323.00 2.96 0.32 3.28
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Table 3 shows that READ occupies less memory than DCDS and CSE, and only 3 MB
more memory than VBFA. In terms of error rate, the error rate of READ is close to that of
SRLA algorithm.

6.4. Running Time Analysis

Figure 9 shows the time of IP address pairs scanning (GScanT). The graph shows that
the GScanT of READ is slightly higher than that of SRLA algorithm. However, the GScanT
of each algorithm is not more than 4 s, which can process 40 Gb/s of high-speed network
traffic in real time.
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Figure 9. Time of scan IP address pair.

Figure 10 shows the time of candidate super point cardinality estimation (GEstT). The
graph shows that GEstT of READ is close to DCDS, VBFA and SRLA algorithm, much
lower than CSE, and GEstT of READ is not higher than 2.5 s. Therefore, READ can detect
super points in real-time from 40Gb/s high-speed network.
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Figure 10. Time of estimate candidate super points.
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6.5. Data Transmission under Distributed Environment

READ is a distributed algorithm. In a distributed environment, data will be transmit-
ted between each observation node and the global server, including:

• REC from observation node to the global server;
• Candidate super points from the global server to each observation node;
• The LE set of candidate super points from each observation node to the global server.

In the above data, the size of REC is fixed. The size of candidate super points and
LE in transmission depends on the number of candidate super points. From the running
process of READ, it can be seen that the candidate super points generated by READ when
running in a single node environment are the same as those generated when running in
a distributed environment. Therefore, the number of candidate super points generated
at runtime under a single node can be used to determine the size of data transmission
between observation nodes and the global server in a distributed environment.

Table 4 lists data transmission between each observation node and the global server.
The number of candidate super points is the number of candidate super points produced
by REC. The size of candidate super points is multiplied by 4 bytes (each IPv4 address size
is 4 bytes); the size of candidate super points’ LE is multiplied by 211 bytes (LE contains
214 bits, 211 bytes). The total amount of data transmitted is the sum of the size of REC, the
size of candidate super point and the size of LE of candidate super points. The master data
structure size is the sum of REC and LEV. The percentage of transmitted data is the ratio of
the total amount of transmitted data to the size of the master data structure. From Table 4,
it can be seen that the average amount of data transmitted by READ between the global
server and each observation node is not more than 7.5 MB, which only occupies less than
2.3% of the total size of master data structure.

Table 4. Transmitting data between each observation node and the global server.

Experiment Traffic Statistic
Name

Number of
Candidate

Super Points

Size of
REC(MB)

Size of
Candidate

Super
Points(MB)

Size of
Candidate

Super Points’
LE(MB)

Total Trans-
mission(MB)

Sum Size
of REC and
LEA(MB)

Pecentage of
Transmis-
sion(%)

Caida 2015_02_19

Average 955.3333 3 0.00364 1.86589 4.86953 323 1.50759
Min 801 3 0.00306 1.56445 4.56751 323 1.41409
Max 1106 3 0.00422 2.16016 5.16438 323 1.59888
Std 83.9224 0 0.00032 0.16391 0.16423 0 0.05085

Caida 2016_01_21

Average 363.66667 3 0.00139 0.71029 3.71167 323 1.14912
Min 303 3 0.00116 0.5918 3.59295 323 1.11237
Max 404 3 0.00154 0.78906 3.7906 323 1.17356
Std 31.00831 0 0.00012 0.06056 0.06068 0 0.01879

IPtas 2017_10_23

Average 2199.1667 3 0.00839 4.29525 7.30364 323 2.26119
Min 1723 3 0.00657 3.36523 6.37181 323 1.9727
Max 3434 3 0.0131 6.70703 9.72013 323 3.00933
Std 494.0519 0 0.00188 0.96495 0.96683 0 0.29933

IPtas 2018_03_08

Average 2254.9167 3 0.0086 4.40413 7.41274 323 2.29496
Min 1790 3 0.00683 3.49609 6.50292 323 2.01329
Max 3753 3 0.01432 7.33008 10.34439 323 3.2026
Std 555.1954 0 0.00212 1.08437 1.08648 0 0.33637

7. Discussion

From the experimental results, it can be seen that for the network with only one
observation node, the memory consumption and the estimation accuracy of READ are
similar to that of the existing algorithms. This is because both READ and the existing
algorithms estimate the cardinalities based on LE. However, in the distributed environment
with multiple observation nodes, the communication overhead of READ is much lower
than that of other algorithms. This is because READ does not need to transmit all the data
structures used to estimate the cardinalities in the distributed environment, thus reducing
the communication between observation nodes and the global server. In addition, READ
processes each IP packet with the time complexity of O(1), and has no read-write conflict.
Hence, READ can perform fast calculation on the parallel environment, so as to realize
real-time super points detection in high-speed network.
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From the above discussion, the following conclusions can be drawn:

• The memory consumption and error rate of READ is similar to the existing algorithms.
• The running time of READ is small enough to handle 40Gb/s networks in real time.
• In a distributed environment, READ only needs to transmit up to 10.4 MB of memory

between each observation node and the global server, which accounts for less than
3.21% of the size of master data structure. It is obviously superior to other algorithms
and has the advantage of low communication overhead.

8. Conclusions

READ uses REC to generate candidate super points in a distributed environment.
REC is a three-dimensional structure of RE. Because RE has the characteristics of small
memory occupation and fast computing speed, REC can generate candidate super points
from 40Gb/s high-speed network with only 3MB of memory. LEA is used to estimate the
cardinalities of candidate super points and filter out the super points. READ does not need
to transfer the entire LEA to the global server. For 40 Gb/s high-speed network, the data
size transmitted between each observation node and the global server is only 3.21% of the
sum of REC and LEA. Low data communication overhead ensures the efficient operation
of READ in a distributed environment even under the sliding time window. READ can
realize super points detection in a distributed environment. However, the detected super
points may be normal servers, scanners, P2P nodes, or even dark network routing nodes.
Future research will focus on classifying these super points in the distributed environment
and detecting suspicious or malicious super points in the distributed environment.
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