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Abstract: The seismic bearing capacity of a shallow strip footing above a void displays a complex
dependence on several characteristics, linked to geometric problems and to the soil properties. Hence,
setting analytical models to estimate such bearing capacity is extremely challenging. In this work,
machine learning (ML) techniques have been employed to predict the seismic bearing capacity of
a shallow strip footing located over a single unsupported rectangular void in heterogeneous soil.
A dataset consisting of 38,000 finite element limit analysis simulations has been created, and the
mean value between the upper and lower bounds of the bearing capacity has been computed at
the varying undrained shear strength and internal friction angle of the soil, horizontal earthquake
accelerations, and position, shape, and size of the void. Three machine learning techniques have
been adopted to learn the link between the aforementioned parameters and the bearing capacity:
multilayer perceptron neural networks; a group method of data handling; and a combined adaptive-
network-based fuzzy inference system and particle swarm optimization. The performances of these
ML techniques have been compared with each other, in terms of the following statistical performance
indices: coefficient of determination (R2); root mean square error (RMSE); mean absolute percentage
error; scatter index; and standard bias. Results have shown that all the ML techniques perform
well, though the multilayer perceptron has a slightly superior accuracy featuring noteworthy results
(R2 = 0.9955 and RMSE = 0.0158).

Keywords: shallow strip footing; seismic bearing capacity; finite element limit analysis; heteroge-
neous soil; machine learning

1. Introduction

Underground voids may be caused by human actions or by the dissolution of soluble
substances. Mining, digging aqueducts, the creation of sewerage networks and munici-
pal facilities, and tunneling operations are examples of those human activities, whereas
chemical interactions of calcareous and dolomite soils, and soluble rock dissolution, fall
into the class of natural causes [1,2]. The voids, especially in urban areas, may be located
adjacent to, or below shallow footings. In such cases, the performance of strip footings can
be significantly affected by the presence of the underground voids, which therefore require
special attention in the design process. A number of factors are linked to the impact of voids
on the bearing capacity of strip footings, and they all have to be accounted for concurrently
to achieve an optimal design, even in such adverse situations. In the engineering practice,
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void existence may adversely affect the stability of constructions, leading to a differential
settlement of superstructures or the collapse of foundations.

To date, various studies have been conducted to investigate the bearing capacity of
strip footings above voids, by using either theoretical or experimental methods. Prelim-
inary studies examined the fundamental issues of the problem, see examples [3–8]. In
those works, the focus was on the bearing capacity of strip footings over a single void.
Later, Kiyosumi et al. [9] carried out a set of centrifuge tests over multiple voids, and the
results were assessed through the PLAXIS finite element code. Kiyosumi, Kusakabe, and
Ohuchi [10] then analyzed the bearing capacity of a strip footing on stiff grounds with
voids, and they classified the failure patterns for a single hole into three categories: roof
failure; sidewall failure; and combined failure. Yamamoto et al. [11], in a case characterized
by multiple voids, demonstrated that closely spaced tunnels showed a good correlation
between the results of finite element simulations and upper-bound limit analysis.

This problem was investigated using small strain kinematics. Lee, Jeong, and Ko [12]
quantified the influence of single and dual continuous voids, allowing for a wide variety
of geometries and material combinations on the undrained vertical load bearing capacity
of strip footings. Lee, Jeong, and Ko [13] also studied the effect of load inclination. Lee,
Jeong, and Lee [14] examined the undrained bearing capacity factors of ring footings, to
assess the impact of the friction angle in heterogeneous soils. The results showed that,
by increasing the inside-to-outside-radius ratio, the value of the soil bearing capacity
factor is reduced, whereas when the ratio is reduced, the size of the plastic zones gets
enhanced—the bearing capacity also rises with the soil heterogeneity. Lavasan et al. [15]
offered a new framework for estimating the bearing capacity of a strip footing over voids,
and showed that the bearing capacity is significantly affected by the void’s geometry and
position. Chakraborty and Sawant [16] focused on the impact of pseudo-static horizontal
earthquake forces on the bearing capacity of strip footings placed over an unsupported
circular tunnel in undrained clay.

More recently, the finite element limit analysis (FELA) method was used by Xiao et al. [17].
Design charts were given for a reduction factor to estimate the ultimate bearing capacity
of a strip footing over a rock mass with voids. Xiao, Zhao, and Zhao [18] applied the
same method to assess the undrained bearing capacity above voids in two-layered clays.
Zhou et al. [19] instead used the discontinuity layout optimization approach to determine
the bearing capacity above square voids in cohesive-frictional soils, reporting typical fail-
ure patterns. Lee and Kim [20] investigated the bearing capacity above multiple square
voids in sandy soils and purely cohesive clays, and they also explored the effect of load
inclination. Wu et al. [21] studied the effects of the depth and geometry of the voids, and of
the eccentricity of loading on the bearing capacity. Recently, Zhang et al. [22] investigated
the impact of seismic loading on the bearing capacity of undrained clay with voids.

In order to deal with complex problems, which are usually difficult to attack with a
purely model-based approach, machine learning (ML) is currently experiencing a burst
of popularity in applications, and also in the civil engineering field, see examples [23–32].
Regarding the foundation engineering field, neural networks have been employed to
estimate the settlement and the load carrying capacity of pile foundations [33–35], and of
isolated shallow footings [36–40].

To the best of the authors’ knowledge, no research has been carried out so far to
predict the bearing capacity of a shallow strip footing above a void by means of approaches
based on ML tools. In the present study, a first attempt is made to set an extensive database
dealing with the various factors affecting the said bearing capacity for strip footings above
a single unsupported void in either heterogeneous or homogenous soils, under seismic
and quasi-static excitations. The considered factors are:

• Soil cohesion
• Soil internal friction angle
• Heterogeneity
• Distance of the void from the central line of the footing
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• Depth of the void
• Shape and size of the void
• Horizontal earthquake acceleration.

Results have been obtained as lower and upper bounds on the load bearing capacity
of the strip footing via the FELA method. First, a sensitivity analysis has been conducted to
quantify the effects of these parameters on the ultimate footing bearing capacity. Next, to
predict the seismic bearing capacity, the multiplayer perceptron (MLP), group method of
data handling (GMDH), and adaptive-network-based fuzzy inference system and particle
swarm optimization (ANFIS-PSO) techniques have been adopted.

The proposed procedure, based on the ML tools, can therefore be framed in the
following way: for all the problems characterized by the geometry of strip footing and a
void similar to the one here considered, and by heterogeneous solids, of which the main
properties affecting their resistance are cohesion and friction angle within the investigated
ranges, the said ML tools can be assumed already tuned and trained. Practitioners can
then use the ML-based models as a kind of black-box, to automatically and quickly obtain
an estimation of the seismic bearing capacity of any shallow strip footing, so that the
detrimental effects induced by the interaction with the buried, unsupported void can be
easily quantified.

The remainder of this paper is organized as follows: in Section 2, the attacked problem
is defined in detail, and the modeling in Optum G2 is validated with literature results to
ensure the accuracy of the solutions in the database. The results of a parametric study,
performed to assess how the aforementioned factors affect the solution, are reported in
Section 3. The ML tools adopted to learn the link between the input factors and the footing
bearing capacity, namely the output, are described in Section 4. The outcomes generated
by the ML algorithms are given in Section 5 in statistical terms to assess the accuracy in
reproducing all the ground-truth results in the dataset, and in Section 6 for a case study
featuring a specific geometry, in order to provide a concrete idea concerning the accuracy of
the attained results. The conclusions of the present work and foreseen future developments
are then expressed in Section 7. Finally, Appendix A gathers the equations relevant to the
MLP and GMDH models, and the MATLAB code for the adopted ANFIS-PSO model.

2. Problem Definition

A literature review, regarding the topic of concern here, has pointed out that the interac-
tion between a strip footing and voids displays interesting complexities. Several parameters
affect the interaction of the foundation, the soil, and the voids/tunnels. These parameters
are listed in Table 1, along with the papers where they were already accounted for.

Table 1. Parameters investigated in recent research.

Parameter Yamamoto et al.
[11]

J.K. Lee, Jeong
and Ko [12] Lavasan [15] Xiao, Zhao and

Zhao [18] Zhou et al. [19]

Internal friction
angle

√ √

Cohesion
√ √ √ √

Depth of void
√ √ √ √ √

Eccentricity of void
√ √ √ √ √

Shape of void
√ √ √

Size of void
√ √ √

In Figure 1, the two-dimensional geometry of the specific problem considered in
this work is depicted. Assuming the strip footing and the tunnel to extend infinitely in
the out-of-plane direction, plane strain conditions are adopted in the analysis. The strip
footing is assumed rigid, featuring a rough surface in contact with the heterogeneous soil.
According to the proposed setting, the following dimensionless variables are adopted to
parametrize the problem:
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- Horizontal seismic acceleration coefficient kh, which is equal to the ratio between the
horizontal earthquake-induced ground acceleration and the gravity acceleration.

- Ratio α = W/B between the void width W and the foundation width B.
- Ratio β = H/B between the void height H and the foundation width B.
- Undrained shear strength c0/γB of the soil at the ground level, c0 being the cohesion

of the soil, and γ the soil specific gravity.
- Rate of change kB/c0 of the cohesion c with the depth, according to the law:

c = c0 + kz (1)

where c0 is, as stated above, the value of the cohesion at the free surface z = 0. For a
homogeneous soil, k is null, whereas for heterogeneous soils, k is positive—additional
details can be found in [41,42].
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- Internal friction angle ϕ of the soil in the drained state.
- Depth D = Z/B of the void, Z being the burial depth of the upper side (roof) of

the void.
- Eccentricity S = X/B of the void, X being the horizontal distance of the center of the

void from the centerline of the foundation.

Accounting for all the parameters listed above, the (dimensionless) undrained seismic
ultimate bearing capacity Q of a strip footing placed above the void is assumed to be:

Q =
qu

γB
= f

(
c0

γB
,

kB
c0

, ϕ, S, D, α, β, kh

)
(2)

To set the database for digging with the ML algorithms, FELA analyses have been car-
ried out to determine Q using the Optum G2 software [43]. By exploiting mesh adaptivity,
the code allows for the mesh to be progressively refined, namely reducing the characteristic
size of the elements where plastic dissipation takes place. On its own, this mesh adaption
allows for the bounds to be tightened on the ultimate bearing capacity Q generated by each
analysis, as described below, without any (potentially not objective) user intervention.

This approach is broadly used in geotechnical engineering to solve stability prob-
lems [11,44] and ascertain the footing bearing capacity [18,45–48]. Through the FELA
method, which is a mixture of the finite element and the classical limit analysis of plasticity,
lower and upper bounds on the ultimate bearing capacity of the foundation can be obtained.
For further details regarding the theoretical background and the numerical implementation
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of this method, readers are referred to [49–51] for the lower bound finite element limit the-
ory, and to [49,51–53] for the upper bound one. Notably, a striking advantage of the FELA
approach is that preliminary assumptions related to the failure surface are not needed [54].

Meshes consisting of triangular elements have been adopted, independently of the
values of the geometrical parameters introduced above. To start the iterative mesh adap-
tion procedure, each model has been assumed to be made of 1000 elements. Through
h-adaptivity, elements have been automatically generated or reduced in size where shear
stress concentration and dissipation is going to affect the solution, until a limit of
10,000 elements has been attained. Such initial and final numbers of elements have been
chosen on the basis of the results presented in [55,56], the latter to specifically keep the
computational burden of each analysis below a critical threshold.

The Mohr–Coulomb failure criterion has been used to model the soil behavior, while
the strip footing has been modeled as a weightless rigid plate. The ultimate load bearing
capacity has then been defined through a multiplier for a uniform load applied to the
footing, and automatically increased until the formation of collapse mechanisms.

In the analyses, a strip footing with a width B = 1 m has been placed on soil with a
specific weight of 20 kN/m3. To avoid any perturbation to the solution induced by the
domain boundaries, a model with a width of 40B and a depth of 20B has been considered.
The contact of the soil with the bedrock has been modelled by constraining both the hori-
zontal and the vertical displacements along the bottom surface. Along the side boundaries,
only the horizontal components of the displacements have instead been restrained.

The pseudo-static method has been adopted to assess the seismic performance of the
foundation over the cavity. For this purpose, the value of the horizontal acceleration coeffi-
cient kh has been exploited, and once the upper and lower bounds on qu or Q at collapse
have been computed, the relevant mean value has been assumed as the representative
result for each model. An example of the adopted models is depicted in Figure 2, where the
typical FELA adaptive mesh of the Optum G2 software, along with the adopted boundary
conditions, are sketched.
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To validate the modeling approach, the results of some studies in the literature have
been considered for comparison purposes. First, as seen in [57], the bearing capacity
of the foundation has been computed via the lower bound FELA method, in case of
horizontal seismic loadings. The relevant results are compared in Figure 3, in terms of the
bearing capacity factor Nγ, to show how they perfectly match the available ones. Second,
a comparison with the studies of [57–64] has been made through the data gathered in
Table 2. Such a comparison is provided in terms of the bearing capacity factor, at a varying
value of the internal friction angle ϕ. The results again show a good agreement with those
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published, and correctly bound almost all of them. Third, in Table 3, a further comparison is
provided for the bearing capacity factor Nc, allowing for the presence of a void at different
depths D beneath the strip footing central line, see [10,12,19]. It has been assumed that
the opening width is equal to the surface footing width, and is located within an utterly
cohesive soil at an undrained state with cohesion varying in the range 60–300 kPa. Results
are shown again to agree well with the reference ones.
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Figure 3. Bearing capacity of the foundation: comparison between the results of the present study
and those of [65].

Table 2. Bearing capacity of the foundation: comparison with literature data in terms of the capacity factor Nγ.

ϕ (◦)

Nγ

Present Study
Yang et al. Booker Hansen Chen Michalowski Kumar Hjiaj et al. Zhao and Yang

LB UB

20 1.41 3.11 2.98 3.01 2.95 5.200 4.47 3.43 2.89 2.92
25 3.55 7.07 6.75 6.95 6.76 11.40 9.77 7.18 6.59 -
30 10.9 16.2 15.29 16.06 15.07 25.00 21.39 15.57 14.90 14.96
35 25.4 37.8 35.73 37.13 33.92 57.00 48.68 35.16 34.80 -
40 63.8 96.1 88.54 85.81 79.54 114.0 118.83 85.73 85.86 86.76

Table 3. Bearing capacity of the foundation: comparison with literature data, in terms of the capacity factor Nc for a strip
footing above a single void.

D α

Nc

Present Study
cu= 60 kPa

Present Study
cu= 300 kPa

(Lee et al.)
cu= 60 kPa

(Kiyosumi et al.)
cu= 60 kPa

(Kiyosumi et al.)
cu= 300 kPa

(Zhou et al.)
cu= 60 kPa

(Zhou et al.)
cu= 300 kPa

1.50 1.71 1.98 2.02 1.68 1.95 1.68 1.92
2.00 2.55 2.95 3.11 2.50 2.90 2.50 2.92
2.50 3.39 3.98 3.90 3.34 3.88 3.34 3.88
3.00 4.14 4.80 4.62 4.17 4.85 4.18 4.83
3.50 4.66 5.08 5.10 5.00 5.82 5.00 5.19
4.00 5.11 5.15 5.16 5.84 5.18 5.21
4.50 5.13 5.15 5.16 5.21 5.21
5.00 5.13 5.15 5.16 5.21 5.21

3. Parametric Study

Before moving to the setting of the database for the application of the ML algorithms,
a parametric analysis is here presented. To evaluate the effect of the parameters listed in
Section 2 on the seismic behavior of the system, a set of analyses has been designed. In an
undrained situation, for a strip footing with a rough surface on the ground level, the pseudo-
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static acceleration coefficient at the threshold of strip footing sliding is 0.38. To study the
effect of earthquakes, values of kh = 0, 0.15, 0.25, and 0.35 have been accounted for.

In the following, the outcomes of the parametric analysis are subdivided, in order to
focus first on the effects of parameters related to the soil behavior, and next on the effects
of parameters related to the geometry and position of the void.

3.1. Soil Parameters

The results in Figure 4 provide insights into the variation of the dimensionless bearing
capacity Q = qu

γB , see Equation (2), induced by the soil features, under different values
of the horizontal seismic acceleration coefficient kh. Figure 4a shows the outcome of the
analysis for a broad range of values of the undrained shear strength. The graph confirms
that for a low shear strength, that is for c0/γB < 1, the model can be unstable (especially
regarding the lower bound state): void collapse occurs without any loading and the value
of Q gets close to zero, though it cannot be computed due to the instability of the model. As
far as the effect of kB/c0 on the seismic and static bearing capacity of the shallow footing
is concerned, Figure 4a also shows that the bearing capacity raises slightly under seismic
conditions, however, it then becomes independent of kB/c0.
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Results in Figure 4b instead show that by increasing the angle of internal friction of
the soil, the bearing capacity of the strip footing increases as well: for ϕ ≤ 30◦, the bearing
capacity increases at a low rate, but for larger values, it keeps increasing sharply.

3.2. Void Parameters

Results are depicted in Figure 5 showing the variation of the bearing capacity induced
by varying the void parameters related to its shape and location. At constant seismic action
measured through kh, the capacity Q = qu/γB is shown to increase with the void depth
D until a saturation value that depends on its own kh. Similar conclusions can be drawn
considering the effect of the horizontal distance S from the footing central line. It has also
been reported that the bearing capacity decreases as the ratio α related to the void width
increases, with instability triggered for a value approaching α = 3. For a void located below
the centerline of the footing (namely S = 0), the effect of the ratio β related to the void
height is to first marginally reduce the bearing capacity, and then attain a constant value.
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Figure 5. Parametric analysis: effects on the bearing capacity Q = qu/γB under different values of
the seismic acceleration coefficient kh, of the dimensionless void parameters α (red plots), β (blue
plots), S (green plots), and D (black plots).

As the data have to be handled through ML approaches, the quality of the dataset
is one of the dominant aspects to assure the accuracy of the predictions. To assess the
bearing capacity of the strip footing above a void, the adopted dataset has been made of
38,000 models, each one featuring its own values of the parameters describing the soil
properties and the void geometry. According to the parametric study presented above, the
values of the parameters have been selected within their domains to cover all the effective
situations related to the interaction between the strip and the void. The aforementioned
effective values of the parameters are collected in Table 4.

Table 4. Effective parameters and selected values for each model.

Shape of Void
Effective Parameters

Total Number
of Scenariosc0/γB kB/c0 D S

Shape ϕ kh
α β

Rectangular

Selected
Values

2, 4,
6, 8

0, 0.5, 1
0.75,

1.5, 3,
4.5, 6

0, 1, 2,
3.5, 5

1 3

0, 10, 20,
30, 40

0, 0.1,
0.2, 0.3

1 2
1 1
2 1
3 1

Number of
scenarios 4 3 5 5 5 5 4 30,000

Square

Selected
Values

2, 4,
6, 8 0

0.75,
1.5, 3,
4.5, 6

0, 1, 2,
3.5, 5

0.5 0.5
0, 10, 20,

30, 40
0, 0.1,

0.2, 0.3
1.5 1.5
2.0 2.0
2.5 2.5

Number of
scenarios 4 1 5 5 4 5 4 8000

Total number of models considered 38,000

As already remarked, for each analysis, only the average value between the upper
and lower bounds on the strip footing bearing capacity has been considered as an entry of
the dataset.
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4. Machine Learning Techniques

To learn and then estimate the seismic bearing capacity of the shallow strip footing
above the void, three nonlinear machine learning algorithms have been adopted: an MLP
artificial neural network (ANN); the GMDH; and a combined ANFIS–PSO.

According to Table 4, the database for digging is characterized by eight input pa-
rameters (c0/γB, kB/c0, D, S, α, β, ϕ, and kh) and only one output (Q = qu/γB). In the
following, a detailed description of these methods is provided, along with the impact of
the relevant hyperparameters of their performance. Hyperparameters are defined here as
the algorithm-dependent parameters that control the learning process.

4.1. Multilayer Perceptron (MLP)

McCulloch and Pitts first introduced ANNs as a powerful predictive tool in [66].
ANNs are a programming paradigm which try to mimic the brain’s structure. They are
broadly employed in artificial intelligence problems, from simple pattern-recognition tasks
to advanced symbolic manipulation. ANN-based models process the available data during
a training stage, assessing the network output to efficiently and accurately match some
available targets in case of a supervised approach, like the one here adopted based on the
FELA results included in the dataset. ANNs can be used for modeling complex systems in
virtually any science [67,68].

MLP is a class of ANNs, and stands as an evolution of the perceptron neural network
originally developed in the 1960s, see [69]. For a general problem, MLP is able to provide
a nonlinear map f : Rk → Rh, in case of an input layer made of k neurons (input values)
and an output layer made of h neurons (output values). It also consists of an arbitrary
number of hidden layers, with a variable number of neurons. The neurons are storage cells
for scalar values, obtained by an activation function applied to the neuron values in the
previous layer.

For our problem, a preliminary analysis has been performed to identify the optimal ar-
chitecture of the MLP, in terms of the number of neurons in the hidden layers, to accurately
describe the correlation between input and output of the analyzed dataset. In this regard,
one-hidden-layer and two-hidden-layer ANNs have been investigated—to speed-up the
optimization procedure, only 5% of the data has been adopted at this stage. To this aim,
in [70], it was suggested that the ratio between the number of data and the number of input
and output variables should be greater than five, to attain an appropriate performance of
MLP—in the present case, the mentioned ratio results are 1900/9 = 211, which are much
larger than the minimum value suggested.

Figure 6 provides a comparison of the behaviors of all the considered architectures at
the end of training. Results are reported in terms of the root mean square error (RMSE),
given by:

RMSE =

√
1
n

n

∑
i=1

(QOG2 i −QModel i)
2 (3)

which has been assumed as the loss function to be minimized during the training. In
Equation (3): n is the total number of data; and for the i-th model, QOG2 i is the load bearing
capacity obtained with the Optum G2 software, whereas QModel i is the value estimated
through the MLP algorithm.

To assess the effects of the hyperparameters on the ANN accuracy, the plot in Figure 6
shows the final value of RMSE as a function of the total number of neurons in the MLP. The
continuous line represents the solution obtained with the one-hidden-layer ANN, which
is obviously uniquely defined by the number of neurons in the layer itself. The dashed
lines represent the solutions for the two-hidden-layer ANNs, and for each of them, the
label in the chart represents the number of neurons in its first hidden layer. Each point in
this graph has been computed as the average value out of ten repetitions of the training
process, to also assure robustness against stochastic effects. What can be seen from this
analysis is that the ANN featuring one hidden layer only, almost surely provides the best
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performance. Furthermore, for a number of neurons larger than 20, there is no noticeable
improvement in the final value of the RMSE. Accordingly, and in order to minimize the
computational costs, the 8-20-1 ANN architecture has been adopted henceforth.
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The effect of the proportioning of the data handled for training, validation, and testing
of the MLP has been investigated next. As before, 5% of the data have been handled to
evaluate the performance of MLP for different values of proportioning, and the results
are shown in Figure 7 at varying values of the percentage of training data. The best
performance has been obtained for 65% of the dataset employed for training, 30% for
validation, and the remaining 5% for testing. Therefore, the numbers of samples used for
the various stages of the MLP-based analysis are as follows: out of the total 38,000 data,
24,700 were used for training, 11,400 for testing, and 1900 for validation.
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4.2. Group Method of Data Handling (GMDH)

The GMDH algorithm, which was first proposed in [71], combines mathematical
modeling approaches and black-box nonlinear system identification, aiming to learn the
complex relationship between input and output in the provided dataset. By means of a
polynomial transfer function (Volterra functional series), GMDH allows the neurons to
become more complex units.

Unlike MLP, this method can be considered a particular type of self-organized ANN,
which employs natural selection to control the size, complexity, and accuracy of the network.
The main fields of application of GMDH are the modeling of complex systems, function
approximation, nonlinear regression, and pattern recognition (more information can be
found in example [72]).

Even for this architecture, a preliminary analysis has been performed to identify the
optimal values of the number of layers and of the maximum number of neurons in a layer,
to enhance its effectiveness. Like for the MLP, for this stage of the analysis, 5% of the
available data have been used. The effects of the aforementioned hyperparameters on the
RMSE at the end of training are depicted in Figure 8. The graph shows that, when the
number of layers is larger than six, the RMSE is only marginally affected. Moreover, it can
be seen that an optimal value for the maximum number of neurons in a layer is 12. For
values larger than this threshold, only a small variation of the RMSE is reported, which is
arrived at by largely increasing the cost of training.
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To run the GMDH algorithm, a parameter called “selection pressure”, which can
be thought of as a threshold to determine the number of neurons in each layer, must be
set. Its value ranges from zero to define the no-pressure mode (to select all the generated
neurons), to one to define the maximum pressure mode (to select no neurons from all the
generated ones). Hence, the lower the value of the selection pressure, the more complex
the structure of the GMDH and the higher the related computational effort. A trade-off has
thus been arranged, in such a way that its value does not negatively affect the performance
of the algorithm while being maximized. According to the results collected in Figure 9, an
optimal value of this hyperparameter has been set to 0.2.
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As for the MLP, the effect of data proportioning for training and testing has been
investigated. Figure 10 shows that, independently of the number of layers, the percentage
of training data does not significantly affect the GMDH performance. Therefore, 50% of
the entire dataset has thus been selected for it.
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4.3. Combined Adaptive-Network-Based Fuzzy Inference System and Particle Swarm Optimization
(ANFIS-PSO)

ANFIS is known to be a useful ML approach to solve function approximation prob-
lems [73]. ANFIS, which uses ANN standard training algorithms, is structured with if-else
rules and input-output fuzzy joined data [74]. To simulate complex nonlinear mapping, a
trained ANN and fuzzy logic work together in different imprecise and unpredictable noisy
spaces [75]. Further aspects about ANFIS are reported in [27].

The PSO is based on competition and collaboration among particles [76,77]. It per-
forms a local search and leads to fast convergence in minimizing the objective function,
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see [78,79]. The most striking advantage of this optimization algorithm over others is
that the use of swarming particles makes the process robust against the solution getting
entrapped into local minima of the handled objective function, since each particle renews
its position and pathway based on its and others’ information.

In this work, PSO has been used to provide the membership functions of ANFIS, as-
sumed to be Gaussian ones, thereby decreasing the computation costs for a given topology
of ANFIS itself. A thorough explanation on the combined ANFIS-PSO algorithm can be
found in [80].

In order to enhance the performance of this algorithm, the critical hyperparameters
that need to be set are the number of iterations, or in other words, the stopping criterion,
and the number of particles in the population handled at each iteration. Although exact
rules for the swarm size selection are not reported in the literature, the main issue linked to
it is that, when the problem dimension increases, the swarm size does increase as well, and
may quickly become unmanageable [81].

By setting the maximum number of iterations to 5000 and the number of particles
varying in a range between five and 95, Figure 11 shows the evolution of RMSE. It can be
seen that a number of iterations equal to 5000 looks appropriate to converge to the final
solution, independently of the number of particles. As depicted in the inset of Figure 11,
after 5000 iterations, the solution linked to 65 particles has shown the best performance.
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The initial and final values W1 and W2 of the inertia weight also need to be set. This
weight provides a trade-off between the concentration of particles in their neighborhoods,
and the exploration of new points in the parameter space. Higher values of the weight allow
more new points to be explored, while lower values allow the concentration capability of
PSO to be boosted. The value of this hyperparameter has been linearly reduced during the
run, so that the search effort is essentially focused on the exploration at the initial steps
(governed by W1), while it is focused more on exploitation at the latter phases (governed
by W2) of the run.

Figure 12 shows the sensitivity of the PSO performance to W1 and W2. In the graph,
different colors are related to different values of W1, whereas different line formats are
associated to different values of W2. It clearly emerges that the red lines associated to
W1 = 0.8 provide the best performance. Furthermore, the continuous lines linked to
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W2 = 0.2 give rise to the minimum final value of RMSE and, in all the cases, to the steepest
descents in its evolution.
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Other hyperparameters to tune in the analysis are the cognitive and social acceleration
coefficients C1 and C2, which describe the weighting of the stochastic acceleration terms
that move particles towards the best objective so far (C1), and to the best objective of swarm
particles (C2). By increasing the cognitive acceleration coefficient value, the attraction
of particles towards the best objective is enhanced, while their appeal towards the best
goal of swarm particles is reduced. Since the social acceleration coefficient does the exact
opposite, the relation between the values of the two coefficients is critical and may affect
the behavior of the algorithm. Concerning the ratios C1/C2 and C2/C1, we have considered
eight different values in the investigation, plus the threshold characterized by C1 = C2.
According to the results shown in Figure 13, which provides the evolution of RMSE during
the optimization by PSO as a function of the cognitive and social acceleration coefficients
C1 and C2, the best performance has been obtained for C1 = 1 and C2 = 1.5.
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As was done for the other algorithms, the effect of the proportioning of data has been
investigated. Figure 14, which shows the evolution of RMSE during the optimization by
PSO, testifies that the optimal percentage of training data is 70%. Accordingly, out of the
38,000 data, 26,600 have been used for training and 11,400 for testing.
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5. Results and Discussion

In this section, the performances of the three selected ML tools are compared. As
metrics for the said performances, the following statistical indices have been adopted to
measure the discrepancy between ground-truth and the predicted values of the seismic
load bearing capacity:

R2 =

[
n

∑
i=1

(
QOG2 i −QOG2

)(
QModel i −QModel

)
/

√
n

∑
i=1

(
QOG2 i −QOG2

)2
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∑
i=1

(
QModel i −QModel

)2
]2

(4)

MAPE =
1
n

n

∑
i=1
|QOG2 i −QModel i|/QOG2 i (5)

SI = RMSE/QOG2 (6)

BIAS =
1
n

n

∑
i=1

(QOG2 i −QModel i) (7)

R2, MAPE, SI, and BIAS being, respectively, the coefficient of determination, the mean
absolute percentage error, the scatter index, and the standard bias. Besides these indices,
the RMSE introduced in Equation (3) has been adopted too. In these equations i = 1, . . . , n
is an index running over the instances in the dataset. It is also worth recalling that QOG2 i is
the numerical value of the dimensionless load bearing capacity Q = qu/γB generated by
the Optum G2 software, while QModel i is the corresponding value provided by the trained
ML tool (the overbar stands for the average value of the corresponding variable).

Table 5 gathers the values of all the statistical indices introduced above to assess the
performance of each ML approach. It can be seen that MLP is more accurate than GMDH
and ANFIS-PSO in catching the structural response, as shown by the R2, RMSE, SI, and
BIAS values. The same trend is also shown in the parity plots given in Figure 15, where
the estimations of the seismic bearing capacity Q = qu/γB of the shallow strip footing are
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compared with the ground-truth values. Output provided by MLP is shown to be much
less scattered than the others, and the linear interpolation of all the pairs of results is well
aligned with the (perfect fit) bisector of the quadrant. In spite of the relatively small value
of the BIAS, due to the fact that each single term in the sum is purposely taken with its
own sign, the GMDH model performs worse, as reported by the large scatter and also by
the deviation from the perfect fit line of the linear interpolant.

Table 5. Performance of the ML algorithms, in term of the adopted statistical indices.

Algorithm R2 RMSE MAPE SI BIAS

MLP 0.9955 0.0158 −0.0101 −0.0189 −0.0001
GMDH 0.8417 0.0938 −0.0750 −0.1123 −0.0009

ANFIS-PSO 0.9542 0.0505 −0.0017 −0.0605 0.8997
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The goodness of the fit of the results has been also studied: Figure 16 provides a
comparison between the FELA and the foreseen seismic bearing capacity of the shallow
strip footing. For this comparison, only 1% of the instances in the dataset have been
randomly selected, so as to provide a clear view of the quality of data fitting. It results that
the seismic bearing capacity computed by the ML techniques matches relatively well with
their FELA counterparts, and the minor scattering around them is obviously in accordance
with the results reported in Figure 15.
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6. A Case Study

In this section, the results obtained in this study in terms of trained ANN-based
models, are adopted for a practical engineering problem to assess the seismic bearing
capacity of a strip footing placed over an unsupported void. It has been assumed that
the strip footing, featuring B = 8 m, is located over homogeneous soil characterized by
c0 = 300 kPa, γ = 18 kN/m3, and ϕ = 20◦. As shown in Figure 17, the footing is placed
near a square void, which is 4 m wide and 4 m high, and the center of which is placed
at a depth of 12 m and at a distance of 16 m from the footing centerline. To predict the
undrained seismic bearing capacity in the specific case kh = 0.2, the ML method introduced
in this research can be adopted as follows:
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First, the nondimensional input parameters of the problem need to be computed
to obtain:

c0

γB
=

300 [kPa]
18 [kN/m3]·8 [m]

= 2.08
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kB
c0

= 0

α =
W
B

=
4 [m]

8 [m]
= 0.5

β =
H
B

=
4 [m]

8 [m]
= 0.5

According to Figure 17, where the center of the void is shown to be placed at a depth
of 12 m and at a distance of 16 m from the footing centerline, the additional nondimensional
depth and eccentricity parameters amount to:

D =
Z
B

=
12− 4/2 [m]

8 [m]
= 1.25

S =
X
B

=
16 [m]

8 [m]
= 2

For this case study, the Optum G2 software has provided the lower and upper bounds
on the ultimate bearing capacity as 3193.65 kPa and 3301.85 kPa, respectively, so the mean
value has been given as 3247.75 kPa. The ML methods here investigated have instead
provided the estimations reported in Table 6, along with the relevant errors with respect to
the aforementioned ground-truth value. As already pointed out in Section 5, MLP is shown
to perform better than the two alternative tools, giving rise to a representative error smaller
than 2%. Very similar results can be obtained for any other geometry falling within the
interval of characteristic parameters allowed for while assembling the dataset of Table 4.

Table 6. Case study: seismic bearing capacity of the strip footing estimated by the investigated ML
tools, and error with respect to the ground-truth to the value given by the Optum G2 software.

Algorithm Estimate qu[kPa] Error

MLP 3184.23 1.96%
GMDH 3325.11 2.38%

ANFIS-PSO 3091.24 4.82%

7. Conclusions

In this study, the seismic bearing capacity of a strip footing placed over an unsup-
ported void has been assessed. Dimensionless factors describing the horizontal seismic
acceleration, the soil strength and heterogeneity, the internal friction angle of the soil, the
shape, size, depth, and eccentricity of the void have been accounted for.

Three ML techniques have been exploited to estimate the aforementioned bearing ca-
pacity: MLP; GMDH; and ANFIS-PSO. All the hyperparameters affecting the performance
of the ML models have been investigated, to ensure the attainment of optimal solutions in
all the cases. The results obtained by training the ML models have shown a good fitting of
the seismic bearing capacity provided by numerical FELA simulations, here handled as the
ground-truth data. More specifically, MLP, and ANFIS-PSO have performed better than
GMDH. Overall, almost independently of the adopted statistical performance index used
to assess the goodness of the fit of the models, MLP has been shown to be superior to the
other models. This outcome has also been testified by means of concrete results regarding
a case study.

A major concern regarding the use of a data-driven ML approach to foresee the
information related to limit states of a structural system, typically highly sensitive to some
parameters unknown or difficult to assess, is related to the quality of the dataset. In future
activities, the proposed approach will be fed also with experimental data, to assess the
credibility of the ML models. To this purpose, collecting empirical data of the seismic
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bearing capacity of the strip footing above voids would be worthwhile, to finally establish
an effective tool to design strip footing, especially in urban areas.

In this study, only rectangular voids have been considered. Having established the
reliability of the offered methodology, additional datasets will be considered in the future
to allow for voids with a different geometry, aiming to increase the awareness of strip
footing behavior over voids.
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Appendix A.

In this appendix, we collect some features of the optimal configurations of the selected
neural network-based ML algorithms, so that they can be adopted in the future by other
researchers for similar problems.

Appendix A.1. MLP

According to the results of the optimization procedure discussed in Section 4.1, the 8-20-1
MLP architecture has shown the best performance in predicting the seismic bearing capacity
of the shallow strip footing above a void. The weights and biases relevant to the input-hidden
and to the hidden-output connections are respectively listed in Tables A1 and A2.

Table A1. Input-hidden weights and biases.

Neuron c0/γBj = 1 ϕj = 2 kB/c0j=3 khj=4 α j = 5 β j = 6 Dj = 7 Sj = 8 Bias

N1j 0.230 1.079 0.077 −0.254 0.007 −0.051 −0.572 −0.385 −1.820
N2j 0.093 0.367 −0.010 −0.089 0.018 −0.142 −0.152 0.110 −1.078
N3j 0.149 1.059 0.245 −0.114 −0.036 −0.012 0.292 0.114 −1.978
N4j 0.258 0.959 0.116 −0.196 −0.045 −0.037 −0.158 −0.529 −2.371
N5j 0.014 −0.480 0.094 0.221 −0.408 −0.014 1.267 −0.300 0.381
N6j 0.033 −0.410 0.100 0.203 −0.401 −0.011 1.241 −0.331 0.445
N7j 0.195 1.032 0.110 −0.234 0.058 −0.043 −0.677 −0.378 −2.086
N8j 0.143 1.295 −0.187 −0.315 0.208 0.072 −0.997 −0.231 −2.155
N9j 0.207 0.987 0.133 −0.206 0.051 −0.021 −0.473 −0.555 −2.479
N10j −0.161 −1.152 −0.074 0.265 −0.139 0.018 1.014 0.297 2.249
N11j −0.555 −2.524 0.539 0.581 −0.013 0.037 −0.155 −0.097 4.469
N12j −0.093 −0.433 0.022 0.105 −0.014 0.204 0.168 −0.154 0.321
N13j −0.055 0.336 −0.108 −0.185 0.396 0.009 −1.222 0.367 −0.517
N14j 0.191 1.267 −0.068 −0.302 0.162 0.031 −0.816 −0.176 −1.871
N15j −0.107 −1.291 0.193 0.316 −0.217 −0.071 1.190 0.317 2.421
N16j −0.271 0.934 0.191 −0.179 0.001 0.002 0.129 0.082 −3.216
N17j 0.356 3.307 0.188 −0.448 −0.049 −0.013 0.249 0.086 −4.666
N18j 0.228 0.869 0.233 0.107 −0.072 −0.026 0.234 0.087 −2.364
N19j −0.196 −1.090 −0.149 0.214 −0.103 −0.015 0.560 0.818 2.999
N20j −0.214 −0.843 0.001 0.210 −0.054 0.272 0.391 −0.188 1.409



Algorithms 2021, 14, 288 20 of 27

The prediction equation, practically used to link the input vector (consisting of c0/γB,
kB/c0, D, S, α, β, ϕ, and kh) to the output (Q = qu/γB), has resulted into:

Q = fsig{bo + ∑h
N=1 [wN fsig(bhN + ∑m

i=1 wiN Ii)]}. (A1)

where: Ii represents the inputs vector; m = 8 is the dimension of the input vector; h is
hidden layer size; wiN is the connection weight between the ith input component and the
Nth neuron of the hidden layer; wN is the connection weight between the Nth neuron of
hidden layer and the (single) output; bhN is the bias at the Nth neuron of the hidden layer;
bo is the bias at the output layer; and fsig is the tan-sigmoid transfer function. According to
Tables A1 and A2, Equation (A1) can be re-written as:

Q = fsig

{
bo +

h

∑
N=1

[
wN fsig(bhN +

m

∑
i=1

wiN Ii)

]}
(A2)

where:

Ai = −5.785 +
20

∑
i=1

Ei (A3)

Ei = Fi

(
eGi−e−Gi

eGi+e−Gi

)
F =

[−1.820;−1.078;−1.978;−2.371; 0.381 ; 0.445 ;−2.086 ;−2.155 ;−2.479 ; 2.249
4.469; 0.321;−0.517;−1.871; 2.421;−3.216;−4.666;−2.364; 2.999; 1.409]

(A4)

Gi = Ni1 (c0/γB) + Ni2 (kB/c0) + Ni3 (D) + Ni4 (S) + Ni5 (α) + Ni6(β) + Ni7(ϕ) + Ni8(kh) + Ni9 (A5)

and weights Nij are provided in Table A1.

Table A2. Hidden-output weights and bias.

Neuron F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Weight −1.820 −1.078 −1.978 −2.371 0.381 0.445 −2.086 −2.155 −2.479 2.249

Neuron F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

Weight 4.469 0.321 −0.517 −1.871 2.421 −3.216 −4.666 −2.364 2.999 1.409
Bias −5.785

Appendix A.2. MLP

According to Section 4.2, the optimal GMDH model has been shown to feature a
maximum number of neurons in each layer equal to 12, and four layers only. Furthermore,
the selection pressure has been set to 0.5.

The main advantage of GMDH is the provision of a polynomial relationship between
the input and the output variables, which stands as a relatively practical and straightfor-
ward solution for the problem at hand. This relationship reads:

F(X, Y, A) = a1 + a2X + a3Y + a4X2 + a5Y2 + a6XY (A6)

where: X and Y are the inputs to a neuron, and weights a1, . . . , a6 are all gathered in vector
A. For each pair of variables X and Y, the entries of A are provided in Table A3, see also
Figure A1.
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 𝑌ସ଺ = 𝐹(𝑌ଷଵ, 𝑌ଷ଼ , 𝐴)        𝐴 = [13.075, −0.664, 1.419, 0.002, −0.001, −0.001] 
 𝑌ସଵଶ = 𝐹(𝑌ଷଵ, 𝑌ଷ଻, 𝐴)      𝐴 = [12.995, −0.470, 1.233, 0.002, −0.001, 0.000] 

Layer 3: 𝑌ଷଵ = 𝐹(𝑌ଶଶ, 𝑌ଶସ , 𝐴)         𝐴 = [40.984, 0.207, −0.264, −0.001, 0.000, 0.004] 
 𝑌ଷଷ = 𝐹(𝑌ଶସ, 𝑌ଶ଼ , 𝐴)      𝐴 = [25.767, −0.390, 0.675, 0.000, −0.002, 0.004] 
 𝑌ଷ଻ = 𝐹(𝑌ଶସ, 𝑌ଶହ , 𝐴)         𝐴 = [30.233, −0.352, 0.538, 0.000, −0.001, 0.004] 
 𝑌ଷ଼ = 𝐹(𝑌ଶ଺, 𝑌ଶ଻ , 𝐴)      𝐴 = [26.812, 0.641, −0.368, −0.002, 0.000, 0.004] 
 𝑌ଷଵ଴ = 𝐹(𝑌ଶଵ, 𝑌ଶଷ , 𝐴)         𝐴 = [17.613, 0.459, 0.103, −0.003, −0.003, 0.007] 

Layer 2: 𝑌ଶଵ = 𝐹(𝑌ଵଵ, 𝑌ଵଶ , 𝐴)      𝐴 = [30.030, 0.219, −0.145, −0.001, −0.001, 0.006] 
 𝑌ଶଶ = 𝐹(𝑌ଵଵ, 𝑌ଵସ , 𝐴)         𝐴 = [29.406, 0.265, −0.146, −0.001, −0.001, 0.006] 
 𝑌ଶଷ = 𝐹(𝑌ଵଵ, 𝑌ଵଷ , 𝐴)         𝐴 = [27.183, 0.255, −0.082, −0.001, −0.001, 0.005] 
 𝑌ଶସ = 𝐹(𝑌ଵଶ, 𝑌ଵଷ , 𝐴)      𝐴 = [30.674, −0.027, 0.151, −0.002, −0.003, 0.009] 
 𝑌ଶହ = 𝐹(𝑌ଵଵ, 𝑌ଵହ , 𝐴)      𝐴 = [23.948, 0.341, −0.035, −0.001, −0.001, 0.004] 
 𝑌ଶ଺ = 𝐹(𝑌ଵଵ, 𝑌ଵ଺ , 𝐴)      𝐴 = [20.898, 0.339, 0.071, −0.001, −0.002, 0.004] 
 𝑌ଶ଻ = 𝐹(𝑌ଵଶ, 𝑌ଵସ , 𝐴)      𝐴 = [32.725, −0.008, 0.037, −0.001, −0.002, 0.007] 
 𝑌ଶ଼ = 𝐹(𝑌ଵଵ, 𝑌ଵ଻ , 𝐴)       𝐴 = [18.955, 0.350, 0.122, 0.000, −0.002, 0.004] 

Layer 1: 𝑌ଵଵ = 𝐹 ൬𝑐௨଴𝛾𝐵 , 𝜑 , 𝐴൰       𝐴 = [43.770, −1.933, −9.500, −0.142,0.243, 1.177] 
 𝑌ଵଶ = 𝐹(𝜑, 𝐷 , 𝐴)        𝐴 = [31.722, −7.5361, 4.412,0.243, −3.474,1.232] 
 𝑌ଵଷ = 𝐹(𝜑, 𝑘௛ , 𝐴)      𝐴 = [21.496, −1.4933, 0.571,0.24210, 0.429, −14.067] 
 𝑌ଵସ = 𝐹 ൬𝜑, 𝑘𝐵𝑐଴  , 𝐴൰      𝐴 = [38.107, −5.239,0.635,0.242, −26.089, 4.069] 
 𝑌ଵହ = 𝐹(𝜑, 𝑆 , 𝐴)      𝐴 = [36.759, −4.699, −5.463,0.244, 0.685, 0.439] 
 𝑌ଵ଺ = 𝐹(𝜑, 𝛼 , 𝐴)        𝐴 = [33.697, −2.438, −10.163,0.245, 3.913, −0.787] 
 𝑌ଵ଻ = 𝐹(𝜑, 𝛽 , 𝐴)      𝐴 = [51.606, −3.680, −29.627,0.244, 8.073, 0.011] 

  

Figure A1. Architecture of the adopted GMDH model.

Table A3. Equations derived from GMDH.

Layer 6: qu/γB = F(Y54, Y56 , A) A =
[
−1.850 , 0.396 , 0.633 ,−7.99 × 10−4,−0.001, 0.001

]
Layer 5: Y54 = F(Y43, Y46 , A) A = [−1.181, 4.291 ,−3.268, 0.014 , 0.018,−0.032]

Y56 = F(Y45, Y412 , A) A = [−5.220, 1.661,−0.622, 0.031, 0.034,−0.066]

Layer 4: Y43 = F(Y31, Y33 , A) A = [12.626,−0.687, 1.451, 0.003, 0.000,−0.002]
Y45 = F(Y31, Y310 , A) A = [11.260,−0.360, 1.144, 0.003, 0.000,−0.003]
Y46 = F(Y31, Y38 , A) A = [13.075,−0.664, 1.419, 0.002,−0.001,−0.001]
Y412 = F(Y31, Y37, A) A = [12.995,−0.470, 1.233, 0.002,−0.001, 0.000]

Layer 3: Y31 = F(Y22, Y24 , A) A = [40.984, 0.207,−0.264,−0.001, 0.000, 0.004]
Y33 = F(Y24, Y28 , A) A = [25.767,−0.390, 0.675, 0.000,−0.002, 0.004]
Y37 = F(Y24, Y25 , A) A = [30.233,−0.352, 0.538, 0.000,−0.001, 0.004]
Y38 = F(Y26, Y27 , A) A = [26.812, 0.641,−0.368,−0.002, 0.000, 0.004]
Y310 = F(Y21, Y23 , A) A = [17.613, 0.459, 0.103,−0.003,−0.003, 0.007]

Layer 2: Y21 = F(Y11, Y12 , A) A = [30.030, 0.219,−0.145,−0.001,−0.001, 0.006]
Y22 = F(Y11, Y14 , A) A = [29.406, 0.265,−0.146,−0.001,−0.001, 0.006]
Y23 = F(Y11, Y13 , A) A = [27.183, 0.255,−0.082,−0.001,−0.001, 0.005]
Y24 = F(Y12, Y13 , A) A = [30.674,−0.027, 0.151,−0.002,−0.003, 0.009]
Y25 = F(Y11, Y15 , A) A = [23.948, 0.341,−0.035,−0.001,−0.001, 0.004]
Y26 = F(Y11, Y16 , A) A = [20.898, 0.339, 0.071,−0.001,−0.002, 0.004]
Y27 = F(Y12, Y14 , A) A = [32.725,−0.008, 0.037,−0.001,−0.002, 0.007]
Y28 = F(Y11, Y17 , A) A = [18.955, 0.350, 0.122, 0.000,−0.002, 0.004]

Layer 1: Y11 = F
(

cu0
γB , ϕ , A

)
A = [43.770,−1.933,−9.500,−0.142, 0.243, 1.177]

Y12 = F(ϕ, D , A) A = [31.722,−7.5361, 4.412, 0.243,−3.474, 1.232]
Y13 = F(ϕ, kh , A) A = [21.496,−1.4933, 0.571, 0.24210, 0.429,−14.067]
Y14 = F

(
ϕ, kB

c0
, A
)

A = [38.107,−5.239, 0.635, 0.242,−26.089, 4.069]
Y15 = F(ϕ, S , A) A = [36.759,−4.699,−5.463, 0.244, 0.685, 0.439]
Y16 = F(ϕ, α , A) A = [33.697,−2.438,−10.163, 0.245, 3.913,−0.787]
Y17 = F(ϕ, β , A) A = [51.606,−3.680,−29.627, 0.244, 8.073, 0.011]

Appendix A.3. MLP

As the equations linking the input and output variables for the ANFIS-PSO model are
not as straightforward as with the other two cases, the corresponding MATLAB code for
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the calculation of the seismic bearing capacity of the shallow strip footing above a void is
provided in Table A4.

Table A4. MATLAB code for the adopted ANFIS-PSO model.
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Table A4. MATLAB code for the adopted ANFIS-PSO model. 

%% Calculation of  
%% seismic bearing capacity of shallow strip footing above void  
%% using developed ANFIS-PSO Model 
clc; 
clear; 
close all; 
%% Load data 
 
Data = xlsread(‘TOTAL.xls’); 
Inputs = Data(:,1:8); 
Targets = Data(:,9); 
pTrain = 0.7; 
nSample=size(Inputs,1); 
S=randperm(nSample); 
Inputs=Inputs(S,:); 
Targets=Targets(S,:); 
nTrain=round(pTrain*nSample); 
TrainInputs=Inputs(1:nTrain,:); 
TrainTargets=Targets(1:nTrain,:); 
 
% Test Data 
TestInputs=Inputs(nTrain+1:end,:); 
TestTargets=Targets(nTrain+1:end,:); 
 
data.TrainInputs=TrainInputs; 
data.TrainTargets=TrainTargets; 
data.TestInputs=TestInputs; 
data.TestTargets=TestTargets; 
 
x=data.TrainInputs; 
t=data.TrainTargets; 
 
%% FIS generation 
 
fcm_U=2; 
fcm_MaxIter=100; 
fcm_MinImp=1e−5; 
fcm_Display=false; 
fcm_options=[fcm_U fcm_MaxIter fcm_MinImp fcm_Display]; 
fis=genfis3(x,t,’sugeno’,’auto’,fcm_options); 
 
%% Replace the optimized values with initial parameters 
 
% Inputs 
fis.input(1).mf(1)  = [1.301115465399861,−1.575969263692241e+02]; 
fis.input(1).mf(2)  = [1.39537096758637,5.80288003575955]; 
fis.input(1).mf(3)  = [1.32753841581507,6.12312993329938]; 
fis.input(1).mf(4)  = [−2.99744469222945,11.8187873538266]; 
fis.input(1).mf(5)  = [−1.58913304831883,-4.04045087767979]; 
fis.input(1).mf(6)  = [0.551810935266596,16.4385819570161]; 
fis.input(1).mf(7)  = [1.20938811411893,6.45953912312216]; 
fis.input(1).mf(8)  = [0.990780951100060,47.2549380869500]; 
fis.input(1).mf(9)  = [-11.3448929022742,135.727256038108]; 
fis.input(1).mf(10) = [46.3852091222287,-296.477381534473]; 
 
fis.input(2).mf(1)  = [4.49826172860923,44.6291751793605]; 
fis.input(2).mf(2)  = [623.657809702359,6.01871660300149]; 
fis.input(2).mf(3)  = [14.0659723983362,64.5984872435018]; 
fis.input(2).mf(4)  = [-0.411359437154132,26.1228287948813]; 
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fis.input(2).mf(5)  = [5.46202597943682,58.6521630155343]; 
fis.input(2).mf(6)  = [6.72956934682301,20.9374267682803]; 
fis.input(2).mf(7)  = [8.17995068719498,40.4218811492891]; 
fis.input(2).mf(8)  = [-55.5744132684524,3.74138684127930]; 
fis.input(2).mf(9)  = [2.97949075988714,195.909200691605]; 
fis.input(2).mf(10) = [4.94406444449706,28.2938582432552]; 
 
fis.input(3).mf(1)  = [0.558439218333400,-42.9294569439493]; 
fis.input(3).mf(2)  = [0.341861142513016,0.208509259146192]; 
fis.input(3).mf(3)  = [0.320952145698052,0.338487513869374]; 
fis.input(3).mf(4)  = [0.0112933797675468,0.349011577830193]; 
fis.input(3).mf(5)  = [0.628987742366289,-5.65261717022853]; 
fis.input(3).mf(6)  = [0.143022875355853,0.209962234117897]; 
fis.input(3).mf(7)  = [-0.303110758407218,0.422100596688156]; 
fis.input(3).mf(8)  = [-0.129297482768199,1.96588563673664]; 
fis.input(3).mf(9)  = [-1.10976229689612,0.782356308029184]; 
fis.input(3).mf(10) = [0.0181824886070332,0.502666728608248]; 
 
fis.input(4).mf(1)  = [-1.53760582193352,0.235733763020089]; 
fis.input(4).mf(2)  = [0.146557455535409,0.173931841963623]; 
fis.input(4).mf(3)  = [0.136906090541617,0.115816913268631]; 
fis.input(4).mf(4)  = [0.215846576897712,-0.0584054505788597]; 
fis.input(4).mf(5)  = [0.0827759706119010,0.0657280604384861]; 
fis.input(4).mf(6)  = [-0.0299950773443980,0.122327023260196]; 
fis.input(4).mf(7)  = [0.139317774033470,0.0825086338807186]; 
fis.input(4).mf(8)  = [0.0604849492846655,-0.0558121737259787]; 
fis.input(4).mf(9)  = [0.0551675348575190,0.103977158993384]; 
fis.input(4).mf(10) = [-0.607529953839584,0.206743342387983]; 
 
fis.input(5).mf(1)  = [0.544252390851114,2.84206107210769]; 
fis.input(5).mf(2)  = [0.539900899679770,1.37341522007372]; 
fis.input(5).mf(3)  = [0.544858465157576,1.32576203695598]; 
fis.input(5).mf(4)  = [-1.31482328492258,2.04765021296940]; 
fis.input(5).mf(5)  = [0.0906983807412905,28.0591517918102]; 
fis.input(5).mf(6)  = [-0.357714386593391,-1.09777215395796]; 
fis.input(5).mf(7)  = [0.205412132209019,2.32513404117998]; 
fis.input(5).mf(8)  = [-4.11327559124782,-0.0212474892770918]; 
fis.input(5).mf(9)  = [0.564267940248977,0.987973084514128]; 
fis.input(5).mf(10) = [0.0928976461385034,1.38664699780595]; 
 
fis.input(6).mf(1)  = [0.0500350307011345,-1.06152607888853]; 
fis.input(6).mf(2)  = [0.951352663417726,1.64237965046264]; 
fis.input(6).mf(3)  = [0.979807352029935,1.58023050753098]; 
fis.input(6).mf(4)  = [0.0853981948480649,96.0738763302328]; 
fis.input(6).mf(5)  = [-1.24461830541894,1.40439229013306]; 
fis.input(6).mf(6)  = [0.403251253695700,1.95086031807324]; 
fis.input(6).mf(7)  = [0.194921192272058,1.44412886683300]; 
fis.input(6).mf(8)  = [0.677246034929307,123.394060398626]; 
fis.input(6).mf(9)  = [-0.616975804539023,2.98389270845537]; 
fis.input(6).mf(10) = [0.366506998551417,1.99073908040321]; 
 
fis.input(7).mf(1)  = [0.314231197497665,34.9980654109376]; 
fis.input(7).mf(2)  = [1.77539773105983,4.49579934294100]; 
fis.input(7).mf(3)  = [1.40908323978350,4.93706861264041]; 
fis.input(7).mf(4)  = [1.68434865799440,4.68603507041055]; 
fis.input(7).mf(5)  = [1.80058538472203,10.8667911486649]; 
fis.input(7).mf(6)  = [67.2087789874656,3.76348476588110]; 
fis.input(7).mf(7)  = [0.275443157812118,1.20004737701855]; 
fis.input(7).mf(8)  = [0.718805486311480,5.74146616892061]; 
fis.input(7).mf(9)  = [0.937167950877247,0.0849406270061630]; 
fis.input(7).mf(10) = [1.86384116217275,-26.8792947685849]; 
 
fis.input(8).mf(1)  = [-0.218183697606437,44.2852933746595]; 
fis.input(8).mf(2)  = [0.955224460890379,2.25309641262094]; 
fis.input(8).mf(3)  = [1.00274079745095,2.53908934858818]; 
fis.input(8).mf(4)  = [-0.358709913323225,-31.9746514351069]; 
fis.input(8).mf(5)  = [8.92996268398765,-66.2789598808554]; 
fis.input(8).mf(6)  = [0.618138463950752,-1.04925077332817]; 
fis.input(8).mf(7)  = [0.384555720599418,4.02052295274575]; 
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fis.input(8).mf(8)  = [0.448833975188620,-7.93475175376517]; 
fis.input(8).mf(9)  = [0.866607240624434,-26.9102718016943]; 
fis.input(8).mf(10) = [0.600453493233465,7.25732995933014]; 
 
% Outputs 
 
fis.output.mf(1)  = {[-689.425261311904,1.21614123144558,-976.352534304400,... 
-332.103923736413,-15.7121991699140,-364.006379550992,... 
-0.0357321372274733,16.6428835777621,-328.312666346567]}; 
fis.output.mf(2)  = {[7.86770210626133,1.58985333879889,9.07738246970494,... 
-51.4847396123647,-7.03759620819383,-2.30718320711741,... 
4.45188186517472,4.73434989957803,-28.0446674433245]}; 
fis.output.mf(3)  = {[125.670426721745,9.16385972761935,221.802351055617,... 
-1845.62870281843,-19.8862510145831,-4.70222125515065,... 
-155.853608228798,-388.257483520611,2780.46827856428]}; 
fis.output.mf(4)  = {[18.5996813644829,9.32278900497095,61.7266138558455,... 
-746.527799900759,-12.1353129776979,-9.25261111500329,... 
-1.39560537067644,5.91142304439135,-150.961557921629]}; 
fis.output.mf(5)  = {[77.9206683932003,-52.5046350869773,70.5124536890843,... 
-4735.85205337380,-146.061498996749,-32.6540477132762,... 
104.732141939454,8.69584715274910,26.9543121890490]}; 
fis.output.mf(6)  = {[17.2983902564856,8.05050418144457,-5504.69849351306,... 
-9182.54579548493,4.77973537378691,-5.46438007869284,... 
17.9724682816546,23.0101997969770,-119.816328163368]}; 
fis.output.mf(7)  = {[-0.615011617394624,34.0125379071472,... 
75.6354083240845,... 
-215.021325684436,-6.31028964439018,-157.891977261402,... 
-12.7016606211815,10.2369296878174,-244.298158216993]}; 
fis.output.mf(8)  = {[-17.1021382399560,16.5331862533439,81.9498850613868,... 
-240.362251983159,270.555157998955,388.828294303365,... 
45.2962063921662,-8.79334878589904,-6825.43850044074]}; 
fis.output.mf(9)  = {[-95.3641004107813,99.2843443908631,65.2651622769621,... 
447.557253984748,-22.9264770832572,-3.96275068928168,... 
33.4630672599298,12.7700856469466,534.968954893242]}; 
fis.output.mf(10) = {[15.5399001393948,23.0415204815094,63.4544966787328,... 
-131.187148226091,38.2148204298256,10.6257173979356,... 
27.1830599292225,20.5818567689538,-169.080279356974]}; 
 
%% Bearing capacity calculation   
Outputs = evalfis(Inputs,fis) 
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