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Abstract: The application of autoencoders in combination with Dynamic Mode Decomposition for
control (DMDc) and reduced order observer design as well as Kalman Filter design is discussed for
low order state reconstruction of a class of scalar linear diffusion-convection-reaction systems. The
general idea and conceptual approaches are developed following recent results on machine-learning
based identification of the Koopman operator using autoencoders and DMDc for finite-dimensional
discrete-time system identification. The resulting linear reduced order model is combined with a
classical Kalman Filter for state reconstruction with minimum error covariance as well as a reduced
order observer with very low computational and memory demands. The performance of the two
schemes is evaluated and compared in terms of the approximated L2 error norm in a numerical
simulation study. It turns out, that for the evaluated case study the reduced-order scheme achieves
comparable performance with significantly less computational load.

Keywords: reduced order observers; PDE models; diffusion-convection-reaction systems; dynamic
mode decomposition; autoencoders; machine learning; Kalman Filter

1. Introduction

The problem of system state reconstruction from local and partial state measurements
has important impacts on the ability of controlling the system state and monitoring system
health and performance [1–3]. This becomes particularly involved in the framework
of spatially continuously distributed dynamical systems, which are typically modeled
using partial differential equations (pdes). The so called associated state estimation or
observer design problem has been studied over the last decades and already reached
a state of maturity in particular for linear systems (see, e.g., [4,5]). Additionally, for
some classes of nonlinear or semilinear systems, design approaches have been obtained,
which differ in design complexity and computational load in their implementation. A
particular approach, which is simple and can be implemented with small computational
load is the pointwise measurement injection (or pointwise innovation) observer design,
which has been employed for solving the problem for some types of semilinear parabolic
problems [6–10]. This approach basically extends the idea of a reduced order observer
design [1,2] to the considered class of infinite-dimensional systems. The reduced order
property is to be understood in relation to the number of internal states of the observer
in comparison to the number of states in the system to be monitored. Basically the idea
consists in providing a non-redundant state estimation scheme, which does not need to
estimate the measured output, but only non-measured state variables.

Considering pde models leads to the additional problem that for implementing any
observer in a real-time monitoring scheme, the associated set of pdes has to be solved
numerically. This is done using some kind of discretization in space and time, so that
a finite-dimensional discrete-time system representation is obtained, which represents
a digital twin of the original pde system. The number of internal state variables of this
approximation model is typically very high (from about hundred to several thousands of
variables, e.g., for finite-element approximations) and thus requires model-order reduction
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approaches for real-time applicability. For this purpose, typically balanced truncation
or proper orthogonal decomposition approaches or similar are employed (see, e.g., [11]
and references therein). Besides these, in recent years a focus was led to approaches
using dynamic mode decomposition (DMD) [11,12] and its extension to DMDc to include
external (control) inputs [13]. The usage of DMD (or DMDc) is particularly motivated
by the Koopman theory, according to which nonlinear finite-dimensional systems can be
embedded into an infinite-dimensional space on which the linear Kooppman operator
provides a complete description of the time evolution of the system observables. The
(Koopman) eigenfunctions or the associated Koopman operator form a basis of this space
and can be used in principle to determine a finite-dimensional approximation of the
dominant modes of this operator (associated to the dominant eigenvalues of the operator).
As this embedding can in most cases not be carried out analytically (see, e.g., the discussion
in [3,11,12]) one can employ DMD (or DMDc) as a data-based identification approach using
snapshots of the state observables as training data. This idea has been combined with
the use of autoencoders (AEs) to learn from the training data a low-dimensional basis of
the associated dominant Koopman eigenfunction subspace in which a linear dynamics
can then be identified using classical DMDc [14]. The use of autoencoders and Koopman
theory for automatic learning of finite-dimensional system dynamics is also mainstream in
contemporary control systems applications in general (see, e.g., [15,16]).

Having finite-dimensional approximations of the infinite-dimensional pde models,
one can also directly address the observer design problem in the finite-dimensional setup.
This approach is also called early lumping (first approximate and then design), while the
results discussed before belong to the so-called late lumping (first design then approxi-
mate) approaches.

Early lumping based on the combination of DMDc with state estimation has already
been shown in several application scenarios to yield satisfactory performance [3,17–20].
In these studies the Kalman Filter [21,22] has been used on the basis of the obtained
finite-dimensional linear discrete-time model equations. The Kalman Filter is known to
provide satisfactory state estimation results, as it ensures a minimum estimation error
covariance taking into account a priori known knowledge on the perturbation statistics,
with the perturbations on the states and measurement considered as white noise. One
potential drawback for implementations of the Kalman Filter in real-time applications
relies on the fact that it requires n2 + n dynamic variables, where n is the number of
states in the reduced-order model, given that the n× n error covariance matrix must be
calculated online to provide the optimal filter performance. In comparison to this approach,
alternative design methods, such as the reduced-order [1,2] or the geometric observer [23]
do actually require less than n dynamic variables.

Motivated by the above considerations, in the present study the autoencoder-based
approximation of finite-dimensional low order basis representations is employed in com-
bination with DMDc to identify a reduced-order model for a linear parabolic diffusion-
convection-reaction system for which a reduced order observer and a Kalman Filter are
implemented and compared. The training data is generated on the basis of a high-fidelity
numerical approximation of the solutions of the pde model and the comparison of the
approaches carried out on the basis of solutions obtained for different input signals. Given
the early lumping nature of this appproach, it somehow represents a complementary
counterpart of the late-lumping reduced-order design studies in [6–10]. To the author’s
knowledge, this is the first time such a comparison with reduced order observers is carried
out, in particular for this class of systems. The result is an inductive step towards the
consideration of distributed parameter models involving transport-reaction mechanisms
as typically found in chemical engineering applications [7,24–29].

The paper is organized as follows. In Section 2 the problem statement is provided. The
model-order reduction using autoencoder-based DMDc (ae-dmdc) is discussed in Section 3.
In Section 4 the state estimation problem is addressed using the reduced order observer (roo)
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and the Kalman Filter (kf). The obtained results are discussed in Section 5. Conclusions
and an outlook are provided in Section 6.

2. Problem Statement

Consider the following diffusion-convection-reaction system with Danckwert’s bound-
ary conditions

∂tx(s, t) = D∂2
s x(s, t)− v∂sx(s, t) + r(s)x(s, t), s ∈ (0, 1), t > 0 (1a)

D∂sx(0, t)− vx(0, t) = −vu(t), t > 0 (1b)

∂sx(1, t) = 0, t > 0 (1c)

x(s, 0) = x0(s), s ∈ [0, 1] (1d)

y(t) = x(sm, t), t ≥ 0 (1e)

with the diffusion coefficient D > 0, (superficial) flow velocity v > 0, reaction coefficient
function r ∈ L2(0, 1), state x(·, t) ∈ L2(0, 1) at time t ≥ 0 with initial value x0 ∈ L2(0, 1),
input u(t) ∈ R, and output y(t) ∈ R corresponding to a pointwise measurement of x at the
position sm ∈ [0, 1]. The structure of the model is motivated by chemical engineering appli-
cations, in particular tubular reactor models (with length L = 1) [7,24–29] linearized along
equilibrium solutions (see Appendix A) (Note that in such applications the flow velocity v
might be varying over the spatial extension of what is assumed to be neglectable here.)

In the sequel, the developments are illustrated and tested for a case study with

D = 0.1, v = 0.5, r(s) = −k0s/(1 + k1s2), k0 = 1, k1 = 5 (2)

with a reaction rate maximum at s = 0.2, and measurement locations

sm ∈ {0.5, 1} (3)

motivated by related studies on approximate observability of the pde model [29] suggesting
sm = 1 and recent studies on the pointwise measurement injection observer [6–10] suggest-
ing an in-domain measurement (here chosen as sm = 0.5). Giving the transport-reaction
character of the considered system model, the associated system specific time scales can
best be captured using the Péclet (Pe) and Damköhler (Da) numbers [24,28]

Pe =
Lv
D

=
0.5
0.1

= 5, Da =
k0L
v

=
1

0.5
= 2

with Pe giving the relation between convective and diffusive characteristic times and Da
the relation between reaction and convection characteristic times. Given a moderate pair
(Pe, Da) the solution behavior is expected to be relatively smooth without steep spatial
gradients, so that different numerical solution schemes can be implemented. The pde model
is solved numerically using a finite-difference approximation with N = 100 collocation
points, implying a spatial step of dz = 0.01 yielding a finite-dimensional approximation

ẋ(t) = Fx(t) + gu(t), t > 0, x(0) = x0 (4a)

y(t) = hTx(t), t ≥ 0 (4b)

with state vector x(t) ∈ RN at time t ≥ 0, and F ∈ RN×N , g, h ∈ RN . For this purpose,
central differences (O2(dz)) are used for the advection and the diffusion parts. The finite-
dimensional ode model (4) is subsequently solved using the standard Euler forward solver
(O2(dt)) in MATLAB . Note that for solving the ode system (4) in MATLAB a discrete-time
system approximation of the form

x(t + 1) = Φx(t) + γu(t), t ≥ 0, x(0) = x0 (5)
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with Φ ∈ RN×N and γ ∈ RN is used. In summary, the approximation error is O2(dt, dz).
To achieve an accurate simulation result, the step size in time was set to dt = 2× 10−5.

The solution of the resulting equations for the input and initial value given by

u(t) = 3σ(t) + 7 cos(3t)(σ(t− 5)− 2σ(t− 8) + σ(t− 12) sin(3t))

with σ denoting the Heaviside function, and initial condition x0(s) = 0.2 sin(π/2s)2 is
shown in Figure 1.

Figure 1. Solution of the pde model (1) using finite-difference approximation with N = 100 colloca-
tion points (top) and corresponding input (bottom).

3. Model-Oder Reduction

For the purpose of reducing the computational load and having a low-dimensional
model for observer design, which can also be implemented, e.g., on low-cost devices for
system monitoring, or which is fast enough for time-critical real-time applications, in the
following a machine-learning based model-order reduction is employed, which is finally
motivated by a low-order approximation of the Koopman operator for the discrete-time
system (5) (for details, see, e.g., [14] and also [3,12,19]).

3.1. Machine Learning for Koopman Basis Identification

Recall that x ∈ RN and consider the simple three-layer autoencoder network, as
shown in Figure 2 for which it holds that

ξ = η1(W1x + b1), x̃ = η2(W2ξ + b2), ξ ∈ Rq, q < N.
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xN

xN−1

x2

x1

ξ1

ξq

x̃N

x̃N−1

x̃2

x̃1

Figure 2. Autoencoder network for empirical basis identification using machine learning.

The use of a single hidden layer is basically motivated by the fact that using model
order reduction techniques based on simple matrix-vector multiplications such as balanced
truncation or proper orthogonal decomposition (see, e.g., [11]) it is known that a satisfactory
approximation accuracy can be obtained.

The weight matrices W1, W2 and bias vectors b1, b2 are determined using a standard
backpropagation algorithm so that

(W1, W2, b1, b2) = argmin‖x− η2(W2η1(W1x + b1) + b2)︸ ︷︷ ︸
=x̃

‖2.

The result obtained using the trainAutoencoder function in MATLAB with
N = 100 inputs, one hidden layer with q = 40 nodes (later associated to a model ap-
proximation using q internal states), 5000 snapshots, maximum epochs set to 15,000 and
choosing the activation function for the input layer as logsig and of the output layer as
purelin can be seen in Figure 3, showing on the left side the comparison between the
reference solution (see also Figure 1) and the corresponding output (corresponding to x̃) of
the autoencoder. The associated approximated L2 norm of the approximation error ‖x̃− x‖
is shown on the right side. It can be seen that a rather good correspondence is obtained.
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Figure 3. (Left): Comparison of the original data set (top) and the approximated one obtained with
the trained autoencoder (bottom). (Right): Approximation error norm.

3.2. Reduced Model Based DMDc

To identify the dynamics in terms of the low-dimensional state representation ξ ∈ Rq

(q� N) by means of DMDc [13], consider the snapshot and input matrices

Ξ =
[
ξ(0) ξ(1) · · · ξ(m)

]
∈ Rq×m, Ξ+ =

[
ξ(1) · · · ξ(m + 1)

]
∈ Rp×m,

U =
[
u(0) · · · u(m)

]
∈ R1×m, Ξu =

[
Ξ
U

]
∈ R(q+1)×m
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with their respective singular value decompositions

Ξu = U1Σ1VT
1 , Ξ+ = U2Σ2VT

2 , Uk =
[
Uk,r Uk,0

]
,

Σk =

[
Σk,r 0

0 Σk,0

]
, Vk =

[
Vk,r
Vk,0

]
, k = 1, 2,

where

U1 ∈ R(q+1)×(q+1), U1,r ∈ R(q+1)×r1 , U1,0 ∈ R(q+1)×(q+1−r1)

Σ1 ∈ R(q+1)×(q+1), Σ1,r ∈ Rr1×r1 , Σ1,0 ∈ R(q+1−r1)×(q+1−r1)

V1 ∈ Rm×(q+1), V1,r ∈ Rm×r1 , V1,0 ∈ Rm×(q+1−r1)

U2 ∈ Rq×q, U2,r ∈ Rq×r2 , U2,0 ∈ Rq×(q−r2)

Σ2 ∈ Rq×q, Σ2,r ∈ Rr2×r2 , Σ2,0 ∈ R(q−r2)×(q−r2)

V2 ∈ Rm×q, V2,r ∈ Rm×r2 , V2,0 ∈ Rm×(q−r2).

Considering that

ξ(t + 1) = Aξ(t) + bu(t) =
[
A b

][ξ(t)
u(t)

]
one obtains

Ξ+ =
[
A b

]
Ξu

or equivalently

[
U2,r U2,0

][Σ2,r 0
0 Σ2,0

][
VT

2,r VT
2,0
]
=
[
A b

][
U1,r U1,0

][Σ1,r 0
0 Σ1,0

][
VT

1,r VT
1,0

]
Taking into account only the dominant singular values σ2,i, i = 1, . . . , r2 and σ1,j, j = 1, . . . , r1
this becomes

U2,rΣ2,rVT
2,r ≈

[
A b

]
U1,rΣ1,rVT

1,r,

yielding [
A b

]
≈ U2,rΣ2,rVT

2,rV1,rΣ−1
1,r UT

1,r.

Introducing the reduced order state

z(t) = UT
2,rξ(t) ∈ Rr2 , ξ(t) = U2,rz(t)

and noticing that UT
2,rU2,r = Iq it holds that

z(t + 1) = UT
2,r
[
A b

][ξ(t)
u(t)

]
≈ Σ2,rVT

2,rV1,rΣ−1
1,r UT

1,r

[
ξ(t)
u(t)

]
.

Thus the low–dimensional dynamic model is obtained in the form

z(t + 1) = Ãz(t) + b̃u(t)
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with

Ã = UT
2,r AU2,r ≈

[
Σ2,rVT

2,rV1,rΣ−1
1,r UT

1,r

]
(:,1:q)

U2,r,

b̃ = UT
2,rb ≈

[
Σ2,rVT

2,rV1,rΣ−1
1,r UT

1,r

]
(:,q+1)

The resulting network-based model order reduction scheme is shown in Figure 4.

u(t)

xN(t)

xN−1(t)

x2(t)

x1(t)

ξ1(t)

ξq(t)

z1(t)

zr2 (t)

z1(t + 1)

zr2 (t + 1)

ξ1(t + 1)

ξq(t + 1)

x̃N(t + 1)

x̃N−1(t + 1)

x̃2(t + 1)

x̃1(t + 1)

Figure 4. Network-based model-order reduction scheme consisting of an autoencoder network in
combination with a linear DMDc-based network.

The obtained results with r2 = 17, r1 = 18 are shown in Figure 5. On the left
of the figure, the comparison of the reference solution and the autoencoder-DMDc (ae-
dmdc) based approximation can be seen. On the right part of the figure, the associated
approximation error norm is shown.
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Figure 5. (Left): Comparison of the original solution (top) and the approximated one obtained
with the low order ae-dmdc model obtained by combining the trained autoencoder with the DMDc
approximation (bottom). (Right): Approximation error norm.

Next, the identification of a suitable approximation of the output (i.e., measurement)
operator is addressed. In terms of the numerical approximation (5) of the pde model (1),
the output at time t ∈ R is given by

y(t) = x(1, t) ≈ cTx(t) ≈ cTη2(W2U2,rz(t) + b2) = c̃Tz(t).
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For the purpose of providing an optimal minimum squared error approximation of c̃T the
following snapshot matrices have been introduced

Y =
[
y(0) · · · y(m)

]
, Z =

[
z(0) · · · z(m)

]
= UT

2,rΞ

so that with the pseudo–inverse Z† one obtains

Y = c̃TZ, c̃T = YZ†, Z† = ZT(Z ZT)−1.

The resulting absolute error of the output approximation is shown in Figure 6 for the two
different sensor locations sm = 1 and sm = 0.5.

0 5 10 15 20

time t

0

1

2

3

4

5

6
10

-3

Figure 6. Output approximation error for the training data for the two different sensor locations sm.

It can be seen that a good correspondence is achieved for both sensor locations.

4. Full State Reconstruction Using the Ae-Dmdc Reduced-Order Model

In this section, the reduced-order model with state z(t) ∈ Rr2 (with r2 � N) is
employed to design algorithms for the reconstruction of the complete state x(t) ∈ RN

by combining the available measurement information, the known input u(t) with the
model using two different observer design approaches and the decoder of the previously
designed autoencoder. In general, consider an estimate ẑ with the associated full-state
estimate x̂ = η2(W2ẑ + b2) it holds for the estimation error e = x̂− x that

e = η2(W2ẑ + b2)− x = η2(W2ẑ + b2)− η2(W2z + b2)

so that for a linear decoder mapping η2 one obtains

e = η2(W2(ẑ− z) + b2),

implying that e → 0 if and only if ẑ − z → 0. Thus, providing an estimate in the z-
coordinates is sufficient for obtaining a reliable estimate in the original coordinates, as long
as the autoencoder is adequately trained (i.e., in particular with η2(0 + b2) ≈ 0).

4.1. Reduced-Order Observer

The main idea of the reduced order observer is to prevent redundant estimates and
reduce model-dependency of the state estimation scheme [1,2]. For this purpose, the
measurements (or parts of them) are directly included unfiltered in the estimator, which is
only possible if no significant sensor noise is at place. To introduce the approach, formally
consider the state transformation

ζ = Vz, V =

[
c̃T

T

]
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with T such that V is invertible, i.e., rank(T) = r2 − 1 (as there is only 1 measurement)
and Tc = 0, meaning that the rows of T corresponds to basis vectors of the orthogonal
complement of the space spanned by the row vector cT (i.e., the measurement subspace). It
should be noted that there exist effective numerical algorithms for determining the matrix
T, e.g., using null in MATLAB .

Next, consider the partition

ζ =

[
ζm
ζr

]
, A = VÃV−1 =

[
Am Amr
Arm Ar

]
, b = Vb̃ =

[
bm
br

]
and the associated reduced order observer

ζ̂r(t + 1) = Army(t) + Ar ζ̂r(t) + bru(t) (6a)

ẑ(t) = V−1
[

y(t)
ζ̂r(t)

]
(6b)

x̂(t) = η2(W2ẑ(t) + b2). (6c)

It is straight forward to verify that the associated observation error z̃ = ẑ− z exponentially
converges to zero with time if and only if all eigenvalues of the matrix Ar are contained
in the open unit disk U1 ⊂ C. If some eigenvalues are contained on the unit circle there
are estimation error components (in ζ coordinates!) that will remain constant but not grow
in time, i.e., for small initial errors, small error evolutions can still be achieved. Given
that z = 0 is mapped onto x = 0 the convergence in the original state coordinates can be
ensured within some accuracy limitation associated to the approximation performance of
the autoencoder.

4.2. Kalman Filter

For comparison purposes, the state estimation by using the Kalman Filter [21,22] is
considered. The combination of DMDc models with Kalman Filters has recently been
shown to yield quite convincing results [3,17–20]. One big potential of the Kalman Filter
relies on the fact that it provides a minimum estimation error covariance based on a priori
statistics of the model and measurement uncertainties, which are considered as white noise
processes with covariances Q ∈ Rr2×r2 and r ∈ R in the present context, i.e.,

z(t + 1) = Ãz(t) + b̃u(t) + w(t), w(t) ∼ N (0, Q) (7a)

y(t) = c̃Tz(t) + v(t), v(t) ∼ N (0, r). (7b)

Under these assumptions, the minimum estimation error covariance state estimator is
given by the following prediction-correction (innovation) scheme (see, e.g., [21])

Prediction

ẑp(t + 1) = Ãẑ(t) + b̃u(t) (8a)

Pp(t + 1) = ÃP(t)ÃT + Q (8b)

Kalman gain

L(t + 1) = Pp(t + 1)c̃(c̃TPp(t + 1)c̃ + r) (8c)

Innovation

ẑ(t + 1) = (I − L(t + 1)cT)ẑp(t + 1) + Ly(t + 1) (8d)

P(t + 1) = (I − L(t + 1)cT)Pp(t + 1) (8e)

Complete state reconstruction

x̂(t + 1) = η2(W2ẑ(t + 1) + b2) (8f)
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with predicted state ẑp, error covariance Pp, Kalman (correction) gain L, state estimate ẑ
and error covariance P.

Note that the implementation of the Kalman Filter implies the memory usage of a
total of r2

2 + r2 floating point variables for storing (and for updating) the error covariance
matrix P(t) ∈ Rr2×r2 and the state estimate ẑ(t) ∈ Rr2 . For the case study with r2 = 17
this yields 306 dynamic variables, while the original pde approximation is based on only
100. On the other hand it should be noticed that the Kalman Filter provides a minimum
estimation error covariance, which is in particular useful if one takes into account the
stochastic process and measurement noise perturbations. Given the approximative nature
of the model (in full-scale with N = 100 state variables as well as in reduced scale with
r2 = 17 state variables, this uncertainty rejection property can eventually compensate
modeling errors up to some point.

4.3. Observer Evaluation

In this section both observer design approaches are compared for two different in-
put scenarios

u1(t) = σ(t− 5)− 2σ(t− 10) + σ(t− 15) (9a)

u2(t) = cos(0.5t)(σ(t− 5)− 2σ(t− 10) + σ(t− 15) sin(3t)) (9b)

giving rise to four different scenarios

(S1) u = u1 and sm = 1, (S2) u = u1 and sm = 0.5
(S3) u = u2 and sm = 1, (S4) u = u2 and sm = 0.5.

The associated input and state profiles are shown in Figure 7.

Figure 7. Input scenarios for S1, S2 (left, u = u1) and S3, S4 (right, u = u2).

For the comparison of the appproaches, the associated approximated evolution of the
L2 norm of the observation error profiles is evaluated. Further, to evaluate the associated
computational load, the mean computation time per time step t̄ and its variance ν are
evaluated for both approaches on a notebook computer with Intel Pentium CPU 4415U
with 2.3 GHz.

The results of the evaluation are shown in Figure 8. It can be seen that both observer
schemes yield similar estimation performance, with the Kalman Filter performing slightly
better in terms of precision for sm = 1 and the reduced order observer for sm = 0.5. The
associated computation times clearly show that the reduced order observer achieves its
core calculations about four times as fast as the Kalman Filter, which is due to the higher
dimensionality of the Kalman Filter with the required calculation of the covariance matrix.
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Figure 8. Comparison of the approximated L2 observation error norm evolutions for the four different
scenarios (S1) to (S4) with the respective mean computation times per unit step (t̄roo, t̄k f and the
associated variances νroo, νk f obtained in the simulation study.

5. Discussion

As commented above, the implementation of the reduced order observer actually
requires only r2 − 1 (i.e., for the case study with r2 = 17 this corresponds to only 16)
variables, while the Kalman Filter requires the additional information about the error
covariance matrix at each time step, yielding a total of r2

2 + r2 variables (i.e., for the case
study 306). This implies a significant reduction (by a factor about 19 for the case study) in
comparison to the Kalman Filter in terms of memory storage. In addition, as discussed
in the previous section, in the performed simulation studies the core calculations of the
reduced-order observer were about four times faster than the ones for the Kalman Filter. It
should be mentioned anyway, that in the implementation in MATLAB , when taking into
account the time for the decoding, i.e., the last step in both observer schemes, this time
advantage is basically lost and both approaches perform similarly.

As it can be seen, the performance of the Kalman Filter and the reduced order observer
are quite comparable for this particular case study. As commented in the introductory
discussion for the reduced order observer, this is clearly to be attributed to an output
approximation with low noise level. For systems with more sensor noise it is not recom-
mendable to use the unfiltered output directly in the observer scheme.

As a consequence of these results, as long as computation times are below system
specific constraints in terms of time scales, both approaches can be employed, while in the
case that the computation times should be held as low as possible and that the measurement
noise is neglectable, the reduced order observer has clear advantages. This holds true in
particular if in addition to the observer scheme some complex calculations or real-time
parallel optimizations are performed.

6. Conclusions and Outlook

The combination of autoencoders and dynamic mode decomposition has been em-
ployed as a basis for low-dimensional observer design for a class of diffusion-convection-
reaction systems using the reduced order observer and Kalman Filter approaches. Using a
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case study it was shown that both approaches yield satisfactory and comparable results,
with the Kalman Filter having a slightly better precision on the cost of significantly higher
memory costs, while the reduced order observer provides a comparable performance with
very low computational demand and a high degree of simplicity in the design.

Future studies will focus on different, more complex applications, including networks
of systems, semilinear pde systems, pdes on higher-dimensional domains (2D, 3D), spatially
varying diffusion and convection mechanisms, and study of the impact of the autoencoder
structure with more detail (number and size of hidden layers, activation and loss functions,
etc.). Comparisons with other model order reduction approaches will be carried out for the
respective cases.
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Appendix A. Tubular Reactor Model

Consider the (single-species axial-dispersion) tubular reactor model [26,28,29]

∂tT = D∂2
s T − v∂sT − η(T − Tc) + δρ(c)e−γ/T (A1a)

∂tc = D∂2
s c− v∂sc− ρ(c)e−γ/T (A1b)

with Danckwert’s boundary conditions

D∂sT(0, t)− vT(0, t) = −vTe, D∂sT(0, t) = 0 (A1c)

D∂sc(0, t)− vc(0, t) = −vce, D∂sc(0, t) = 0. (A1d)

In (A1) T, c : [0, 1]×R+ → R with T(s, t) representing the reactor temperature at s ∈ [0, 1]
and time t ≥ 0, c(s, t) the concentration, D being the diffusion coefficient, v the superficial
velocity (assumed to be constant), η the heat interchange coefficient between the cooling
jacket with temperature Tc(s, t) (that can be used as a control input [27]), δ the adiabatic
temperature rise, ρ : R+ → R+ the reaction rate function, γ the Arrhenius coefficient, and
Te, ce the (constant) feed temperature and concentration, respectively.

In the following, we focus on the reactor behavior close to the equilibrium temperature
and concentration profiles T∗, c∗ : [0, 1]→ R+ satisfying

0 = D∂2
s T∗ − v∂sT∗ − η(T∗ − Tc) + δρ(c∗)e−γ/T∗

0 = D∂2
s c∗ − v∂sc∗ − ρ(c∗)e−γ/T∗

with the associated boundary conditions. Introducing the deviation variables

τ = T − T∗, x = c− c∗

and using a first order approximation of the nonlinear terms it holds that

ρ(c)e−γ/T = ρ(c∗ + x)e−γ/(T∗+τ) ≈ e−γ/T∗
(

ρ(c∗) + ρ(c∗)
γ

T∗2
τ + ρ′(c∗)x

)
.

Considering in a first approximation that the temperature deviation can be neglected
(e.g., due to some appropriate control through the cooling jacket temperature [27]) one ob-
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tains for the concentration dynamics in a neighborhood of the equilibrium profile c∗ the
following dynamics

∂tx = D∂2
s x− vx− rx

with r(s) = ρ′(c∗(s))e−γ/T∗(s) for s ∈ (0, 1) and the associated boundary conditions. This
model is equivalent to the one in (1), assuming a particular reaction rate distribution r with
reaction rate maximum determined by the coefficients k1.
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