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Abstract: In this paper, we consider the application of the zero-order mini-batch optimization method
in the problem of finding optimal control of a pencil of trajectories of nonlinear deterministic systems
in the case of incomplete information about the state vector. The pencil of trajectories originates from
a given set of initial states. To solve the problem, the structure of a feedback system is proposed,
which contains models of the plant, measuring system, nonlinear state observer and control law of
the fixed structure with unknown coefficients. The objective function proposed considers the quality
of pencil of trajectories control, which is estimated by the average value of the Bolz functional over
the given set of initial states. Unknown control laws of a plant and an observer are found in the form
of expansions in terms of orthonormal systems of basis functions, which are specified on the set of
possible states of a dynamical system. The original pencil of trajectories control problem is reduced
to a global optimization problem, which is solved using the well-proven zero-order method, which
uses a modified mini-batch approach in a random search procedure with adaptation. An algorithm
for solving the problem is proposed. The satellite stabilization problem with incomplete information
is solved.

Keywords: mini-batch algorithms; metaheuristic; optimal control; satellite stabilization problem

1. Introduction

A general approach to the numerical solution of the problem of finding the average
optimal control of nonlinear deterministic dynamical systems under conditions of uncer-
tainty in setting the initial conditions and incomplete information about the state vector is
proposed. Since direct information about the state vector is not available, a nonlinear state
observer is included in the closed-loop control system, which finds an estimate of the state
vector from the output of the nonlinear model of the measuring system. The control laws
of the plant and the observer are found simultaneously as functions of time and estimates
of the state vector. In contrast to linear systems with a quadratic criterion, in which the
synthesis of the optimal controller and the optimal filter is performed independently, in
the proposed procedure, the undefined coefficients of the control laws of the plant and the
observer are sought simultaneously [1].

An alternative way is to use various numerical methods for solving the Bellman
equation as a sufficient condition for optimality of feedback control in the complete state
information problem. In this case, arbitrary initial conditions are considered, for which the
minimum of the functional should be obtained. When solving practical problems of control
theory, it is usually possible to define a set of initial states, determined by the conditions
of operation of the control system, and for this set to search for the corresponding law of
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control with feedback. To complete the solution, one should find the parameters of the
nonlinear observer independently and use the estimate of the state vector in the optimal
control law instead of exact information about the state vector.

In the present paper, the behavior of a nonlinear continuous deterministic plant
(model of object) is described by the ODE system. Parallelepiped constraints are imposed
on control vector coordinates. Initial conditions are given by a compact set of initial states.
The quality of separate trajectory control is estimated by the value of the Bolz functional.
For the given set of initial conditions, a pencil of trajectories is considered. The performance
index to be minimized is calculated by the average value of the Bolz functional over the set
of initial states. The problem is to find the control laws for the plant and the state observer
in the class of functional expansions in terms of elements of orthonormal basis systems
with unknown coefficients, depending on time and estimates of the state vector coordinates.
The components of the control laws are found using systems of basis functions that are
used in problems of spectral analysis [2,3]. It is proposed to apply the mini-batch adaptive
method of random search (MAMRS) [4–6] for solving the problem under consideration
and to analyze the solution of the problem for various models of the measuring system.
As a special case, the control problem with complete information about the state vector
is considered. MAMRS can be classified as a metaheuristic method [7–11]. MAMRS
extends the idea of stochastic gradient methods [12–15] to a method that does not require
information about the gradient. The efficiency and analysis of this method is demonstrated
by solving an applied optimal control problem of satellite stabilization [16].

2. Statement of the Problem

We consider the nonlinear continuous dynamical system described by the vector
differential equation:

.
x(t) = f (t, x(t), u(t)), (1)

where f (t, x, u) is a given continuous function, t ∈ T = [t0; t1] is a continuous time and the
initial moment t0 and final moment t1 are specified; x ∈ Rn is a state vector; u ∈ U ⊆ Rq is
a control vector and U = [a1, b1]× . . .× [aq, bq] is a set of allowable values of control.

The initial conditions are specified as:

x(t0) = x0 ∈ Ω ⊂ Rn, (2)

where Ω is a set with positive measure (mes Ω > 0) and a piecewise smooth boundary. It
characterizes the uncertainty in setting the initial conditions.

The model of the measuring system is described by the relation:

z(t) = h(t, x(t)), (3)

where z ∈ Rm is an output vector and h(t, x) is a given continuous function. The infor-
mation coming from the model of the measuring system arrives at the input of the state
observer, producing an estimate of the state vector.

We suppose that it is possible to obtain an estimate of the state vector using a nonlinear
observer of the form:

dx̂(t)
dt

= f (t, x̂(t), u(t, x̂(t))) + K(t, x̂(t))[z(t)− h(t, x̂(t))], (4)

x̂(t0) = x̂0, (5)

where x̂(t) is a state vector estimate, x̂0 ∈ Ω is an initial estimate and K(t, x̂) ∈ Rn×m is
an unknown continuous n×m matrix function. This matrix is considered as a feedback
control of the observation process. The state vector estimate is used also in the plant control
law u(t, x̂).

We define the set of admissible control laws U by functions (u(t, x̂), K(t, x̂)), where
∀t ∈ T, the plant control u(t) = u(t, x̂(t)) ∈ U is a piecewise continuous and the observer
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control K(t) = K(t, x̂(t)) ∈ Rn×m is a continuous function. It is assumed that the solution
of the system of Equations (1) and (4) with the initial conditions (2), (5) taking into account
(3), exists and is unique.

The performance index for a separate trajectory:

I(x0, u(t, x̂(t)), K(t, x̂(t))) =
t1∫

t0

f 0(t, x(t), u(t, x̂(t)), K(t, x̂(t)))dt + F(x(t1)), (6)

where f 0(t, x, u, K), F(x) are given continuous functions.
We associate the pencil of trajectories of the system of Equations (1) and (4) with each

admissible control law (u(t, x̂), K(t, x̂)) ∈ U and the set Ω of initial states:

X(t, u(t, x̂), K(t, x̂)) = ∪{x(t, u(t, x̂), K(t, x̂), x0), x̂(t, U(t, x̂), K(t, x̂), x̂0)|x0 ∈ Ω},

that is, the union of the system of Equations (1) and (4) and solutions for all possible initial
states from the set Ω.

The performance index for the pencil of trajectories control to be minimized is:

J[U(t, x̂), K(t, x̂)] =
∫
Ω

I(x0, U(t, x̂(t)), K(t, x̂(t)))dx0/mes Ω . (7)

The optimal control problem is to choose the control policy (u ∗ (t, x̂), K ∗ (t, x̂)) ∈ U
so that performance index (7) is minimized:

J[U∗(t, x̂), K∗(t, x̂)] = min
(u(t,x̂),K(t,x̂))∈u

J[u(t, x̂), K(t, x̂)] (8)

Since the average value of performance index (6) is minimized on the set of initial
states Ω, the required control is called optimal on average.

3. Solution Search Strategy

We consider the transition to the parametric optimization problem from the control
problem (8), i.e., to the problem of finding unknown coefficients of the plant control and
the observer control. The plant control constraints of parallelepiped type should be taken
into account.

To implement this transition, we use the following assumptions:

1. The set of initial states Ω is a parallelepiped, defined by the direct product of segments
[αi; βi], i = 1, n, i.e., Ω = [α1; β1]× · · · × [αn; βn]. With the help of a step ∆xi, all line
segments are divided into Ni segments and the parallelepiped Ω is divided into
N = N1 · · ·Nn elementary disjoint subsets Ωk, k = 1, N. In each elementary subset
Ωk, an initial state x0

k (the center of the parallelepiped Ωk is specified;
2. The direct product Q = [x1, x1]× · · · × [xn, xn] represents the set of admissible val-

ues of the state vector coordinates, where xi, xi, i = 1, n are the lower and upper
boundaries for each coordinate, respectively, determined by the applied problem
being solved. Therefore, one can assume that the possible estimates of the state vector
should satisfy the following conditions: x̂1 ∈ [x1, x1], . . . , x̂n ∈ [xn, xn];

3. The plant control policy is searched in the form:

uj(t, x̂(t)) = sat
{

gj(t, x̂1(t), . . . , x̂n(t))
}︸ ︷︷ ︸

vj(t)

, j = 1, q, (9)
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where saturation function sat guarantees the fulfillment of the plant control constraints of
the form aj ≤ uj(t) = uj(t, x̂(t)) ≤ bj:

sat vj(t) =


vj(t), aj < vj(t) < bj,

aj, vj(t) ≤ aj,
bj, vj(t) ≥ bj,

(10)

gj(t, x̂1, . . . , x̂n) =
L0−1

∑
i0=0

L1−1

∑
i1=0
· · ·

Ln−1

∑
in=0

uj
i0,i1,...,in · q(i0, t)p1(i1, x̂1) · · · pn(in, x̂n), (11)

where uj
i0,i1,...,in are unknown coefficients; L0, L1, . . . , Ln are scales of truncation; q(i0, t), i0 =

0, L0 − 1 is a system of orthonormal time functions (basis functions) defined on the seg-

ment [t0, t1] and satisfying the condition
t1∫

t0

q(i, t)q(j, t)dt =
{

1, i = j,
0, i 6= j,

; and pj(ij, x̂j), ij =

0, Lj − 1 is a system of orthonormal functions of a variable x̂j (basis functions) defined on
an interval [xj, xj], j = 1, . . . , n.

As the basis functions q(i0, t), pk(ik, x̂k), k = 1, n, one can take, for example:

• Legendre polynomials:

p(n, x) =
n

∑
k=0

(
Ck

n

)2
x̃n−k x̃k, n = 0, L− 1;

• Cosine:

p(n, x) = cos(n · π · (2 · x̃− 1)), n = 0, L− 1;

where x̃ = (x− x)/(x− x) and other systems of basic functions.
The matrix entries Kij(t, x̂), i = 1, . . . , n; j = 1, . . . , m of the state observer control

policy K(t, x̂) are found by a formula similar to (11), where variable u is replaced by K.
The value of the pencil control cost functional (7) is approximated as:

J[u(t, x̂), K(t, x̂)] ∼= (1/N)
N

∑
k=1

I(x0, u(t, x̂(t)), K(t, x̂(t))). (12)

The optimization problem is to choose the best parameters uj
i0,i1,...,in , Ki,j

i0,i1,...,in , mini-
mizing performance index (12) by using a mini-batch adaptive method of random search
(MAMRS) [4]. The strategy of its application is that, for the approximate calculation of
functional (12), randomly selected d non-coinciding trajectories emanating from the set of
initial states are used that form a mini-batch:

Jd[u(t, x̂), K(t, x̂)] = (1/d)
d

∑
k=1

I(x0, u(t, x̂(t)), K(t, x̂(t))). (13)

The mini-batch size is user-definable,1 ≤ d ≤ N, and is usually selected step by step.
Furthermore, for simplicity of presentation, we assume that each coordinate of the control
laws u(t, x̂) and K(t, x̂) can be associated with a matrix column of the coefficients uj

i0,i1,...,in ,

Ki,j
i0,i1,...,in . Furthermore, by concatenation, one can represent the entire set of optimized

parameters in the form of an extended vector. Let us denote it by Kd and assume that it has
dimension (n× 1). The objective function is denoted by Jd(Kd). For each mini-batch size
1 ≤ d ≤ N, the optimization results are different. When d→ N , the accuracy of solving
the optimization problem in general increases.
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4. Mini-Batch Adaptive Search Algorithm

Let us consider the optimization problem Jd[Kd]→ min
Kd

.

Denote: Js
d is the minimum value of the cost function after the s−th run; K̂s

d is a best
parameter vector column after startup; d is the mini-batch size.

Step 0. Set the initial mini-batch size: d = 1 (in general, one can start with any value
of 1 ≤ d ≤ N); Smax is a maximum number of starts; Bmax is a maximum number of
passes; α = 1.618 is an expansion coefficient; β = 0.618 is a compression coefficient; M
is a maximum number of failed tests at the current iteration; t0 = 1 is an initial step size
(one can use any value t0 > R), R is a minimum step size and L is a maximum number of
iterations; and r is a number of initial trial solutions (1 ≤ r ≤ 10).

Step 1. Set the values:b = 1 (passes number counter) and Pd = 0(initial value of the
sum of the cost function average values).

Step 2. Set the values: s = 1(starts number counter) and J1
d = 108 ÷ 1010; Sd = 0(initial

value of the sum of the objective function values).
Step 3. Define the initial values of coefficients uj

i0,i1,...,in ,kij
i0,i1,...,is . Generate r vectors Ks

d
using a uniform distribution of its coordinates at some intervals. Calculate the value of the
function Jd for each generated vector and order them according to the value of the objective
function [17]. The vector with the smallest value of the objective function is denoted by
column vector Ks

d
,0. Put l = 0, j = 1.

Step 4. Generate a random vector ξ j =
(
ξ1

j, . . . , ξqn
j)T , where ξi

j is a random variable
uniformly distributed on the interval [−1,1].

Step 5. Calculate: yj = Ks
d

,l + tl
ξ j

‖ ξ j ‖ .
Step 6. Generate the mini-batch size d, i.e., generate d pairwise mismatched sets

of q1 ∈ N1, . . . , qn ∈ Nn values defining the initial states Xk
0 ∈ Ω with numbers k =

q1 · . . . · qn ∈ {1, . . . , N} or corresponding to the tuple < q1, . . . , qn >.
Check the fulfillment of the conditions:

(a) If Jd(yj) < Jd(Ks
d

,l), the algorithm step is successful. Put zj = Ks,l
d + α(yj − Ks,l

d ).
Determine if current direction yj − Ks

d
,l is successful: if Jd(zj) < Jd(Ks

d
,l), the search

direction is successful. Put Ks
d

,l+1 = zj, tl+1 = αtl, l = l + 1 and check the termination
condition. If l < L, put j = 1 and go to step 4. If l = L, the search process is over:
K̂s

d = Ks
d

,l , go to step 8; if Jd(zj) ≥ Jd(Ks
d

,l), the search direction is unsuccessful, go to
step 7;

(b) If Jd(yj) ≥ Jd(Ks
d

,l), the unsuccessful step is made, go to step 7.

Step 7. Calculate the number of unsuccessful steps from the current solution:

(a) If j < M, put j = j + 1 and go to step 4;
(b) If j = M, check the termination condition: if tl ≤ R, the process is over: K̂s

d = Ks
d

,l and
Js
d = Jd(Ks

d
,l), go to step 8; if tl > R, put tl = β tl, j = 1 and go to step 4.

Step 8. Check the improvement of the cost function value as a result of the s-th run: if
Jd(Ks

d
,l) < Js

d, put Js
d = Jd(Ks

d
,l) and K̂s

d = Ks
d

,l and go to step 9; if Jd(Ks
d

,l) ≥ Js
d, go to step 9.

Step 9. Calculate Sd = Sd + Js
d and verify the stop conditions (the maximum number

of starts is achieved): if s < Smax, put s = s + 1 and go to step 3; if s = Smax, put
K̂d = K̂s

d—the best solution during the b-th pass for a given d; calculate md = Ss
d/Smax and

σmd =

(
1

Smax−1

Smax
∑

s=1

[
Js
d −md

]2)1/2

and go to step 10.

Step 10*. Put Pd = Pd + md and mb
d = md and check the condition for completing a

given number of passes: if b < Bmax, put b = b + 1 and go to step 2; if b = Bmax,calculate:

md =
Bmax
∑

b=1
mb

d/Bmax, σmd =

(
1

Bmax−1

Bmax
∑

b=1

[
mb

d −md

]2)1/2

.

Step 11*. Check the condition for completing studies of the effect of the mini-batch
size: if d < N, put d = d + 1, s = 1 and go to step 1; if d = N, go to step 12.
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Step 12. As a result, find the best estimate of K̂∗d after Bmax passes and indicators
md and σmd for each value of the mini-batch size d. To analyze the resulting estimation
accuracy, find the value J(K̂∗d).

Steps 10 and 11 are performed if necessary. It is recommended to do restarts to
increase the chances of finding a global extremum. The best solution is selected from the
restarts made.

5. Satellite Stabilization Problem

The problem of damping the rotational motion of the satellite by the engines installed
on it is considered. The system describing the motion of a rigid body relative to the center
of inertia after the transition to dimensionless variables has the form:

.
p(t) = [u1(t)/6],

.
q(t) = [u2(t)− 0.2r(t) p(t)],

.
r(t) = [0.2 (u3(t) + p(t) q(t))],

where p, q, r are the projections of the angular velocity onto the main central axes of inertia
and t ∈ [0, 1] and u1, u2, u3 are controls that characterize the thrust of the engines located
on the satellite.

The set of initial states is given by a uniform distribution law on the set Ω = [23; 25]×
[13; 15]× [13; 15].

At the final moment of the system functioning, the following conditions must be
fulfilled: p(1) = q(1) = r(1) = 0, corresponding to the meaning of the satellite stabilization
problem. The fulfillment of terminal conditions should be accompanied by minimization
of the fuel used to turn the satellite.

The functional (6):

I =
1∫

0

[ |u1(t)|+ |u2(t)|+ |u3(t)|] dt + 103 · [p2(1) + q2(1) + r2(1)].

Next, we will consider two examples: the joint estimations and control problem
with incomplete information about the state vector and the optimal control problem with
complete information about the state vector.

5.1. Example 1. The Joint Estimation and Control Problem

The proposed observer equation is:

dp̂
dt = u1(t, x̂(t))/6 + K1(t, x̂(t))[z(t)− h(t, x̂(t))],

dq̂
dt = u2(t, x̂(t))− 0.2 r̂ p̂ + K2(t, x̂(t))[z(t)− h(t, x̂(t))],

dr̂
dt = 0.2 (u3(t, x̂(t)) + p̂ q̂) + K3(t, x̂(t))[z(t)− h(t, x̂(t))].

Further, we will consider the cases of solving the problem with different models of the
measuring system.

In all tests, the number of initial states is N = 27 and L0 = L1 = L2 = L3 = 2 is
the scale of truncation. The initial state estimation vector is x̂(0) = x̂0 = (24, 15, 13)T .
Parameters of the mini-batch adaptive method of random search are Bmax = 1000, M = 15
and R = 8 · 10−5. To synthesize the plant control u(t, x̂) and observer control K(t, x̂), a
system of orthonormal Legendre polynomials is used.
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5.1.1. Case A

The measuring system model is described by the following relationship:

z(t) = (r(t), p(t))T

The behavior of trajectories set for different mini-batch sizes is shown in Figure 1:
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Table 1. Solution results for different mini-batch sizes.

d J[Kd]

1 2970.9487
10 315.6251
20 256.9266
27 167.1622

5.1.2. Case B

The measuring system model is described by the following relationship:

z(t) = (p(t), q(t))T

The behavior of the trajectories set for different sizes of mini-batch is shown in Figure 2:
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Table 2. Solution results for different mini-batch sizes.

d J[Kd]

1 2722.1031
10 455.5253
20 311.6676
27 236.1635

5.1.3. Case C

The measuring system model is described by the following relationship:

z(t) = (r(t), q(t))T

The behavior of the trajectories set for different sizes of mini-batch is shown in Figure 3:
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Table 3. Solution results for different mini-batch sizes.

d J[Kd]

1 2934.4927
10 860.9751
20 405.3041
27 351.7748

Based on Tables 1–3, we can conclude that, with an increase of the mini-batch size, the
accuracy of the problem solution also increases.

Figure 4 and Table 4 show the solution to the problem of satellite stabilization depend-
ing on the selected model of measuring systems with a mini-batch d = 27:
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From Figure 4 and Table 4, a similar character of convergence for different models of
the measuring system is observed.

5.2. Example 2. The Control Problem with Complete Information about the State Vector

The measuring system model is described by the following relationship:

z(t) = (p(t), q(t), r(t))T

In this case, there is no need to use a state observer because there is complete in-
formation about the state vector at an arbitrary moment in time. In practice, this case is
rarely realized, but it is of interest for the analysis of losses in terms of the value of the
cost functional associated with the incompleteness of the information received. In all tests,
the number of generated random initial states is N = 27 and L1 = L2 = L3 = 2 is the
scale of truncation. Parameters of the mini-batch adaptive method of random search are
Bmax = 1000, M = 30 and R = 8 · 10−9. To synthesize the plant control u(t, x), a system of
orthonormal Legendre polynomials is used.

The behavior of trajectories set for different sizes of mini-batch is shown in Figure 5:
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Table 5. Solution results for different mini-batch sizes.

d J[Kd]

1 1129.1925
10 217.4981
20 196.9630
27 98.8108

Based on the results of examples 1 and 2, we can conclude that, with the mini-batch
size d = 10, good convergence of the estimates of the state vector coordinates to the true
values is already achieved. The total execution time of the algorithm with the mini-batch
size d = 10 was 30 min and with the mini-batch size d = 27 was 90 min based on an INTEL
CORE i5 2.10 GHz processor. The results obtained indicate that, when using mini-batches,
the required quality of transients is achieved at reasonable computational costs.

6. Conclusions

The developed zero-order metaheuristic optimization algorithm, namely, a mini-batch
adaptive method of random search, is tested on the satellite stabilization problem of
finding the optimal control for a pencil of trajectories of nonlinear deterministic systems
emanating from a given set of initial states. The software for solving the problem of satellite
stabilization is developed. Three cases of solving the problem for different models of
the measuring system with incomplete information are considered. The analysis of the
problem solution for different models of the measuring system with incomplete information
is carried out. A comparison is made with the solution of the problem with a model of
the measuring system containing complete information about the state vector. The study
of the influence of the mini-batch size on the accuracy of the solution in each considered
problem is carried out. Recommendations on the choice of the algorithm parameters are
given. The obtained numerical results confirm the idea that, for a certain mini-batch size,
an acceptable quality of transient processes can be achieved with low computational costs.
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