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Abstract: This study considers a scheduling problem for a flow shop with urgent jobs and limited
waiting times. The urgent jobs and limited waiting times are major considerations for scheduling
in semiconductor manufacturing systems. The objective function is to minimize a weighted sum
of total tardiness of urgent jobs and the makespan of normal jobs. This problem is formulated in
mixed integer programming (MIP). By using a commercial optimization solver, the MIP can be used
to find an optimal solution. However, because this problem is proved to be NP-hard, solving to
optimality requires a significantly long computation time for a practical size problem. Therefore,
this study adopts metaheuristic algorithms to obtain a good solution quickly. To complete this, two
metaheuristic algorithms (an iterated greedy algorithm and a simulated annealing algorithm) are
proposed, and a series of computational experiments were performed to examine the effectiveness
and efficiency of the proposed algorithms.

Keywords: scheduling; flow shop; urgent jobs; limited waiting times; metaheuristic

1. Introduction

This study deals with a scheduling problem in a flow shop with urgent jobs and
limited waiting times. Urgent jobs refer to jobs that must be processed faster due to higher
urgency than normal jobs. Limited waiting time is to limit the time that a job completed
on the first machine waits to start the next process on the second machine. These two
scheduling requirements are very common in semiconductor manufacturing processes.

In general, semiconductor manufacturing systems are operated in high-variety small-
volume production and make-to-order policies. Nowadays, because the semiconductor
foundry market is growing rapidly, customer order management and fast demand re-
sponse capability are considered as very important competitive factors. To cope with this
environment, jobs are classified into two (or more) groups depending on the urgencies
of customer orders, i.e., a normal job and an urgent job. In this case, for normal jobs, a
schedule is established with the objective of minimizing the maximum completion time
(makespan) to raise throughput rate. However, urgent jobs are required to start processing
as early as possible when they arrive at workstations. To accomplish this, each urgent job
has a calculated due date, assuming that it is processed through all steps without waiting
immediately upon arrival. That is, the due date on each step is equal to the earliest possible
completion time. Based on this assumption, the objective of minimizing total tardiness can
be considered as the scheduling measure for the urgent jobs. If normal and urgent jobs are
required to be scheduled together on the same machine or shop, the scheduling measure
is treated as a multi-objective because the makespan for normal jobs and total tardiness
for urgent jobs are combined. Especially in semiconductor manufacturing, the urgent job
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is called hot-lot and managed with a high priority. The urgent jobs can be found in many
make-to-order manufacturing systems besides semiconductors. In general, prototypes,
samples, and lots to make up for the defective products are regarded as urgent jobs, and
such jobs account for 30–50% of all jobs [1]. So, it is essential to make an effective and
efficient schedule while considering the urgent jobs.

Semiconductor manufacturing has many chemical processes. To prevent quality
problems of wafer lots caused by the characteristics of chemical processes, waiting time
constraints are required between consecutive processes (or stages). For example, the
waiting time constraints are set between operations in etch-oxidation-deposition-diffusion
work areas [2]. If the chemical treatment is effective only within a certain period of time,
the chemically treated wafer lot has to be entered into the next process before it exceeds
the limited time. In the case that the first process of two consecutive processes is such a
chemical process, the limited waiting time constraint is applied between the two processes.
Moreover, wafers are naturally oxidized if wafers are left in the air for a certain period
of time [3]. On the other hand, the waiting time constraint is also required to reduce the
possibility of contamination that causes quality degradation. When the surface of a wafer
is exposed to air for a long time before the next process, impurities such as particles may
sit on the surface, which can cause a serious quality problem. To prevent this problem, the
exposure time is limited by setting the waiting time constraint. A representative example
with the waiting time constraint is a two-stage flow shop of clean-diffusion consecutive
steps. In order to prevent the above problems, the waiting times between the clean and
diffusion processes are limited by the constraint. If a wafer exceeds the constrained waiting
time, the cleaning process is reworked, or if contamination is severe, the wafer is scrapped.
The rework and scrap degrade productivity and cause losses of management. Therefore,
the waiting time constraint should be considered for the flow shops where the above
quality problems are likely to occur.

This study considers a scheduling problem for a flow shop with urgent jobs and a
waiting time constraint. As mentioned, the urgent jobs want to be processed without
causing tardiness. Due to the urgent jobs, normal jobs may be relatively delayed, but their
waiting times must also be kept. Therefore, it is essential to develop an effective scheduling
algorithm to efficiently operate such a manufacturing system. This scheduling problem
can be proved to be NP-hard, because a two-machine flow shop total tardiness problem
is NP-hard in the strong sense [4], and also a two-machine flow shop makespan problem
with limited waiting time is NP-hard [5]. Since the considered problem is NP-hard, it is
very tough to find an optimal solution. Hence, this study adopts metaheuristic algorithms
to find a good (or near-optimal) solution. To the best of our knowledge, this study is the
first attempt to consider the urgent jobs and waiting times simultaneously. In addition,
the main contribution is that this work is expected to contribute to the improvement of
productivity of semiconductor manufacturing systems.

The remainder of this paper is structured as follows. Section 2 introduces previous
studies related to this study. Section 3 details the considered scheduling problem with
assumptions and presents a mixed integer programming formulation. Section 4 describes
the heuristic algorithms for the problem, and Section 5 reports the performance of the
proposed algorithms through computational experiments. Finally, Section 6 discusses and
concludes this paper with future research directions.

2. Previous Studies

This section introduces the previous studies related to the scheduling problem consid-
ered in this study.

First, the considered problem with urgent jobs can be classified as a multi-objective
scheduling problem because two types of measures are combined, i.e., the makespan
for normal jobs and total tardiness for urgent jobs. Recently, multi-objective scheduling
problems are becoming popular as the manufacturing environments become more complex.
Liang et al. [6] proposed a self-adaptive differential evolution algorithm for minimizing
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the maximum tardiness and makespan simultaneously in a flow shop with limited buffers.
Anjana et al. [7] provided four metaheuristics for a flow shop that requires sequence-
dependent setup times, with the objective of minimizing makespan and mean tardiness
together, while Rifai et al. [8] considered a distributed reentrant permutation flow shop
with sequence-dependent setup times for minimizing makespan, tardiness and production
costs. Recently, multi-objective flow shop problems derived from energy consumption
issues were considered in [9–11]. They suggested metaheuristic algorithms to minimize
total energy consumption and makespan simultaneously.

However, the combined objective of this problem is different from a typical multi-
objective. In this study, the objective functions for the two classes are different because
jobs are classified into two classes depending on their urgencies. On the contrary, in the
typical multi-objective problems, two or more objectives are applied in common to all jobs.
Therefore, this problem can be regarded as a multi-agent problem that is the special case
of multi-objective problems [12]. In multi-agent problems, there are two or more agents,
and each agent has a different objective function for its own jobs. If the different classes
with different objectives are defined as different agents, this problem can be regarded as a
multi-agent problem.

Most studies on multi-agent scheduling considered problems for a single machine.
Baker et al. [13] developed algorithms for the multi-agent problem of a single system,
considering the maximum delay, total weighted completion times and makespan for
objective function. Agnetis et al. [12] proposed algorithms for getting constrained optimal
and pareto optimal solutions for the multi-agent on single machine problems and proved
that the problem is NP-hard. Ng et al. [14] studied the problem of two-agents on a single
machine with the objective functions that the total completion time of the first agent is
minimized and the number of tardy jobs of the second agent cannot exceed a predetermined
number. Leung et al. [15] proved that the same problem is NP-hard even if the number of
tardy jobs for the second agent is limited to zero. Cheng et al. [16] proposed an algorithm
for a two-agent problem on a single machine with the objective of minimizing the total
weighted number of tardy jobs of each agent, and they also studied a multi-agent single
machine problem with the max-form objective functions in [17]. Liu et al. [18] studied
a single machine with a two-agent problem in which each job has a linear deteriorated
processing time. Additionally, polynomial time solution algorithms for a single-machine
with two agents were suggested in [19,20].

For a flow shop with multi agents, there have been only a few studies. Agnetis et al. [12]
studied a two-agent problem on a flowshop for minimizing makespan of jobs in each agent.
Lee et al. [21] developed a metaheuristic algorithm and a branch and bound algorithm
to solve a two-agent problem in a two-machine flowshop. In addition, Lee et al. [22]
studied a flowshop problem with two agents where the objective of each agent is to
minimize the number of tardy jobs and the total tardiness, respectively. Mor et al. [23]
studied three different flowshop problems with two agents and developed polynomial time
solution algorithms for each problem. Fan and Cheng [24] proposed a linear programming-
based approximation algorithm for a two-agent flowshop problem. Jeong and Shim [1]
proposed a metaheuristic algorithm for a reentrant flowshop problem with two agents.
Jeong et al. [25] presented a two-machine flowshop problem considering urgent jobs
and developed metaheuristic algorithms and a branch and bound algorithm. Azerine
et al. [26] considered a two-machine no-wait flow shop problem with two competing
agents and proposed a branch and bound algorithm for small size problems and tabu
search metaheuristics for large sized problems.

Now, a survey on flow shop problems with limited waiting times is provided. Most
studies on flow shops with limited waiting times considered two-machine problems. For
the objective of minimizing the makespan, the two-machine flow shop problem was
proved to be NP-hard in [5]. To find an optimal solution for the problem, several branch
and bound algorithms were developed by [5,27,28]. In addition, the reversibility property
for the scheduling problem was proved and a constructive heuristic algorithm based on an
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insertion mechanism was developed in [2]. On the other hand, there are also studies with
different scheduling measures. Hamdi and Loukil [29] developed a heuristic algorithm and
a Lagrangian relaxation-based lower bound strategy for minimizing total tardiness, while
Dhouib et al. [30] proposed simulated annealing algorithms to hierarchically minimize the
number of tardy jobs and the makespan for a flow shop.

In addition, there have been studies considering variant problems with waiting time
limits. Kim and Lee [31] developed a branch and bound algorithm to minimize the
makespan in a three-machine flow shop with overlapping waiting time constraints. Fur-
thermore, An et al. [3] suggested a branch and bound algorithm and heuristic algorithms
for a two-machine flow shop with the waiting time constraints and sequence-dependent
setup times to minimize the makespan, while Lee [32] provided a genetic algorithm to
minimize total tardiness for the same flow shop. In addition, a case in which several jobs
can skip the first stage was considered in [33], and mathematical properties for the problem
were proposed. In addition, for a problem with a batch machine followed by a discrete
machine, a hybrid membrane computing metaheuristic algorithm was developed in [34]
to minimize the makespan. Additionally, there are recent studies considering flow shop
problems with various scheduling requirements as well as limited waiting times [35–41].

3. Problem Description and an MIP Model

This section describes the considered problem in more detail with assumptions made
in this study and provides a mixed-integer programming (MIP) formulation. There are
n independent jobs (i = 1, . . . , n) to be scheduled in a two-stage flow shop with limited
waiting times between the stages. The n jobs belong to one of two classes, A or B, according
to their urgencies. Two classes A and B represent each class of urgent jobs and normal jobs,
respectively. Accordingly, let JA and JB be the sets of jobs in classes A and B, respectively.
The objective function of this scheduling problem is the weighted sum of makespan for
normal jobs and total tardiness for urgent jobs, which is to be minimized. For this problem,
only permutation schedules are considered. In other words, jobs are processed on the
two machines in the same order. Note that, although the permutation schedule does not
guarantee optimality for the scheduling measures, semiconductor manufacturing systems
process wafer lots in permutation schedules for ease of lot management and flexibility in
material handling, and because of limited buffer spaces [3]. The following assumptions are
also made this study:

1. no job can be preempted;
2. machines do not fail (no breakdown);
3. all normal jobs are available to be processed at time zero (beginning of the scheduling

horizon);
4. release times and arriving times of urgent jobs are positive and given in advance;
5. the due date of an urgent job i is set to the earliest possible completion time assuming

that the urgent job i is started immediately as arrived at the flow shop and processed
without waiting, i.e., di = ri + pi1 + pi2.

Table 1 represents the notation for parameters and decision variables used to describe
the MIP and proposed heuristic algorithms throughout this paper.
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Table 1. Notation for parameters and decision variables.

Symbol Definition

i index for jobs (i = 1, 2, . . . , n)
k index for machines (k = 1, 2)
t index for positions in a sequence

[t] index of the job in the tth position in a sequence
pik processing time of job i on machine k
ri release time of job i (=0 if job i is a normal job)
wi limited waiting time of job i
di due date of job i (=ri + pi for i ∈ JA, and a large number for i ∈ JB)

yi =1 if job i is a normal job, and 0 otherwise
xit =1 if job i is placed in the tth position in a sequence, and 0 otherwise
ctk completion time of the tth position on machine k
ci completion time of job i on machine 2
τi tardiness of job i
Z the makespan of normal jobs
α weight for total tardiness of urgent jobs (0 ≤ α ≤ 1)

1 − α weight for the makespan of normal jobs
M a large number
S (partial or complete) schedule
Si a schedule in which job i is added to the end of S

C(S) completion time of S
UA (UB) set of urgent (normal) jobs not scheduled yet

obj(S) objective function value of S

The following is the MIP for the scheduling problem considered in this study.

[P] minimize α ∑i τi + (1− α)Z (1)

subject to ∑t xit = 1, ∀i (2)

∑i xit = 1, ∀t (3)

ct1 ≥∑i(ri + pi1)xit, ∀t (4)

ct1 ≥ c(t−1)1 + ∑i pi1·xit, t ≥ 2 (5)

ct2 ≥ c(t−1)2 + ∑i pi2·xit, t ≥ 2 (6)

ct2 ≥ ct1 + ∑i pi2·xit, ∀t (7)

ct2 ≤ ct1 + ∑i(wi + pi2)xit, ∀t (8)

ct2 ≤ ci + (1− xit)M, ∀i, t (9)

ct2 ≥ ci + (1− xit)M, ∀i, t (10)

Z ≥ ci − (1− yi)M, ∀i (11)

τi ≥ ci − di −M·yi, ∀i (12)

ctk, ci, Z, τi ≥ 0, ∀i, t, k (13)

xit = {0, 1} ∀i, t (14)

The objective function (1) is to minimize the weighted sum of total tardiness for ur-
gent jobs and the makespan for normal jobs. Constraints (2) and (3) ensure that each
job can be and should be assigned to only one position, and each position requires
only one job. Constraint (4) ensures that jobs can be started after their release times.
Constraints (5) amd (6) define the completion times of jobs assigned to tth position on
machines 1 and 2, respectively. Constraints (7) and (8) ensure that jobs should keep their
limited waiting times between machines 1 and 2. Constraints (9) and (10) define the com-
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pletion time of each job on machine 2. Constraints (11) and (12) define the makespan of
normal jobs and the tardiness of urgent jobs. Constraints (13) and (14) define the domain
of decision variables.

4. Heuristic Algorithms

The MIP can be used to find an optimal solution using a commercial optimization
solver. However, because the considered scheduling problem is NP-hard, the solver may
require a significant computation time to obtain an optimal solution for large or practical-
sized problems. Therefore, this study focuses on proposing heuristic algorithms that can
find a good solution close to optimal or acceptable. Two metaheuristic algorithms (an
iterated greedy algorithm and a simulated annealing algorithm) are adopted in this study.

Before introducing the metaheuristic algorithms, we provide the following equations
to calculate completion times of jobs in a sequence obtained in procedures of the proposed
heuristics. Note that, because this study considers only permutation schedules, the comple-
tion times are calculated sequentially one by one from the first to the last. Equations (15)
and (16) calculate the completion times of normal jobs and urgent jobs on the first machine,
respectively, while Equation (17) calculates the completion times on the second machine.
In addition, Equation (18) calculates the tardiness of urgent jobs. Here, it is assumed that
c0,1 = c0,2 = 0.

ct1 = max{c(t−1)1 + p[t]1, c(t−1)2 − w[t]}, if the tth position job is a normal job (15)

ct1 = max{max{c(t−1)1, r[t]}+ p[t]1, c(t−1)2 − w[t]}, if the tth position job is an urgent job (16)

ct2 = max{ct,1, c(t−1)2} + p[t]2, for t = 1, . . . , n (17)

τ[t] = max{ct2 − d[t], 0}, if the tth position job is an urgent job (18)

4.1. Initial Seed Sequence

In general, the metaheuristic algorithm starts with an initial seed sequence, and the
performance of the metaheuristic depends on the seed sequence. Thus, the method to obtain
the seed is introduced. In this study, a two-step method is used. A feasible permutation is
generated by a list-scheduling in the first step. After that, the permutation is improved by
a constructive heuristic, called NEH algorithm [42], in the second step.

List scheduling is a common method in practice because it is intuitive and very easy
to implement. This method is triggered when a machine becomes available, and a job
with the highest priority is assigned to the machine. Defining the priority for the jobs is
the only requirement of this method. Here, a modified earliest due date rule (MEDD) is
used to focus on the urgent jobs with the objective of minimizing their tardiness. For an
unscheduled job i and a given partial schedule S, the modified due date (d′i) is defined as
d′i = max{di, C(Si)} if i ∈ UA, and d′i = C(Si) otherwise. Because the due dates of normal jobs
are set to an infinite number, normal jobs may be placed on rear positions in the MEDD
schedule. To avoid this schedule, the modified due dates of normal jobs are set to the
completion times assuming that they are scheduled immediately after S.

In step 2, the NEH begins with the MEDD schedule and makes schedules in a con-
structive way. In each iteration of the NEH procedure, a partial schedule is created by
inserting the job at the front position of the MEDD schedule into the best position of the
current partial schedule, and the inserted job is removed from the MEDD schedule. After
generating a complete schedule, a pairwise interchange method is applied to the complete
schedule for improving it. A detailed procedure is given in Figure 1.
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Figure 1. Procedure of the proposed NEH algorithm.

4.2. Iterated Greedy Algorithm

The iterated greedy algorithm (IG) is a metaheuristic based on a stochastic local search
strategy, developed in [43]. The original IG was specially devised for the permutation
flow shop scheduling problem. Because of its simplicity of the structure and excellent
performance, IGs have been popularly used in much flow shop research. The procedure
of IG iterates four phases of destruction, construction, local search, and acceptance, to
find better solutions. In the destruction phase, the predetermined number (d) of jobs
are removed from a current schedule. Then, in the construction phase, a neighborhood
schedule is generated by inserting the removed jobs in a constructive way such as that
of NEH.

1. In the proposed IG, d jobs are removed randomly from a current solution (S) in the
destruction phase. Then, two partial schedules are generated. One (SD) is a schedule
consisting of d jobs removed from S, the other is a partial schedule (SR) with (n − d)
jobs. After that, in the construction phase, a complete schedule is constructed by
inserting the jobs of SD into the best positions of SR, such as the for-loop in Figure 1.
After these two phases, the complete schedule is improved by a local search procedure.
In this IG, the interchange method used in NEH is implemented for the improvement.
Completing the local search, the new schedule (S’) is compared to the current schedule
(S). If S’ is better than S, i.e., obj(S’) < obj(S), S’ replaces S. Otherwise, borrowing
the concept of an acceptance in a simulated annealing algorithm, the replacement
is accepted with a probability exp(– ∆/T), where ∆ = obj(S’) – obj(S), and T is an
adjustable parameter (called temperature) in the IG. However, unlike SA, T is constant
in IG. The temperature value T is calculated as

T =
∑n

i=1 ∑m
k=1 pik

10nm
(19)

suggested in [44] for the permutation flow shop scheduling problem. In this study,
m = 2. These four phases are repeated until a termination condition is satisfied. Herein,
the maximum computation time is used for the termination condition. The whole
procedure of IG is summarized in Figure 2. In the procedure, let random() denote a
function to return a random number greater than or equal to zero and less than one.
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Figure 2. Procedure of the proposed IG algorithm.

4.3. Simulated Annealing Algorithm

Simulated annealing (SA) is one of the most popular metaheuristic algorithms for
combinatorial optimization problems including operations scheduling. In addition, SA
showed good performance in a recent paper related to a two-machine flowshop with
urgent jobs [1]. This study also adopts SA for the solution methodology. Generally, in
flow shop scheduling problems, SA attempts to improve a current schedule (S) by making
a small change in S. To accomplish this, insertion, which moves a randomly selected job
to a randomly selected position, is used to generate a neighborhood solution (S’). If S’ is
better than S, S’ replaces S. On the other hand, if S’ is worse than S, S is replaced with S’
with a probability exp(−∆/T). The initial temperature is obtained by Equation (19), and
the temperature is gradually decreased by multiplying a cooling ratio γ if S cannot be
improved for E iterations (E is called an epoch length.). The algorithm is terminated when
the maximum computation time is elapsed. The whole procedure is given in Figure 3.
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Figure 3. Procedure of the proposed SA algorithm.

5. Computational Experiments

This section reports and analyzes the performance of the proposed algorithms through
computational experiments on randomly generated problem instances. All the tested algo-
rithms were coded in Java programming language, and the experiments were conducted
on a personal computer with a 2.6 GHz CPU.

To generate problem instances, (urgent and normal) jobs and limited waiting times
were generated by the methods used in [25] and [28], respectively. Processing times
were randomly generated from a discrete uniform distribution with a range of [1, 100],
i.e., U[1, 100]. Let h be the proportion of urgent jobs to all jobs. For urgent jobs, three levels
(0.3, 0.5 and 0.7) were considered for h, and three levels (0.5, 0.7 and 0.9) were considered
for the weight for total tardiness of urgent jobs (α). The release times of urgent jobs were
generated randomly from U[0, LB], where LB is a lower bound on the makespan of normal
jobs. The lower bound is obtained by scheduling only normal jobs with Johnson’s rule [45],
assuming that their waiting times are infinite. Note that if all release times are zero or
greater than LB, the problem can be solved more easily. In addition, limited waiting times
were randomly generated from U[0, 100].

Prior to evaluating the proposed algorithms, calibration for the suggested two meta-
heuristic algorithms were performed to achieve better performance, because performance
of metaheuristic algorithms generally depends on their parameters. For the calibration
experiments, three levels of n = (50, 200, and 400) were considered, and three instances
for each combination of (n, h, and α) were generated. For the termination condition, the
maximum computation time was set to 50n milliseconds. Because the IG and SA are
stochastic algorithms, they can find a good or bad solution coincidentally. To avoid such a
coincidental solution, both algorithms solved each instance three times independently, and
the average objective value was used. In addition, to compare the objective values obtained
by the algorithms, the relative deviation index (RDI) was used as a measure, defined as
(objx − objmin)/(objmax − objmin) where objx, objmin and objmax are the objective function value
from algorithm x, the minimum and the maximum, respectively.

The proposed IG has only one parameter which is the destruction size, d. To find the
most appropriate value of d for the considered problem, eight IGs with different d = (4, 8,
10, 12, 14, 16, 18 and 20) were tested, respectively. Note that the original IG in [43] used
d = 4, which showed the best performance in the computational experiment. The results are
summarized in Figure 4 which shows the average RDIs. As shown in the figure, IG with
d = 14 showed the lowest RDI, which means the best performance. Unlike the original IG,
the RDI of IG with d = 4 was the highest among the test results. In addition, the bath-curve
was observed, meaning that both lower and higher values from d = 14 deteriorate the
performance and hence 14 is validated for the appropriate destruction size. Consequently,
d = 14 was used in the subsequent experiments.
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Figure 4. Calibration results of the proposed iterated greedy algorithm.

The proposed SA has two types of parameters: cooling ratio γ and epoch length E.
For the calibration, four levels of γ and E were considered, i.e., γ = (0.99, 0.993, 0.996, and
0.999) and E = (40, 80, 120, and 160). Hence, a total of 16 combinations were tested in this
calibration. The results were summarized in Figure 5. Similar to the IG calibration, the
bath-curves were observed for the cooling ratio and epoch length. Therefore, (γ and E) =
(0.996 and 80) were used in the subsequent experiments.

Figure 5. Calibration results of the proposed simulated annealing algorithm.

The performance of the proposed MIP was evaluated using a commercial optimization
solver, CPLEX 12.10. For experiments, three levels of n = (10, 20, and 30) were considered,
and five instances were generated for each combination of (n, h, and α). The maximum
time limit for CPLEX was set to 3600 s to avoid an excessive computation time. The results
were summarized in Table 2. From the table, CPLEX required a longer CPU time for the
instances when h was increased and α was decreased. The reason is that as urgent jobs
become more important, they must be scheduled closer to their arrival time, which reduces
the number of sequencing candidates to consider. In addition, most of the problems with
more than 20 jobs were not terminated within the maximum time limit. Considering that
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problem size with 20 jobs is not large enough, these results demonstrate the necessity to
develop heuristic algorithms that perform well.

Table 2. Performance of MIP using CPLEX.

n h
α

0.5 0.7 0.9

10 0.3 0.93, (0) 1 0.85 (0) 0.54 (0)
0.5 1.37 (0) 1.23 (0) 1.03 (0)
0.7 2.62 (0) 2.48 (0) 2.1 (0)

20 0.3 2225.24 (1) 659.25 (0) 341.35 (0)
0.5 3600 (5) 3145.93 (4) 2751.78 (3)
0.7 3600 (5) 3600 (5) 3600 (5)

30 0.3 3600 (5) 3600 (5) 3600 (5)
0.5 3600 (5) 3600 (5) 3600 (5)
0.7 3600 (5) 3600 (5) 3600 (5)

1 Average CPU time (number of instances that CPLEX did not terminate within 3600 s).

We compared the performance of proposed algorithms with that of CPLEX. For
experiments, heuristic algorithms solved the same instances used to evaluate the MIP.
Let IG(x) and SA(x) denote the IG and SA algorithm, respectively, with the makespan
nx milliseconds as a termination condition. Note that the destruction size for instances
with n = 10 was set to 5 which is a half of n because using the determined value (d = 14) was
impossible. The results are summarized in Table 3, which shows the average percentage
errors (APE) of solutions from the proposed heuristics to those of CPLEX and the number
of instances (out of 45) for which the algorithm found solutions better than or equal to
those from CPLEX. If CPLEX failed to solve the problem to optimality within the time limit,
the best solution obtained within the time limit was compared. In the table, negative APE
indicates that the solutions from the heuristic were better than those from CPLEX. As can
be seen from the table, NEH could significantly improve the MEDD solutions. In addition,
because CPLEX could not solve most problems with more than 20 problems, IG and SA
provided better solutions than CPLEX in the 20–30 size problems. In addition, IG showed
better performance than SA. That is, the greedy search is more effective than a random
search in small sized problems.

Table 3. Performance of the heuristic algorithms (vs. CPLEX).

Algorithm n = 10 20 30

MEDD 1.048 (0) 1 1.371 (0) 2.711 (0)
NEH 0.096 (4) 0.158 (0) 0.266 (0)
IG(50) 0.003 (21) −0.001 (20) −0.007 (29)

IG(100) 0.003 (21) −0.001 (20) −0.008 (30)
SA(50) 0.006 (19) 0.002 (16) −0.001 (27)
SA(100) 0.006 (19) 0.002 (16) −0.001 (27)

1 Average percentage error (number of instances, out of 45, for which the algorithm found solutions better than or
equal to those from CPLEX).

Additionally, to examine the performance of the proposed algorithms, IG and SA were
compared with a tabu search (TS) based metaheuristic algorithm suggested in the latest
study [26], which is the most similar one to our study. They considered a two-machine
no-wait flow shop with two agents. The TS was also coded in Java language and ran on the
same computer for comparison. The same parameters used in [26] were set, but the TS used
the same initial sequences that were used in IG and SA, because the flow shop considered
in [26] is different from this study. These comparison tests were conducted on medium
and large size problems. We considered five instances for each combination of (n, h, and α)
where n = 50, 100, 200, 300, 400, and 500. The objective values from each algorithm (x) were
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measured by the relative percentage deviation (RPD), defined as (objx − objmin)/objmin. The
results are summarized in Table 4, which shows the average RPD. Overall, the proposed
IG and SA outperformed by far TS from [26], except for only one case of (n = 50, h = 0.5,
α = 0.9).

Hence, we focused on the comparison between IG and SA. When the problem size
is small and medium, IG found better solutions than SA, However, as the problem size
increased, SA showed better performance than IG. This is probably because IG needs to
check all insertion positions and this repeated procedure can be a significant computational
burden for large size problems. In contrast, because SA generates a neighborhood solution
with a simple insertion, the time to generate a new solution is almost the same for large
size problems. According to the results, it can be said that IG is more efficient for a small
size problem, whereas SA works better for a large size problem.

Based on the results, we plotted the interaction between algorithms and problem
parameters (n, h and α) to check the effect on the performance of the algorithms. The
interval plots are given in Figure 6, the 95% confidence interval for the mean RDIs. For
the number of jobs n, as we stated, IG was better than SA with up to n = 200. However,
SA outperformed IG in problem instances over n = 300. For the proportion (h) of urgent
jobs to all jobs, SA showed better performance when h = 0.3 and 0.5. However, when
h = 0.7, IG was superior to SA, and TS also showed good performance. In other words,
three algorithms can be used in complement to one another when there are more urgent
jobs than normal jobs. For the weight for total tardiness of urgent jobs (α), SA and IG far
outperformed TS, and SA performed a little better than IG.

Finally, to see statistically significant differences in the performance of IG and SA,
Kruskal–Wallis (KW) tests, which are non-parametric methods, were performed with a
commercial statistical analysis problem SPSS. For these tests, instances were divided into
two groups according to the number of jobs. This is because IG worked well on small
sized instances, whereas SA performed better on large sized instances. Thus, one was a
small group (n = 10, 20, 30, 50 and 100), and the other was a large group (n = 200, 300, 400,
and 500). Since objective values have different scales according to n, RPD values among
IG(50), IG(100), SA(50) and SA(100) were set as the dependent variable for the tests. To
perform the tests, a significance level was set to 0.05. In addition, to check the effectiveness
of problem parameters (h and α) on the performance of the proposed algorithms, KW
tests were performed for (algorithms × h values) and (algorithms × α values) as well as
algorithms.

For the small group, all p-values in the three KW tests were close to zero, i.e., less
than the significance level. Detailed results were summarized in Table 5, which shows
the results of pairwise comparisons from KW tests. The results confirmed a statistically
significant difference between the performances of IG and SA. Thus, it can be said that IG
is superior to SA for the small group. In addition, the performance of SA(50) and SA(100)
was not different for the small group.
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Table 4. Average RPD of IG, SA and TS (the best values are in bold).

n h α IG(50) IG(100) SA(50) SA(100) TS(50) TS(100)

50 0.3 0.5 0.0010 0.0003 0.0029 0.0026 0.0220 0.0201
0.7 0.0007 0.0000 0.0048 0.0045 0.0327 0.0304
0.9 0.0010 0.0007 0.0046 0.0041 0.0233 0.0195

0.5 0.5 0.0011 0.0000 0.0071 0.0068 0.0242 0.0200
0.7 0.0050 0.0034 0.0128 0.0128 0.0113 0.0084
0.9 0.0067 0.0028 0.0174 0.0169 0.0047 0.0018

0.7 0.5 0.0048 0.0029 0.0067 0.0061 0.0071 0.0042
0.7 0.0016 0.0005 0.0166 0.0163 0.0052 0.0028
0.9 0.0030 0.0011 0.0082 0.0075 0.0123 0.0094

100 0.3 0.5 0.0021 0.0010 0.0030 0.0023 0.0608 0.0574
0.7 0.0037 0.0027 0.0042 0.0035 0.0695 0.0561
0.9 0.0002 0.0000 0.0047 0.0038 0.0916 0.0608

0.5 0.5 0.0062 0.0010 0.0204 0.0183 0.0856 0.0703
0.7 0.0150 0.0103 0.0158 0.0151 0.0777 0.0675
0.9 0.0325 0.0276 0.0335 0.0183 0.0989 0.0759

0.7 0.5 0.0034 0.0020 0.0136 0.0119 0.0212 0.0171
0.7 0.0100 0.0060 0.0154 0.0128 0.0080 0.0070
0.9 0.0034 0.0007 0.0056 0.0048 0.0124 0.0095

200 0.3 0.5 0.0033 0.0009 0.0053 0.0035 0.1331 0.1238
0.7 0.0095 0.0020 0.0070 0.0010 0.2297 0.2080
0.9 0.0163 0.0022 0.0209 0.0046 0.4598 0.4036

0.5 0.5 0.0329 0.0150 0.0233 0.0109 0.1951 0.1430
0.7 0.0362 0.0135 0.0106 0.0024 0.2090 0.1483
0.9 0.0313 0.0078 0.0273 0.0163 0.3087 0.2178

0.7 0.5 0.0104 0.0003 0.0074 0.0060 0.0189 0.0119
0.7 0.0079 0.0003 0.0178 0.0143 0.0206 0.0115
0.9 0.0080 0.0026 0.0096 0.0065 0.0208 0.0102

300 0.3 0.5 0.0084 0.0012 0.0090 0.0014 0.1577 0.1462
0.7 0.0205 0.0058 0.0199 0.0011 0.2910 0.2773
0.9 0.0369 0.0061 0.0298 0.0030 0.6395 0.6095

0.5 0.5 0.0358 0.0047 0.0247 0.0150 0.2161 0.1646
0.7 0.0661 0.0251 0.0253 0.0000 0.3805 0.2878
0.9 0.0682 0.0243 0.0374 0.0087 0.3840 0.2708

0.7 0.5 0.0076 0.0041 0.0034 0.0018 0.0239 0.0104
0.7 0.0084 0.0027 0.0071 0.0035 0.0348 0.0164
0.9 0.0101 0.0005 0.0090 0.0045 0.0212 0.0113

400 0.3 0.5 0.0223 0.0102 0.0142 0.0000 0.2227 0.2022
0.7 0.0194 0.0028 0.0187 0.0013 0.2850 0.2630
0.9 0.0394 0.0142 0.0411 0.0044 0.7834 0.6784

0.5 0.5 0.0617 0.0303 0.0333 0.0094 0.3610 0.3009
0.7 0.0655 0.0280 0.0375 0.0073 0.4807 0.3953
0.9 0.0849 0.0356 0.0345 0.0000 0.5155 0.4632

0.7 0.5 0.0104 0.0008 0.0076 0.0041 0.0324 0.0181
0.7 0.0060 0.0000 0.0108 0.0073 0.0281 0.0124
0.9 0.0092 0.0045 0.0060 0.0027 0.0238 0.0108

500 0.3 0.5 0.0327 0.0068 0.0207 0.0011 0.2262 0.2019
0.7 0.0371 0.0143 0.0223 0.0000 0.3740 0.3344
0.9 0.0934 0.0478 0.0454 0.0002 0.8396 0.7805

0.5 0.5 0.0671 0.0284 0.0118 0.0000 0.3808 0.3218
0.7 0.1466 0.0898 0.0212 0.0000 0.5184 0.4609
0.9 0.0778 0.0408 0.0214 0.0000 0.4614 0.3884

0.7 0.5 0.0115 0.0064 0.0032 0.0005 0.0283 0.0153
0.7 0.0163 0.0094 0.0029 0.0000 0.0385 0.0234
0.9 0.0109 0.0021 0.0064 0.0033 0.0300 0.0164

Average 0.0247 0.0103 0.0158 0.0058 0.1860 0.1574
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Figure 6. Mean plots for interaction between algorithms and problem parameters.
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Table 5. Pairwise comparisons from Kruskal—Wallis tests for the small group.

Tests Sample 1 − Sample 2 Test Statistic Std. Error Std. Test Statistic p-Value

Algorithms SA(100) − SA(50) −26.684 22.404 −1.191 0.234
IG(50) − SA(100) −111.542 22.404 −4.979 0.000
IG(100) − IG(50) −120.400 22.404 −5.374 0.000
IG(50) − SA(50) −138.227 22.404 −6.170 0.000
IG(100) − SA(100) −231.942 22.404 −10.353 0.000
IG(100) − SA(50) −258.627 22.404 −11.544 0.000

Algorithms × h SA(100) × 0.7 − SA(50) × 0.7 −22.800 38.805 −0.588 0.557
SA(100) × 0.3 − SA(50) × 0.3 −23.280 38.805 −0.600 0.549
SA(100) × 0.5 − SA(50) × 0.5 −33.973 38.805 −0.875 0.381
IG(50) × 0.5 − SA(100) × 0.5 −63.053 38.805 −1.625 0.104
IG(50) × 0.5 − SA(50) × 0.5 −97.027 38.805 −2.500 0.012
IG(100) × 0.5 − IG(50) × 0.5 −113.413 38.805 −2.923 0.003
IG(50) × 0.3 − SA(100) × 0.3 −116.620 38.805 −3.005 0.003
IG(100) × 0.3 − IG(50) × 0.3 −119.587 38.805 −3.082 0.002
IG(100) × 0.7 − IG(50) × 0.7 −128.200 38.805 −3.304 0.001
IG(100) × 0.7 − SA(100) × 0.7 −283.153 38.805 −7.297 0.000
IG(100) × 0.7 − SA(50) × 0.7 −305.953 38.805 −7.884 0.000
IG(100) × 0.3 − SA(100) × 0.3 −236.207 38.805 −6.087 0.000
IG(100) × 0.3 − SA(50) × 0.3 −259.487 38.805 −6.687 0.000
IG(100) × 0.5 − SA(100) × 0.5 −176.467 38.805 −4.548 0.000
IG(100) × 0.5 − SA(50) × 0.5 −210.440 38.805 −5.423 0.000
IG(50) × 0.7 − SA(100) × 0.7 −154.953 38.805 −3.993 0.000
IG(50) × 0.7 − SA(50) × 0.7 −177.753 38.805 −4.581 0.000
IG(50) × 0.3 − SA(50) × 0.3 −139.900 38.805 −3.605 0.000

Algorithms · α SA(100) × 0.7 − SA(50) × 0.7 −18.453 38.805 −0.476 0.634
SA(100) × 0.5 − SA(50) × 0.5 −28.520 38.805 −0.735 0.462
SA(100) × 0.9 − SA(50) × 0.9 −33.080 38.805 −0.852 0.394
IG(50) × 0.9 − SA(100) × 0.9 −85.967 38.805 −2.215 0.027
IG(100) × 0.9 − IG(50) × 0.9 −115.920 38.805 −2.987 0.003
IG(100) × 0.7 − IG(50) × 0.7 −113.933 38.805 −2.936 0.003
IG(50) × 0.5 − SA(100) × 0.5 −115.040 38.805 −2.965 0.003
IG(50) × 0.9 − SA(50) × 0.9 −119.047 38.805 −3.068 0.002
IG(100) × 0.5 − IG(50) × 0.5 −131.347 38.805 −3.385 0.001
IG(50) × 0.7 − SA(100) × 0.7 −133.620 38.805 −3.443 0.001
IG(100) × 0.5 − SA(100) × 0.5 −246.387 38.805 −6.349 0.000
IG(100) × 0.5 − SA(50) × 0.5 −274.907 38.805 −7.084 0.000
IG(100) × 0.9 − SA(100) × 0.9 −201.887 38.805 −5.203 0.000
IG(100) × 0.9 − SA(50) × 0.9 −234.967 38.805 −6.055 0.000
IG(100) × 0.7 − SA(100) × 0.7 −247.553 38.805 −6.379 0.000
IG(100) × 0.7 − SA(50) × 0.7 −266.007 38.805 −6.855 0.000
IG(50) × 0.7 − SA(50) × 0.7 −152.073 38.805 −3.919 0.000
IG(50) × 0.5 − SA(50) × 0.5 −143.560 38.805 −3.700 0.000

As in the KW tests for the small group, all p-values were close to zero and less than
the significance level for the large group. Therefore, the results confirmed that there were
statistically significant differences between algorithms. Table 6 shows the detailed test
results. As stated earlier, p-values from pairwise comparisons between algorithms were
less than 0.05, and hence it can be said that SA significantly outperformed IG. As shown in
Figure 6, there were no significant differences between IG and SA when urgent jobs are
more than normal jobs, i.e., h = 0.7, and the weights for two classes are equal, i.e., α = 0.05.
Therefore, IG can be an alternative for these cases.
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Table 6. Pairwise comparisons from Kruskal—Wallis tests for the large group.

Tests Sample 1 – Sample 2 Test Statistic Std. Error Std. Test Statistic p-Value

Algorithm SA(50) − IG(50) 62.786 21.752 2.886 0.004
SA(100) − IG(100) 96.508 21.752 4.437 0.000
IG(100) − SA(50) −145.267 21.752 −6.678 0.000
SA(100) − SA(50) −241.775 21.752 −11.115 0.000
SA(100) − IG(50) 304.561 21.752 14.001 0.000
IG(100) − IG(50) −208.053 21.752 −9.565 0.000

Algorithms × h SA(50) × 0.3 − IG(50) × 0.3 16.433 37.676 0.436 0.663
SA(50) × 0.7 − IG(50) × 0.7 37.042 37.676 0.983 0.326
IG(100) × 0.7 − SA(100) × 0.7 −51.792 37.676 −1.375 0.169
IG(100) × 0.5 − SA(50) × 0.5 −63.850 37.676 −1.695 0.090
SA(100) × 0.3 − IG(100) × 0.3 90.183 37.676 2.394 0.017
SA(100) × 0.7 − SA(50) × 0.7 −96.867 37.676 −2.571 0.010
SA(100) × 0.7 − IG(50) × 0.7 133.908 37.676 3.554 0.000
SA(50) × 0.5 − IG(50) × 0.5 134.883 37.676 3.580 0.000
IG(100) × 0.7 − SA(50) × 0.7 −148.658 37.676 −3.946 0.000
IG(100) × 0.7 − IG(50) × 0.7 −185.700 37.676 −4.929 0.000
IG(100) × 0.5 − IG(50) × 0.5 −198.733 37.676 −5.275 0.000
IG(100) × 0.3 − SA(50) × 0.3 −223.292 37.676 −5.927 0.000
IG(100) × 0.3 − IG(50) × 0.3 −239.725 37.676 −6.363 0.000
SA(100) × 0.5 − IG(100) × 0.5 251.133 37.676 6.666 0.000
SA(100) × 0.3 − SA(50) × 0.3 −313.475 37.676 −8.320 0.000
SA(100) × 0.3 − IG(50) × 0.3 329.908 37.676 8.756 0.000
SA(100) × 0.5 − SA(50) × 0.5 −314.983 37.676 −8.360 0.000
SA(100) × 0.5 − IG(50) × 0.5 449.867 37.676 11.940 0.000

Algorithms · α SA(100) × 0.5 − IG(100) × 0.5 47.892 37.676 1.271 0.204
SA(50) × 0.9 − IG(50) × 0.9 50.367 37.676 1.337 0.181
SA(50) × 0.7 − IG(50) × 0.7 67.567 37.676 1.793 0.073
SA(50) × 0.5 − IG(50) × 0.5 70.425 37.676 1.869 0.062
SA(100) × 0.9 − IG(100) × 0.9 101.267 37.676 2.688 0.007
IG(100) × 0.7 − SA(50) × 0.7 −114.108 37.676 −3.029 0.002
SA(100) × 0.7 − IG(100) × 0.7 140.367 37.676 3.726 0.000
IG(100) × 0.5 − SA(50) × 0.5 −146.667 37.676 −3.893 0.000
IG(100) × 0.9 − SA(50) × 0.9 −175.025 37.676 −4.646 0.000
IG(100) × 0.7 − IG(50) × 0.7 −181.675 37.676 −4.822 0.000
SA(100) × 0.5 − SA(50) × 0.5 −194.558 37.676 −5.164 0.000
IG(100) × 0.5 − IG(50) × 0.5 −217.092 37.676 −5.762 0.000
IG(100) × 0.9 − IG(50) × 0.9 −225.392 37.676 −5.982 0.000
SA(100) × 0.7 − SA(50) × 0.7 −254.475 37.676 −6.754 0.000
SA(100) × 0.5 − IG(50) × 0.5 264.983 37.676 7.033 0.000
SA(100) × 0.9 − SA(50) × 0.9 −276.292 37.676 −7.333 0.000
SA(100) × 0.7 − IG(50) × 0.7 322.042 37.676 8.548 0.000
SA(100) × 0.9 − IG(50) × 0.9 326.658 37.676 8.670 0.000

6. Discussion and Conclusions

This study considered a scheduling problem for a two-machine flow shop with urgent
jobs and limited waiting times. The objective of this problem is minimizing the weighted
sum of total tardiness of urgent jobs and the makespan of normal jobs. This is the first
study considering urgent jobs and limited waiting time constraints together. We proposed
a mixed integer programming for this problem. However, because this problem is NP-hard,
it is very difficult to solve actual size problems with the MIP. Therefore, we developed two
metaheuristic algorithms (an iterated greedy algorithm and a simulated annealing algo-
rithm). Through a series of computational experiments, we suggested the best parameters
for IG and SA. In addition, the effectiveness of IG and SA were verified by comparison to
MIP. In addition, as the results showed, IG was efficient for small size problems, but SA
showed superiority in large size problems.
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This problem can be extended in several directions in the future. For example, it is
necessary to develop the lower bound to compare performance on large size problems.
In addition, studies can investigate an optimal solution algorithm that is more efficient
than MIP such as a branch and bound algorithm. If the proposed heuristic algorithms are
appropriately modified, it is expected that this will become a standard for comparison of
algorithms in future studies.
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