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Abstract: Multimodal problems are single objective optimisation problems with multiple local and
global optima. The objective of multimodal optimisation is to locate all or most of the optima. Niching
algorithms are the techniques utilised to locate these optima. A critical factor in determining the
success of niching algorithms is how well the search space is covered by the candidate solutions.
For niching algorithms, high diversity during the exploration phase will facilitate location and
identification of many solutions while a low diversity means that the candidate solutions are clustered
at optima. This paper provides a review of measures used to quantify diversity, and how they can
be utilised to quantify the dispersion of both the candidate solutions and the solutions of niching
algorithms (i.e., found optima). The investigated diversity measures are then used to evaluate the
distribution of candidate solutions and solutions when the enhanced species-based particle swarm
optimisation (ESPSO) algorithm is utilised to optimise a selected set of multimodal problems.

Keywords: diversity; niching; multimodal optimisation; particle swarm optimisation

1. Introduction

For population-based search algorithms such as genetic algorithms (GA), differential
evolution (DE) and particle swarm optimisation (PSO), population diversity (note that, for
PSO, the term swarm diversity is preferred as the particles (candidate solutions) are said
to be part of a swarm. The rest of the paper uses PSO specific terminology.) provides an
indication of the amount of exploration or exploitation done in the population/swarm.
High diversity means that the solutions are dissimilar which implies that the algorithm
is still exploring the search space. Conversely, low diversity means that the algorithm is
converging to a solution [1].

Diversity measures are used to provide insight on the search state, i.e., exploring or
exploiting [2], as well as to provide information on how an algorithm spreads its candidate
solutions within the search space.

Multimodal optimisation involves locating all or most of the optima present in a mul-
timodal problem. These optima could be both local or global. The objective of multimodal
optimisation techniques is to find as many of these optima as the designer might find
interesting and satisfying for a particular problem [3,4].

For a niching algorithm, a high swarm diversity may either imply a wide exploration
of the search space or a diverse set of found optima (or niches), here referred to as solutions.
As such, while investigating diversity for niching algorithms, it is important to make
distinctions between:

• Swarm diversity which refers to the diversity with respect to the decision space, i.e.,
particle positions of the current swarm.

• Niche diversity which refers to the diversity with respect to the solution space, i.e.,
actual found solutions. Niching algorithms obtain multiple solutions by forming
clusters of a few particles around the positions of optima. The cluster of particles is
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referred to as a niche while the fittest particle in the niche, the so called neighbourhood
best (nbest), represents an optimum. Niche diversity refers to the spread of these
neighbourhood bests in the solution space.

• Phenotypical diversity which refers to the diversity with respect to the objective
space, i.e., the diversity with respect to the objective function values of the current
particles or the nbests (depending on the research interest in question).

The review and empirical study reported in this paper focus on the first two diversity
criteria, in the context of niching algorithms.

The main goal of this paper is to review diversity measures and to propose a set
of diversity measures for niching algorithms. As such, the paper does not include a
review of PSO and other complimentary algorithms. In addition, whereas the experiments
make use of the enhanced species-based PSO niching technique (ESPSO) [5], this paper
does not revisit niching algorithms in general or the ESPSO in particular. The ESPSO
niching algorithm is only used to illustrate the capability of the diversity measures to
quantify particle and niche dispersion in the search space. The reader is directed to find a
comprehensive review of PSO niching algorithms in [6,7].

The rest of this paper is organised as follows: A sufficient review of diversity measures
is presented in Section 2. The diversity measures are used in Section 3 to quantify the
dispersion of particles and niches when the ESPSO is utilised to optimise a selected set
of multimodal problems. Section 4 provides a discussion of the results. Conclusions are
drawn in Section 5.

2. Diversity Measures Utilised in Population Based Algorithms

In this section, diversity measures’ developed for single solution (non-niching)
population-based algorithms are analysed for their applicability as diversity measures for
niching algorithms. Where the discussed measures’ applicability is not sufficient for niching
algorithms, modifications are proposed to make them suitable for niching algorithms.

Throughout the paper, the following terminology is used:

• Swarm, S = {x1, ..., xi, ...xn}(2 < n < ∞), which refers to all particles in a PSO
algorithm. In other complimentary techniques such as a GA, S refers to the population.

• Candidate solution, xi, which refers to a particle in a swarm, S. A candidate solution
is incrementally adapted to find an optimum.

• Candidate niche, Nk = {xi, ..., xm}(m ≤ n), which is formed by a cluster of candidate
solutions. A candidate niche can still be refined to find an actual solution, or optimum.

• Neighbourhood best (nbest), x̂i ∈ Nk, which is the particle with the best fitness in a
candidate niche. This then represents an optimum.

• Solution(s): The final neighbourhood best or optimum (i.e., particle with the best
fitness) in a particular identified niche.

The remainder of this section focuses on swarm diversity measures in Section 2.1 and
niche diversity measures in Section 2.2.

2.1. Swarm Diversity

Diversity with respect to the decision space, i.e., swarm diversity, aims to quantify
how an algorithm spreads candidate solutions (particles) in the search/decision space.
This section reviews swarm diversity measures. In addition, the discussion focuses on how
the reviewed measures can be used to quantify spread in niching algorithms.

2.1.1. Sum of Distances

The sum of distances (SD) measure finds the dissimilarity between candidates solu-
tions, by calculating the square root of the sum of their distances from one another [4].
Equation (1) shows how this is computed:
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DSD =
√√√√∑

xi∈S
∑

xj∈S
j 6=i

∥∥xi − xj
∥∥

2 (1)

where S is the set of all candidate solutions at a given time, while xi and xj are different
candidate solutions in S.

Over time, niching algorithms drive particles to cluster around optima (or niches).
Thus, at convergence of a niching algorithm, particles will be clustered around a niche,
with the best particle of a niche (i.e., the neighbourhood best) representing one of the
found optima. Figure 1a illustrates the spread of particles during a search process, while
Figure 1b illustrates the convergence of particles, in the form of niches, around positions of
optima. Appendices A–C show progression of particles from initial (random) positions as
well as their positions at different iterations during a typical run.

(a) (b)

Figure 1. Illustration of swarm diversity for niching algorithms. The crosses show the positions of optima. (a) particles
during search process; (b) particles at convergence.

The expected behaviour in niching algorithms is that, when candidate solutions start
converging near their neighbourhood bests, intra-niche (distances between particles in
the same niche) distances start to approach zero. This means that the swarm diversity at
convergence should approach zero. For the case of the SD measure, the expected behaviour
is that even at convergence, calculated SD values will be high, in particular if the inter-niche
(distances between the best particles of the niches) distances are large. Thus, calculated
SD values gives an incorrect impression of diversity at convergence. Figure 2 depicts how
swarm diversity compares to inter- and intra-niche distances over time.
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Figure 2. Illustration of the expected diversity values when quantified using the SD measure.

In order to adapt the SD measure to correctly quantify spread for a niching algorithm,
the SD measure should be computed for each identified candidate niche. The values of
the SD measure for each of the candidate niches are then summed and averaged. The
modification of Equation (1) to calculate diversity for a niching algorithm is then given by

DmSD =
1
µ

µ

∑
k=1

√√√√ ∑
xi∈Nk

∑
xj∈Nk

j 6=i

‖xi − xj‖2

 (2)

where µ is the number of candidate niches, Nk is the set of particles in a candidate niche, k,
while xi and xj are different candidate solutions in Nk.

Computing the swarm diversity as an average of the candidate niches’ diversity
eliminates the inter-niche distances problem reported earlier. The illustration shown in
Figure 2 depicts that, as niches converge, the average SD over all niches approaches zero.
As shown, an averaged candidate niches’ diversity (SD diversity per niche) corresponds to
the intra-niche distances, which is the expected behaviour for a niching algorithm.

2.1.2. Sum of Distances to Nearest Neighbour

As the name suggests, the sum of distances to the nearest neighbour (SDNN) [8]
calculates diversity of candidate solutions by summing up the pairwise distances of each
candidate solution to its closest neighbour [9]. The SDNN is calculated as

DSDNN = ∑
xi∈S

min
xj

j 6=i

∥∥xi − xj
∥∥

2 (3)

While it is reasonable to assume that a pair of nearest neighbours (NN) are particles in
the same niche, it is still possible that a candidate solutions’ nearest neighbour is a particle
in a niche that has already converged. This may lead to the calculated DSDNN values being
high even if niches are converged. As a result, the diversity computed using the SDNN
measure may not be as expected during convergence.

For the SDNN measure to be applicable for niching algorithms, the diversity should
be calculated for each candidate niche, i.e., the NN of each particle is selected from that
particle’s niche. The obtained values should then be summed and averaged to give one
SDNN score for the swarm. The adapted SDNN measure is computed as

DmSDNN =
1
µ

µ

∑
k=1

 ∑
xi∈Nk

min
xj

j 6=i

∥∥xi − xj
∥∥

2

 (4)
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The adapted measure ensures that the computed DmSDNN value is a measure of the
sum of intra-niche nearest neighbours distances.

Niching algorithms define niche formation differently. For instance, the ESPSO algo-
rithm [5] utilises the concept of different species in a population to form niches. Broadly,
the algorithm starts by firstly identifying species seed which form the candidate niches(N).
For the ESPSO, each identified species seed is the best fit particle in a neighbourhood, i.e.,
the nbest. Species seed is determined by initially sorting all particles, xi in the main swarm,
in decreasing order of fitness. In addition, a parameter rs is defined which is the Euclidean
distance between the species seed and the boundary of the species (i.e., the candidate
niche(N)). Particles that fall within rs distance from the species seed are part of the species.
If a particle is found that falls outside the radius of that seed, then it is also added to the
set N as a new species seed. As N continues to be filled, subsequent particles are checked
against all seeds N adding only those particles that do not fall within any radii of any of
the seeds in N. The set of species seed is complete once all particles have been checked.
This means that in ESPSO each particle is part of a distinct specie (candidate niche).

Unlike the ESPSO, in other PSO niching algorithms, particles could still belong to a
particular niche even if their Euclidean distance from their neighbourhood best is somewhat
large. As a result, while a high SDNN value means that particles in a niche are far from
each other, a low SDNN value may not indicate niche convergence because the calculated
distance is only with respect to NNs and not entire members of a candidate niche. Thus, the
modified SDNN measure is affected by how a niching algorithm defines niche membership.
A potential solution to this problem is to calculate the average SDNN for each niche and
then to average over all niches. In essence, this will yield an average intra-niche NNs
distance. However, for the purpose of this work, the DmSDNN measure was calculated as
per Equation (4).

2.1.3. Average Distance around the Swarm Centre

The average distance around the swarm centre (ADSC) computes the swarm di-
versity by calculating the average distance of particles xi to a central point x̄ in each
dimension [10,11]. The central point, x̄, can be either the average over all particles or the
best particle in the swarm. This diversity measure is calculated as

DADSC =
1
n

n

∑
i=1
xi∈S

‖xi − x̄‖2 (5)

where n is the number of particles in the swarm S.
A small value of the ADSC indicates convergence around the centre of the particles,

while a larger value means that the solutions are scattered around the centre.
If the ADSC was to be used to compute the swarm diversity for niching algorithms

using a central position or a best particle position, an incorrect niche diversity trend will be
illustrated. This is because of the large distances that are likely to exist between a central
point and a candidate niche or between the global best position and the candidate niches.
As such, the ADSC measure has to be adapted in order to be applied to niching algorithms.

The ADSC measure is adapted for niching algorithms by using the neighbourhood
best in a candidate niche as the reference point for all particles in that candidate niche
or using an average point over all particles in a candidate niche. For the reported work,
the neighbourhood best was used. That is, in Equation (5), the term x̄ refers to the neigh-
bourhood best position in the candidate niche to which particle xi is a member. Using this
adaptation, ADSC is a suitable diversity measure to quantify diversity for niching algo-
rithms because it now computes the average distances of each particle to its neighbourhood
best.
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2.1.4. Average of the Mean Distance around All Candidate Solutions

The average of the mean distance around all candidate solutions (ADAA) is used
to measure the average distance between each pair of particles [11]. This measure is
calculated as

DADAA =
1
n

n

∑
i=1

 1
n

n

∑
xi

xj∈S
j 6=i

‖xi − xj‖2

 (6)

This measure shares similar characteristics with the SD measure. The only difference
is that an average distance of a candidate solution from all other solutions is calculated and
an overall average distance is computed. As such, when utilised for calculating diversity
for niching solutions, ADAA will encounter similar drawbacks as the SD measure.

To adapt the ADAA measure for niching algorithms, an ADAA diversity value is
computed for each candidate niche. The values are then summed for all candidate niches
and an average calculated. This ensures that the result implies the average of the mean
distance around all candidate solutions in each candidate niche.

2.1.5. Entropy

Entropy is defined as a measure of the uncertainty involved in choosing an element
from a source according to some probability distribution [12]. In the context of diversity, a
high entropy measure value means a high diversity index [13–17]. In the work presented
here, the entropy measure value was normalised between 0 and 1. In this case, 1 represents
high diversity while 0 represents no diversity.

To calculate entropy, values of each dimension of particle positions are first placed
into a number of bins b. The b-ary entropy measure of the probability distribution is then
calculated as

E = −
b

∑
w=1

pw logb pw (7)

where b refers to the number of bins that the values of particle positions have been binned
into. pw refers to the probability of a value of a one-dimensional, particle position to be in
a bin w; that is, the number of particles in bin w divided by the total number of particles
used in the search space.

To adapt Equation (7) to multi-dimensional problems, each dimension d of particle
positions is first placed into b bins. The entropy for each dimension d over all particle
positions in that dimension is then calculated. The average is then calculated from the
ensuing D entropy measures as

DÊ =
1
D

D

∑
d=1

Ed (8)

where D is the number of dimensions for the problem in question. The entropy of each
dimension d is computed as Ed = −∑b

w=1 pw,d logb pw,d, where pw,d is the probability of a
particle position in dimension d to be in w.

The value derived from the entropy measure quantifies the uncertainty of drawing a
solution from the swarm of candidate solutions. However, it does not indicate whether
there are any solutions converged at certain locations of the objective space. Since the
goal of niching algorithms is to locate niches of solutions for different optima, the entropy
measure needs to be adapted for niching algorithms. In the work reported here, the entropy,
DÊ, was calculated per niche, then averaged.
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2.1.6. Solow–Polasky Diversity

Preuss and Wessing [4] proposed the use of the Solow–Polasky diversity measure
(SPD) [18] as a technique to quantify diversity in niching algorithms. The SPD is computed
by first creating an n× n matrix, M, whose entries make use of the candidate solutions’
positions. The entries of the matrix are defined as mi,j = exp(−θ‖xi − xj‖2). Consequently,
M is a correlation matrix between candidate solutions xi and xj [18]. The parameter θ is a
user defined variable that normalises the relationship between the distance ‖xi − xj‖2 and
n, which is the total number of candidate solutions [9]. Preuss and Wessing [4] have shown
that the choice of the value of θ is problem dependent, and therefore SPD is only efficient if
θ is tuned per problem.

Once the matrix is constructed, the SPD value is then calculated as

DSPD = e>M−1e (9)

where e = (1, ..., 1)> and e> is its transpose.
From Equation (9), it can be deduced that DSPD is the sum of all entries of M−1.
As shown by Equation (9), the SPD measure relies on the use of the inverse of the

matrix, M. This means that, in circumstances where the matrix is singular, an inverse cannot
be taken, rendering the diversity measure unusable.

2.1.7. Swarm Diameter and Swarm Radius

Olorunda and Engelbrecht [11] investigated the use of swarm diameter (SDM) and
swarm radius (SR) in quantifying dispersion. These two measures are calculated with
respect to the swarm, where the SDM is the maximum distance between any two candidate
solutions. SDM is calculated as

DSDM = max
xi

xj∈S
j 6=i

∥∥xi − xj
∥∥

2 (10)

The SR, on the other hand, is the maximum distance between the centre of the swarm
(or the candidate with the best objective function value) and any of the candidate solutions.
SR is calculated as

DSR = max
xi∈S
i=1

‖xi − x̄‖2 (11)

When utilised for measuring diversity for non-niching techniques, Olorunda and
Engelbrecht [11] showed that SDM and SR are greatly affected by the presence of outliers.
Nevertheless, these measures could be modified to compute diversity in niching algorithms
by subjecting each candidate niche to the measures and then calculating the mean. For
instance, a modified SDM is calculated as

DmSDM =
1
µ

µ

∑
k=1

max
xi

xj∈Nk
j 6=i

∥∥xi − xj
∥∥

2 (12)

2.1.8. Other Measures of Diversity

Olorunda and Engelbrecht [11] also studied the normalised average distance around
the swarm center and the swarm coherence. The normalised average distance around
the swarm center is similar to ADSC with the only exception that a further normalisation
with regard to the diameter of the swarm is carried out. The work in [11] showed that the
normalised average distance around the swarm center followed a uniform distribution
between [0,1] and was thus rendered unsuitable to measure diversity over time. Whereas
the goal of this work is not to measure diversity over the number iterations, since the
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diversity of the solutions of niching algorithms is affected by the extent of the exploration
carried out by the swarm, average distance around the swarm center is unlikely to work
where multiple optima are considered. As such, it is not considered in this study.

Furthermore, Olorunda and Engelbrecht [11] showed that the results of swarm co-
herence were unequivocal and hence not suitable for measuring diversity for non-niching
techniques. Since swarm coherence is based on average speed of particles in a swarm
relative to that of the swarm centre, this measure is applicable to only PSO techniques. As
such, its applicability to other complementary niching techniques cannot be determined.

2.2. Niche Diversity

At the beginning of a search process, candidate solutions are scattered around the
search space. Depending on how a niching algorithm defines a niche, all particles at
the beginning of a search process may be categorised as belonging to one niche, i.e., the
entire swarm is referred to as a niche. Alternatively, each particle could represent its
own niche. That is, if a swarm has n particles, then there exist n niches. As iterations
increase, particles start to group together, forming candidate niches. The grouping could
be based on an already defined niche radius or a particular algorithm may have its own
niche determination strategy. Each candidate niche contains a neighbourhood best (i.e,
the best candidate in a niche also known as the niche best. This does not mean that a
neighbourhood topology is being used.) or a candidate solution that has the best fitness
within that niche.

Niche diversity refers to diversity with respect to the neighbourhood bests in each
of the identified candidate niches. For instance, in Figure 1b, there are four identified
candidate niches clustered around the position of the optima. To calculate niche diversity
using any of the methods discussed in Section 2.1, only the four neighbourhood bests will
be considered.

A niching algorithm will have many candidate niches during exploration. These
candidate niches are later merged if it is determined that they are converging towards the
same optimum. Different niching algorithms have different merging strategies. However,
merging occurs during the exploitation phase. Due to this, niche diversity is expected to be
high during the exploration phase and starts to decrease as the exploitation phase starts.
However, at the end of the search process, niche diversity is still expected to be high if
many of the candidate niches were located and maintained. Algorithms that are not able to
maintain found potential niches will have a low diversity at the end of the search process,
that is, all candidate niches have converged towards one optimum.

Unlike swarm diversity, niche diversity helps to determine how candidate niches
identify and maintain niches. A good niching algorithm is expected to have a considerable
high diversity both at the exploration and exploitation phases of the search process, i.e.,
for a good algorithm, niche diversity is not expected to be zero unless only one optimum
exists in the search space. However, niche diversity is still affected by such drawbacks as
“outliers” and niche identification strategies.

3. Materials and Methods

In this section, the methodology used to conduct the empirical analysis is discussed.
Furthermore, a method to correctly determine unique solutions is introduced.

The main objective of the empirical analysis conducted for this paper is to illustrate the
applicability of the discussed measures to correctly reflect diversity for niching algorithms. As
discussed earlier, diversity in niching algorithms can be calculated with respect to the decision
space (i.e., swarm diversity) and also with respect to solution space (i.e., niche diversity).

In order to calculate the entropy measure, the values of each dimension of particle
positions were divided into different numbers of bins. The number of bins used were 10,
20, 50 and 100 in each dimension. The number of bins were used as the logarithm base for
the entropy measure defined in Equation (8). There is, therefore, four types of entropies
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that were carried out, i.e., Ê10, Ê20, etc. The reason for using different numbers of bins is to
determine how the number of bins affect diversity values.

The iterated F-Race algorithm [19] was used to tune the ESPSO parameters. Param-
eter tuning was carried out for every problem listed in Table 1. Consequently, different
parameters were obtained and are therefore not listed in this paper. The ESPSO algorithm
was implemented using CIlib (http://www.cilib.net).

Table 1. Multimodal functions used for the experiments.

Function & Name Characteristics

Inverted Branin’s RCOS 3 global peaks

f1 = −((x2 −
5.1x2

1
4π2 + 5x1

π − 6)2 +10(1− 1
8π ) cos x1 + 10) x1 ∈ [−5, 10]

x2 ∈ [0, 15]

Inverted Egg Holder 1 global peak
f2 = −∑n−1

i=1 (−(xi+1 + 47)α + β(−xi)) Many local peaks
α = sin(

√
|xi+1 + xi/2 + 47|) xi ∈ [−512, 512]2

β = sin(
√
|xi − (xi+1 + 47|))

Equal Maxima 5n global peaks
f3 = ∑n

i=1 sin6(5πxi) xi ∈ [0, 1]2

Modified Himmelblau 4 global peaks
f4 = 200−

(
x2

1 + x2 − 11
)2

+
(

x1 + x2
2 − 7

)2 xi ∈ [−6, 6]2

Inverted Michalewicz 1 global peak

f5 = ∑n
i=1[sin(xi). sin20(

i∗x2
i

π )] n!− 1 local peaks
xi ∈ [0, π]2

Inverted Rastrigin 1 global peak
f6 = −∑n

i=1[x
2
i − 10 cos(2πxi) + 10] Many local peaks

xi ∈ [0, π]2

Inverted Rosenbrock 1 global peak
f7(~x) = −∑n−1

i=1 {(100(xi+1 − x2
i )

2 Many local peaks
+(xi − 1)2)} xi ∈ [−5, 5]4

Inverted Schwefel Problem 2_26 1 global peaks
f8 = −∑n

i=1 xi sin (
√
|xi|) 8n − 1 local peaks

xi ∈ [−500, 500]2

Inverted Six-Hump Camel Back 2 global peaks

f9 = ∑n−1
i=1 {(4− 2.1x2

i +
x4

i
3 )x2

i +xixi+1 + (−4 + 4x2
i+1)x2

i+1} 4 local peaks
xi ∈ [0, π]2

To ensure that the obtained results were not affected by randomisation, 30 indepen-
dent runs were carried out for every function listed in Table 1. For each measure, the same
starting points were used. The reader is directed to Appendices D and E for a visual repre-
sentation of these functions in two dimensions. Each epoch was made up of 1000 iterations.
The population size for the ESPSO algorithm was made up of 100 particles. During the
search, particles that bounced off the search space were randomly re-initialised within
the search space. The Inverted Rosenbrock function ( f7), was investigated in four dimen-
sions while the rest of the functions were tested in two-dimensional search spaces. The
results obtained from the 30 independent runs were used to calculate all the investigated
diversity measures using the following equation

z′ =
1
30

30

∑
i

zi (13)

where z′ is the scaled (reported) diversity value, zi is the observed/computed diversity
value for a particular diversity measure in the ith independent run.

http://www.cilib.net
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Determining Unique Solutions

At the end of a niching algorithm run, the best solution in each candidate niche is
usually reported. It is possible for an algorithm run to terminate before all optima have
been found and/or before particles optimising a particular location of optimum fully
converged. In order to correctly report the obtained results, it is important to evaluate the
reported solutions in order to weed out candidate solutions that were optimising the same
optimum. This helps to remove duplicate solutions and to report only those solutions that
are unique in terms of their positions in the search space.

In order to determine the unique solutions to be used for the measurement of the
niche diversity, the work reported here used the mid-point technique [20]. The mid-point
technique ascertains that a particular candidate solution, x̆i, is distinctive from another
candidate solution, x̆j, by determining whether the relation shown by Equation (14) holds
(assuming maximisation).

f (x̄k) ≥ min { f (x̆i), f (x̆j)} | ∀k ∈ {1, ..., m} (14)

where x̄k is a point between x̆i and x̆j and m is the total number of points between x̆i and
x̆j. If the relation does not hold, then a local minimum exists between x̆i and x̆j, implying
that both are moving towards different maxima; i.e., x̆i and x̆j represent different niches. If
the relation holds, then the candidate solution with the better objective function value is
considered as the unique solution. Note that m = 10 is used in the experiments here as it
was shown to be effective in [20]. In addition, the m points were sampled at equal intervals
between x̆i and x̆j.

4. Results and Discussion

The purpose of this section is to present and discuss the results of the observed
diversity values as quantified using the previously discussed diversity measures. Since the
goal is to review and analyse the effectiveness of each of the listed measures in quantifying
diversity; for the remainder of this section, each diversity measure is evaluated on its
performance on all the listed multimodal problems and a conclusion is drawn. The
curves shown by the figures are values of each diversity measure as an average of the
30 independent runs over 1000 iterations. There is no attempt made at comparing the
measures directly.

4.1. Sum of Distances

Table 2 as well as Figures 3 and 4 show the quantification of diversity using the sum
of distance measure (SD) and its proposed variants, i.e., modified SD (mSD) and niche SD
(nSD).

Table 2. Mean (µ) and standard deviation (σ) for SD measure at the last iteration.

Function Mean Stdev Mean Stdev Mean Stdev
(SD) (SD) (mSD) (mSD) (nSD) (nSD)

f1 3.02× 102 9.12× 100 2.76× 101 1.01× 101 1.41× 101 4.40× 100

f2 3.62× 103 4.87× 102 7.93× 100 8.11× 100 1.31× 103 4.47× 102

f3 7.39× 101 2.30× 100 1.13× 100 2.67× 10−1 2.15× 101 2.57× 100

f4 2.26× 102 5.43× 100 1.38× 101 2.74× 100 1.31× 101 2.17× 100

f5 3.32× 101 2.50× 101 0.00× 100 0.00× 100 3.32× 101 2.50× 101

f6 9.22× 101 1.82× 101 2.14× 10−1 3.37× 10−1 1.94× 101 1.14× 101

f7 4.30× 102 5.75× 101 4.28× 101 2.19× 101 1.70× 101 8.44× 100

f8 3.35× 103 4.11× 102 2.03× 10−1 2.03× 10−1 3.32× 103 4.15× 102

f9 1.41× 102 1.15× 101 8.32× 100 3.47× 100 1.09× 101 3.45× 100
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The results for all the considered multimodal problems show that the diversity quanti-
fied using the standard SD is high. For swarm diversity, the expectation is for diversity to
decrease monotonically as the particles converge towards the locations of optima. However,
for the standard SD, since the pairwise distance of each particle to all other particles in
the swarm is considered, the diversity predicted will be high. These results show that the
standard SD is not suitable for niching algorithms.

For the mSD, the expectation is that, as the particles converge towards the location of
optima, the measured diversity should monotonically decrease. It is also expected that, if
each particle forms a niche, then the diversity predicted should be low. The results obtained
correlates to the expectations, that is, the obtained mSD predicts low diversity towards
convergence.

SD: f1 SD: f2

SD: f3

Figure 3. Quantification of diversity using the sum of distance measure.
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SD: f4 SD: f5

SD: f6 SD: f7

SD: f8 SD: f9

Figure 4. Quantification of diversity using the sum of distances measure (Cont.).
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The nSD calculates diversity as standard SD does, but only using the unique solutions.
As such, achieved diversity should be high. In addition, even in the case where the unique
solutions are close to each other, it is expected that the diversity will never converge. The
obtained results agree with this expectation.

In conclusion, the standard SD is not a good measure to quantify diversity in niching
algorithms, as is expected. If the diversity of all candidate solutions is required, the mSD
should be used. Finally, if only the diversity of found solutions is required, then nSD is a
good measure.

4.2. Sum of Distances to the Nearest Neighbour

Figures 5 and 6 and Table 3 show the quantification of diversity using the sum of
distance to the nearest neighbour measure (SDNN) and its proposed variants, i.e., modified
SDNN (mSDNN) and niche SDNN (nSDNN).

SDNN: f1 SDNN: f2

SDNN: f3

Figure 5. Quantification of diversity using the sum of distances to the nearest neighbour.
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SDNN: f4 SDNN: f5

SDNN: f6 SDNN: f7

SDNN: f8 SDNN: f9

Figure 6. Quantification of diversity using the sum of distances to the nearest neighbour (Cont.).
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Table 3. Mean (µ) and standard deviation (σ) for SDNN measure at the last iteration.

Function Mean Stdev Mean Stdev Mean Stdev
(SDNN) (SDNN) (mSDNN) (mSDNN) (nSDNN) (nSDNN)

f1 4.28× 101 1.29× 101 9.77× 100 4.09× 100 4.41× 101 1.41× 101

f2 7.29× 103 3.03× 103 7.52× 101 1.13× 102 6.54× 103 2.37× 103

f3 4.26× 100 5.30× 10−1 2.35× 10−1 5.02× 10−2 5.58× 100 7.37× 10−1

f4 1.89× 101 3.73× 100 4.22× 100 1.39× 100 2.97× 101 5.04× 100

f5 6.18× 100 6.61× 100 0.00× 100 0.00× 100 6.18× 100 6.61× 100

f6 1.88× 101 1.78× 101 1.52× 10−1 4.77× 10−1 9.62× 100 3.96× 100

f7 2.90× 102 4.15× 101 3.51× 101 1.91× 101 2.23× 101 9.92× 100

f8 5.47× 103 1.67× 103 6.40× 100 7.23× 100 5.59× 103 1.63× 103

f9 1.97× 101 7.05× 100 2.97× 100 1.70× 100 1.37× 101 4.03× 100

The standard SDNN obtains diversity as the sum of all the nearest neighbours for the
particles in the swarm. As such, it is expected that, as the particles converge towards the
optima, SDNN will obtain low diversity scores because a nearest neighbour of a particle
will be another particle in the same niche. The results showed in Figures 5 and 6 do not
seem to correlate with the expected behaviour. The figures show that diversity starts to
decrease monotonically and then rises either at the 100th iteration ( f2, f6, f7, f8) or around
the 400th iteration ( f1, f5) iteration. A trace of the particle positions at various iterations
(refer to Appendices A–C) shows that, whereas the particles start to converge, there is
a high presence of outliers (the assumption is that since these problems have 3, 1, and
1 global peaks, respectively, the presence of multiple unique solutions means that these are
outliers or unknown local optima). For these outliers, the nearest neighbours are likely to
be particles in already converged niches. As such, the consideration of these outliers in the
calculation raises the diversity.

The mSDNN considers the nearest neighbours at the niche level, and is therefore
not affected by the presence of outliers. In the discussed work, a niche could be formed
using one particle and therefore the diversity at that niche is zero. As such, the results
obtained mirror what is expected. This means that, although the mSDNN seems to be a
good measure, the decrease of diversity does not indicate the true picture of the search
space. More investigations into this are required.

For the nSDNN, the calculation is based on the unique solutions found. Since the
outliers will be considered as unique solutions, this has the effect of raising the niche
diversity. As such, although the expectation is for the nSDNN to show high diversity in
both the exploration and exploitation phases, outliers do play a role in the value obtained.

In summary, the SDNN as a measure has shown to be highly affected by the presence
of outliers. As such, although the results obtained by the nSDNN is as expected, if this
measure is used for quantifying dispersion for candidate solutions of niching algorithms,
care has to be taken and a technique devised to remove the outliers.

4.3. Average Distance around the Swarm Centre

Figures 7 and 8 and Table 4 show the quantification of diversity using the average
distance around the swarm centre measure (ADSC) and its proposed variants, i.e., modified
ADSC (mADSC) and niche ADSC (nADSC). The intial posit in the article was that standard
ADSC and the nASDC will show high diversity because the distances will be computed
from a swarm “best” in both cases. The results do not seem to correlate with this expectation.
Analysis of the ADSC led to the following observations.
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ADSC: f1 ADSC: f2

ADSC: f3 ADSC: f4

ADSC: f5 ADSC: f6

Figure 7. Quantification of diversity using the average distance around the swarm centre measure.
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ADSC: f7 ADSC: f8

ADSC: f9

Figure 8. Quantification of diversity using the average distance around the swarm centre measure (Cont.).

Table 4. Mean (µ) and standard deviation (σ) for ADSC measure and its variants at the last iteration.

Function Mean Stdev Mean Stdev Mean Stdev
(ADSC) (ADSC) (mADSC) (mADSC) (nADSC) (nADSC)

f1 4.55× 10−1 1.62× 10−1 3.42× 10−1 1.54× 10−1 0.00× 100 0.00× 100

f2 1.23× 101 9.74× 100 4.06× 100 3.54× 100 1.65× 100 2.59× 100

f3 6.54× 10−2 1.23× 10−2 3.52× 10−2 7.87× 10−3 5.95× 10−3 6.99× 10−3

f4 2.69× 10−1 6.93× 10−2 2.44× 10−1 1.32× 10−1 0.00× 100 0.00× 100

f5 8.45× 10−10 3.74× 10−9 8.45× 10−10 3.74× 10−9 8.45× 10−10 3.74× 10−9

f6 5.27× 10−3 9.36× 10−3 7.67× 10−3 1.21× 10−2 1.42× 10−3 5.35× 10−3

f7 6.81× 10−3 1.10× 10−2 1.03× 10−3 1.83× 10−3 1.41× 10−6 7.58× 10−6

f8 4.76× 100 3.44× 100 4.15× 100 2.71× 100 3.98× 100 2.71× 100

f9 1.13× 10−1 4.00× 10−2 6.54× 10−2 4.15× 10−2 6.34× 10−3 3.42× 10−2
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The standard ADSC sums the distances from each particle to the best particle in the
swarm and then computes the average. For niching algorithms, there is a high likelihood
of multiple global bests, based on the modality of the problem being investigated. As such,
each particle’s distance from the global best is dependent on which optimum the particle
was optimising. This behaviour explains why the diversity as quantified using the ADSC
decreased monotonically as the search progressed.

For the mADSC, it was expected that the diversity will decrease monotonically. This
is because the computation is done using the best particle in the niche.

Similar to the standard ADSC, the nADSC measure was computed using the nbests.
As such, although the final particle positions (as shown in Appendices A–C) suggest that,
in the presence of outliers, the use of nbests in the computation meant that there were
multiple “centres” being used. This led to the low diversity.

These results suggest that a better strategy needs to be devised in working with both
ADSC and nADSC. Further work on this area will compare the use of a central position in
the swarm with the current use of a swarm “best”.

4.4. Average of the Mean Distance around All Solutions

Figures 9 and 10 as well as Table 5 show the quantification of diversity using the
average of the mean distance around all solutions (ADAA) and its proposed variants, i.e.,
modified ADAA (mADAA) and niche ADAA (nADAA).

ADAA: f1 ADAA: f2

ADAA: f3

Figure 9. Quantification of diversity using the average of the mean distance around all solutions.
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ADAA: f4 ADAA: f5

ADAA: f6 ADAA: f7

ADAA: f8 ADAA: f9

Figure 10. Quantification of diversity using the average of the mean distance around all solutions (Cont.).
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Table 5. Mean (µ) and standard deviation (σ) for ADAA measure and its variants at the last iteration.

Function Mean Stdev Mean Stdev Mean Stdev
(ADAA) (ADAA) (mADAA) (mADAA) (nADAA) (nADAA)

f1 8.49× 100 3.56× 10−1 1.21× 100 4.91× 10−1 7.02× 100 7.98× 10−1

f2 6.92× 102 2.47× 101 9.98× 100 1.16× 101 6.15× 102 5.42× 101

f3 5.06× 10−1 2.43× 10−2 6.83× 10−2 1.38× 10−2 5.17× 10−1 2.58× 10−2

f4 4.83× 100 1.94× 10−1 5.59× 10−1 1.96× 10−1 4.89× 100 1.67× 10−1

f5 1.36× 10−1 1.15× 10−1 0.00× 100 0.00× 100 1.36× 10−1 1.15× 10−1

f6 7.53× 10−1 2.75× 10−1 6.40× 10−3 1.38× 10−2 9.98× 10−1 2.63× 10−1

f7 5.16× 100 3.39× 10−1 8.99× 10−1 4.54× 10−1 2.40× 100 6.37× 10−1

f8 5.96× 102 1.96× 101 1.64× 100 1.82× 100 5.96× 102 2.00× 101

f9 1.60× 100 2.02× 10−1 2.54× 10−1 1.31× 10−1 1.45× 100 1.41× 10−1

The ADAA computes the sum of the average pairwise distances of each particle to all
other particles in the swarm and then finds the average. In essence, the ADAA computes
the average spread of the entire swarm. The effect is that, as the particles converge towards
optima, the diversity will decrease and then stagnate at a relatively high diversity value.

The results obtained by the standard ADAA correlate with the expectation, i.e., for
the diversity to decrease gradually. However, for some of the problems, e.g., f2 and f8, this
was not the case. Analysis of the positions of the particles in various iterations showed
that, for these two problems, convergence started to occur early in the search. As such,
particles were only exploiting near their points of convergence, leading to larger distances
from other particles. This too should be expected of this measure as niching algorithms are
expected to explore widely over the entire search space.

For the mADAA, the results are as expected. The pairwise average distances was
calculated with respect to each niche and then averaged. As such, it was expected that the
small intra-niche distances would lead to small diversity.

The behaviour of the nADAA was somewhat similar to that of the standard ADAA.
Since the pairwise distances are calculated using only unique solutions, it is therefore
correct to posit that the quantified diversity will be high in both the exploitation and the
exploration phase.

In summary, the nADAA is a suitable measure to quantify the spread of the solutions
of niching algorithms, while the mADAA is a suitable measure to quantify diversity within
the candidate niches.

4.5. Entropy

Figures 11 and 12 and Table 6 illustrate the diversity as measured using entropy with
20 bins. From the investigations carried out, no discernible difference was seen between
Ê10, Ê20, Ê50 and Ê100. As such, the discussion is carried out using the swarm diversity
measures, Ê20 and mÊ20, and the niche diversity, nÊ20.
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Ê20 : f1 Ê20 : f2

Ê20 : f3 Ê20 : f4

Ê20 : f5 Ê20 : f6

Figure 11. Quantification of diversity using the Entropy measure.
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Ê20 : f7 Ê20 : f8

Ê20 : f9

Figure 12. Quantification of diversity using the Entropy measure (Cont.).

Table 6. Mean (µ) and standard deviation (σ) for the Entropy measure and its variants at the last iteration.

Function Mean Stdev Mean Stdev Mean Stdev
(Ê20) (Ê20) (mÊ20) (mÊ20) (nÊ20) (nÊ20)

f1 6.29× 10−1 3.71× 10−2 2.14× 10−1 7.44× 10−2 2.82× 10−1 3.24× 10−2

f2 6.58× 10−1 4.72× 10−2 7.55× 10−3 7.01× 10−3 5.76× 10−1 6.93× 10−2

f3 9.12× 10−1 2.35× 10−2 1.38× 10−1 1.98× 10−2 7.31× 10−1 3.20× 10−2

f4 5.97× 10−1 3.31× 10−2 1.63× 10−1 4.16× 10−2 4.29× 10−1 2.91× 10−2

f5 1.29× 10−1 2.92× 10−2 0.00× 100 0.00× 100 1.29× 10−1 2.92× 10−2

f6 3.24× 10−1 6.80× 10−2 1.39× 10−2 1.38× 10−2 3.47× 10−1 5.91× 10−2

f7 8.12× 10−1 3.21× 10−2 1.45× 10−1 7.05× 10−2 3.76× 10−1 5.05× 10−2

f8 5.34× 10−1 4.06× 10−2 1.29× 10−3 1.20× 10−3 5.27× 10−1 3.66× 10−2

f9 5.14× 10−1 5.78× 10−2 9.38× 10−2 3.82× 10−2 3.18× 10−1 3.11× 10−2
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To calculate the standard entropy measure using Ê20, the values of each dimension
of particle positions are placed in 20 bins. The computation involves sampling in those
20 bins in each dimension. For the work reported here, there were 100 particles and, apart
from the Inverted Rosenbrock function which was investigated in four dimensions, all
of the other problems were investigated in two dimensions. Since the nature of niching
algorithms is to spread particles across the search space in an attempt to locate multiple
optima, it was expected that sampling across the four and two dimensions in 20 bins would
result in high diversity. This diversity would decrease gradually as particles started to
converge towards optima but would still be maintained at high levels. As such, the results
shown in Figures 11 and 12 mirror what was expected.

For the mÊ20, particle positions in the mentioned dimensions are also placed in 20 bins.
However, since particles in a niche are likely to have converged, or are very close to each
other, the diversity is expected to be low and tends to zero as particles converge towards
the optima. Results shown are thus as expected.

In the case of nÊ20, the computation is similar to the standard Ê20 with the exception
that only unique solutions are used. As such, a diversity measure using nÊ20 will be high,
but not as high as that obtained using Ê20. The obtained results correctly predict this
outcome.

Various research [12–17] has shown that entropy is a suitable measure to quantify
dispersion. The work presented here postulates that entropy is a suitable measure for
quantifying dispersion for solutions and candidate solutions of niching algorithms.

4.6. Solow–Polasky Diversity

Figures 13 and 14 and Table 7 show the diversity results as computed using the
Solow–Polasky diversity measure, i.e., standard SPD, modified SPD (mSPD), and the niche
diversity (nSPD).

As shown in Equation (9), the SPD is computed based on an n× n matrix, M, with
entries mi,j = exp(−θ‖xi − xj‖2). For the standard SPD, the entries are therefore the
exponent of the pairwise distance of each particle to another particle, normalised using
a user defined parameter, θ. In this work, θ = 1. Following this, the expectation is that
the computed diversity will gradually decrease but stagnate at high values when particles
converge to the location of the optima. The obtained results are therefore as expected.

For the mSPD, the entries mi,j = exp(−θ‖xi − xj‖2) are computed from the particles
in each niche and then an average is calculated. Since it is expected for the intra-niche
distances to be small as particles converge towards an optimum, the obtained diversity
should be low and tend towards zero. The results shown are therefore as expected.

The nSPD is computed similarly to the standard SPD, but with the exception that
only the unique solutions are used. As such, whereas the distances for each of the unique
solutions are the same as in SPD, the matrix is smaller because the number of niches is less.
As such, the nSPD values will be smaller than those of the standard SPD, but the computed
diversity will still be high. Results obtained from the experiment are therefore as expected.

The results obtained here concurs with [4] on the suitability of using the SPD measure
to compute diversity of solutions and candidate solutions of niching algorithms.
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SPD: f1 SPD: f2

SPD: f3 SPD: f4

SPD: f5 SPD: f6

Figure 13. Quantification of diversity using the Solow–Polasky Diversity.
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SPD: f7 SPD: f8

SPD: f9

Figure 14. Quantification of diversity using the Solow–Polasky Diversity (Cont.).

Table 7. Mean (µ) and standard deviation (σ) for the SPD measure and its variants at the last iteration.

Function Mean Stdev Mean Stdev Mean Stdev
(SPD) (SPD) (mSPD) (mSPD) (nSPD) (nSPD)

f1 1.11× 100 6.63× 10−3 1.03× 100 1.05× 10−2 1.08× 100 1.30× 10−4

f2 1.03× 101 1.35× 100 1.04× 100 3.99× 10−2 9.52× 100 1.27× 100

f3 1.01× 100 3.34× 10−4 1.00× 100 1.88× 10−4 1.01× 100 1.91× 10−4

f4 1.06× 100 4.19× 10−3 1.01× 100 3.49× 10−3 1.05× 100 5.76× 10−5

f5 1.00× 100 3.49× 10−3 1.00× 100 0.00× 100 1.00× 100 3.49× 10−3

f6 1.01× 100 1.87× 10−3 1.00× 100 2.41× 10−4 1.01× 100 1.47× 10−3

f7 1.09× 100 6.42× 10−3 1.01× 100 6.84× 10−3 1.03× 100 6.30× 10−3

f8 1.21× 101 1.31× 100 1.01× 100 5.51× 10−3 1.19× 101 1.28× 100

f9 1.03× 100 4.96× 10−3 1.00× 100 1.96× 10−3 1.02× 100 6.19× 10−4
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4.7. Swarm Radius

Figures 15 and 16 as well as Table 8 show the results of diversity as quantified using
the standard swarm radius, SR, modified SR (mSR) and niche diversity (nSR).

SR: f1 SR: f2

SR: f3 SR: f4

SR: f5 SR: f6

Figure 15. Quantification of diversity using the Swarm Radius.
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SR: f7 SR: f8

SR: f9

Figure 16. Quantification of diversity using the Swarm Radius (Cont.).

Table 8. Mean (µ) and standard deviation (σ) for SR measure and its variants at the last iteration.

Function Mean Stdev Mean Stdev Mean Stdev
(SR) (SR) (mSR) (mSR) (nSR) (nSR)

f1 1.67× 101 1.44× 100 3.81× 100 1.63× 100 1.54× 101 1.40× 100

f2 1.25× 103 4.04× 101 2.62× 101 2.99× 101 1.24× 103 3.19× 101

f3 9.95× 10−1 1.41× 10−1 1.50× 10−1 3.32× 10−2 9.84× 10−1 1.31× 10−1

f4 8.96× 100 7.36× 10−1 2.10× 100 5.99× 10−1 8.46× 100 2.15× 10−1

f5 8.13× 10−1 6.34× 10−1 0.00× 100 0.00× 100 8.13× 10−1 6.34× 10−1

f6 1.44× 100 2.01× 10−1 2.27× 10−2 4.81× 10−2 1.39× 100 1.08× 10−1

f7 7.62× 100 6.12× 10−1 1.47× 100 7.20× 10−1 4.40× 100 1.07× 100

f8 1.17× 103 6.37× 101 3.30× 100 3.64× 100 1.17× 103 6.37× 101

f9 3.00× 100 5.31× 10−1 6.07× 10−1 3.04× 10−1 2.33× 100 7.54× 10−2
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For the SR measure, both the standard SR and the nSR were computed using the
“swarm best”, i.e., the solution with the best objective function value. Since the goal of
niching algorithms is to obtain multiple optima, the SR measure obtained the largest
distance between any of the “swarm best” and a candidate solution. Since each candidate
solution is optimising an optimum, the expectation is that the diversity quantified using SR
will monotonically decrease as candidate solutions converge. This is because the diversity
is not measured on how far apart the solutions are from each other but from the “swarm
best” which are multiple. Following this, where SR reports high diversity, it is likely to be
as a result of the presence of outliers. This is the case with the obtained results.

In the case of mSR, the distances are computed with respect to each niche, and
therefore the neighbourhood best is used. Diversity is thus expected to be low and tending
towards zero as particles converge towards an optimum. As such, the achieved results are
as expected.

For the nSR, unique solutions are used. As such, the obtained results will be somewhat
similar to those of the standard SR. This is because, for both cases, the particle with the best
objective function value is used. Where two candidate solutions have the same objective
function value, the computed distance is zero. Where the nSR value is smaller than SR, the
likely explanation is that the furthest particle among the set of unique solutions was closer
to a solution than in the general swarm. This too is expected.

These results mirror those of the ADSC. For both cases, the distances are calculated
from a candidate solution with the best objective fitness. For niching algorithms, the
presence of multiple optima for which the distances can be calculated from means that
lower diversity will be expected. As such, the only explanation to the reported high
diversity is likely to be the presence of outliers. A similar result was reported in [11].

4.8. Swarm Diameter

Figures 17 and 18 as well as Table 9 show the diversity results as computed using
the swarm diameter measures, i.e., standard SDM, modified SDM (mSDM) and the niche
diversity (nSDM).

For the SDM, the computation is geared towards the maximum distance between
any two particles/candidate solutions. As such, the expectation is that standard SDM
will obtain high diversity during both the exploration and the exploitation phases. The
obtained results are therefore as expected.

The mSDM is only computed per each niche and then an average is calculated. As
such, it is expected that the diversity will be small and tending towards zero as convergence
towards the location of optima is achieved. As such, results of the mSDM are as expected.

The nSDM is computed in a similar manner to that of the SDM. The only difference is
that the nSDM is computed using only unique solutions. As such, the nSDM is expected to
show a high diversity both at the exploration and exploitation phases.

In summary, whereas the SDM measure can truly reflect how far apart both the
solutions and candidate solutions are, these solutions are likely to also contain outliers.
The high diversity as shown may thus not be a measure of how truly diverse the obtained
solutions are.



Algorithms 2021, 14, 36 29 of 38

Table 9. Mean (µ) and standard deviation (σ) for SDM measure and its variants at the last iteration.

Function Mean Stdev Mean Stdev Mean Stdev
(SDM) (SDM) (mSDM) (mSDM) (nSDM) (nSDM)

f1 1.86× 101 5.09× 10−1 4.82× 100 1.97× 100 1.59× 101 3.25× 10−2

f2 1.28× 103 4.07× 101 2.63× 101 3.00× 101 1.25× 103 2.79× 101

f3 1.17× 100 6.38× 10−2 1.65× 10−1 3.62× 10−2 1.13× 100 2.36× 10−2

f4 9.54× 100 9.28× 10−1 2.38× 100 6.42× 10−1 8.59× 100 1.04× 10−2

f5 8.45× 10−1 6.72× 10−1 0.00× 100 0.00× 100 8.45× 10−1 6.72× 10−1

f6 2.43× 100 3.61× 10−1 2.27× 10−2 4.81× 10−2 2.38× 100 2.76× 10−1

f7 1.28× 101 9.33× 10−1 2.06× 100 1.01× 100 4.95× 100 1.04× 100

f8 1.22× 103 6.35× 101 3.30× 100 3.64× 100 1.22× 103 6.37× 101

f9 4.94× 100 8.02× 10−1 7.74× 10−1 3.43× 10−1 3.73× 100 9.46× 10−2

SDM: f1 SDM: f2

SDM: f3

Figure 17. Quantification of diversity using the Swarm Diameter.
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SDM: f4 SDM: f5

SDM: f6 SDM: f7

SDM: f8 SDM: f9

Figure 18. Quantification of diversity using the Swarm Diameter(Cont.).
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5. Conclusions

This paper offers a concise understanding of diversity measures for quantifying
the spread of candidate solutions and solutions of a niching algorithm. The paper does
not attempt to compare the diversity measures, but instead analyse whether they can
correctly quantify diversity when used with niching algorithms. The diversity measures
are discussed with respect to the search space, i.e., swarm diversity, and with respect to
solution space, i.e., niche diversity.

An empirical study involving the reviewed measures was carried out using a set
of multimodal functions optimised using the enhanced species-based particle swarm
optimisation (ESPSO) niching algorithm. The obtained diversity results showed that some
measures are more suited to the task than others. However, the conclusions were drawn
as remarks for each diversity measure rather than a conclusive determination on which
diversity measure is better than the other.

The discussion shows that both swarm diversity and niche diversity are important for
the purpose of niching algorithms. The calculation of swarm diversity, by first subjecting
the measures to each of the candidate niches, is critical because niching algorithms cluster
candidate solutions during the search process. The niche diversity is important because it
shows diversity of the unique solutions (“would-be solutions”) during exploration and
during exploitation. High niche diversity during the exploration phase indicates that
a niching algorithm is capable of identifying potential niches, while high diversity at
the exploitation phase means that the algorithm is able to maintain the found niches. It
is, however, expected that niche diversity will decrease as the swarm moves from the
exploration phase to the exploitation phase.

Diversity is an important aspect of a population-based algorithm because it determines
the performance over a given set of problems. It is thus important to investigate diversity
measures that can be utilised to analyse the spread of candidate solutions. The presented
study can thus only be seen as a first step towards this investigation.
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Abbreviations
The following abbreviations are used in this manuscript:

PSO Particle Swarm Optimisation
DE Differential Evolution
GA Genetic Algorithms
ESPO Enhanced Species-Based Particle Swarm Optimisation
SD Sum of Distances
SDNN Sum of Distances to Nearest Neighbour
ADSC Average Distance Around the Swarm Centre
ADAA Average of the Mean Distance around all Candidate Solutions
SPD Solow–Polasky Diversity
SDM Swarm Diameter
SR Swarm Radius

Appendix A. Branin
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Figure A1. Cont.
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(e) (f)

Figure A1. Branin Rcos at different iterations. (a) f1: iteration 50; (b) f1: iteration 100; (c) f1: iteration 250; (d) f1: iteration
500; (e) f1: iteration 750; (f) f1: iteration 1000.

Appendix B. EggHolder

(a) (b)

(c) (d)

Figure A2. Cont.
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(e)

Figure A2. Inverted Egg Holder at different iterations. (a) f2: iteration 50; (b) f2: iteration 100; (c) f2: iteration 250; (d) f2:
iteration 500; (e); f2: iteration 750.

Appendix C. Inverted Schwefel Problem 2_26

(a) (b)

(c) (d)

Figure A3. Cont.
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(e)

Figure A3. Inverted Schwefel Problem 2_26 at different iterations. (a) f8: iteration 50; (b) f8: iteration 100; (c) f8: iteration
250; (d) f8: iteration 500; (e) f8: iteration 750.

Appendix D. Test Functions in 2D

(a) (b)

(c) (d)

Figure A4. Cont.
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(e)

Figure A4. Test Functions shown in 2D. (a) f1; (b) f2; (c) f3; (d) f4; (e) f5.

Appendix E. Test Functions in 2D

(a) (b)

(c)

Figure A5. Cont.
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(d)

Figure A5. Test Functions shown in 2D. (a) f6; (b) f7; (c) f8; (d) f9.
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