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Abstract: Principal component analysis (PCA) is one of the most popular tools in multivariate ex-
ploratory data analysis. Its probabilistic version (PPCA) based on the maximum likelihood procedure
provides a probabilistic manner to implement dimension reduction. Recently, the bilinear PPCA
(BPPCA) model, which assumes that the noise terms follow matrix variate Gaussian distributions,
has been introduced to directly deal with two-dimensional (2-D) data for preserving the matrix
structure of 2-D data, such as images, and avoiding the curse of dimensionality. However, Gaussian
distributions are not always available in real-life applications which may contain outliers within data
sets. In order to make BPPCA robust for outliers, in this paper, we propose a robust BPPCA model
under the assumption of matrix variate t distributions for the noise terms. The alternating expectation
conditional maximization (AECM) algorithm is used to estimate the model parameters. Numerical
examples on several synthetic and publicly available data sets are presented to demonstrate the
superiority of our proposed model in feature extraction, classification and outlier detection.

Keywords: 2-D data; probabilistic principal component analysis; AECM algorithm; matrix variate
Gaussian distributions; matrix variate t distributions; outliers

1. Introduction

High-dimensional data are increasingly collected for a variety of applications in the
real world. However, high-dimensional data are not often distributed uniformly in their
ambient space, instead of that the interesting structure inside the data often lies in a
low-dimensional space [1]. One of the fundamental challenges is how to find the low-
dimensional data representation for high-dimensional observed data in pattern recognition,
machine learning and statistics [2,3]. Principal component analysis (PCA) [4] is arguably
the most well-known dimension reduction method for high-dimensional data analysis,
and it aims to find the first few principal eigenvectors corresponding to the first few largest
eigenvalues of the covariance matrix, and then projects the high-dimensional data onto the
low-dimensional subspace spanned by these principal eigenvectors to achieve the purpose
of dimensionality reduction.

The traditional PCA is concerned with vectorial data, i.e., 1-D data. For 2-D image
trained sample matrices, it is usual to first convert 2-D image matrices into 1-D image
vectors. This transformation leads to higher dimensional image sample vectors and a larger
covariance matrix, and thus suffers from the difficulty of accurately evaluating the principal
eigenvectors of the large scale covariance matrix. Furthermore, such vectorizing of 2-D data
destroys the natural matrix structure, and ignores potentially valuable information about
the spatial relationships among 2-D data. Therefore, two-dimensional PCA (2DPCA) type
algorithms [5–7] are proposed to compute principal component weight matrices directly
based on 2-D image training with sample matrices instead of using vectorization.

These conventional PCA and 2DPCA algorithms are both derived and interpreted in
the standard algebraic framework, thus they lack capability in handling issues of statistical
inference or missing data. To remedy these drawbacks, a probabilistic PCA model (PPCA)
has been proposed by Tipping and Bishop in [8], which is processed by assuming some
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Gaussian distributions on observations with introduced extra latent variables, and it
has been successfully applied in many machine learning tasks [9]. Following PPCA, a
probabilistic second-order PCA, called PSOPCA, is developed in [10] to directly model 2-D
image matrices based on the so-called matrix variate Gaussian distributions.

Throughout this paper, Rn×m is the set of all n × m real matrices, In and 0m×n are
the n× n identity matrix and m× n zero matrix, respectively. The superscript “·T” means
transpose only, ‖ · ‖2 and ‖ · ‖F denote the `2-norm and Frobenius norm of a matrix,
respectively. Denoted by Ndc ,dr (M, Ωc, Ωr) is the matrix variate Gaussian distribution [11]
with the mean matrix M ∈ Rdc×dr , column covariance Ωc ∈ Rdc×dc and row covariance
Ωr ∈ Rdr×dr . A random matrix X ∈ Rdc×dr is said to follow the matrix variate Gaussian
distribution Ndc ,dr (M, Ωc, Ωr), i.e.,

X ∼ Ndc ,dr (M, Ωc, Ωr), if vec(X) ∼ N (vec(M), Ωr ⊗Ωc), (1)

where vec(·) is the vectorization of a matrix obtained by stacking the columns of the matrix
on top of one another. That means that the probability density function (pdf) of X is

p(X) = (2π)−
1
2 dcdr |Ωr ⊗Ωc|−

1
2 exp

(
−1

2
[vec(X−M)]T(Ω−1

r ⊗Ω−1
c ) vec(X−M)

)
= (2π)−

1
2 dcdr |Ωr|−

1
2 dc |Ωc|−

1
2 dr etr

(
−1

2
Ω−1

c (X−M)Ω−1
r (X−M)T

)
, (2)

where “⊗” is the Kronecker product of two matrices, etr(·) = exp(tr(·)) and tr(·) de-

notes the trace of a matrix. The last equality of (2) holds because of |Ωr ⊗Ωc|−
1
2 =

|Ωr|−
1
2 dc |Ωc|−

1
2 dr and

[vec(X−M)]T(Ω−1
r ⊗Ω−1

c ) vec(X−M) = tr
(
Ω−1

c (X−M)Ω−1
r (X−M)T).

See ([11], Theorem 1.2.21) and ([11], Theorem 1.2.22) for more details.
PSOPCA in [10] considers the following two-sided latent matrix variable model{

X = CZRT + W + Υ,
Z ∼ Nqc ,qr (0qc×qr , Iqc , Iqr ), Υ ∼ Ndc ,dr (0dc×dr , σ2 Idc , σ2 Idr ),

(3)

where C ∈ Rdc×qc and R ∈ Rdr×qr are the column and row factor loading matrices, re-
spectively, W ∈ Rdc×dr and Υ ∈ Rdc×dr are the mean and error matrices, respectively, and
Z ∈ Rqc×qr is the latent core variable of X. The PSOPCA model is further extended to
the bilinear probabilistic principal component analysis (BPPCA) model in [12] for better
establishing the relationship with the 2DPCA algorithm [6], which is defined as

X = CZRT + W + CEr + EcRT + E ,
Ec ∼ Ndc ,qr (0dc×qr , σ2

c Idc , Iqr ), Er ∼ Nqc ,dr (0qc×dr , Iqc , σ2
r Idr ),

E ∼ Ndc ,dr (0dc×dr , σ2
c Idc , σ2

r Idr ), Z ∼ Nqc ,qr (0qc×qr , Iqc , Iqr ).

(4)

In contrast to the PSOPCA model (3), the column and row noise matrices Ec ∈ Rdc×qr

and Er ∈ Rqc×dr with different noise variances σ2
c and σ2

r , respectively, are included in the
BPPCA model, and E ∈ Rdc×dr is represented as the common noise matrix. The model (4)
improves the flexibility in capturing data uncertainty, and makes the marginal distribution
p(X) to be the matrix variable Gaussian. In particular, we can see that if Er and Ec are
removed and σc = σr, then (4) reduces to the PSOPCA model.

All of the above mentioned probabilistic models assume that the noise terms follow
Gaussian distributions. It is a well-known issue that Gaussian noises will lead to a seri-
ous drawback while dealing with anomalous observations. Thus, the probabilistic PCA
models based on Gaussian distributions are not robust to outliers. To make probabilistic
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models which are insensitive to outliers, one prefers heavy-tailed distributions, such as
the Student t distribution or centered Laplacian distribution with `1-norm. Using the t
distribution or centered Laplacian distribution instead of the Gaussian distribution in the
PPCA model [8] results in tPPCA [13,14] and probabilistic L1-PPCA [15] algorithms, re-
spectively. Similarly, a robust version of PSOPCA, called L1-2DPPCA, is introduced in [16]
based on the Laplacian distribution combined with variational EM-type algorithms to learn
parameters. However, it is difficult to generalize a robust version of the BPPCA algorithm
based on the Laplacian distribution. The reason is that if the error term Υ in the PSOPCA
model is a Laplacian distribution, then the condition distribution X|Z is also a Laplacian
distribution, but it does not hold in the BPPCA model. Fortunately, the same goal can
be achieved by using the t distribution. In fact, the Gaussian distribution is a special t
distribution. Compared to the Gaussian distribution, the t distribution has significantly
heavier tails and contains one more free parameter. Recently, some robust probabilistic
models under the assumption of the t distribution have already been done successfully by
a number of researchers in [17–22]. Motivated by these facts, we will continue the effort to
develop a robust BPPCA model from matrix variate t distributions to handle 2-D data sets
in the presence of outliers.

The remainder of the paper is organized as follows. Section 2 introduces some no-
tations and a matrix variate t distribution which are essential to our later development.
The robust BPPCA model and its associated parameters estimation based on the AECM
algorithm are given and analyzed in detail in Section 3. Section 4 is dedicated to present
some numerical examples for showing the behaviors of our proposed model and to support
our analysis. Finally, conclusions are made in Section 5.

2. Preliminaries

Let X ∈ Rdc×dr , M ∈ Rdc×dr , Ωc ∈ Rdc×dc and Ωr ∈ Rdr×dr , and the probability
density function of the random variable µ having a Gamma distribution with parameters α
and β, i.e., µ ∼ Ga(α, β), be

p(µ) = βαµα−1 exp(−βµ)/Γ(α), (5)

where Γ(·) is the Gamma function, i.e.,

Γ(α) =
∫ +∞

0
τα−1 exp(−τ) dτ. (6)

Analogously to the process of tPPCA in [14], we derive the matrix variate t distribution
in this paper by considering

vec(X) ∼
∫ +∞

0
N
(

vec(M),
Ωr ⊗Ωc

µ

)
p(µ) dµ,

where µ ∼ Ga(ν/2, ν/2). Let δ = tr
(
Ω−1

c (X−M)Ω−1
r (X−M)T). We have

∫ +∞

0
N
(

vec(M),
Ωr ⊗Ωc

µ

)
p(µ)dµ

=
∫ +∞

0
(2π)−

dcdr
2

∣∣∣∣Ωr ⊗Ωc

µ

∣∣∣∣− 1
2

exp
(
− δµ

2

)(ν

2

) ν
2
µ

ν
2−1 exp

(
−ν

2
µ
) 1

Γ
(

ν
2
) dµ

=
(2π)−

dcdr
2 |Ωc|−

dr
2 |Ωr|−

dc
2
(

ν
2
) ν

2

Γ
(

ν
2
) ∫ +∞

0
µ

ν+dcdr
2 −1 exp

(
− (δ + ν)µ

2

)
dµ. (7)
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Let τ = (δ+ν)µ
2 . Then, µ = 2τ

ν+δ and dµ = 2
ν+δ dτ. Therefore, (7) can be rewritten as

∫ +∞

0
N
(

vec(M),
Ωr ⊗Ωc

µ

)
p(µ)dµ

=
(2π)−

dcdr
2 |Ωc|−

dr
2 |Ωr|−

dc
2
(

ν
2
) ν

2

Γ
(

ν
2
) (

2
ν + δ

) ν+dcdr
2 ∫ +∞

0
τ

ν+dcdr
2 −1 exp(−τ) dτ

=
(2π)−

dcdr
2 |Ωc|−

dr
2 |Ωr|−

dc
2
(

ν
2
) ν

2

Γ
(

ν
2
) (

2
ν + δ

) ν+dcdr
2

Γ

(
ν + dcdr

2

)

=
π−

dcdr
2 |Ωc|−

dr
2 |Ωr|−

dc
2 ν

ν
2 Γ
(

ν+dcdr
2

)
Γ
(

ν
2
) ν−

ν+dcdr
2

(
1 +

δ

ν

)− ν+dcdr
2

=
|Ωc|−

dr
2 |Ωr|−

dc
2 Γ
(

ν+dcdr
2

)
(νπ)

dcdr
2 Γ

(
ν
2
) (

1 +
δ

ν

)− ν+dcdr
2

. (8)

In this paper, if the pdf of the random matrix X is

p(X) =
|Ωc|−

dr
2 |Ωr|−

dc
2 Γ
(

ν+dcdr
2

)
(νπ)

dcdr
2 Γ

(
ν
2
) (

1 +
δ

ν

)− ν+dcdr
2

, (9)

then the random matrix X is said to follow the matrix variate t distribution with degrees of
freedom ν, and is denoted by

X ∼ Tdc ,dr (ν, M, Ωc, Ωr).

In particular, if dc = 1 or dr = 1, then the matrix variate t distribution degenerates to
the multivariate t distribution. As the classical multivariate t distribution, another favorite
perspective on the matrix variate t distribution which is critical to our later developments,
is to treat µ as a latent variable, then the conditional distribution of X|µ is a matrix variate
Gaussian distribution by (8), i.e.,

X|µ ∼ Ndc ,dr (M, µcΩc, µrΩr), (10)

where µcµr = µ−1. Notice that, despite the non-uniqueness in the factorization µ−1 = µcµr,
Ndc ,dr (M, µcΩc, µrΩr) in (10) always returns the same pdf of X.

3. Robust BPPCA
3.1. The Model

In this section, we develop a robust model by replacing the matrix variate Gaussian
distribution in BPPCA with the matrix variate t distribution with degrees of freedom
ν defined in (9) to deal with 2-D data sets. Specifically, the proposed robust bilinear
probabilistic principal analysis model (RBPPCA for short) is defined as

X = CZRT + W + CEr + EcRT + E ,
µ ∼ Ga(ν/2, ν/2), µcµr = µ−1,
Z|µ ∼ Nqc ,qr (0qc×qr , µc Iqc , µr Iqr ), Ec|µ ∼ Ndc ,qr (0dc×qr , µcσ2

c Idc , µr Iqr ),
Er|µ ∼ Nqc ,dr (0qc×dr , µc Iqc , µrσ2

r Idr ), E|µ ∼ Ndc ,dr (0dc×dr , µcσ2
c Idc , µrσ2

r Idr ).

(11)

As BPPCA [12], in the RBPPCA model (11), Ec ∈ Rdc×qr , Er ∈ Rqc×dr and E ∈ Rdc×dr

are the column, row and common noise matrices, respectively, Z ∈ Rqc×qr is the latent
matrix, and these are assumed to be independent of each other, and the mean matrix, and
the column and row factor loading matrices are W ∈ Rdc×dr , C ∈ Rdc×qc and R ∈ Rdr×qr ,
respectively. Similarly to BPPCA [12], the parameters C, R, σc and σr can not be uniquely
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identified, but the interested subspaces spanned by the columns of C and R are unique.
The reader is referred to ([12], Appendix B) for details. The difference from BPPCA is that
the noise matrices Ec, Er and E and latent matrix variate Z in the RBPPCA model (11) are
supposed matrix variate t distributions by (10), i.e.,

Ec ∼ Tdc ,qr (ν, 0dc×qr , σ2
c Idc , Iqr ), Er ∼ Tqc ,dr (ν, 0qc×dr , Iqc , σ2

r Idr ),

E ∼ Tdc ,dr (ν, 0dc×dr , σ2
c Idc , σ2

r Idr ), Z ∼ Tqc ,qr (ν, 0qc×qr , Iqc , Iqr ).

It follows by (11) that

CZRT|µ ∼ Ndc ,dr (0dc×dr , µcCCT, µrRRT),

CEr|µ ∼ Ndc ,dr (0dc×dr , µcCCT, µrσ2
r Idr ),

EcRT|µ ∼ Ndc ,dr (0dc×dr , µcσ2
c Idc , µrRRT).

Consequently, X|µ ∼ Ndc ,dr (W, µcΣc, µrΣr) where

Σc = CCT + σ2
c Idc and Σr = RRT + σ2

r Idr . (12)

That means the random matrix X follows the matrix variate t distribution, i.e.,
X ∼ Tdc ,dr (ν, W, Σc, Σr). In addition, as shown in [23], the conditional distribution µ|X which
is also required in our later estimation of model parameters is a Gamma distribution, i.e.,

µ|X ∼ Ga
(

ν + dcdr

2
,

ν + ρ

2

)
, (13)

where ρ = tr
(
Σ−1

c (X−W)Σ−1
r (X−W)T).

By introducing two latent matrix variates Yr ∈ Rqc×dr and Yr
ε ∈ Rdc×dr , the RBPPCA

model (11) can be rewritten as 
X = CYr + W + Yr

ε ,
Yr = ZRT + Er,
Yr

ε = EcRT + E ,

(14)

where Yr and Yr
ε are the row projected intermediate and residual matrices, respectively.

By (11), we have the conditional distributions

Yr|µ ∼ Nqc ,dr (0qc×dr , µc Iqc , µrΣr), (15a)

Yr
ε |µ ∼ Ndc ,dr (0dc×dr , µcσ2

c Idc , µrΣr), (15b)

Yr|Z, µ ∼ Nqc ,dr (ZRT, µc Iqc , µrσ2
r Idr ), (15c)

X|Yr, µ ∼ Ndc ,dr (CYr + W, µcσ2
c Idc , µrΣr), (15d)

where Σr is given by (12). In addition, by using (15c) and the Bayes’ rule, the conditional
distributions Z|Yr, µ and Yr|X, µ can be calculated as

Z|Yr, µ ∼ Nqc ,qr

(
YrRΦ−1

r , µc Iqc , µrσ2
r Φ−1

r

)
, (16a)

Yr|X, µ ∼ Nqc ,dr

(
Φ−1

c CT(X−W), µcσ2
c Φ−1

c , µrΣr

)
, (16b)

where
Φc = CTC + σ2

c Iqc and Φr = RTR + σ2
r Iqr . (17)

In (14), the bilinear projection in the RBPPCA model is split into two stages by first
projecting the latent matrix Z in the row direction to obtain Yr, then Yr being projected
in the column direction to finally generate X. Similarly, we can also consider the decom-
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position of the bilinear projection by first projecting column and then row directions to
rewrite (11) as 

X = YcRT + W + Yc
ε ,

Yc = CZ + Ec,
Yc

ε = CEr + E ,

(18)

where Yc ∈ Rdc×qr and Yc
ε ∈ Rdc×dr with Yc|µ ∼ Ndc ,qr (0dc×qr , µcΣc, µr Iqr ) and

Yc
ε |µ ∼ Ndc ,dr (0dc×dr , µcΣc, µrσ2

r Idr ). Furthermore,

Yc|Z, µ ∼ Ndc ,qr (CZ, µcσ2
c Idc , µr Iqr ), (19a)

X|Yc, µ ∼ Ndc ,dr (Y
cRT + W, µcΣc, µrσ2

r Idr ), (19b)

Z|Yc, µ ∼ Nqc ,qr

(
Φ−1

c CTYc, µcσ2
c Φ−1

c , µr Iqr

)
, (19c)

Yc|X, µ ∼ Ndc ,qr

(
(X−W)RΦ−1

r , µcΣc, µrσ2
r Φ−1

r

)
. (19d)

3.2. Estimation of the Parameters

In the model (11), the parameter set to be estimated is θ = {ν, σc, σr, W, C, R}. We
will introduce how to calculate the parameters by using the alternating expectation condi-
tional maximization (AECM) algorithm in this subsection. The AECM algorithm [12,24,25]
is a two stage iterative optimization technique for finding maximum likelihood solu-
tions. To apply it to the AECM algorithm, we divide the parameter set θ into two subsets
θc = {ν, σc, W, C} and θr = {ν, σr, W, R}.

In the first stage, we consider the AECM algorithm for the model (14) to compute θc.
Let {Xn}N

n=1 with Xn ∈ Rdc×dr be a set of 2-D sample observations. The latent variables’
data {Yr

n, µn}N
n=1 are treated as “missing data”, and the “complete” data log-likelihood is

Lcom,c(θc) =
N

∑
n=1

ln
(

p(Xn, Yr
n, µn)

)
=

N

∑
n=1

ln
(

p(Xn|Yr
n, µn)p(Yr

n|µn)p(µn)
)

.

It follows by (5), (15a) and (15d) that

Lcom,c(θc) =
N

∑
n=1

ln

(
(2π)−

dcdr
2 |µc,nσ2

c Idc |
− dr

2 |µr,nΣr|−
dc
2 etr

(
− 1

2
(µr,nΣr)

−1[Xn − (CYr
n

+ W)]T(µc,nσ2
c I)−1[Xn − (CYr

n + W)]
)
(2π)−

qcdr
2 |µc,n Iqc |−

dr
2 |µr,nΣr|−

qc
2

etr
(
− 1

2
(µr,nΣr)

−1(Yr
n)

Tµ−1
c,nYr

n

)(ν

2

) ν
2
µ

ν
2−1
n exp

(
−ν

2
µn

) 1
Γ
(

ν
2
))

=−
N

∑
n=1

{
(dc + qc)dr

2
ln(2π) + ln Γ

(ν

2

)
+

dc + qc

2
ln |Σr| −

ν

2
ln
(ν

2

)
+

νµn

2

− (dc + qc)dr + ν− 2
2

ln µn +
dcdr

2
ln σ2

c + tr
( µn

2σ2
c

Σ−1
r [Xn − (CYr

n + W)]T

[Xn − (CYr
n + W)] +

µn

2
Σ−1

r (Yr
n)

TYr
n

)}
.

In E-step, given the parameter set θ(i) = {ν(i), σ(i)
c , σ(i)

r , W (i), C(i), R(i)} which is obtained
from the i-th iteration, we compute the expectation of Lcom,c(θc) with respect to the condi-
tion distribution Yr

n, µn|Xn, i.e.,
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Qc(θc) =
∫

Yr
n

∫
µn

Lcom,c(θc)p(Yr
n, µn|Xn)dµndYr

n

=
∫

Yr
n

∫
µn

Lcom,c(θc)p(Yr
n|µn, Xn)p(µn|Xn)dµndYr

n

=−
N

∑
n=1

{
ln Γ

(ν

2

)
− ν

2
ln
(ν

2

)
+

ν

2
E(µn|Xn)−

(dc + qc)dr + ν− 2
2

E(ln µn|Xn)

+
dcdr

2
ln σ2

c +
1

2σ2
c
E
(

tr
(
µnΣ−1

r [Xn − (CYr
n + W)]T[Xn − (CYr

n + W)]
)∣∣Xn

)}
+ constant, (20)

where the constant contains those terms without referring the parameters in the set θc.
We denote E(i)

µn = E(µn|Xn) and E(i)

Yr
n
= E(Yr

n|Xn, µn) for convenience. It is noted by (13)
and (16b) that given the parameter set θ(i) = {ν(i), σ(i)

c , σ(i)
r , W (i), C(i), R(i)}, the conditional

distributions of µn|Xn and Yr
n|Xn, µn are known. That is, for 1 ≤ n ≤ N,

µn|Xn ∼ Ga
(

ν(i) + dcdr

2
,

ν(i) + ρ(i)
n

2

)
,

Yr
n|Xn, µn ∼ Nqc ,dr

(
(Φ(i)

c )
−1(C(i))T(Xn −W (i)), µc,n(σ

(i)
c )

2(Φ(i)
c )
−1, µr,nΣ(i)

r

)
,

where µr,nµc,n = µn, Φ(i)
c = (C(i))TC(i) + (σ(i)

c )
2 Iqc , Σ(i)

r = R(i)(R(i))T + (σ(i)
r )

2 Idr , and
ρ(i)

n = tr
(
(Σ(i)

c )
−1(Xn −W (i))(Σ(i)

r )
−1(Xn −W (i))T) with Σ(i)

c = C(i)(C(i))T + (σ(i)
c )

2 Idc . Then,
it is easy to obtain that

E(i)
µn =

ν(i) + dcdr

ν(i) + ρ(i)
n

and E(i)

Yr
n
= (Φ(i)

c )
−1(C(i))T(Xn −W (i)). (21)

In addition, based on the conditional distributions of µn|Xn and Yr
n|Xn, µn, in (20), the

condition expectations E(ln µn|Xn) = ψ
(

ν(i)+dcdr
2

)
− ln

(
ν(i)+ρ(i)

n
2

)
by [13] where ψ(·) is the

digamma function, and

E
(

tr
(
µnΣ−1

r [Xn − (CYr
n + W)]T[Xn − (CYr

n + W)]
)∣∣Xn

)
=E(i)

µn tr
(

Σ−1
r (Xn −W)T(Xn −W)

)
− 2E(i)

µn tr
(

Σ−1
r (Xn −W)TCE(i)

Yr
n

)
+ tr(Σ−1

r Σ(i)
r ) tr

(
CTC(σ(i)

c )
2(Φ(i)

c )
−1
)
+ E(i)

µn tr
(

Σ−1
r (E(i)

Yr
n
)TCTCE(i)

Yr
n

)
, (22)

which is detailed in Appendix A.
In the subsequent conditional maximization (CM) step of the first stage, given the

condition θ(i)
r = {ν(i), σ(i)

r , W (i), R(i)}, we maximize Qc(θc) with respect to θc = {ν, σc, W, C}. It
follows by (20) that

∂Qc(θc)

∂W
=− 1

2σ2
c

N

∑
n=1

E(i)
µn

(
(−2Xn + 2W)(Σ(i)

r )
−1 + 2CE(i)

Yr
n
(Σ(i)

r )
−1
)

,

∂Qc(θc)

∂C
=− 1

2σ2
c

N

∑
n=1

{
− 2E(i)

µn(Xn −W)(Σ(i)
r )
−1(E(i)

Yr
n
)T

+ 2drC(σ(i)
c )

2(Φ(i)
c )
−1 + 2E(i)

µn CE(i)

Yr
n
(Σ(i)

r )
−1(E(i)

Yr
n
)T
}

,

∂Qc(θc)

∂σ2
c

=− Ndcdr

2σ2
c

+
1

2σ4
c

N

∑
n=1

E
(

tr
(
µn(Σ

(i)
r )
−1[Xn − (CYr

n + W)]T[Xn − (CYr
n + W)]

)∣∣Xn

)
.
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Therefore, by successively solving the equations ∂Qc(θc)
∂W = 0, ∂Qc(θc)

∂C = 0 and ∂Qc(θc)

∂σ2
c

= 0,

we can iteratively update the parameters W, C and σc. Specifically, by ∂Qc(θc)
∂W = 0, we have

N

∑
n=1

E(i)
µn(−2Xn + 2W + 2CE(i)

Yr
n
)(Σ(i)

r )
−1 = 0.

That means
N

∑
n=1

E(i)
µn(−Xn + CE(i)

Yr
n
) +

N

∑
n=1

E(i)
µn W = 0.

Thus, an iterative updating of W can be obtained by

W̃ (i) =
∑N

n=1 E(i)
µn(Xn − C(i)E(i)

Yr
n
)

∑N
n=1 E(i)

µn

. (23)

Similarly, based on ∂Qc(θc)
∂C = 0 and ∂Qc(θc)

∂σ2
c

= 0, we have

C(i+1) =
N

∑
n=1

E(i)
µn(Xn − W̃ (i))(Σ(i)

r )
−1(E(i)

Yr
n
)T

×
[

N

∑
n=1

(
dr(σ

(i)
c )

2(Φ(i)
c )
−1 + E(i)

µn E(i)

Yr
n
(Σ(i)

r )
−1(E(i)

Yr
n
)T
)]−1

, (24a)

(σ(i+1)
c )2 =

1
Ndcdr

N

∑
n=1

E
(

tr
(
µn(Σ

(i)
r )
−1(Xn − C(i+1)Yr

n − W̃ (i))T(Xn − C(i+1)Yr
n − W̃ (i))

)∣∣Xn

)
=

1
Ndcdr

N

∑
n=1

E(i)
µn tr

(
(Σ(i)

r )
−1(Xn − W̃ (i))T(Xn − W̃ (i) − C(i+1)E(i)

Yr
n
)
)

. (24b)

The last equality (24b) holds because of (22) and (24a). Finally, we update ν(i) by
maximizing the scalar nonlinear function Qc(θc) defined in (20) on v, which can be solved
numerically by most scientific computation software packages [26,27], to obtain ν̃(i).

In the second stage, the AECM algorithm is used for the model (18) to update θr. In
such a case, we consider the latent variables’ data {Yc

n, µn}N
n=1 as “missing data”. Then,

by (19b), the “complete” data log-likelihood is

Lcom,r(θr) =
N

∑
n=1

ln
(

p(Xn, Yc
n, µn)

)
=

N

∑
n=1

ln
(

p(Xn|Yc
n, µn)p(Yc

n|µn)p(µn)
)

=
N

∑
n=1

ln

(
(2π)−

dcdr
2 |µc,nΣc|−

dr
2 |µr,nσ2

r Idr |
− dc

2 etr
(
− 1

2
(µr,nσ2

r I)−1[Xn − (Yc
nRT

+ W)]T(µc,nΣc)
−1[Xn − (Yc

nRT + W)]
)
(2π)−

dcqr
2 |µc,nΣc|−

qr
2 |µr,n Iqr |−

dc
2

× etr
(
− 1

2
(µr,n Iqr )

−1(Yc
n)

T(µc,nΣc)
−1Yc

n

)(ν

2

) ν
2
µ

ν
2−1
n exp

(
−ν

2
µn

) 1
Γ
(

ν
2
))

=−
N

∑
n=1

{
(dr + qr)dc

2
ln(2π) + ln Γ

(ν

2

)
+

dr + qr

2
ln |Σc| −

ν

2
ln
(ν

2

)
+

νµn

2

− (dr + qr)dc + ν− 2
2

ln µn +
dcdr

2
ln σ2

r + tr
( µn

2σ2
r
[Xn − (Yc

nRT + W)]TΣ−1
c

× [Xn − (Yc
nRT + W)] +

µn

2
(Yc

n)
TΣ−1

c Yc
n

)}
.
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Similarly, in E-step of the second stage, given the updated parameter set

θ̃(i) = {ν̃(i), σ(i+1)
c , σ(i)

r , W̃ (i), C(i+1), R(i)},

where ν̃(i), σ(i+1)
c , W̃ (i) and C(i+1) are calculated from the first stage, we compute the expectation

of Lcom,r(θr) with respect to the condition distribution Yc
n, µn|Xn, denoted by Qr(θr). Based

on (19) and the current parameter set θ̃(i), we define

Σ(i+1)
c = C(i+1)(C(i+1))T + (σ(i+1)

c )2 Idc , (25a)

ρ̃(i)
n = tr

(
(Σ(i+1)

c )−1(Xn − W̃ (i))(Σ(i)
r )
−1(Xn − W̃ (i))T), (25b)

Ẽ(i)
µn = E(µn|Xn) =

ν̃(i) + dcdr

ν̃(i) + ρ̃(i)
n

, (25c)

Φ(i)
r = (R(i))TR(i) + (σ(i)

r )
2 Iqr , (25d)

E(i)

Yc
n
= E(Yc

n|Xn, µn) = (Xn − W̃ (i))R(i)(Φ(i)
r )
−1. (25e)

We have, up to a constant,

Qr(θr) =−
N

∑
n=1

{
ln Γ

(ν

2

)
− ν

2
ln
(ν

2

)
+

ν

2
Ẽ(i)

µn −
(dr + qr)dc + ν− 2

2
E(ln µn|Xn) +

dcdr

2

ln σ2
r +

1
2σ2

r
E
(

tr
(
µn[Xn − (Yc

nRT + W)]TΣ−1
c [Xn − (Yc

nRT + W)]
)∣∣Xn

)}
, (26)

where E(ln µn|Xn) = ψ
(

ν̃(i)+dcdr
2

)
− ln

(
ν̃(i)+ρ̃(i)

n
2

)
and

E
(

tr
(
µn[Xn − (Yc

nRT + W)]TΣ−1
c [Xn − (Yc

nRT + W)]
)∣∣Xn

)
=Ẽ(i)

µn tr
(
(Xn −W)TΣ−1

c (Xn −W)
)
− 2Ẽ(i)

µn tr
(
(Xn −W)TΣ−1

c E(i)

Yc
n
RT
)

+ tr(Σ−1
c Σ(i+1)

c ) tr
(

RTR(σ(i)
r )

2(Φ(i)
r )
−1
)
+ Ẽ(i)

µn tr
(

RTR(E(i)

Yc
n
)TΣ−1

c E(i)

Yc
n

)
. (27)

See Appendix A for the derivation of (27). At last, in CM-step of the second stage,
based on θ̃(i)

c = {ν̃(i), σ(i+1)
c , W̃ (i), C(i+1)}, similarly to (23) and (24), we maximize Qr(θr) with

respect to θr to update

W (i+1) =
∑N

n=1 Ẽ(i)
µn

(
Xn − E(i)

Yc
n
(R(i))T)

∑N
n=1 Ẽ(i)

µn

, (28a)

R(i+1) =
N

∑
n=1

Ẽ(i)
µn(Xn −W (i+1))T(Σ(i+1)

c )−1E(i)

Yc
n

×
[

N

∑
n=1

(
dc(σ

(i)
r )

2(Φ(i)
r )
−1 + Ẽ(i)

µn(E(i)

Yc
n
)T(Σ(i+1)

c )−1E(i)

Yc
n

)]−1

, (28b)

(σ(i+1)
r )2 =

1
Ndcdr

N

∑
n=1

Ẽ(i)
un tr

(
(Xn −W (i+1))T(Σ(i+1)

c )−1
(

Xn −W (i+1) − E(i)

Yc
n
(R(i+1))T

))
, (28c)

and then solve the scalar nonlinear maximization problem (26) on ν to get ν(i+1).
We summarize what we do in this subsection in Algorithm 1. A few remarks regarding

Algorithm 1 are in order:
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(1) In Algorithm 1, it is not necessarily to explicitly compute Σ(i)
c and Σ(i)

r . The reason is
that the calculation of (Σ(i)

c )
−1 and (Σ(i)

r )
−1 can be more efficiently performed by using

(Σ(i)
c )
−1 =

Idc − C(i)(Φ(i)
c )
−1(C(i))T

(σ(i)
c )2 , (Σ(i)

r )
−1 =

Idr − R(i)(Φ(i)
r )
−1(R(i))T

(σ(i)
r )2 .

In its per-iteration of Algorithm 1, the most expensive computational cost is
O(Ndcdr(dc + dr)) appearing on the formation of ρ(i)

n with 1 ≤ n ≤ N. Owing to
introducing the new latent variable µn, RBPPCA is a little more time complex than BP-
PCA having a calculation cost ofO(Ndcdr(qc + qr)). However, it will be shown in our
numerical example that the RBPPCA algorithm presents less sensitivity to outliers.

(2) Compared with the AECM algorithm of BPPCA in [12] which uses the centered
data and estimates {σc, C} and {σr, R} based on the model X = CYr + Yr

ε and
X = YcRT + Yc

ε , respectively, two more parameters ν and W are needed to be com-
puted in the AECM iteration of RBPPCA. Notice that both the models (14) and (18) con-
tain the parameters ν and W. Thus, we split the parameter set θ into θc = {ν, σc, W, C}
and θr = {ν, σr, W, R} which naturally leads to the parameters ν and W being calcu-
lated twice in each loop of Algorithm 1. Though other partitions of the set θ, such
as {ν, σc, C} and {σr, W, R}, are also available for the estimation of parameters, we
prefer θc and θr, because updating ν and W one more time in each iteration can be
obtained by adding a little more computational cost.

(3) As stated in Section 3.3 of [24], any AECM sequence increases L(θ) = ∑N
n=1 ln(p(Xn|θ))

at each iteration, and converges to a stationary point of L(θ). Notice that the conver-
gence results of the AECM algorithm proved in Section 3.3 of [24] do not depend on
the distributions of the data sets. Therefore, up to set a limit on the maximum number
of steps itermax, we use the following relative change of log-likelihood as the stopping
criterion, i.e.,

ζ =

∣∣∣∣1− L(θ(i+1))

L(θ(i))

∣∣∣∣ =
∣∣∣∣∣1− ∑N

n=1 ln(p(Xn|θ(i+1)))

∑N
n=1 ln(p(Xn|θ(i)))

∣∣∣∣∣ ≤ ε (29)

where ε is a specified tolerance used, which by default is set to 10−5 in our numerical examples.
(4) Based on the computed results of Algorithm 1, and similar to PPCA [8] and BP-

PCA [12], it is known that

E(Z|X) = E
(
E(Z|Yr)

∣∣X) = Φ−1
c CT(X−W)RΦ−1

r

can be considered as the compressed representation of X. Hence, we can reconstruct
X as

X̂ = CE(Z|X)RT + W = CΦ−1
c CT(X−W)RΦ−1

r RT + W. (30)

Algorithm 1 Robust bilinear probabilistic PCA algorithm (RBPPCA).

Input: Initialization ν(0), σ(0)
c , σ(0)

r , W (0), C(0), R(0), and sample matrices {Xn}N
n=1. Compute Φ(0)

c .
Output: the converged {ν, σc, σr, W, C, R}

for i = 0, 1, 2, . . ., until ζ defined in (29) is smaller than a threshold do
% Stage 1
Compute Φ(i)

r , ρ(i)
n , E(i)

µn and E(i)

Yr
n

via (21).

Compute W̃ (i), C(i+1) and σ(i+1)
c by (23) and (24).

Solve the scalar nonlinear maximization problem (20) to obtain ν̃(i).
% Stage 2
Compute Φ(i+1)

c , ρ̃(i)
n , Ẽ(i)

µn and E(i)

Yc
n

via (25).
Compute W (i+1), R(i+1) and σ(i+1)

r by (28).
Solve the scalar nonlinear maximization problem (26) to obtain ν(i+1).

end for
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4. Numerical Examples

In this section, we conduct several numerical examples based on synthetic problems
and three real-world data sets to demonstrate the effectiveness of our proposed RBPPCA
algorithm. All experiments were run by using MATLAB (2016a) with machine epsilon
2.22× 10−16 on a Windows 10 (64 bit) Laptop with an Intel Core i7-8750H CPU (2.20GHz)
and 8GB memory. Each random experiment was repeated 20 times independently, then the
average numerical results were reported.

Example 1 (Experiments on the synthetic data). In this example, we only compare ours with
the BPPCA algorithm [12] to illustrate the significant improvement of the RBPPCA algorithm.
We take N data matrices Xn for n = 1, . . . , N with N = 200 and dc = dr = 64, Ng of which are
generated by

Xn = CZnRT + W + CErn + Ecn RT + En, n = 1, . . . , Ng,

where C, R and W are simply synthesized by MATLAB as

C = eye(dc, qc), R = eye(dr, qr), W = rand(dc, dr) with qc = qr = 8,

Zn, Ern , Ecn and En are sampled from matrix variate normal distributions Nqc ,qr (0qc×qr , Iqc , Iqr ),
Nqc ,dr (0qc×dr , Iqc , σ2

r Idr ), Ndc ,qr (0dc×qr , σ2
c Idc , Iqr ), and Ndc ,dr (0dc×dr , σ2

c Idc , σ2
r Idr ) with

σc = σr = 1, respectively. The other No data matrices, i.e., Xn for n = Ng + 1, . . . , N, are
regarded as outliers of which each entry is sampled from the uniform distribution over the range of 0
to 10. In order to demonstrate the quality of computed approximations C(i) and R(i), we calculate the
arc length distance between the two subspaces span(R⊗ C) and span(R(i) ⊗ C(i)), which is used
in [12] and defined as

arcsin
(∥∥∥(Idcdr −QQT)Q(i)

∥∥∥
2

)
, (31)

to monitor the numerical performance of the RBPPCA and BPPCA method, where span(R⊗ C) and
span(R(i) ⊗ C(i)) are the column space of R⊗ C and R(i) ⊗ C(i), respectively, and Q and Q(i) are
the orthogonal base matrices of span(R⊗ C) and span(R(i) ⊗ C(i)), respectively. In fact, by ([28],
Definition 4.2.1), the computational result of (31) is the largest canonical angle between the
estimated subspace span(R(i) ⊗ C(i)) and the true span(R⊗ C).

In this test, we start with C(0) = rand(dc, qc), R(0) = rand(dr, qr), σ(0)
c = 1, σ(0)

r = 1 and
ν(0) = 1, then consider the effect of the ratio of outliers, i.e., No/N, which is varied from
0 to 30% with a stride length of 10% in this example. In these cases, the estimated values
of ν are all ν = 1. If we use other initial values ν(0) here, the computed ν also converges to
one as iterations increase. The corresponding numerical results of arc length distances are
plotted in Figure 1. Figure 1 shows that the RBPPCA and BPPCA methods almost perform
with the same convergence behavior when the data matrices are without outliers.

As the ratio of outliers goes to 30%, it is reasonable that more iterations are required
for the RBPPCA method to achieve a satisfactory accuracy. Unlike the BPPCA method, the
presented RBPPCA method is more robust to outliers because the arc length distances of
the BPPCA method are always held to approximately 1.5 when the data includes outliers.

In this example, we also test the impact of the initializations on C(0) and R(0), and
the sample size N, respectively, based on the synthetic data having 10% outliers. Three
different types of initializations of C(0) and R(0) are set as follows:

(1) initialization 1: C(0) = rand(dc, qc) and R(0) = rand(dr, qr);
(2) initialization 2: C(0) = randn(dc, qc) and R(0) = randn(dr, qr);
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(3) initialization 3:

C(0) = R(0) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 1
9
dc

9
dc
+ 9 sin(9) cos(9) tan(9) cot(9) sec(9) csc(9)

...
...

...
...

...
...

...
...

dc
dc

dc
dc
+ dc sin(dc) cos(dc) tan(dc) cot(dc) sec(dc) csc(dc)


,

and other parameters are fixed to be the same. The results associated with the different
initializations are shown in Figure 2. Inspection of the plot illustrates that our RBPPCA
method appears to be insensitive to different initializations, since the convergence behaviors
of the RBPPCA method based on different initializations do not have a significant difference.
Figure 3 presents the required CPU time in seconds and the quantities of arc length distances
of the BPPCA and RBPPCA methods with the number of iterations being 25 with respect
to the number of samples, where the sample size N varies from 200 to 5000 with a stride
length of 200. Such graphs covey the fact that with the increase of the sample size N, the
BPPCA and RBPPCA methods both required more CPU time for 25 iterations, and the
BPPCA method needs less time complexity than RBPPCA as we stated in the remarks of
Algorithm 1. However, the bigger N does not lead to the improved arc length distances of
the BPPCA method.
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Figure 1. Convergence behaviors of RBPPCA and BPPCA with the ratio of outliers being 0%, 10%,
20% and 30%, respectively.
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Figure 2. Convergence behaviors of RBPPCA for three different types of initialization.
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Figure 3. CPU time in seconds (left) and arc length distances (right) of BPPCA and RBPPCA with
the number of iterations being 25 with the sample size N from 200 to 5000.

Example 2 (Experiments on face image databases). In this example, all of the experiments
are based on two publicly available face image databases: the Yale face database ( Available from
http://vision.ucsd.edu/content/yale-face-database) (accessed on 22 September 2021), and the Yale
B face database (Available from http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html)
(accessed on 22 September 2021).The Yale face database includes different face orientations, facial
expression, and whether there exist glasses, and the Yale B face database is collected under different
illumination conditions. We select 265 face images of 15 individuals for each database. Each person
has 11 images, and these images are cropped to 64× 64 pixels. For each individual, eight images are
randomly selected as the training set, and the rest are the test set. Then, we randomly select two and
four images from the eight images in the training set to be corrupted as outliers, respectively. Half of
the corrupted images are generated by replacing part of the original image with a 30× 30 rectangle
of noise, and the other half of corrupted images use a 50× 50 rectangle of noise to replace it. Within
each rectangle, the pixel value comes from a uniform distribution on the interval [0, 255]. Then, we
rescale the images from the range of [0, 255] to the range [0, 1]. Some original and corrupted images
of the Yale and Yale B databases are shown in Figures 4–7, respectively. The iteration of BPPCA and
RBPPCA is stopped when their corresponding relative changes of the log-likelihood defined in (29)
are smaller than 10−5.

We run the BPPCA and RBBPCA algorithms for the original data set and the corrupted
data set, respectively, with the order of Z in (11) being qc = qr = 8, and consider the
reconstructed images X̂n defined in (30) based on the computed results. A comparison
of the reconstructed images based on the original data set and corrupted data set with
two corrupted images for each individual is shown in Figure 8. In Figure 8, the first,
second and third columns are the original images, the reconstructed images of RBPPCA,
and the reconstructed images of BPPCA for the Yale (left) and Yale B (right) databases,
respectively, and the images of the first, second and third rows are shown based on the
original, corrupted data sets with 30× 30 rectangles of noise, and corrupted data sets with
50× 50 rectangles of noise, respectively. The BPPCA and RBPPCA almost perform the
same as the reconstructed images on the original data set. However, for corrupted data sets,

http://vision.ucsd.edu/content/yale-face-database
http://vision.ucsd.edu/content/yale-face-database
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
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the reconstructed performance of RBPPCA presents better images than BPPCA because it
tries to explain noise information.

We also compare the average reconstruction errors η = ∑N
n=1 ‖Xn − X̂n‖F/N and the

recognition accuracy rates for the RBPPCA and BPPCA algorithms in the cases where each
person has two corrupted images and four corrupted images, respectively, where recogni-
tion accuracy rates are calculated based on the nearest neighbor classifier (1-NN) which is
employed for the classification. The average reconstruction errors and recognition accuracy
rates versus the order of Z are plotted in Figures 9 and 10, respectively. As expected, the av-
erage reconstruction errors decrease, while the recognition accuracy rates rise as the order
of Z increases. In these cases, our proposed RBPPCA algorithm outperforms the BPPCA al-
gorithm in reducing average reconstruction errors and enhancing the recognition accuracy.
In addition, another advantage of robust probabilistic algorithms based on t distributions is
outlier detection. By [14], we can compute ρn = [vec(Xn −M)]T(Σr ⊗ Σc)−1 vec(Xn −M)
as the standard of outlier detection. Figure 11 is the scatter chart for ρn of all the images
in the training set of the Yale and Yale B databases with two corrupted images for one
person, respectively. It is exhibited that the quantity of ρn can be divided into three parts.
Notice that these three parts correspond to the images with no noise, a 30× 30 rectangle of
noise, and a 50× 50 rectangle of noise, respectively. Hence, the comparison of ρn provides
a method for judging the outliers.

Figure 4. One set of processed samples from the Yale face database.

Figure 5. Some generated outlier face images in the training set from the Yale face database.

Figure 6. Eleven images of an individual from the Yale B face database.
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Figure 7. Some corrupted face images in the training set of the Yale B face database.

Figure 8. Original images (the first column), reconstructed images by RBPPCA (the second col-
umn), and reconstructed images by BPPCA (the third column) of the Yale (left) and Yale B (right)
databases, respectively.

Example 3 (Experiments on the MNIST dataset). In Example 2, it is shown that RBPPCA is
superior to BPPCA when the data sets contain outliers. In this example, we compare the RBPPCA
algorithm to the tPPCA [14] and L1-PPCA [15] algorithms based on handwritten digit images from
the MNIST (Available from http://yann.lecun.com/exdb/mnist) (accessed on 22 September 2021)
database in which each image has 28× 28 pixels. We choose 59 images of the digit 4 as the training
data set, and randomly select nine of them to be corrupted as outliers. The way of corrupting the
images is to add noise from a uniform distribution on the interval [0, 510], and then normalize all
images to the range [0, 1]. The normalized corrupted images of the digit 4 are shown in Figure 12.
The RBPPCA, tPPCA [14] and L1-PPCA [15] algorithms are implemented with 100 iterations for
the original data set of the digit 4 and the corrupted data set, respectively.

Figure 13 presents the average reconstruction errors of the RBBPCA, tPPCA and
L1-PPCA algorithms where the feature number is the order of Z for the RBBPCA algorithm
and is the dimension of the low-dimensional representation for the tPPCA and L1-PPCA
algorithms. It is observed that the performance of our RBPPCA algorithm is superior to
other algorithms. The reconstructed behaviors of different algorithms based on the original
data set of the digit 4 and the corrupted data set with qc = qr = 1 are shown in Figure 14.
In Figure 14, the first column is the original images, and the second, third and fourth
columns are the reconstructed images by the RBBPCA, tPPCA and L1-PPCA algorithms,
respectively. As shown in Figure 14, compared to the tPPCA and L1-PPCA algorithms, the
RBPPCA algorithm performs better reconstruction outcomes in such a case.

http://yann.lecun.com/exdb/mnist
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Figure 9. Average reconstruction errors of the BPPCA and RBPPCA algorithms vs. the order of Z for
the Yale and Yale B databases with 2 and 4 corrupted images of each individual, respectively.
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Figure 10. Recognition accuracy rates of the BPPCA and RBPPCA algorithms vs. the order of Z for
the Yale and Yale B databases with 2 and 4 corrupted images of each individual, respectively.
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Figure 11. ρn of each image in the Yale (left) and Yale B (right) databases, respectively, with
2 corrupted images of each individual.

Figure 12. The normalized corrupted images of the digit 4.
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Figure 13. Average reconstruction errors of the RBPPCA, tPPCA and L1-PPCA algorithms vs. feature
number on the MINST database.

Figure 14. Original images of the digit 4 (the first column), images reconstructed by RBPPCA
(the second column), images reconstructed by tPPCA (the third column), and images reconstructed
by L1-PPCA (the fourth column). The images shown in the first and second rows are based on the
original and corrupted image data sets, respectively.

5. Conclusions

To remedy the problem that data are assumed to follow a matrix variate Gaussian
distribution which is sensitive to outliers, in this paper, we proposed a robust BPPCA algo-
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rithm (RBPPCA), i.e., Algorithm 1, by replacing the matrix variate Gaussian distribution
with the matrix variate t distribution for noise. Compared to BPPCA, owing to the matrix
variate t distribution having a significantly heavy tail property, our proposed RBPPCA
method combined with AECM for estimating parameters can deal with 2-D data sets in
the presence of outliers. The numerical examples based on a synthetic and two publicly
available real data sets, Yale and Yale B, are presented to state that Algorithm 1 is far
superior to the BPPCA algorithm in computational accuracy, reconstruction performance,
average reconstruction errors, recognition accuracy rates, and outlier detection. It is also
shown by numerical examples based on the MNIST database that our RBPPCA method
outperforms the tPPCA and L1-PPCA algorithms.

Author Contributions: Writing—original draft, Y.L.; Writing—review and editing, Z.T. All authors
have read and agreed to the published version of the manuscript.

Funding: This work is supported in part by the research fund for distinguished young scholars of
Fujian Agriculture and Forestry University No. xjq201727, and the science and technology innovation
special fund project of Fujian Agriculture and Forestry University No. CXZX2020105A.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Derivations for (22) and (27) in Section 3
We first consider the conditional expectation of µnYr

n with respect to the condition
distribution Yr

n, µn|Xn, which will be applied in our derivations of (22). That is

E(µnYr
n|Xn) =

∫
Yr

n

∫
µn

µnYr
n p(Yr

n, µn|Xn)dµndYr
n

=
∫

Yr
n

∫
µn

µnYr
n p(Yr

n|Xn, µn)p(µn|Xn)dµndYr
n

=
∫

µn
µn p(µn|Xn)

∫
Yr

n

Yr
n p(Yr

n|Xn, µn)dYr
ndµn

=
∫

µn
µn p(µn|Xn)E(Yr

n|Xn, µn)dµn

= E(µn|Xn)E(Yr
n|Xn, µn) = E(i)

µn E(i)

Yr
n
, (A1)
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where E(i)
µn and E(i)

Yr
n

are given by (21). In addition, for symmetric matrices A ∈ Rdr×dr and
B ∈ Rqc×qc , we have

E
(

tr(µn A(Yr
n)

TBYr
n)|Xn

)
=
∫

Yr
n

∫
µn

tr
(

µn A(Yr
n)

TBYr
n

)
p(Yr

n |Xn , µn)p(µn |Xn)dµndYr
n

=
∫

µn
µn p(µn |Xn)

∫
Yr

n

tr
(

A(Yr
n)

TBYr
n

)
p(Yr

n |Xn , µn)dYr
ndµn

=
∫

µn
µn p(µn |Xn)

∫
Yr

n
[vec(Yr

n)]
T(A⊗ B) vec(Yr

n)p(Yr
n |Xn , µn)dYr

ndµn

=
∫

µn
µn p(µn |Xn)

∫
Yr

n

tr
(
(A⊗ B) vec(Yr

n)[vec(Yr
n)]

T
)

p(Yr
n |Xn , µn)dYr

ndµn

=
∫

µn
µn p(µn |Xn) tr

(
(A⊗ B)

∫
vec(Yr

n)
vec(Yr

n)[vec(Yr
n)]

T p(vec(Yr
n)|Xn , µn)d vec(Yr

n)

)
dµn

=
∫

µn
µn p(µn |Xn) tr

(
(A⊗ B)

{[
µ−1

n Σ(i)
r ⊗ (σ(i)

c )2(Φ(i)
c )−1

]
+ vec(E(i)

Yr
n
)[vec(E(i)

Yr
n
)]T
})

dµn

=
∫

µn
µn p(µn |Xn) tr(µ−1

n AΣ(i)
r ⊗ B(σ(i)

c )2(Φ(i)
c )−1)dµn +

∫
µn

µn p(µn |Xn) tr
(

A(E(i)
Yr

n
)TBE(i)

Yr
n

)
dµn

= tr(AΣ(i)
r ) tr

(
B(σ(i)

c )2(Φ(i)
c )−1

)
+ E(i)

µn tr
(

A(E(i)
Yr

n
)TBE(i)

Yr
n

)
. (A2)

Notice that (22) can be rewritten as

E
(

tr
(
µnΣ−1

r [Xn − (CYr
n + W)]T[Xn − (CYr

n + W)]
)∣∣Xn

)
=E
(

µn tr
(

Σ−1
r (Xn −W)T(Xn −W)

)∣∣Xn

)
− 2E

(
µn tr

(
Σ−1

r (Xn −W)TCYr
n

)∣∣Xn

)
+E

(
tr
(
µnΣ−1

r (Yr
n)

T(CTC)Yr
n
)∣∣Xn

)
. (A3)

Then, we give the calculation results of the terms on the right hand side of (A3) from
below. It is clear that

E
(

µn tr
(

Σ−1
r (Xn −W)T(Xn −W)

)∣∣Xn

)
= E(µn|Xn) tr

(
Σ−1

r (Xn −W)T(Xn −W)
)

= E(i)
µn tr

(
Σ−1

r (Xn −W)T(Xn −W)
)

. (A4)

By (A1) and taking A = Σ−1
r and B = CTC into (A2), we have

E
(

µn tr
(

Σ−1
r (Xn −W)TCYr

n

)∣∣Xn

)
=E(i)

µn tr
(

Σ−1
r (Xn −W)TCE(i)

Yr
n

)
, (A5)

E
(

tr(µnΣ−1
r (Yr

n)
T(CTC)Yr

n)|Xn

)
= tr(Σ−1

r Σ(i)
r ) tr

(
CTC(σ(i)

c )
2(Φ(i)

c )
−1
)

+ E(i)
µn tr

(
Σ−1

r (E(i)

Yr
n
)TCTCE(i)

Yr
n

)
. (A6)

Equality (22) is a consequence of (A3)–(A6).
Similarly, for (27), it follows that

E
(

tr
(
µn[Xn − (Yc

nRT + W)]TΣ−1
c [Xn − (Yc

nRT + W)]
)∣∣Xn

)
=E
(

µn tr
(
(Xn −W)TΣ−1

c (Xn −W)
)∣∣Xn

)
− 2E

(
µn tr

(
(Xn −W)TΣ−1

c Yc
nRT

)∣∣Xn

)
+E

(
µn tr

(
RTR(Yc

n)
TΣ−1

c Yc
n
)∣∣Xn

)
=Ẽ(i)

µn tr
(
(Xn −W)TΣ−1

c (Xn −W)
)
− 2Ẽ(i)

µn tr
(
(Xn −W)TΣ−1

c E(i)

Yc
n
RT
)

+ tr(Σ−1
c Σ(i+1)

c ) tr
(

RTR(σ(i)
r )

2(Φ(i)
r )
−1
)
+ Ẽ(i)

µn tr
(

RTR(E(i)

Yc
n
)TΣ−1

c E(i)

Yc
n

)
, (A7)
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where Ẽ(i)
µn and E(i)

Yc
n

are defined in (25). The last equality (A7) holds due to the same reason
as (A3).
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