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Abstract: In this paper, an elementary mathematical model describing the introduction of a universal
basic income in a closed market society is constructed. The model is formulated in terms of a system
of nonlinear ordinary differential equations, each of which gives account of how the number of
individuals in a certain income class changes in time. Societies ruled by different fiscal systems (with
no taxes, with taxation and redistribution, with a welfare system) are considered and the effect of
the presence of a basic income in the various cases is analysed by means of numerical simulations.
The main findings are that basic income effectively acts as a tool of poverty alleviation: indeed,
in its presence the portion of individuals in the poorest classes and economic inequality diminish.
Of course, the issue of a universal basic income in the real world is more complex and involves a
variety of aspects. The goal here is simply to show how mathematical models can help in forecasting
scenarios resulting from one or the other policy.

Keywords: mathematical model; universal basic income; numerical simulations.

1. Introduction

A lively debate on the appropriateness of introducing some form of universal basic
income (UBI) has been ongoing in several countries for a long time (for concepts, method-
ologies, practice and much more see for example the recent papers [1–3] and books [4,5]
which in turn also provide several further references). Additionally, economic difficulties
which grow stronger in times of crisis spark the interest for the subject. The problem is in
fact a complex one which involves not only political and economic, but also sociological
and psychological aspects. Engaging in the discussion to endorse one or the other position
towards is certainly not the goal of this paper. Rather, the goal is to illustrate, through a
technical approach, how numerical simulations of mathematical models can help predict
long-term effects of different policies, in particular related to UBI. This can then help to
explore different possible scenarios emerging in correspondence of different political pro-
grams. Of course, a serious and attentive contribution (not to be found here) cannot ignore
and should definitely take into account several related socio-economic facets and elements.

The investigation and the simulations here described have roots in a mathematical
“micro-to-macro” model proposed by this author in [6] and later generalised and studied
in other works (see e.g., [7,8]). The model describes the evolution in time, in the case of
constant global income, of the income distribution over a population, resulting out of a
whole of economic interactions which take place between individuals of the population.
Individuals are grouped in a finite number of classes distinguished by their income and
exchange money according to frequency and rules first suggested in [7]. A fiscal system
with progressive taxation together with a redistribution process, integrated in paper [8] with
a welfare policy, was considered in the mentioned papers. The mathematical framework
developed for the purpose is provided by a set of nonlinear ordinary differential equations,
each of which gives account of how the number of individuals in a certain income class
changes in time.
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The analysis of the dynamics, based to a great extent on a large number of simulations
performed in correspondence to different choices of initial conditions and different values of
the model parameters allows the establishment of the existence, for fixed parameter values
and for fixed global income, of a unique asymptotic (long-run) stationary distribution.
Such distribution has been intended as a dynamic equilibrium, because, albeit the number
of individuals in each class remains constant from a certain time on, single individuals can
move from one class to another. It has also been shown in [7] that suitable choices of the
parameters allow the recovery of distributions which are well in agreement with empirical
data. Among other features, economic inequality, typically measured by means of the Gini
coefficient, has been the object of particular attention.

The mentioned framework turns out to be suitable also to investigate the effect of the
introduction of a universal basic income. Indeed, if a basic income provides a guaranteed
financial grant to everybody, then everybody has a minimal income which is different
from zero. This can be expressed in the context of the framework by assuming that
the lowest income class is empty, or the lowest income classes are empty. Specifically,
distributions of the population can be considered for which the lowest income class/classes
are empty. The interest is then to examine the differences between long-run income profiles
emerging in the case in which no basic income allowance is provided and in the case in
which a basic income allowance is provided, under the condition of a same global income
(i.e., assuming that the “richness” of the population is the same), in correspondence to
different government schemes:

− in the absence of taxation and redistribution;
− in the presence of a single taxation rate;
− in the presence of progressive taxation;
− in the presence of progressive taxation and welfare.

This is what we do in this paper. Actually, in carrying out this project, we introduce
some modifications in the original model which let it become even more appropriate to
represent real situations. Basically, the intervals characterising the income classes are here
assumed to be of growing length in passing from the lowest income to the highest income
one. This requires that also some terms in the expressions representing taxes and welfare
be modified.

The main results from the numerical simulations are the following ones:

(1) when basic income is introduced in a specific model, the portion of individuals in the
poorest classes and economic inequality diminish;

(2) if two societies are compared which are ruled by the same fiscal system, but have a
different total income, the portion of individuals belonging to a certain class at the
bottom of the income ladder is smaller in the “richer” society;

(3) the effect of reduction of economic inequality is more pronounced in poorer societies
and, in order, is more pronounced when no taxation and redistribution exist, when
taxation with a unique tax rate exist, when a progressive taxation system exist, when
taxation, redistribution and welfare exist.

The rest of the paper is organised as follows. In the next section, we introduce the mod-
ified model. The results of some representative simulations (among the many executed),
obtained by numerically solving, as detailed below, systems of differential equations are
presented and discussed in Section 3. These include the representation of the income
distribution as well as the representation of the “richness” of the various classes in the long
run in various cases, together with a comparison of the Gini coefficients corresponding to
these distributions. Section 4 contains a summarising discussion together with a critical
analysis. Details on the numerical solution methods are contained in Appendix A. To give
a short preview here, the numerical solutions were found with two different methods,
essentially leading to the same results. First, a numerical solver from the software Wolfram
Mathematica 12.3.0.0 [9] was employed to solve a suitably reduced equation system arising
from a differential-algebraic system of equations. Then, a second method was used that
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is in fact a combination of Euler and Romberg methods and that does not require the
reduction of the equations.

2. The Model

We introduce here a modified version of a model first proposed in [6] and then further
developed in [7,8]. For the convenience of the reader we explicitly point out since the be-
ginning that the novelties in the present version consist of a different subdivision of income
ranges compared to the previous model and in the formalisation of the allocation of a basic
income through the assumption of emptiness of the poorest class/classes (see below).

We start by considering n + 1 numbers 0 = ρ0 < ρ1 < . . . < ρn, with ρn intended to
be large enough to represent an upper limit (that cannot be exceeded) for the maximal
conceivable income of an individual of a given society. In particular, differently from
what was done in the mentioned previous works, we will take ρk+1 − ρk = α (ρk − ρk−1)
with α > 1, for k = 1, . . ., n− 1. In this way, n intervals can be considered, whose length
increases with k. These intervals identify n income classes. We emphasise that this provides
a more realistic description. Indeed, in this way, one can, by suitably choosing α, describe
societies in which the richest individuals (those belonging to the n-th income class) have an
average income which is order of magnitude larger that of the poorest individuals (those
in the first class). We suppose for simplicity that the fraction of individuals whose income
falls between ρk−1 and ρk (more precisely, in [ρk−1, ρk)) is the same in all points of the
interval. We denote by xk(t), with xk : R → [0,+∞), this fraction at time t, and denote
rk = (ρk+1 − ρk)/2 the average income of the k-th class.

The overall dynamics, which determines at each instant the income distribution, re-
sults from a whole of economic exchanges between individuals. These exchanges represent
both earnings (due for example to the provision of some good or service) and losses (due
to the payment in exchange for some good or service). They induce “small” movements
of the individuals undergoing the exchanges from a class to a closer one. Beside such
earnings and losses, which occur as direct interactions of pairs of individuals, others can
be thought to take place, representing the benefit from the tax revenue redistribution
(provided through education, health care and similar supports) and the payment of taxes
accompanying any gain respectively. Indeed, we postulate the existence of a fiscal system
based on a progressive taxation. Specifically, denoting by τk ∈ [0, 1) the tax rate for the k-th
class, we assume

τk =
(rk − r1) τmax + (rn − rk) τmin

rn − r1
for k = 1, . . ., n ,

where τmin = τ1 and τmax = τn respectively denote the minimum and maximum tax rates.
The way how taxation (together with redistribution) is taken into account by the algorithm
described below is as follows. Every time

− an individual of the i-th class pays an amount S (S� (rk+1 − rk) for all k = 1, . . ., n)
to one of the j-th class and

− the latter one pays to the government a tax on her earnings according to her income
class (her tax rate being τj) and

− the government redistributes the tax revenue to the population.

This process is equivalently described by the following actions:

− the i-individual pays an amount S (1− τj) to the j-individual and
− the i-individual pays an amount S τj which is divided among all individuals.

Further details can be found in [6], where this mechanism was first introduced. We
notice here that due to constraints inherent to the model, individuals of the n-th class are
excluded by the redistribution and cannot in general receive money which would let them
exit from the highest income class. Analogously, individuals of the poorest class cannot
pay money to end up with a negative income.
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What we want to emphasise here is that this elementary model treats society as a
collection of individuals who interact directly (through money exchange) or indirectly
(through taxation and redistribution). No central government is effectively present in
the algorithm.

A system of n nonlinear ordinary differential equations, one for each income class in
which the population is divided, describes the variation in time of the fraction of individuals
in these classes:

dxk
dt

=
n

∑
i=1

n

∑
j=1

(
Ck

ij + Tk
[ij](x)

)
xixj − xk

n

∑
j=1

xj , k = 1 , . . . , n . (1)

The meaning and the form of the Ck
ij’s and Tk

[ij]’s appearing on the r.h.s. of (1) are
detailed next. For the convenience of the reader, we repeat here a description necessarily
similar to one already given in [6–8]. A warning is however in order that some terms below
are here different than the corresponding ones in those papers.

− Each Ck
ij ∈ [0,+∞) expresses the probability density that an individual of the i-th

class will belong to the k-th class after a direct interaction with an individual of the
j-th class. The identity ∑n

k=1 Ck
ij = 1 has hence to hold true for any fixed i and j;

− Each Tk
[ij] : Rn → R expresses the variation density in the k-th class due to an

interaction between an individual of the i-th class with an individual of the j-th class.
The functions Tk

[ij] are continuous and need to satisfy ∑n
k=1 Tk

[ij](x) = 0 for any fixed i,
j and x ∈ Rn.

To specify the form of the Ck
ij’s and Tk

[ij]’s we still need some more definitions:

− Denote by pi,j (for i, j = 1, 2, . . ., n) the probability that in an interaction between an
individual of the i-th class with an individual of the j-th class, the one who pays is
the former one. Specifically, we assume

pi,j = min{ri, rj}/4rn ,

with the exception of the terms ph,h = rh/2rn for h = 2, . . ., n− 1, pi,1 = r1/2rn for
i = 2, . . ., n, pn,j = rj/2rn for j = 1, . . ., n− 1, p1,j = 0 for j = 1, . . ., n and pi,n = 0 for
i = 1, . . ., n.

− Denote by S the minimal amount of money that individuals may exchange;
− Denote by wh ∈ R (for h = 1, 2, . . ., n) n coefficients playing the role of weights,

suitable to incorporate welfare in the redistribution terms. Specifically, we assume
here (this expression is different from that one adopted in [8])

wh =
1
2

(
1 +

(1− 2β) (2rh − r1 − rn)

rn − r1

)
, (2)

with 1/2 ≤ β ≤ 1. From (2) one easily checks that if β = 1/2, then wh takes the same
value, 1/2, for each h = 1, . . ., n, whereas if β > 1/2, then w1 = β, wn = 1− β and wh
is decreasing as a function of h.

Referring to [6] for technical details on the range of the indices in the formulas below
(essentially, all expressions are to be thought as present only for meaningful values of
the indices), we can now write the expressions of the Ck

ij’s and Tk
[ij]’s as follows: the only

nonzero elements Ck
ij’s are those of the form
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Ck
k+1,j = pk+1,j S

1− τj

rk+1 − rk
,

Ck
k,j = 1− pj,k S

1− τk
rk+1 − rk

− pk,j S
1− τj

rk − rk−1
,

Ck
k−1,j = pj,k−1 S

1− τk−1
rk − rk−1

,

whereas Tk
[ij](x) = Uk

[ij](x) + Vk
[ij](x), with

Uk
[ij](x) =

pi,j S τj

∑n
h=1 whxh

(
wk−1xk−1
rk − rk−1

− wkxk
rk+1 − rk

)
,

describing the advancement from a class to the subsequent one, due to the benefit of tax
revenue redistribution and

Vk
[ij](x) = pi,j S τj

(
δi,k+1

ri − rk
−

δi,k

ri − rk−1

)
∑n−1

h=1 whxh

∑n
h=1 whxh

.

describing the retrocession from a class to the preceding one, due to the payment of some
tax. The symbol δi,j is nothing but the Kronecker delta.

2.1. Properties of the Model

We point out here that independently of some differences between the expressions of
certain terms in the present version of the model and those appearing in versions discussed
in previous works, the following properties hold true.

The existence for any x0 = (x01, . . . , x0n) with x0k ≥ 0 for all k = 1, 2, . . ., n and
∑n

k=1 x0k = 1, of a unique solution x(t) = (x1(t), . . ., xn(t)) of (1), satisfying x(0) = x0 has
been proved in [6]. In particular, it has been proved there that such a solution is defined for
all t ≥ 0 and satisfies xk(t) ≥ 0 for k = 1, 2, . . ., n, as well as

n

∑
k=1

xk(t) = 1 for all t ≥ 0 . (3)

Additionally, it has been proved in [6] that the function µ : {x ∈ Rn : ∑n
k=1 xk = 1} →

R, defined as µ(x) = ∑n
k=1 rkxk and which represents the global income is a first integral

for (1):
n

∑
k=1

rkxk(t) = µ ∈ R for all t ≥ 0 . (4)

Lastly, an extensive number of numerical simulations, also carried out with different
parameter values, provides evidence that for fixed model parameters, in correspondence
to any conceivable value of the global income µ, a unique stationary solution of (1) exists
to which all solutions x(t) = (x1(t), . . ., xn(t)) satisfying x(0) = x0 with µ(x0) = µ tend
as t→ ∞.

2.2. Allocation of a Basic Income

The way a basic income system is incorporated into the model is as follows. We
suppose that the bottom class or classes in the income ladder are empty. The construction
of the model with parameters chosen as above implies that if there are not individuals
belonging to the poorest income class [respectively, to the poorest m income classes at the
bottom of the income ladder] at a time that we consider to be the initial time, t = 0, then
the same also holds true for all t ≥ 0. This follows from the technical constraint included in
the model and recalled above, expressed by the requirement that p1,j = 0 for j = 1, . . ., n.
According to this constraint, individuals in the poorest class are supposed to never pay.
By contrast, they could end up in a class with "negative" income, something that we do
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not consider here. Yet, it is possible that individuals of other classes, characterised by
higher income than the poorest one, worsen in time their status and end up in this last one.
In short, the mentioned constraint provides a kind of barrier to the transition to poverty
beyond the poorest class.

According to the model, if a society ruled by a certain fiscal system is divided into n
income classes, all of which, from the first one to the n-th one, are effectively populated,
the income classes effectively populated of the same society when basic income provision
is introduced are those going for example from the second one to the n-th one, or those
going from the third one to the n-th one [or those going from the (m + 1)-th one to the n-th
one, if the poorest m income classes are to be empty].

3. Results from Numerical Simulations

To find numerical solutions of the equation system (1), we obtain insight on its
dynamics and make comparisons between the emerging scenarios in the presence of
different fiscal systems, and in particular, in the presence of a basic income allocation, we
need to fix the values of the parameters entering in the model.

We want to be able to acquire a graphical representation of the income distribution,
somehow resembling, albeit within a discrete approach, one of a continuous distribution.
We hence choose here a rather high number of classes, n = 15. We then choose ρ1 = 1 and
α = 1.3, which yields (rounding off numbers)

(ρ0 , ρ1 , ρ2 , ρ3 , . . . , ρn) = (0.0 , 1.0 , 2.3 , 3.99 , . . . , 167.286) ,

and, correspondingly,

(r1 , r2 , r3 , . . . , rn) = (0.5 , 1.65 , 3.145 , . . . , 147.599) .

As for the minimum and maximum tax rates, we consider three cases:

- (I) τmin = 0.0 and τmax = 0.0 (case in which there is no taxation),
- (I I) τmin = 0.20 and τmax = 0.20 (case with a single taxation rate),
- (I I I) τmin = 0.20 and τmax = 0.45 (case with a progressive taxation).

Furthermore, whereas for the cases (I) and (I I) we assume β = 0.50 (i.e., no additional
welfare), for the case (I I I) we consider both the possibility that β = 0.50 (no additional
welfare) and β = 0.67 (additional welfare). We also fix S = 1.

We consider, in correspondence of each of the cases (I), (I I), (I I I) above (and in the
case (I I I) in correspondence of the two versions, with β = 0.50 and β = 0.67), relative to
societies ruled by different fiscal systems, the time evolution of system (1) for two different
values of the total income, here µ = 16 and µ = 24 (to exemplify a “poor” and a “rich”
population), in three cases:

- (i) when no basic income allocation is present,
- (ii) with basic income allocation and the class with average income r1 empty,
- (iii) with basic income allocation and the classes with average income r1, r2 empty.

Summarising, the cases here considered are those in the following list, where we also
introduce a suitable label for each of them, to be then employed in the captions of the
panels of some figures:

- model [00-00, 50, 16]:
τmin = 0.00, τmax = 0.00, β = 0.50, µ = 16, in the cases (i), (ii), (iii),

- model [00-00, 50, 24]:
τmin = 0.00, τmax = 0.00, β = 0.50, µ = 24, in the cases (i), (ii), (iii),

- model [20-20, 50, 16]:
τmin = 0.20, τmax = 0.20, β = 0.50, µ = 16, in the cases (i), (ii), (iii),

- model [20-20, 50, 24]:
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τmin = 0.20, τmax = 0.20, β = 0.50, µ = 24, in the cases (i), (ii), (iii),
- model [20-45, 50, 16]:
τmin = 0.20, τmax = 0.45, β = 0.50, µ = 16, in the cases (i), (ii), (iii),

- model [20-45, 50, 24]:
τmin = 0.20, τmax = 0.45, β = 0.50, µ = 24, in the cases (i), (ii), (iii),

- model [20-45, 67, 16]:
τmin = 0.20, τmax = 0.45, β = 0.67, µ = 16, in the cases (i), (ii), (iii),

- model [20-45, 67, 24]:
τmin = 0.20, τmax = 0.45, β = 0.67, µ = 24, in the cases (i), (ii), (iii).

As recalled in Section 2.1, for any choice of model parameters, and any conceivable
value of the total income µ, a unique stationary income distribution exists to which solutions
tend in the long run.

The “asymptotic” distributions relative to the mentioned cases are displayed in the
Figures 1 and 2. More specifically, the three histograms in each panel of Figure 1 display
the fraction of individuals in each of the 15, 14, 13 non-empty income classes relative to
the model quoted in the caption of the panel, in the three cases (i), (ii), (iii). A similar
representation of the long-run distributions, in which account is taken also of the width of
the income intervals characterising the income classes, is given in Figure 2.

One may easily notice that when basic income is introduced in a specific model, the
fraction of individuals belonging to the poorest classes diminishes. Even if in some panels
in Figure 1 the first column in the second and third histogram is higher than that one in
the first histogram, one should remember that the fraction of individuals in the poorest
class of (iii) (i.e., the class with average income r3) must be compared with—and it is
always smaller than—the fraction of individuals belonging to the two poorest classes of (ii)
(the classes with average income r2 an r3) and, in turn, this latter one must be compared
with—and it is always smaller than—the fraction of individuals belonging to the three
poorest classes of (i) (the classes with average income r1, r2 an r3).

This leads one to think that for each of the examined cases economic inequality is
smaller provided basic income allocation is present.

Additionally, a comparison between stationary distributions emerging in the same
taxation model (namely for fixed values of τmin, τmax and β), but in correspondence to
different total income values is interesting. It can be achieved by looking at the histograms
contained in two panels on the same row, one in the right column and the other in the left
column, e.g., in Figure 1a,b or in Figure 1c,d, and so on. By looking at the left and right
panels in Figure 1 one may observe that, if µ = 24 (larger total income), the fraction of
individuals belonging to a class at the bottom of the income ladder is systematically smaller
than that one of the same income class, of the same model, with (smaller total income)
µ = 16. Here and in the Figure 2 also notice that the histograms on the left and on the right
panel column are scaled differently.

To obtain an explicit measure of the income inequality characterising the various
cases, we calculate the Gini coefficient. Its definition, next recalled, is based on the Lorenz
curve. This curve plots on the y axis the fraction of the cumulative total income of the
lowest-income fraction of the population, represented on the x axis. In other words, if the
population and the total income are normalised to 1, the poorest cumulative fraction x
of the population possesses the cumulative fraction y(x) of the total money. The line at
45 degrees represents perfect income equality. The Lorenz curve satisfies y(0) = 0, y(1) = 1
and y(x) ≤ x for all x ∈ [0, 1]. The Gini coefficient is defined as the ratio A/B of the area
A that lies between the line of equality and the Lorenz curve over the total area B of the
triangle which lies under the line of equality. Consequently, it takes values in [0, 1]. The
larger the Gini coefficient is, the greater the income inequality is.

Each panel of Figure 3 shows the Lorenz curves relative to the income distribution of
the model quoted in its caption in the three cases (i), (ii), (iii). All graphs in the eight panels
confirm that the Gini coefficient for a society, and equivalently also the economic inequality,
diminishes provided a basic income is introduced. This can be seen also quantitatively:
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the approximate values of the Gini coefficients in the cases here considered are reported
in Table 1.
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Figure 1. The three histograms in each of the panels (a–h) refer to the three cases (i), (ii), (iii) of the model quoted in the
relative caption and represent the fraction of individuals in each of the non-empty income classes.
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Figure 2. The three histograms in each of the panels (a–h) show the long-run stationary distribution relative to the cases
(i), (ii), (iii) of the model quoted in the relative caption. One may notice here the different width of the income intervals
defining the income classes.
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Figure 3. Each of the panels (a–h) displays the Lorenz curves relative to the income distribution of the model quoted in the
relative caption, in the three cases (i), (ii), (iii). It is evident from all panels that the Gini coefficient, and correspondingly
economic inequality, diminishes when a basic income is introduced.
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Table 1. The two tables display the Gini coefficients for the models whose minimal and maximal tax
rates τmin and τmax and welfare coefficient β are as in the first column, in the cases (i), (ii) or (iii) as
in the first row. The top table refers to total income µ = 16 and the bottom table to total income µ = 24.

τmin-τmax β (i) (ii) (iii)

00-00 50 0.79 0.70 0.62

20-20 50 0.69 0.65 0.58

20-45 50 0.64 0.61 0.56

20-45 67 0.63 0.60 0.55

µ = 16

00-00 50 0.74 0.68 0.63

20-20 50 0.63 0.61 0.58

20-45 50 0.58 0.57 0.55

20-45 67 0.57 0.56 0.54

µ = 24

4. Conclusions

In this paper, a toy model is proposed which provides a stylised description of the
introduction of a universal basic income in a closed society. The consequent effects of
such a policy on the income distribution and the resulting level of economic inequality are
investigated in the presence of different taxation schemes. The model is expressed in terms
of differential equations, whose dynamics is explored by means of numerical simulations.
These suggest that a basic income allocation acts as a tool of poverty reduction and leads
to a decrease of economic inequality. As already anticipated in the introduction, we are
well conscious that the issue of universal basic income in the real world is much more
complex and cannot be faced without economic, social and political analysis. For example,
the problem concerning the sustainability of the costs of such a program, an evaluation as
to whether UBI could become a disincentive to work and commitment, to mention at least
a couple of aspects, should be taken into account.

The purpose of this paper is simply to show that mathematical models can also help
predict scenarios arising from one policy or another.
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Appendix A

We give here some details on the numerical method employed to find the solutions of
the equations (numbered as (1) in the text)

dxk
dt

=
n

∑
i=1

n

∑
j=1

(
Ck

ij + Tk
[ij](x)

)
xixj − xk

n

∑
j=1

xj , k = 1 , . . . , n . (A1)

We can write more concisely this differential equation system as

dx
dt

= F(x) , (A2)
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with obvious definition of the vector field F = (F1, . . ., Fn) and with

x = (x1, x2, . . ., xn) .

If the two vectors

v1 = (1, 1, . . ., 1) ∈ Rn ,

v2 = (r1, r2, . . ., rn) ∈ Rn

are introduced, the constraints (3) and (4) can be expressed as

n

∑
k=1

xk(t) = x · v1 = 1 , (A3)

n

∑
k=1

rkxk(t) = x · v2 = µ . (A4)

The Cauchy problem in correspondence to a fixed value of the total income (and for a
population normalised to 1) amounts to search the solution x(t) of (A2) which satisfies

x(0) = x0 (A5)

for a given vector x0 = (x0,1, x0,2, . . ., x0,n), where x0 · v1 = 1 and x0 · v2 = µ.
The Equation (A1) (or, equivalently (A2)) together with the constrains (A3) and (A4)

form a semi-explicit DAE (differential algebraic equation). By directly applying a standard
numerical solver to the n Equation (A1) together with some initial condition x(0) = x0,
one would not obtain the conservation of the population and of the total income; namely
the constraints (A3) and (A4) would not be satisfied. In view of that, the numerical results
described in the paper have been obtained by first performing a reduction of the number
of system equations in the following way.

The constraints (A3) and (A4) allow the explicit expression of two of the components
of a vector x satisfying them in terms of the others. For instance, given the vector

x∗ = (x1, x2, . . ., xn−2) ,

one can obtain from (A3) and (A4) (and this was done here)

xn−1 = ξn−1(x∗) ,

xn = ξn(x∗) . (A6)

The Equation (A2) can then be reformulated as

dx∗k
dt

= Fk(x
∗, ξn−1(x∗), ξn(x∗)) , k = 1, . . ., n− 2 , (A7)

and is studied in conjunction with the initial condition

x∗0 = (x0,1, x0,2, . . ., x0,n−2) . (A8)

Once the unique solution x∗(t) of (A7) and (A8) has been found, by invoking the
Formula (A6), one finds the solution

x(t) = (x∗(t), ξn−1(x∗(t)), ξn(x∗(t))) (A9)

of (A1), (A3), (A4) and (A5).
Calculations have been performed by employing a numerical solver from the software

Wolfram Mathematica 12.3.0.0.



Algorithms 2021, 14, 331 13 of 13

Then, to verify the quality of the results, some cases have also been solved numerically
with a different method which is a combination of the Euler and Romberg methods, and
which we describe next.

To start with, straightforward calculation shows that given a point

y = (y1, y2, . . ., yn) ,

its projection on the linear manifold in Rn defined by (A3) and (A4) is given by

P(y) = y + v1
(v1 · v2)(y · v2 − µ) + (v2 · v2)(1− y · v1)

(v2 · v2) (v1 · v1)− (v1 · v2)2 (A10)

+ v2
(v1 · v1)(µ− y · v2) + (v1 · v2)(y · v1 − 1)

(v2 · v2) (v1 · v1)− (v1 · v2)2 .

Now, let yh be the numerical solution of (A1) (or, equivalently (A2)) at step h, and let
th and ∆t respectively denote the time at step h and the step. For a fixed positive number
n0 (which in our calculations has been taken equal to 5 so as to get accurate results) one
divides the interval [th, th + ∆t] into 1, 2, . . ., n0 equal subintervals. By iteratively applying
once, or twice, . . ., or n0 times the Euler method, one obtains the values

yh+1,1 , yh+1,2 , . . . , yh+1,n0 .

At this point, one constructs the interpolation polynomial (with vectorial coefficients)
p(s) of degree n0 − 1 that interpolates the points(

1, yh+1,1

)
,

(1
2

, yh+1,2

)
, . . . ,

( 1
n0

, yh+1,n0

)
,

and sets
yh+1 = P(p(0)) .

We emphasise that an advantage of this second method is that it can be programmed
very easily.

In the cases in which both methods described above have been applied, we got
practically the same results. In fact, they display 3 or 4 equal significant digits.
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