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Abstract: Time series data are widely found in finance, health, environmental, social, mobile and
other fields. A large amount of time series data has been produced due to the general use of
smartphones, various sensors, RFID and other internet devices. How a time series is represented is
key to the efficient and effective storage and management of time series data, as well as being very
important to time series classification. Two new time series representation methods, Hexadecimal
Aggregate approXimation (HAX) and Point Aggregate approXimation (PAX), are proposed in this
paper. The two methods represent each segment of a time series as a transformable interval object
(TIO). Then, each TIO is mapped to a spatial point located on a two-dimensional plane. Finally, the
HAX maps each point to a hexadecimal digit so that a time series is converted into a hex string. The
experimental results show that HAX has higher classification accuracy than Symbolic Aggregate
approXimation (SAX) but a lower one than some SAX variants (SAX-TD, SAX-BD). The HAX has
the same space cost as SAX but is lower than these variants. The PAX has higher classification
accuracy than HAX and is extremely close to the Euclidean distance (ED) measurement; however,
the space cost of PAX is generally much lower than the space cost of ED. HAX and PAX are general
representation methods that can also support geoscience time series clustering, indexing and query
except for classification.

Keywords: time series; SAX; PAA; HAX; PAX

1. Introduction

Time provides a basic cognitive variable for the continuity and sequential description
of object movements and changes in the world [1–6]. Human society is facing many
challenges, such as environmental pollution, population growth, urban expansion, the
transmission of infectious diseases and various natural disaster monitoring and prevention
issues, etc. These are all closely related to the concept of time and produce massive data
containing information regarding time. Especially in recent years, a large amount of time
series data has been produced due to the general use of smartphones, various sensors,
RFID and other internet devices [2–6]. Time series data can help us understand history,
master the present and predict the future, as well as improve our ability to gain insight,
perception and prediction of the evolution of various existences and states in the real world.

Many applications in the fields of scientific research, industry and business produce
large amounts of time-series data that need effective analysis, requiring rational representa-
tion and efficient similarity computing and search. These applications cover the domains
of images, audio, finance, environmental monitoring and other scientific disciplines [7–9].
Many creative representation methods for time series data have been proposed for simi-
larity computing, clustering [10], classification [11], indexing and query [3,8,9,12–35]. The
taxonomy of time series representations includes four types [10]: data-adaptive, non-data
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adaptive, model-based and data dictated. The main representation methods for time series
are shown in Table 1.

Table 1. Main representation methods for time series data (— no indicated by authors; n is the length of time series; T1
non-data adaptive; T2 data-adaptive; T3 data dictated; T4 model-based).

Representation Method Year Type Complexity References

Auto-regressive (AR) model 1971 T4 [36,37]

Discrete Fourier Transform(DFT) 1993 T1 O(n(log(n))) [13,38]

Discrete Wavelet Transform (DWT) 1999 T1 O(n) [12,39]

Singular Value Decomposition (SVD) 1997 T2 [40]

Discrete Cosine Transformation (DCT) 1997 T1 — [40]

Piecewise Linear Approximation (PLA) 1998 T2 O(n(log(n))) [17]

Hidden Markov models (HMMs) 1998 T4 — [41]

Piecewise Aggregate Approximation (PAA) or Segmented Means 2000 T1 O(n) [42]

Piecewise Constant Approximation (PCA) 2000 T2 — [43]

Adaptive Piecewise Constant Approximation (APCA) 2002 T2 O(n) [16]

Perceptually important point (PIP) 2001 T1 — [44]

Chebyshev Polynomials (CHEB) 2004 T1 — [45]

Symbolic Aggregate Approximation (SAX) 2003 T2 O(n) [19,22]

HOT SAX 2005 T2 [46]

Clipped Data 2005 T3 — [47]

Group SAX 2006 T2 [48]

Extended SAX 2006 T2 [49]

Combining SAX and Piecewise Linear Approximation 2007 T2 [50]

Indexable Piecewise Linear Approximation (IPLA) 2007 T1 — [51]

1d-SAX 2013 T2 [52]

Move-Split-Merge (MSM) 2013 [53]

SAX-VSM 2013 T2 [54]

SAX-EFG 2014 T2 [55]

Tree-based Representations 2015 [56]

SC-DTW 2015 T1 [57]

Representation based on Local Autopatterns 2016 [58]

Grid Representation 2019 [59]

SAX Navigator 2019 T2 [60]

SAX-ARM 2020 T2 [61]

SAX-BD 2020 T2 [62]

Data-driven Kernel-based Probabilistic SAX 2021 T2 [63]

The most commonly used approximation representations are the PAA [42] and
SAX [19,22,64] methods. In the last decades, most of time series data indexing meth-
ods [23,25,31,32,65,66] have been based on SAX [19,22]. The SAX method reduces an
n-length time series to a w-length (w < n) string with an alphabet parameter named α.
Though highly simple and straightforward, it is a major limitation because it may lead to
some important features being lost [67]. To avoid this problem, the ESAX [68] and SAX-
TD [67] methods improve the accuracy of SAX. The ESAX method adds two additional
values, a maximum value and a minimum value, to each time series segment as the new
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feature. The mapping method between the new feature to SAX words is the same as the
SAX method. Therefore, the length of the ESAX string is three times that in SAX. The SAX-
TD method adds a trend distance for each segment; hence, the length of the symbol string
is also two times the original string length. Therefore, both ESAX and SAX-TD methods
require additional information to extend the original SAX string. The SAX-BD [62] method
has a design integrating the SAX distance with a weighted boundary distance, resulting in
it outperforming SAX-TD. Symbolic aggregate approximation methods have proven very
effective in compacting the information content of time series. However, typical SAX-based
techniques rely on a Gaussian assumption for the underlying data statistics, which often
deteriorates their performance in practical scenarios [63].

To overcome this limitation, a novel method, the Hexadecimal Aggregate approXima-
tion representation (HAX) of time series, is proposed in this paper. This method negates
any assumption on the probability distribution of time series and represents each segment
of a time series as a transformable interval object (TIO), using the transformation distance
to measure the similarity between a pair of time series. Then, each TIO is mapped to a
hexadecimal symbol by its location on a hexadecimal grid. Therefore, the HAX string is the
same length as the SAX string with the same word size, the w parameter. We compare SAX,
SAX-TD and SAX-BD methods with HAX methods. Our reason for choosing the SAX-TD
and SAX-BD is that the outputs of the SAX-TD and SAX-BD still include the original SAX
string, despite including some attachments; hence, there is comparability with the hex
string of HAX. The experimental results show that HAX has higher accuracy than the SAX
method. The remainder of the paper is organized as follows. Section 2 is the related work,
Section 3 details the principle and method of HAX, Section 4 is the experimental evaluation
and the last section is the conclusion.

2. Related Work

The most straightforward strategy for the representation of time series involves using a
simple shape to reduce a segment, such as the piecewise linear representation (PLR) [17], the
perceptually important point (PIP) [44] and the indexable piecewise linear approximation
(IPLA) [51], among others. The simple shapes may be a point or a line. For example, the
PLR and IPLA represent the original series as a set of straight lines fitting the important
points of the series, and the PIP selects some important points of a segment to express the
whole segment.

Another type involves choosing a simple value or symbol to express a segment of a
time series. The PAA [42] method is the foundation of many time series representation
methods, especially for SAX [19,22]. To reduce noise while preserving the trend of a time
series, the PAA method takes the mean value over back-to-back points to decrease the
number of points, as shown in Figure 1. At first, this method divides the original time
series into w fixed-size segments and then computes the average values for each one. The
data sequence assembled from the average values is the PAA approximation value of the
original time series.
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For instance, an n-length time series C is reduced to w symbols. At first, the time series
is divided into w segments by the PAA method. The average value of each segment is
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shown as C = C1, C2, . . . , Cw, in which the ith item of C is the average value of the ith
segment and is computed by the Equation (1).

Ci =
w
n

(n/w)i

∑
j=(n/w)(i+1)+1

Cj (1)

here, Cj is a one-time point value of the time series C.
The SAX method is one of the most typical time-series representation methods based

on symbolic expression and has the same dividing strategy as the PAA method. The
difference between the two is the mapping rule that the SAX uses. The SAX method
divides a time series into a certain number of fixed-length subsequences (called segments)
and uses symbols to represent the mean of each subsequence. There is an assumption
that the time series data conforms to the Gaussian distribution, and the average value
of each segment has an equal probability in the SAX. These are the base principle of the
breakpoint strategy used in the SAX. This strategy makes the SAX method different from
the PAA, and it can map each segment into its specified range determined by the Gaussian
distribution [69]. Indeed, there is a lookup table in the SAX method with breakpoints that
divide a Gaussian distribution in an arbitrary number of equiprobable regions. SAX uses
this table to divide the series and map it into a SAX string [19,22], while the parameter w
determines how many dimensions to reduce for the n-length time series. The smaller the
parameter w is, the larger n/w is, resulting in a higher compression ratio. Finally, the SAX
method can map each segment’s average value to an alphabetic symbol. The symbol string
after those mappings can roughly indicate the time series.

The SAX method is well known and has been recognized by many researchers; how-
ever, the limits are also obvious. Therefore, many extended and updated methods of the
SAX have been proposed, with some of the typical ones being the ESAX [67] method and
the SAX-TD [66] method, among others. The ESAX method can express the more detailed
features of a time series by adding a maximum value and a minimum to a new feature
compared to the SAX. In addition, the SAX-TD method improves the ESAX via a trend
distance strategy. The SAX-BD [4] method, proposed by us in our previous work, develops
the SAX-TD using boundary distance.

3. Hexadecimal Aggregate Approximation Representation

The HAX method lets an n-length time series be reduced to w two-dimensional points
in a hexadecimal plane (w < n, typically w << n) where each point locates at a hexadecimal
cell and may be represented by the cell order (a hexadecimal digit). Therefore, the HAX
method will reduce an n-length time series to w hexadecimal digits. Although storage
space is cheap, we remain consistent in our thinking that space count is important. We
intend to consider big data and aim to use SAX and HAX methods in an in-memory data
index structure, so the space cost remains an important factor. Table 2 shows the major
notations for the HAX method used in this paper.
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Table 2. A summarization of the notations.

T A time series
T = v1, v2, . . . , vn

S A piecewise aggregate approximation of a time series
S = s1, s2, . . . , sw

P A point set aggregate approximation of a time series
P = p1, p2, . . . , pw

H A hexadecimal digit representation of a time series
H = h1, h2, . . . , hw

w The number of PAA segments representing time series T

n The arbitrary length of time series T

t(i) ith time point

Window(i) A time window between (i − 1)th and ith time points

Subseries(i) A subseries within Window(i)

Segment(i) A fitting segment for Subseries(i)

TIO(i) or TIOAB
A transformable interval object for Segment(i); point A is the

starting point and B is the endpoint for Segment(i).

3.1. Basic Principle of HAX

The main purpose of a time series representation method is to reduce the dimensionality
of time series and then measure the similarity between two time series objects. The HAX
method uses fitting segments to simplify a subseries. As shown in Figure 2, part (a) and part
(b) respectively show two pieces of the time series 1 and 2 in the time ranges [t(i− 1), t(i)] and
[t(i), t(i + 1)]. We take the diagonal of the smallest bounding rectangle of each subseries as its
summary. For example, in Figure 2a, the summary of subseries (i) is the line segment AB or
segment (i), and the summary of subseries (i + 1) is the line segment EF or segment (i + 1).
The rule for selecting a suitable diagonal is the degree of fitting the diagonal to the time series
segment. However, the calculation cost of this rule is too high. In the actual computing process,
the maximum and minimum values of the subseries may be used for fast diagonal direction
computing.
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For the similarity of the subseries (i) of TimeSeries1 and TimeSeries2 in Figure 2, we
may use the number of transformation steps of the segment AB and the segment CD to
measure it. We call the number of transformation steps the transformation distance (TD),
as shown in Figure 3. From CD to AB, this goes through vertical translation transformation
(Figure 3a,b), rotation transformation (Figure 3b,c) and scale transformation (Figure 3c,d).
The fewer transformation steps and the smaller the number of changes are, the higher the
similarity is.
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Since the AB angle is arbitrary, it is not suitable for fast computing. The AB and the
CD are transformed at the same time to make them parallel to the V axis, and then other
transformations are performed to make them coincide, as shown in Figure 4.
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After this transformation, AB and CD can be rotated by angles α and β, respectively,
so that the summary segment is always parallel to the axis V and the value of point B is
always greater than the value of point A (shown in Figure 5). We call the transformed
segments AB and CD transformable interval objects (TIO). The two TIOs can be represented
by the following Formula:

TIOAB = (VA, VB, α) (2)

TIOCD = (VC, VD, β) (3)

Given that the distance between the center point of TIOAB and the center point of
TIOCD is D0, and S0 is the scaling variable, the similarity distance between TIOAB and
TIOCD is noted as:

DIST(TIOAB, TIOCD) = a× |D0|+ b× |α− β|+ c× |S0 − 1| (4)

where D0 is calculated by the Formula (5)

D0 = ((VA + VB)− (VC + VD))/2 (5)

and S0 can be calculated by the Formula (6).

S0 = (VB −VA)× cosβ/(VC −VC)× cosα (6)
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The larger the DIST is, the smaller the similarity is, where a is the translation transfor-
mation factor, b is the angle transformation factor and c is the expansion transformation
factor. Generally, the translation transformation factor and the rotation transformation
angle factor have a greater effect, and the scaling transformation factor has a smaller effect.
Therefore, Formula (4) can discard c× |S0 − 1|while calculating the approximate similarity
distance, and VM can be the average value of the subseries. In Formula (5), D0 can be
approximated by the difference between the average value of the two subseries. In this
way, each TIO can be expressed as Formula (7):

TIO = (VM, A) (7)

where VM is the median value of V in Formulas (2) and (3), and A is still the angle to the
axis V in the range (−90, 90).

Let V be the vertical coordinate axis and let angle A be the horizontal coordinate axis. A
two-dimensional plane called the TIO plane has been constructed, and each TIO is a point on
the plane, as illustrated in Figure 6, which shows the TIO points corresponding to the four
subseries in Figure 2. On the two-dimensional TIO plane, the points with greater similarity
are closer to each other in that space. Generally, the TIO plane can be divided into many areas,
such as 64, 128, 256 or 512, etc. To save storage space, we can divide the plane into at least
16 and up to 256 areas. This allows each area to be represented by an 8 bits number. The
higher the area count is, the more accurate the distance measure between two sequences is;
however, the more the count of areas, the more difficult the computation as well. To map an
area into a single digit, the TIO plane is divided into sixteen areas in this paper. Each area is
represented by a hexadecimal number from 0 to F, as shown in Figure 7. Each TIO point must
fall into one of the areas. The hexadecimal code of this area is used to represent the point. In
that way, a subseries can be converted into a TIO point and finally to a hexadecimal digit.
Therefore, a time series can be represented as a hexadecimal string. For example, Figure 2a
can be represented by a hexadecimal string as “04”, and Figure 2b as “35”. This is also how
we obtain the full name of HAX: the Hexadecimal Aggregate approXimation representation.
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3.2. HAX Distance Measures

The HAX transformation principle has been described in detail in the above section.
Based on the principle, time-series objects can be easily converted into HAX strings, and
the similarity between two time series objects can be measured by the distance between two
corresponding HAX strings. This process can be described using the following Formula.
Given a time series T which contains n values,

T = {v1, v2, . . . , vn} (8)

T is split into w segments S by PAA (paaMapper),

S = paaMapper(T) = {s1,s2, . . . ,sw} (9)
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where si is ith subseries. Via the TIO transformation, each subseries in S can be converted
into a TIO point in a set of TIO points P,

P = tioMapper(S) = {p1,p2, . . . , pw} (10)

where pj is a coordinate (sj, aj) and aj is a rotation angle of segment(j) corresponding to
subseries(j). Each point corresponds to a HAX character and P can then be converted into a
HAX string H through the transformation haxMapper,

H = haxMapper(P) = {h1,h2, . . . , hw} (11)

Therefore, the approximate distance between two time series can be estimated by the
distance between two corresponding HAX strings. Next, we discuss how to calculate the
distance between two HAX characters.

Given two time series objects Tq and Tc, the similarity between these two can be
estimated by many kinds of distances. The most commonly used is the Euclidean distance
(ED), as follows:

ED(Tq, Tc) = 2

√
n

∑
i=1

(vq
i − vc

i )
2

(12)

However, the real time computation of ED is very inefficient for long time series.
Hence the PAA splits a long time series into w short segments to reduce the dimension of
the time series and adopt the segment distance (SD) to estimate the similarity as follows:

SD(Sq, Sc) = 2

√√√√ w

∑
j=1

(sq
j − sc

j )
2

(13)

where

sj =
w
n

(n/w)i

∑
j=(n/w)(i+1)+1

vj (14)

Although the SD decreases the computation of ED, it also discards the trend of a time
series. Therefore, the PAX distance (PD) in this paper is expressed by TIO points and is
designed to take into account the impact of the trend. The Formula is as follows:

PD(Pq, Pc) = 2

√√√√ w

∑
j=1

(pq
j − pc

j )
2
= 2

√√√√ w

∑
j=1

((sq
j − sc

j )
2
+ f (aq

j − ac
j )

2
) (15)

where f is a real number between (0, 1), used to adjust the weight between the V axis dis-
tance and the A axis (angle) distance so that the difference between PD and ED approaches
0 as much as possible. If there is no adjustment weight, f = 1. We call this method Point
Aggregate approXimation representation (PAX).

The PAX enhances the accuracy of the similarity measurement of time series, but there
are two factors in this method, and it is not convenient for character variables. Then, we
use the haxMapper to map it to a hexadecimal character. The distance between the HAX
(HD) strings Hq and Hc is used to measure the similarity distance between the two time
series, denoted as

HD(Hq, Hc) = 2

√√√√ w

∑
j=1

(
haxMapper

(
pq

j

)
− haxMapper

(
pc

j

))2
= 2

√√√√ w

∑
j=1

(
hq

j − hc
j

)2
(16)

where haxMapper may have different mapping ways, using either sequential grid coding
mapping or other mapping methods such as the Hilbert curve filling or Z-Ordering curve
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filling methods. This paper focuses on the basic sequential grid coding method, shown in
Figure 7.

4. Experimental Evaluation

To verify the representation method proposed in this paper, we conducted an experi-
mental evaluation for the HAX method and compared it with the SAX. The SAX method
was selected because the SAX and the HAX methods are both symbol-based representation
methods based on the PAA division and have the same string length for a time series object.
In addition, the PAX method is a middle process result of the HAX and the length of its
representation string is 16 times that of the HAX. Therefore, our experimental evaluation
included the PAX and ED methods.

Since the analysis of time series data, which is based on the calculation of the similarity
distance regardless of whether it is classification, clustering or query, we selected the sim-
plest and most representative: the one nearest neighbor (1-NN) classification method [68]
for the experiments of comparison [55,68,69]. All algorithms were implemented in Java,
and the source code can be found at https://github.com/zhenwenhe/series.git, accessed
on 29 September 2021. Next, we introduce the experimental data set and method parameter
settings and then analyze the experimental results.

4.1. Experimental Data

This experiment used the latest time-series data set UCRArchive2018 [7]. The data set
has been widely used in time series data analysis and mining algorithm experiments since
2002. After expansion in 2015 and 2018, UCRArchive2018 contains a total of 128 data sets.
There are 14 data sets that are variable-length. Variable-length refers to the different lengths
of sequences in the dataset and is not a very common time series. Since we did not consider
the similarity measurement between variable-length time series data in the implementation
of the algorithm, the experiment in this paper eliminated the 14 variable-length data sets.
The data list used is shown in Table 3. The column ID is the order number of each data
set in UCRArchive2018, which ranges from 1 to 144. The column Type shows the time
series data type of each data set. The column Name is the name of each data set. The
column Train is the number of series for the train set, and the column Test is the number
of series for the test set. The column Class presents the class number in each data set in
the UCRArchive2018. The column Length presents the point number of the correspondent
time series in the data set. Each dataset has two parts, Train and Test, one for training the
parameters and the other for the testing test. The datasets contain classes ranging from 2
to 60 and have the lengths of time series varying from 15 to 2844. The database was used
in many recent papers [9,11]. We intend to cover time series in finance and economics in
future works.

4.2. Experimental Parameter Setting

Since both the HAX and the SAX methods are based on PAA division, the parameter
w represents the dimension size in the PAA. In addition, the alpha parameter represents the
alphabet size in the SAX. In our experiment, the two methods used the same w parameter.
For each data set, the range of w was [5,20]. For the SAX method and each w, the range of
the corresponding parameter alpha was [3,16]. According to the existing references about
SAX, the nearest neighbor classification accuracy results for SAX are always the best for
the UCRArchive2018 when the range of w is [5,20] and the range of the corresponding
parameter alpha is [3,16]. The score is computed for each w for HAX and each combination
of w and alpha for the SAX method. Therefore, we used the average score to measure the
accuracy. The classification algorithm 1-NN was used to classify each different parameter
setting of each data set, and then a calculation of the classification accuracy scores was
carried out. For example, for each data set in the experimental database, the HAX method
would calculate 16 scores and then get an average value of the scores; while the SAX

https://github.com/zhenwenhe/series.git
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method would calculate 16 × 14 scores and then compute the average score. We used the
average of this classification accuracy rate as a measured variable.

Table 3. A list of test data sets.

ID Type Name Train Test Class Length

1 Device ACSF1 100 100 10 1460
2 Image Adiac 390 391 37 176
3 Image ArrowHead 36 175 3 251
4 Spectro Beef 30 30 5 470
5 Image BeetleFly 20 20 2 512
6 Image BirdChicken 20 20 2 512
7 Simulated BME 30 150 3 128
8 Sensor Car 60 60 4 577
9 Simulated CBF 30 900 3 128
10 Traffic Chinatown 20 343 2 24
11 Sensor ChlorineConcentration 467 3840 3 166
12 Sensor CinCECGTorso 40 1380 4 1639
13 Spectro Coffee 28 28 2 286
14 Device Computers 250 250 2 720
15 Motion CricketX 390 390 12 300
16 Motion CricketY 390 390 12 300
17 Motion CricketZ 390 390 12 300
18 Image Crop 7200 16,800 24 46
19 Image DiatomSizeReduction 16 306 4 345
20 Image DistalPhalanxOutlineAgeGroup 400 139 3 80
21 Image DistalPhalanxOutlineCorrect 600 276 2 80
22 Image DistalPhalanxTW 400 139 6 80
23 Sensor Earthquakes 322 139 2 512
24 ECG ECG200 100 100 2 96
25 ECG ECG5000 500 4500 5 140
26 ECG ECGFiveDays 23 861 2 136
27 Device ElectricDevices 8926 7711 7 96
28 EOG EOGHorizontalSignal 362 362 12 1250
29 EOG EOGVerticalSignal 362 362 12 1250
30 Spectro EthanolLevel 504 500 4 1751
31 Image FaceAll 560 1690 14 131
32 Image FaceFour 24 88 4 350
33 Image FacesUCR 200 2050 14 131
34 Image FiftyWords 450 455 50 270
35 Image Fish 175 175 7 463
36 Sensor FordA 3601 1320 2 500
37 Sensor FordB 3636 810 2 500
38 Sensor FreezerRegularTrain 150 2850 2 301
39 Sensor FreezerSmallTrain 28 2850 2 301
40 HRM Fungi 18 186 18 201
41 Motion GunPoint 50 150 2 150
42 Motion GunPointAgeSpan 135 316 2 150
43 Motion GunPointMaleVersusFemale 135 316 2 150
44 Motion GunPointOldVersusYoung 136 315 2 150
45 Spectro Ham 109 105 2 431
46 Image HandOutlines 1000 370 2 2709
47 Motion Haptics 155 308 5 1092
48 Image Herring 64 64 2 512
49 Device HouseTwenty 40 119 2 2000
50 Motion InlineSkate 100 550 7 1882
51 EPG InsectEPGRegularTrain 62 249 3 601
52 EPG InsectEPGSmallTrain 17 249 3 601
53 Sensor InsectWingbeatSound 220 1980 11 256
54 Sensor ItalyPowerDemand 67 1029 2 24
55 Device LargeKitchenAppliances 375 375 3 720
56 Sensor Lightning2 60 61 2 637
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Table 3. Cont.

ID Type Name Train Test Class Length

57 Sensor Lightning7 70 73 7 319
58 Simulated Mallat 55 2345 8 1024
59 Spectro Meat 60 60 3 448
60 Image MedicalImages 381 760 10 99
61 Traffic MelbournePedestrian 1194 2439 10 24
62 Image MiddlePhalanxOutlineAgeGroup 400 154 3 80
63 Image MiddlePhalanxOutlineCorrect 600 291 2 80
64 Image MiddlePhalanxTW 399 154 6 80
65 Image MixedShapesRegularTrain 500 2425 5 1024
66 Image MixedShapesSmallTrain 100 2425 5 1024
67 Sensor MoteStrain 20 1252 2 84
68 ECG NonInvasiveFetalECGThorax1 1800 1965 42 750
69 ECG NonInvasiveFetalECGThorax2 1800 1965 42 750
70 Spectro OliveOil 30 30 4 570
71 Image OSULeaf 200 242 6 427
72 Image PhalangesOutlinesCorrect 1800 858 2 80
73 Sensor Phoneme 214 1896 39 1024
74 Hemodynamics PigAirwayPressure 104 208 52 2000
75 Hemodynamics PigArtPressure 104 208 52 2000
76 Hemodynamics PigCVP 104 208 52 2000
77 Sensor Plane 105 105 7 144
78 Power PowerCons 180 180 2 144
79 Image ProximalPhalanxOutlineAgeGroup 400 205 3 80
80 Image ProximalPhalanxOutlineCorrect 600 291 2 80
81 Image ProximalPhalanxTW 400 205 6 80
82 Device RefrigerationDevices 375 375 3 720
83 Spectrum Rock 20 50 4 2844
84 Device ScreenType 375 375 3 720
85 Spectrum SemgHandGenderCh2 300 600 2 1500
86 Spectrum SemgHandMovementCh2 450 450 6 1500
87 Spectrum SemgHandSubjectCh2 450 450 5 1500
88 Simulated ShapeletSim 20 180 2 500
89 Image ShapesAll 600 600 60 512
90 Device SmallKitchenAppliances 375 375 3 720
91 Simulated SmoothSubspace 150 150 3 15
92 Sensor SonyAIBORobotSurface1 20 601 2 70
93 Sensor SonyAIBORobotSurface2 27 953 2 65
94 Sensor StarLightCurves 1000 8236 3 1024
95 Spectro Strawberry 613 370 2 235
96 Image SwedishLeaf 500 625 15 128
97 Image Symbols 25 995 6 398
98 Simulated SyntheticControl 300 300 6 60
99 Motion ToeSegmentation1 40 228 2 277

100 Motion ToeSegmentation2 36 130 2 343
101 Sensor Trace 100 100 4 275
102 ECG TwoLeadECG 23 1139 2 82
103 Simulated TwoPatterns 1000 4000 4 128
104 Simulated UMD 36 144 3 150
105 Motion UWaveGestureLibraryAll 896 3582 8 945
106 Motion UWaveGestureLibraryX 896 3582 8 315
107 Motion UWaveGestureLibraryY 896 3582 8 315
108 Motion UWaveGestureLibraryZ 896 3582 8 315
109 Sensor Wafer 1000 6164 2 152
110 Spectro Wine 57 54 2 234
111 Image WordSynonyms 267 638 25 270
112 Motion Worms 181 77 5 900
113 Motion WormsTwoClass 181 77 2 900
114 Image Yoga 300 3000 2 426
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4.3. Experimental Results and Analysis

Four methods, the SAX, SAX_TD, SAX-BD and ED, were the baseline methods, and
the classification accuracy of each representation method was calculated based on the
1-NN. Table 4 shows the experimental results. The column ID is the identifier of the data
set in Table 3. The columns, ED, PAX, HAX, SAX, SAX-TD and SAX-BD, are the represen-
tation methods’ names. The values in each column of the methods are the classification
accuracy values. Figure 8 shows the results in a plot. Our previous work [62] presented the
comparison results among SAX, ESAX, SAX-TD and SAX-BD. Here we will focus on the
comparison of HAX, SAX, PAX, SAX-BD and ED.

Table 4. Classification accuracy on UCRArchive2018.

ID ED SAX SAX-TD SAX-BD PAX HAX

1 0.54 0.13 0.63 0.60 0.38 0.23
2 0.61 0.08 0.59 0.74 0.47 0.15
3 0.80 0.52 0.75 0.84 0.73 0.56
4 0.83 0.70 0.81 0.80 0.84 0.88
5 0.67 0.40 0.58 0.90 0.60 0.51
6 0.75 0.72 0.75 0.80 0.74 0.75
7 0.55 0.57 0.59 0.94 0.63 0.58
8 0.85 0.84 0.88 0.88 0.96 0.71
9 0.73 0.49 0.70 0.97 0.67 0.53

10 0.95 0.76 0.93 0.96 0.81 0.70
11 0.65 0.42 0.54 0.94 0.58 0.46
12 0.90 0.66 0.75 1.00 0.79 0.71
13 1.00 0.51 0.95 0.62 0.90 0.62
14 0.58 0.51 0.53 0.67 0.52 0.57
15 0.58 0.43 0.55 0.63 0.59 0.27
16 0.57 0.43 0.52 0.68 0.61 0.26
17 0.59 0.44 0.56 0.97 0.62 0.33
18 0.71 0.28 0.68 0.73 0.70 0.34
19 0.93 0.24 0.95 0.75 0.91 0.67
20 0.63 0.53 0.66 0.63 0.68 0.62
21 0.72 0.57 0.71 0.71 0.71 0.63
22 0.63 0.42 0.58 0.91 0.60 0.54
23 0.88 0.80 0.88 0.88 0.87 0.80
24 0.92 0.87 0.92 0.40 0.92 0.89
25 0.80 0.68 0.82 0.40 0.80 0.68
26 0.42 0.29 0.36 0.30 0.41 0.21
27 0.44 0.30 0.40 0.79 0.34 0.23
28 0.71 0.66 0.68 0.88 0.65 0.66
29 0.55 0.43 0.57 0.83 0.58 0.48
30 0.27 0.25 0.28 0.68 0.28 0.27
31 0.71 0.35 0.72 0.83 0.69 0.35
32 0.78 0.53 0.72 0.69 0.80 0.69
33 0.77 0.40 0.65 0.61 0.74 0.39
34 0.63 0.54 0.63 0.86 0.66 0.49
35 0.78 0.25 0.70 0.96 0.68 0.24
36 0.67 0.51 0.57 0.94 0.57 0.53
37 0.61 0.51 0.52 0.99 0.52 0.51
38 0.80 0.66 0.88 1.00 0.91 0.63
39 0.68 0.67 0.69 0.68 0.70 0.67
40 0.82 0.54 0.80 0.88 0.88 0.46
41 0.91 0.72 0.87 0.43 0.92 0.75
42 0.90 0.65 0.91 0.63 0.98 0.83
43 0.97 0.65 0.99 0.80 0.99 0.87
44 0.95 0.64 1.00 0.35 1.00 1.00
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Table 4. Cont.

ID ED SAX SAX-TD SAX-BD PAX HAX

45 0.60 0.54 0.59 0.78 0.58 0.58
46 0.86 0.62 0.85 0.68 0.82 0.75
47 0.37 0.29 0.35 0.58 0.35 0.31
48 0.52 0.52 0.53 0.95 0.54 0.53
49 0.66 0.67 0.69 0.58 0.64 0.61
50 0.34 0.25 0.29 0.85 0.33 0.25
51 0.68 0.41 0.67 0.73 1.00 1.00
52 0.66 0.20 0.59 0.93 1.00 1.00
53 0.56 0.43 0.53 0.68 0.54 0.45
54 0.96 0.82 0.95 0.91 0.95 0.89
55 0.49 0.42 0.49 0.53 0.53 0.38
56 0.75 0.69 0.74 0.74 0.78 0.60
57 0.58 0.50 0.56 0.52 0.66 0.37
58 0.91 0.39 0.83 0.88 0.90 0.54
59 0.93 0.33 0.91 0.82 0.91 0.46
60 0.68 0.51 0.67 0.88 0.69 0.48
61 0.85 0.43 0.92 0.90 0.82 0.41
62 0.52 0.36 0.49 0.56 0.50 0.42
63 0.77 0.53 0.72 0.77 0.73 0.61
64 0.51 0.29 0.51 0.12 0.53 0.41
65 0.90 0.79 0.86 0.18 0.87 0.76
66 0.84 0.74 0.80 0.35 0.81 0.71
67 0.88 0.75 0.82 0.14 0.84 0.75
68 0.83 0.13 0.72 1.00 0.73 0.17
69 0.88 0.15 0.80 0.97 0.77 0.20
70 0.52 0.45 0.50 0.82 0.50 0.40
71 0.87 0.30 0.85 0.87 0.81 0.31
72 0.76 0.56 0.72 0.76 0.72 0.62
73 0.11 0.06 0.07 0.48 0.09 0.06
74 0.06 0.05 0.08 0.86 0.12 0.06
75 0.13 0.02 0.11 0.45 0.22 0.11
76 0.08 0.04 0.05 0.95 0.14 0.06
77 0.96 0.73 0.96 0.79 0.96 0.87
78 0.93 0.81 0.91 0.88 0.97 0.87
79 0.79 0.48 0.78 0.64 0.77 0.64
80 0.81 0.57 0.76 0.77 0.74 0.64
81 0.71 0.36 0.70 0.64 0.70 0.58
82 0.39 0.36 0.38 0.94 0.39 0.35
83 0.84 0.46 0.72 0.76 0.54 0.68
84 0.36 0.38 0.37 0.86 0.39 0.37
85 0.76 0.55 0.63 0.96 0.80 0.56
86 0.37 0.25 0.33 0.88 0.60 0.22
87 0.40 0.33 0.37 0.91 0.70 0.31
88 0.54 0.50 0.50 0.95 0.49 0.50
89 0.75 0.53 0.71 0.75 0.72 0.53
90 0.34 0.44 0.58 0.88 0.58 0.53
91 0.91 0.52 0.84 1.00 0.97 0.85
92 0.70 0.64 0.66 0.94 0.74 0.64
93 0.86 0.78 0.84 0.95 0.84 0.79
94 0.85 0.80 0.87 0.99 0.88 0.84
95 0.95 0.57 0.93 1.00 0.92 0.76
96 0.79 0.38 0.74 0.57 0.76 0.37
97 0.90 0.76 0.88 0.62 0.89 0.81
98 0.88 0.87 0.89 0.56 0.98 0.66
99 0.68 0.63 0.64 0.69 0.68 0.60
100 0.81 0.81 0.83 0.83 0.85 0.74
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Table 4. Cont.

ID ED SAX SAX-TD SAX-BD PAX HAX

101 0.76 0.49 0.66 0.86 0.76 0.59
102 0.75 0.59 0.77 0.73 0.70 0.65
103 0.91 0.78 0.88 0.83 0.91 0.51
104 0.76 0.64 0.77 0.79 0.78 0.68
105 0.95 0.81 0.92 0.88 0.92 0.72
106 0.74 0.66 0.72 0.71 0.73 0.61
107 0.66 0.58 0.65 0.65 0.67 0.51
108 0.65 0.59 0.64 0.65 0.65 0.55
109 1.00 0.98 0.99 0.99 0.99 0.98
110 0.61 0.50 0.55 0.55 0.61 0.51
111 0.62 0.51 0.59 0.61 0.63 0.47
112 0.45 0.47 0.50 0.5 0.52 0.40
113 0.61 0.59 0.60 0.61 0.62 0.54
114 0.83 0.67 0.80 0.78 0.81 0.69
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The results in Table 4 show that the classification accuracy of the PAX is significantly
higher than those of the HAX and SAX methods, and the HAX has some advantages over
the SAX classification accuracy. Figure 9 makes the comparison between the HAX and SAX
methods more obvious. The X-axis value is the accuracy of the SAX, the Y-axis value is the
accuracy of the HAX and the scattered points are mostly in the upper triangle (71 points
in the upper triangle and 43 points in the lower triangle). This shows that the accuracy of
the HAX is larger than the SAX. Figure 10 makes the comparison between the PAX and
SAX methods more obvious. Almost all the scattered points in Figure 10 are in the upper
triangle, which shows that the accuracy of the PAX is significantly larger than the SAX.
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The ED is still widely used in equal length time series measurements. In our work, we
selected the ED and SAX methods as baselines. Figure 11 shows the accuracy comparison
among the HAX, the ED and the SAX. The results show that ED still has higher accuracy
when compared with the SAX and HAX methods. Figure 12 shows the accuracy comparison
among the PAX, the ED and the SAX. It shows that the accuracy rates of the PAX and ED
are very close. Figure 13 makes the comparison between the PAX and ED methods more
obvious. About half of the scattered points in Figure 13 are in the upper triangle. Figure 14
makes the comparison between the PAX and SAX-BD methods more obvious. These figures
show that the accuracy of PAX is lower than the ED and SAX-BD methods but very close to
them.
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Figure 11. Accuracy comparison among HAX, ED and SAX.
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In terms of space cost, the HAX realizes the dimensionality reduction of high-dimensional
time series by representing a time series as a set of hex strings, reducing the amount of
information required for time series storage and making it more convenient to be used in
various fields. For a time series with the same parameter w, the length of the hex string
is equal to that of the SAX string. While the space cost of SAX-TD is five times that of
the SAX, the space cost of SAX-BD is nine times that of the SAX. Although the PAX has
higher accuracy than the HAX, it only implements the reduction of the time series to a set
two-dimensional data point, and the space cost of PAX is sixteen times greater than that of
the HAX. Therefore, they have the following relationship,

SC(HAX) = SC(SAX) = SC(SAX− TD)/5 = SC(SAX− BD)/9 = SC(PAX)/16 =
w
n

SC(ED) (17)



Algorithms 2021, 14, 353 19 of 23

in which the SC is a space cost function, n is the length of a time series and w is the piece
parameter.
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5. Conclusions

In this paper, two new time series representation methods, the Hexadecimal Aggre-
gation approXimate (HAX) and the Point Aggregation approXimate (PAX), are proposed.
These two methods negate any assumption on the probability distribution of time series
and initially represent each segment of a time series as a Transformable Interval Object
(TIO). Then, each TIO is mapped to a spatial point located on a two-dimensional plane. The
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PAX represents each segment of a time series as a spatial point on the plane. Next, the HAX
maps each point of the PAX to a hexadecimal digit by a hexagon grid. Finally, a hex string
that can represent a time series is generated by the HAX. The experiment results show
that the HAX has higher classification accuracy than the SAX, but one that is lower than
most SAX variants, such as SAX-TD and SAX-BD. This is because these variants include
some other information that may improve the distance measure of the SAX string. The
HAX has the same space cost as the SAX and a lower space cost than the above-mentioned
SAX variants. The PAX has higher classification accuracy than the HAX and is very close
to the ED, but its space cost is 16 times that of the HAX. However, the space cost of the
PAX is generally much less than the space cost of the ED. The HAX is a general time series
representation method that can be extended similar to some SAX variants. Our future work
will focus on the extension of HAX.
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