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Abstract: The Lempel-Ziv parsing (LZ77) is a widely popular construction lying at the heart of many
compression algorithms. These algorithms usually treat the data as a sequence of bytes, i.e., blocks
of fixed length 8. Another common option is to view the data as a sequence of bits. We investigate
the following natural question: what is the relationship between the LZ77 parsings of the same data
interpreted as a sequence of fixed-length blocks and as a sequence of bits (or other “elementary”
letters)? In this paper, we prove that, for any integer b > 1, the number z of phrases in the LZ77
parsing of a string of length n and the number zb of phrases in the LZ77 parsing of the same string in
which blocks of length b are interpreted as separate letters (e.g., b = 8 in case of bytes) are related
as zb = O(bz log n

z ). The bound holds for both “overlapping” and “non-overlapping” versions of
LZ77. Further, we establish a tight bound zb = O(bz) for the special case when each phrase in the
LZ77 parsing of the string has a “phrase-aligned” earlier occurrence (an occurrence equal to the
concatenation of consecutive phrases). The latter is an important particular case of parsing produced,
for instance, by grammar-based compression methods.

Keywords: LZ77; blocks; Lempel-Ziv; SLP; grammar

1. Introduction

The Lempel-Ziv parsing (LZ77) [1,2] is one of the central techniques in data compres-
sion and string algorithms. Its idea is simple: to compress the data, we parse the data into
phrases f1 f2 . . . fz such that each phrase fi is either one letter or has an earlier occurrence
in f1 f2 . . . fi, and the compressed encoding, instead of storing the phrases explicitly, stores
the references to the occurrences. (In our investigation, we consider both non-overlapping
and overlapping versions of LZ77; see precise definitions below.) Typically, algorithms that
produce the parsing interpret the data as a sequence of bytes; however, some algorithms
treat the data as a sequence of bits. What is the relationship between these parsings that
differ only in the way they view the same input? In this paper, we investigate this question.

Our main result is that, for any integer b > 1, the number z of phrases in the LZ77
parsing of a string of length n and the number zb of phrases in the LZ77 parsing of the
same string in which blocks of length b are interpreted as separate letters (e.g., b = 8 in case
of bytes) are related as zb = O(bz log n

z ) (a more precise formulation follows). We partially
complement this upper bound with a lower bound zb = Ω(bz) in a series of examples.
Further, we prove that a better bound zb = O(bz), which is tight, holds for the special
case when each phrase fi in the LZ77 parsing has a “phrase-aligned” earlier occurrence,
i.e., fi = f j f j+1 . . . f j′ , for some j < j′ < i. This special case is particularly interesting in
connection to the grammar compression [3]: a grammar of size g that produces the string
naturally induces such “phrase-aligned” LZ77 parsing of size O(g) [4].

The present work is a continuation of the line of research focused on the comparison
of different efficiently computable measures of compression, mainly centering around the
LZ77 parsing, the golden standard in this field (see a discussion of other close measures
in [5–7]). The results on this topic are too numerous to be listed here exhaustively. We,
however, point out a couple of relevant studies and open problems.
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The relations between the LZ77 parsing and the grammar-based compression, which
naturally induces an LZ77 parsing [4], are not sufficiently understood: known upper and
lower bounds on their sizes differ by an O(log log n) factor [8–10]. A better lower bound
zb = Ω(bz log n), which would show that our main result is tight, even only for b = 2,
would imply that the minimal grammar generating the string attaining this bound is of
size Ω(z log n), thus removing the O(log log n)-factor gap. This gives a new approach to
attack this problem. However, it is still quite possible that our upper bound O(bz log n

z )
can be improved and lowered to O(bz).

The recently introduced LZ77 variant called ReLZ [11] uses a certain preprocessing in
the spirit of the so-called relative LZ77 (RLZ) [12]. The efficiency of the obtained parsing
was evaluated mostly experimentally, and there are no good upper bounds comparing it
to the classical LZ77. Our present result actually stems from this work in an attempt to
find a good upper (or lower) bound for this version of the LZ77 parsing. We believe that
techniques developed in the present paper could help to obtain such bounds.

The paper is organized as follows. The following section provides all necessary
definitions and known facts about the LZ77 parsings and related concepts. In Section 3, we
formalize the idea of “contracted” blocks of length b and construct a series of examples
showing that one of our upper bounds is tight. Then, in Section 4, we prove our upper
bound results. We conclude with some open problems in Section 5.

2. LZ77 Parsings

A string s over an alphabet Σ is a map {1, 2, . . . , n} → Σ, where n is referred to as the
length of s, denoted by |s|. The string of length zero is called the empty string. We write s[i]
for the ith letter of s and s[i . . . j] for s[i]s[i+1] · · · s[j] (which is empty if i > j). A string u is a
substring of s if u = s[i . . . j] for some i and j; the pair (i, j) is not necessarily unique, and we
say that i specifies an occurrence of u in s starting at position i. We say that substrings s[i . . . j]
and s[i′ . . . j′] overlap if j ≥ i′ and i ≤ j′. Throughout the text, substrings are sometimes
identified with their particular occurrences; we do not emphasize this explicitly if it is clear
from the context. We say that a substring s[i . . . j] has an earlier occurrence if there exist i′

and j′ such that s[i′ . . . j′] = s[i . . . j] and j′ < i (note that the occurrences do not overlap). A
substring s[1 . . . j] (respectively, s[i . . . n]) is a prefix (respectively, suffix) of s. For any i and j,
the set {k ∈ Z : i ≤ k ≤ j} (possibly empty) is denoted by [i . . . j]. All logarithms have a
base of two.

A parsing s = f1 f2 . . . fz of a given string s is called a Lempel-Ziv (LZ77) parsing if
each string fi (called phrase) is non-empty, and it either is one letter or occurs in the string
f1 f2 . . . fi−1 (i.e., it has an earlier occurrence). The size of the parsing is the number z of
phrases. The parsing is called greedy if it is built greedily from left to right by choosing each
phrase fi as the longest substring that starts at a given position and occurs in f1 f2 . . . fi−1
(see [2]). It is known that the greedy parsing is, in a sense, optimal, as it is stated in the
following lemma.

Lemma 1 (see [4,10,13]). No LZ77 parsing of a string can have smaller size than the greedy
LZ77 parsing.

The defined LZ77 parsing is often called non-overlapping since its non-one-letter
phrases have non-overlapping earlier occurrences. An analogously defined overlapping
LZ77 parsing is its more popular variant: it is a parsing f1 f2 . . . fz in which each non-
one-letter phrase fi has at least two occurrences in the string f1 f2 . . . fi (so that “earlier
occurrences” of fi might overlap fi). Consider s = abababc for example. The greedy non-
overlapping and overlapping LZ77 parsings of s are a.b.ab.ab.c and a.b.abab.c, respectively.

In this paper, we mainly discuss the non-overlapping version and, hence, for brevity,
often omit the term “non-overlapping”, which is assumed by default. Clearly, every LZ77
parsing is an overlapping LZ77 parsing, but the converse is not necessarily true. Indeed,
one can show that the non-overlapping and overlapping LZ77 parsings are not equivalent
in terms of size (see [14]). Our results, however, hold for both variants.
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An LZ77 parsing f1 f2 . . . fz is phrase-aligned if each non-one-letter phrase fi has an
earlier occurrence fi = f j f j+1 . . . f j′ , for some j < j′ < i. This particular type of parsing is
interesting because of its close connections to the grammar compression, another popular
compression technique.

A grammar is a set of rules of the form A→ BC and A→ a with a designated initial
rule, where a denotes a letter and A, B, C denote non-alphabet non-terminals; see [15]. The
size of a grammar is the number of rules in it. A straight line program (SLP) grammar is a
grammar that infers exactly one string. The SLP grammars and LZ77 parsings are related
as follows.

Lemma 2 (see [4,10]). If a string s is produced by an SLP grammar of size g, then there exists a
phrase-aligned LZ77 parsing f1 f2 . . . fz for s of size at most g.

By a non-constructive argument [8,10,16], one can show that the converse equivalent
reduction from LZ77 parsings to SLP grammars is not possible: in some cases, the size of
the minimal SLP grammar can be Ω(

log n
log log n )-times larger than the size of the greedy (i.e.,

minimal) LZ77 parsing. For completeness, let us show this by repeating here the counting
argument essentially used in [10,17].

Consider all SLPs of size g that produce strings over the alphabet {a, b} and contain
the rules A → a and B → b. Since each rule C → DE can be constructed in, at most,
g2 ways by choosing a pair (D, E), there are at most g(g2)g−2 possible configurations of
the SLPs (g− 2 choices of the pairs (D, E) and the choice of initial rule). Therefore, all
such SLPs produce, at most, g(g2)g−2 ≤ g2g different strings. Further, for given n and
k ∈ [1 . . . n−1], there are exactly (n

k) strings of length n consisting of n− k letters a and k
letters b, and each such string has an LZ77 parsing of size O(k + log n). If each such string
can be produced by an SLP of size g, then g2g ≥ (n

k) and, hence, 2g log g ≥ log (n
k) ≥ k log n

k .

Choosing k = dlog ne, we deduce that g log g ≥ Ω(log2 n) and, therefore, g ≥ Ω(
log2 n

log log n ),

which implies that g ≥ Ω(k log n
log log n ), an Ω(

log n
log log n )-blow up in size compared to the LZ77

parsing of size O(k + log n) = O(k).
Albeit there is no an equivalent reduction from LZ77 parsings to grammars, a slightly

weaker reduction described in the following lemma still holds.

Lemma 3 (see [4,10,18,19]). If a string s has an (overlapping or non-overlapping) LZ77 parsing
of size z, then there exists an SLP grammar of size O(z log n

z ) producing s.

3. Block Contractions and a Lower Bound for Their LZ77 Parsings

Fix an integer b > 0. A b-block contraction for a string s is a string t such that
|t| = d|s|/be and, for any i, j ∈ [1 . . . |t|], we have t[i] = t[j] iff s[b(i−1)+1 . . . bi] =
s[b(j−1)+1 . . . bj]. (The string s is padded arbitrarily with new letters so that these two
substrings are well defined.) The substrings s[b(i−1)+1 . . . bi] are called b-blocks or blocks
if b is clear from the context. We say that a substring s[i . . . j] starts (respectively, ends) on
a block boundary if i ≡ 1 (mod b) (respectively, j ≡ 0 (mod b)). A substring s[i . . . j] is
block-aligned if it starts and ends on block boundaries.

For example, consider s = ababbabc and b = 2. A b-block contraction of s is dde f ,
where the letter d corresponds to the blocks ab, e corresponds to ba, and f to bc. The
string ab has two block-aligned occurrences at positions 1 and 3 and one non-block-aligned
occurrence at position 6.

In this paper, we are interested in the comparison of LZ77 parsings for a string and
its b-block contraction. The next theorem establishes a lower bound by providing a series
of examples. We will then show in the following section that this lower bound is tight for
phrase-aligned LZ77 parsings.
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Theorem 1. For any integers b and z such that 1 < b ≤ z/2, there exists a string that has
a phrase-aligned LZ77 parsing of size Θ(z) and whose b-block contraction can have only LZ77
parsings of size at least Ω(bz).

Proof. Consider a string t over the alphabet {a, b} whose greedy LZ77 parsing is phrase-
aligned and has size z′ = z − b. For h ∈ [0 . . . b−1], define a morphism φh such that
φh(a) = cb−h−1ach and φh(b) = cb−h−1bch, where c is a letter different from a and b. Note
that |φh(a)| = |φh(b)| = b. The example string is s = φ0(t)cbφ1(t)φ2(t) . . . φb−2(t). It
has a phrase-aligned LZ77 parsing of size z = O(z′ + b) constructed as follows. The
first occurrences of the substrings φ0(a) and φ0(b) take O(b) phrases to encode; therefore,
φ0(t) can be encoded into O(z′ + b) phrases by mimicking the parsing of t. Further, each
substring φh(t), for h > 0, occurs at position h + 1 and, thus, can be encoded by one phrase
referring to this occurrence. The latter referenced occurrence is phrase-aligned provided
the prefix s[1 . . . b] and the substring s[|φ0(t)|+ 1 . . . |φ0(t)|+ b] = cb were parsed trivially
as sequences of b letters.

At the same time, any LZ77 parsing of a b-block contraction of the string s must have
size at least (b− 1)z′: the b-block contraction of each substring φh(t) produces a “copy” of
t over a different alphabet, but the new “contracted” letters of these “copies” are pairwise
distinct; therefore, each contraction should be parsed without references to other substrings,
hence, occupying at least z′ phrases. It remains to note that (b− 1)z′ = (b− 1)(z− b) ≥
(b− 1)z/2 = Ω(bz).

4. Upper Bounds on LZ77 Parsings for Block Contractions

We first consider the case of phrase-aligned LZ77 parsings in the following theorem.
As will be seen later, it easily implies our result for arbitrary parsings. The proof of this
theorem is quite complicated and long, occupying most of the present section.

Theorem 2. Suppose that f1 f2 . . . fz is a phrase-aligned LZ77 parsing of a string s, i.e., every
non-one-letter phrase fi has an earlier occurrence fi = f j f j+1 . . . f j′ , for some j < j′ < i. Then, for
any integer b > 1, the size of the greedy LZ77 parsing of a b-block contraction for s is O(bz).

Proof. Let s be a given string and sb be a b-block contraction of s. Assume that the alphabets
of s and sb do not intersect. We are to show that there exists some LZ77 parsing of sb of size
O(bz). Then, the statement of the theorem immediately follows from Lemma 1. The proof
is split into five Sections 4.1–4.5.

4.1. Basic Ideas

For simplicity, assume that |s| is a multiple of b (if not, s is padded with at most b new
letters). Our construction relies on the following notion: for h ∈ [0..b−1], the h-shifted block
parsing of s is the following parsing for the string s[h+1..|s|−b+h]:

s[h+1..|s|−b+h] = th,1dh,1th,2dh,2 . . . th,z′−1dh,z′−1th,z′ ,

where |dh,1| = |dh,2| = . . . = |dh,z′−1| = b, and each phrase th,i is the longest substring
starting at position p = h + |th,1dh,1 . . . th,i−1dh,i−1| + 1, whose length is a multiple of
b and that is entirely contained in the phrase f j covering the position p, i.e., 0 < p −
| f1 f2 . . . f j−1| ≤ | f j| and p + |th,i| − 1 ≤ | f1 f2 . . . f j| (in particular, th,i might be empty if f j
is too short). It might be viewed also as a parsing constructed by a greedy process that,
starting from the position h + 1, alternatively chooses first a longest substring th,i whose
length is a multiple of b that starts at the current position and is “inscribed” in the current
phrase f j, and then chooses a phrase dh,i of length exactly b, which “bridges” neighboring
phrases in f1 f2 . . . fz. It is straightforward that z′ ≤ 2z. It is instructive to imagine the
h-shifted block parsings (for h = 0, 1, . . . , b− 1) written one after another as in Figure 1. Let
us describe briefly the rationale behind the definition.
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...

f4 f5 f6

...

...

......

...

...

...

...

...

f10f7 f8 f9

t6 t7 t8 t11

Figure 1. The h-shifted block parsings for h = 0, 1, 2, 3, 4. Gray and blue rectangles denote, respec-
tively, phrases dh,i and th,i. Here, we have b = 5. Note that some phrases th,i are empty and, thus,
not depicted.

In the case h = 0, we omit the first index “h” in the notation th,i, dh,i and write the zero-
shifted block parsing as t1d1t2d2 . . . dz′−1tz′ . Note that the phrases in this parsing are block-
aligned, and each phrase ti has an earlier occurrence; however, it is not an LZ77 parsing of
s since substrings di might not have earlier occurrences. Moreover, the zero-shifted block
parsing could have served as a generator of a correct LZ77 parsing for sb if every substring
ti had a block-aligned earlier occurrence in s: then, the required parsing for sb would have
consisted of 2z′− 1 phrases obtained by the b-block contractions of t1, d1, t2, d2, . . . , dz′−1, tz′ ,
respectively. (Note that each string di has length b and, thus, is contracted into one
letter.) Unfortunately, albeit each substring tk has earlier occurrences in s, it does not
necessarily have an occurrence starting and ending on block boundaries. However, each
earlier occurrence s[i . . . j] = tk is block-aligned in the h-shifted block parsing of s with
h = j mod b. This observation is the primary motivation for the introduction of the
h-shifted block parsings, and we use it in the sequel.

Informally, our idea is as follows. Consider a phrase t` whose earlier occurrence
s[i . . . j] = t` does not start and end on block boundaries. The occurrence s[i . . . j]
is block-aligned according to an h-shifted block parsing and, since the initial parsing
f1 f2 . . . fz was phrase-aligned, coincides with the concatenation of some consecutive
phrases th,kdh,kth,k+1dh,k+1 . . . dh,k′−1th,k′ in this h-shifted block parsing (details are dis-
cussed below). The phrase t` will be disassembled in place into smaller block-aligned
chunks that have earlier occurrences starting and ending on block boundaries. Thus,
a block-aligned copy of the fragment s[i . . . j] = th,kdh,kth,k+1dh,k+1 . . . dh,k′−1th,k′ will ap-
pear in place of t` and, if a following phrase t`′ refers to the same fragment s[i . . . j], we
can instead refer to this reconstructed block-aligned copy without the need to disassem-
ble into chunks again. Suppose that each phrase th,k′′ in the decomposition of s[i . . . j]
has a block-aligned occurrence before the phrase t`. Then, the number of chunks in
place of t` is O(k′ − k): the “reconstruction” proceeds as consecutive “concatenations”
of th,k, dh,k, th,k+1, dh,k+1, . . . , dh,k′−1, th,k′ , skipping “concatenations” that already occurred
before. There are, at most, O(z′) = O(z) such concatenations in total. After this, all
substrings block-aligned according to the h-shifted block parsing will have occurrences
starting and ending on block boundaries according to the string s itself. For all h ∈ [0..b),
we obtain O(bz) “concatenations” in total. (This informal argument requires further clari-
fications and details that follow below.) We note, however, that this is only an intuition,
and there are many details on this way. For instance, if a phrase th,k′′ had no block-aligned
occurrences before the phrase t`, we would have to “reconstruct” th,k′′ by disassembling it
analogously into chunks, thus recursively performing the same process. The counting of
“concatenations” during the “reconstructions” has many details too.

4.2. Greedy Phrase-Splitting Procedure

Our construction of an LZ77 parsing for sb transforms the zero-shifted block parsing
of s. We consecutively consider the phrases t1, d1, t2, d2, . . . , dz′−1, tz′ from left to right:
for each di, we emit a one-letter phrase—the b-block contraction of di—into the resulting
parsing for sb; for each ti, we perform a process splitting ti into chunks whose lengths
are multiples of b, and each of which either is of length b or has a block-aligned earlier
occurrence, and the b-block contractions of these chunks are the new phrases emitted into
the resulting parsing for sb. Let us describe the process splitting ti.
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Consider a phrase ti and suppose that the phrases t1, d1, t2, d2, . . . , di−1 were already
processed, and new phrases corresponding to them in the parsing of sb under construction
were emitted. If |ti| = 0, we skip this step. If |ti| = b, we simply emit a new one-letter
phrase by contracting ti. Suppose that |ti| > b. Denote by f` the phrase into which ti
is “inscribed”, i.e., 0 ≤ | f1 f2 . . . f`| − |t1d1 . . . ti−1di−1ti| < | f`|. By the assumption of the
theorem, there exists a phrase-aligned earlier occurrence of f`, i.e., there exist j and j′ such
that j < j′ < ` and f` = f j f j+1 . . . f j′ . Thus, there is a copy of the phrase ti in the substring
f j f j+1 . . . f j′ . While the phrase ti itself is block-aligned, its copy does not have to be block-
aligned. However, the copy is necessarily block-aligned in the h-shifted block parsing with
appropriate h, namely with h = (| f1 f2 . . . f j−1|+ |t1d1t2d2 . . . di−1| − | f1 f2 . . . f`−1|) mod b;
see Figure 2.

... ...

f`fj fj+1 fj+2

h-shifted
zero-shifted

th,k th,k+1 th,k+2

ti

Figure 2. A phrase-aligned copy f j f j+1 . . . f j′ of f` and the corresponding copy
th,kdh,kth,k+1dh,k+1 . . . dh,k′−1th,k′ of ti in the h-shifted block parsing. Gray and blue rectangles denote,
respectively, phrases dh,i and th,i. Here, we have j′ = j + 2 and k′ = k + 2.

Let th,k, dh,k, th,k+1, dh,k+1, . . . , dh,k′−1, th,k′ be the phrases of the h-shifted block parsing
that are “inscribed” into the substring f j f j+1 . . . f j′ (the phrase dh,k−1 could be “inscribed”
too, but we omit it in this case). The key observation for our construction is that the
following equality holds (see Figure 2):

ti = th,kdh,kth,k+1dh,k+1 . . . dh,k′−1th,k′ .

Now consider the following parsing:

t1d1t2d2 . . . ti−1di−1 · th,kdh,kth,k+1dh,k+1 . . . dh,k′−1th,k′ , (1)

which is the zero-shifted block parsing of s up to the phrase ti in which phrase ti was
expanded into the chunks th,k, dh,k, th,k+1, dh,k+1, . . . , dh,k′−1, th,k′ . If each of the chunks th,k,
th,k+1, . . . , th,k′ from the expansion of ti in Parsing (1) either is of length, at most, b or has a
block-aligned earlier occurrence, then, in principle, we could have emitted into the resulting
parsing of sb the b-block contractions of th,k, dh,k, th,k+1, dh,k+1, . . . , dh,k′−1, th,k′ , generating,
at most, 2(k′ − k) + 1 new phrases for sb in total. Unfortunately, this simple approach
produces too many phrases for sb in the end. Instead, we greedily unite the chunks
th,k, dh,k, . . . from left to right so that the resulting united chunks still either have length b or
have block-aligned earlier occurrences. Namely, we greedily take the maximum m ∈ [k..k′]
such that the substring th,kdh,kth,k+1dh,k+1 . . . dh,m−1th,m either has length b or has a block-
aligned earlier occurrence (i.e., a block-aligned occurrence in the prefix t1d1t2d2 . . . ti−1di−1);
then, the b-block contraction of the string q1 = th,kdh,kth,k+1dh,k+1 . . . dh,m−1th,m is emitted
as a new phrase into the parsing of sb under construction. If m = k′, then the whole string
ti was “split” into one chunk q1 and we are done. Otherwise (if m < k′), we further emit the
next (one-letter) phrase, the b-block contraction of dh,m, and proceed taking the maximum
m′ ∈ [m+1..k′] such that the substring q2 = th,m+1dh,m+1th,m+2dh,m+2 . . . dh,m′−1th,m′ either
has length b or has a block-aligned earlier occurrence (i.e., a block-aligned occurrence in
the prefix t1d1t2d2 . . . ti−1di−1 · q1dh,m). Similarly, we emit the contraction of q2 and the
one-letter contraction of dh,m′ into the resulting parsing of sb. The greedy procedure then
analogously continues reading ti from left to right until the whole string ti is decomposed
into chunks q1, dh,m, q2, dh,m′ , . . . and all the corresponding new phrases for sb are emitted.

The described process works correctly if each of the chunks th,k, th,k+1, . . . , th,k′ in the
expansion of ti in Parsing (1) either has a block-aligned earlier occurrence or is of length at
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most b. What if this is not the case? Suppose that th,k is such a “bad” chunk in Parsing (1):
it does not have a block-aligned earlier occurrence and |th,k| > b. In a certain sense, we
arrive at an analogous problem that we had with the phrase ti: we have to split th,k (here,
we are talking about the occurrence of th,k from the expansion of ti in Parsing (1)) into a
number of chunks whose lengths are multiples of b and each of which either is of length b
or has a block-aligned earlier occurrence; we will then emit the b-block contractions of these
chunks into the resulting parsing for sb. We solve this problem recursively by the same
procedure, which can be roughly sketched as follows. The phrase th,k from the h-shifted
block parsing of s (not th,k from the expansion of ti in Parsing (1)!) was “inscribed” into
a phrase f`0 (such as, analogously, ti was “inscribed” into f`), which, by the assumption
of the theorem, has a phrase-aligned earlier occurrences f`0 = f j0 f j0+1 · · · f j′0

, for some
j0 < j′0 < `0 (like, similarly, f` had an occurrence f` = f j f j+1 . . . f j′ ). There is, thus, a copy
of th,k in the substring f j0 f j0+1 . . . f j′0

. This copy is not necessarily block-aligned according
to neither zero-shifted nor h-shifted block parsings. However, the copy is block-aligned
with respect to the h0-shifted block parsing for appropriate h0 (for example, the copy
of ti from f j f j+1 . . . f j′ was block-aligned according to the h-shifted block parsing). We
then consider a fragment th0,k0 dh0,k0 th0,k0+1dh0,k0+1 . . . dh0,k′0−1th0,k′0

of the h0-shifted block
parsing “inscribed” into the substring f j0 f j0+1 . . . f j′0

and conclude that this fragment is
equal to th,k (such as, analogously, the fragment th,kdh,kth,k+1dh,k+1 . . . dh,k′−1th,k′ “inscribed”
into f j f j+1 . . . f j′ was equal to ti). We proceed recursively decomposing th,k into chunks by
greedily uniting th0,k0 , dh0,k0 , th0,k0+1, dh0,k0+1, . . . , dh0,k′0−1, th0,k′0

by analogy to the procedure
for ti. This recursion, in turn, itself can arrive at an analogous splitting problem for another
chunk (say, th0,k′ ), which, in the same way, is solved recursively.

4.3. Formalized Recursive Phrase-Splitting Procedure

We formalize the described recursive procedure as a function parse(k, k′, h, p), which
is called with parameters k, k′, h, p such that the substring th,kdh,kth,k+1dh,k+1 . . . dh,k′−1th,k′

from the h-shifted block parsing of s occurs before the position p and its copy
occurs at position p, i.e., h + |th,1dh,1th,2dh,2 . . . dh,k′−1th,k′ | < p and s[p..p′] =
th,kdh,kth,k+1dh,k+1 . . . dh,k′−1th,k′ , for an appropriate p′ > p. In order to process ti, we
call parse(k, k′, h, |t1d1t2d2 . . . ti−1di−1|+ 1), where k, k′, and h are determined as explained
above. The function emits phrases of the resulting parsing of sb from left to right and works
as follows:

1. If the substring th,k starting at position p does not have a block-aligned earlier oc-
currence and |th,k| > b, then, as was described above, we find numbers k0, k′0, h0
such that th,k = th0,k0 dh0,k0 th0,k0+1dh0,k0+1 . . . dh0,k′0−1th0,k′0

, and we first recursively call
parse(k0, k′0, h0, p), thus processing th,k, then we emit a one-letter phrase by contracting
dh,k, and finally, call parse(k + 1, k′, h, p + |th,kdh,k|), ending the procedure afterwards;

2. Otherwise, we compute the maximal number m ∈ [k..k′] such that the substring
q1 = th,kdh,kth,k+1dh,k+1 . . . dh,m−1th,m starting at position p either has length of, at
most, b or has a block-aligned earlier occurrence;

3. We emit the b-block contraction of q1 unless q1 is empty (which happens if m = k and
th,k is empty);

4. If m = k′, we exit; otherwise, we emit a one-letter phrase by contracting dh,m and call
recursively parse(m + 1, k′, h, p + |q1|).
In the sequel, we refer to the steps of the splitting procedure as “item 1, 2, 3, 4”.
It is easy to see that the generated parsing of sb after processing t1, d1, t2, d2, . . . , dz′ , tz′

is a correct LZ77 parsing. It remains to estimate its size.

4.4. Basic Analysis of the Number of Produced Phrases

Suppose that every time a new phrase is emitted by the described procedure, we
“pay” one point. We are to show that the total payment is O(bz′), which is O(bz). For the
“payment”, it will suffice to reserve a budget of 7bz′ points. In this section of the proof, we
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explain how 4bz′ points are spent (4 points per phrase th,k; details follow); the remaining
3bz′ points will be discussed in the following final section of the proof.

The described process reads the string s from left to right, emitting new phrases for the
parsing of sb and, during the run, advances a pointer p, the last parameter of the function
parse, from 1 to n. Along the way, block-aligned occurrences of some fragments from h-
shifted block parsings appear. The key observation is that once a block-aligned occurrence
of a fragment th,kdh,kth,k+1dh,k+1 . . . dh,k′−1th,k′ appeared in the string s at a position p, any
subsequent block-aligned substring th,adh,ath,a+1dh,a+1 . . . dh,a′−1th,a′ with k ≤ a ≤ a′ ≤ k′

that appears during the processing of phrases after the position p can be united into one
chunk, and there is no need to analyze it by splitting into smaller chunks again.

For each phrase th,k with k ∈ [1 . . . z′] and h ∈ [0..b−1], we reserve four points
(hence, 4bz′ points in total). These points are spent when the string th,k is first
encountered in the function parse (the spending scheme is detailed below), namely
when the function is invoked as parse(k0, k′0, h0, p) with parameters such that th,k =
th0,k0 dh0,k0 th0,k0+1dh0,k0+1 . . . dh0,k′0−1th0,k′0

and th,k occur at the position p (the position is
necessarily block-aligned; therefore, this is a block-aligned occurrence of th,k). We note that
this case includes the initial calls parse(k, k′, h, p) that process phrases ti: it is a particular
case where h = 0. We call such an invocation of parse for the phrase th,k a generating call.
The generating call “generates” a block-aligned occurrence of th,k in the string s. For each
phrase th,k, at most, one generating call might happen: the only place where a generating
call could have happened twice is in item 1 of the description of the function parse, but any
subsequent occurrence of th,k will have a block-aligned earlier occurrence, and hence, the
condition in item 1 could not be satisfied. Therefore, there are, at most, bz′ generating calls
in total, and we spend, at most, 4bz′ points on all of them.

Let us consider the work of a generating call. For simplicity, let it be a call
for a phrase ti as in the description of parse(k, k′, h, p) above, i.e., we have ti =
th,kdh,kth,k+1dh,k+1 . . . dh,k′−1th,k′ , h + |th,1dh,1th,2dh,2 . . . dh,k′−1th,k′ | < p, and s[p..p′] = ti,
for an appropriate p′ > p (the analysis for phrases th′ ,i from other h′-shifted block parsings
is analogous to the analysis for ti). The work of parse can be essentially viewed as follows.
The function parse splits ti greedily into chunks of two types:

(a) chunks of the form th,adh,ath,a+1dh,a+1 . . . dh,a′−1th,a′ with k ≤ a ≤ a′ ≤ k′ that either
have a length of, at most, b or have block-aligned earlier occurrences (such chunks
are built in item 2 of the description of the function parse, where they are denoted
as q1);

(b) chunks th,a on which a generating call is invoked in item 1, which further recursively
splits th,a into “subchunks” (recall that, according to item 1, this is the case when
th,a did not have block-aligned earlier occurrences before and |th,a| > b).

Such possible splitting of ti is schematically depicted in Figure 3, where there is only
one recursive generating call (for th,k+1), and there are four chunks of type (a). The b-block
contractions of the chunks of type (a) and the contractions of short phrases dh,a−1, dh,a′

surrounding them are emitted as new phrases for the parsing of sb. We spend the whole
four-point budget allocated for ti by paying two points for the leftmost chunk of type (a)
and the phrase dh,a′ that follows after it, and by paying two points for the rightmost chunk
of type (a) and the phrase dh,a−1 that precedes it (for the example from Figure 3, these are
the chunks th,k and th,k+6dh,k+6th,k+7, and the short phrases dh,k and dh,k+5).

... ...

th,k th,k+1 th,k+2

ti

th,k+3 th,k+4 th,k+5 th,k+6 th,k+7

Figure 3. The decomposition from a generating call for ti = th,kdh,kth,k+1dh,k+1 . . . dh,k′−1th,k′ . Here,
th,k+1 is in light gray meaning that we invoke a generating call for it; for other parts, ti is split into four
chunks th,k, th,k+2dh,k+2th,k+3dh,k+3th,k+4, th,k+5, th,k+6dh,k+6th,k+7, each of which has a block-aligned
earlier occurrence.
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For each chunk th,a of type (b), the corresponding generating call recursively produces
“subchunks” splitting th,a. We delegate the payment for these subchunks to the budget
allocated for th,a. It remains to pay somehow for other chunks of type (a) between the
leftmost and rightmost chunks from the decomposition of ti. To this end, we introduce a
separate common budget of 3bz′ points.

4.5. Total Number of Type (a) Chunks

We estimate the total number of chunks of type (a) by connecting them to a common
combinatorial structure defined as follows. The structure is called a segment system: it
starts with z′ unit integer segments [1 . . . 1], [2 . . . 2], . . . , [z′ . . . z′], and we can perform
merge queries, which, given two neighboring segments [i . . . j] and [j+1 . . . k] with i ≤ j ≤ k,
create a new united segment [i . . . k] and remove the old segments [i . . . j] and [j+1 . . . k].
Clearly, after z′ merge queries, everything will be fused into one segment [1 . . . z′]. Fix
h ∈ [1 . . . b−1]. We maintain a segment system connected with h, and we associate with
each phrase th,k the segment [k . . . k]. During the work of the function parse, the following
invariant is maintained:

• if a segment [k..k′] such that k′ > k belongs to the current segment system, then there
is a block-aligned occurrence of the string th,kdh,kth,k+1dh,k+1 . . . dh,k′−1th,k′ before the
currently processed position p.

Observe that, at most, (b− 1)z′ ≤ bz′ merge queries can be performed in total on all
b− 1 introduced segment systems. We will spend 3 points per query from our remaining
budget of 3bz′ points. The segment systems, their merge queries, and chunks of type (a)
are related as follows.

Let us temporarily alter the algorithm parse as follows: item 2 first chooses the
number m ∈ [k..k′] as in the original version (as the maximal m ∈ [k..k′] such that
th,kdh,kth,k+1dh,k+1 . . . dh,m−1th,m can serve as a new chunk), but then, we take the seg-
ment [a..a′] containing k from the segment system, i.e., a ≤ k ≤ a′, and we assign
m := min{m, a′}. Thus, possibly, m in the altered version will be smaller than in the
original version. Such choice of m is correct too since, due to our invariant, the altered
condition still guarantees that the substring th,kdh,kth,k+1dh,k+1 . . . dh,m−1th,m is either of
length b or has a block-aligned earlier occurrence. It is obvious that the case when a 6= k
in the altered function parse can only occur for the leftmost chunk in the decomposition
of ti into chunks. Further, the number of chunks of type (a) obtained for ti by the altered
procedure is not less than the number of chunks of type (a) constructed by the original
greedy version. It follows straightforwardly from the description that each chunk of type (a)
in the altered version that is not the leftmost or rightmost chunk corresponds to a segment
from the segment system associated with h, i.e., if th,adh,ath,a+1dh,a+1 . . . dh,a′−1th,a′ , is such
a chunk, then [a . . . a′] belongs to the system. Similarly, the invariant implies that the
unit segments [a . . . a] corresponding to chunks th,a of type (b) belong to the system too.
For instance, if the example of Figure 3 was obtained by this altered way, the segments
[a..k], [k + 1 . . . k + 1], [k + 2 . . . k + 4], [k + 5 . . . k + 5], [k + 6 . . . a′] would belong to the seg-
ment system for some a ≤ k and a′ ≥ k + 7. We then perform merge queries uniting the
segments corresponding to all chunks generated for ti, except the leftmost and rightmost
chunks. (For the example in Figure 3, we unite all subsegments of [k + 1 . . . k + 5], perform-
ing two merge queries in total.) The number of merge queries for ti is equal to the number
of chunks between the leftmost and rightmost chunks from the decomposition of ti minus
one. The invariant of the segment system is maintained: the substring of the h-shifted block
parsing that corresponds to the new united segment now has a block-aligned occurrence,
which is precisely the occurrence in the substring ti.

Suppose that we maintain in a similar way b segment systems for all h ∈ [0..b−1],
performing analogous merge queries in every generating call. Then, the total number
of merge queries among all h ∈ [1..b−1] and all chunks during the work of all calls to
the function parse does not exceed bz′ (at most, z′ queries for each system). Therefore, it
suffices to spend the budget of 3bz′ points for all phrases corresponding to all chunks of
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type (a) as follows. We pay three points for each merge query: two for the emitted phrases
corresponding to two merged chunks and one for a phrase dh,a separating the chunks.

As a corollary of Theorem 2, we obtain our main upper bound.

Theorem 3. For any integer b > 0, the size zb of the greedy LZ77 parsing of a b-block contraction
for a string of length n is O(bz log n

z ), where z is the size of the greedy (overlapping or non-
overlapping) LZ77 parsing of this string.

Proof. We apply Lemma 3 to obtain a “phrase-aligned” LZ77 parsing of size O(z log n
z ),

and then, using Theorem 2, we obtain the bound O(bz log n
z ) on the size of the greedy LZ77

parsing of the b-block contraction.

5. Conclusions

Given the results obtained in this paper, the main open problem is to verify whether
the upper bound from Theorem 3 is tight. To this end, one either has to improve the
upper bound zb = O(bz log n

z ) or has to provide a more elaborate series of examples
improving the lower bound zb = Ω(bz) from Section 3 (obviously, the examples must
deal with non-phrase-aligned parsings). We point out, however, that the tightness of the
bound from Theorem 3 would necessarily imply the tightness of the currently best upper
bound g = O(z log n

z ) [4,18] from Lemma 3 that relates the size g of the minimal grammar
generating the string and the size z of the LZ77 parsing for the string (the best lower bound
up-to-date is g = Ω(z log n

log log n ) [8,10]). Indeed, for a constant b > 1, if there exists a string
whose LZ77 parsing has size z and whose b-block contraction can have only LZ77 parsings
of size at least Ω(z log n

z ), then the minimal grammar of such string must have a size of at
least g = Ω(z log n

z ) since, by Lemma 3, the string has a phrase-aligned LZ77 parsing of
size g, and thus, by Theorem 2, the b-block contraction has an LZ77 parsing of size O(bg),
which is O(g) as b is constant.

The present work stems from the paper [11] where the following LZ77 parsing was
considered: we first parse the input string s into phrases p1 p2 . . . pk such that each phrase
pi is either one letter or has an earlier occurrence in the prefix s[1..`], for a fixed ` > 0, and
then we treat every phrase pi as a separate letter and construct the greedy LZ77 parsing for
the obtained “contracted” string of length k. The resulting parsing naturally induces an
LZ77 parsing for s. The motivation for this variant is in the considerable reduction in space
during the construction of the parsing that allowed us to compress very large chunks of
data using this two-pass scheme. The problem that was investigated in the present paper
can be interpreted as a special case when all phrases pi have the same length b (at least
those phrases that are located outside of the prefix s[1..`]). The following question can
be posed: can we adapt the techniques developed here to a more general case in order to
find an upper bound for the LZ77 parsing from [11] in terms of the optimal greedy LZ77
parsing for s?
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