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Abstract: At container terminals, many cargo handling processes are interconnected and occur in par-
allel. Within short time windows, many operational decisions need to be made and should consider
both time efficiency and equipment utilization. During operation, many sources of disturbance and,
thus, uncertainty exist. For these reasons, perfectly coordinated processes can potentially unravel.
This study analyzes simulation-based optimization, an approach that considers uncertainty by means
of simulation while optimizing a given objective. The developed procedure simultaneously scales
the amount of utilized equipment and adjusts the selection and tuning of operational policies. Thus,
the benefits of a simulation study and an integrated optimization framework are combined in a new
way. Four meta-heuristics—Tree-structured Parzen Estimator, Bayesian Optimization, Simulated
Annealing, and Random Search—guide the simulation-based optimization process. Thus, this study
aims to determine a favorable configuration of equipment quantity and operational policies for con-
tainer terminals using a small number of experiments and, simultaneously, to empirically compare
the chosen meta-heuristics including the reproducibility of the optimization runs. The results show
that simulation-based optimization is suitable for identifying the amount of required equipment and
well-performing policies. Among the presented scenarios, no clear ranking between meta-heuristics
regarding the solution quality exists. The approximated optima suggest that pooling yard trucks and
a yard block assignment that is close to the quay crane are preferable.

Keywords: container terminal; simulation; simulation-based optimization; meta-heuristic; horizontal
transportation; hyper-parameter optimization

1. Introduction

Seaports are the interface between various transport modes in the maritime supply
chain. In 2019, the volume of global maritime containerized trade had tripled to 152 million
TEU (Twenty-foot Equivalent Unit, the size of a standard container) from its value in
1997 [1]. Moreover, ship sizes have also tripled in the past 20 years, from an 8000 TEU
capacity to around 24,000 TEU. This implies that, in addition to adjustments to the port’s
infrastructure and superstructure, container terminals have to substantially increase their
efficiency in ship handling in order to keep unproductive berthing times as short as possible
while container volumes that are handled during one ship call increase. Thus, the challenge
for terminals is to handle a large number of containers within a very short period of time.
Terminals can address this challenge by creating technical prerequisites (i.e., using more
and higher-performance equipment) and by optimizing operational processes. While the
use of more equipment entails correspondingly more investment and higher running costs,
intelligent control of operational processes leads to more efficient cargo handling without
additional costs. Therefore, it is reasonable to minimize the amount of necessary equipment
and to coordinate operational processes.

Container handling requires a large number of process steps in the terminal. When
a ship is berthed, Quay Cranes (QCs) unload the containers and set them onto waiting
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Yard Trucks (YTs), which then transport them to the storage area. There, Rubber-Tired
Gantry (RTGs) cranes lift the containers into the respective Yard Block (YB) for short-term
storage until the container is picked up. The steps in the process of loading a ship run in
the opposite direction. The processes are coupled because YTs are passive equipment and
are not able to lift the containers themselves. As a result, waiting times and utilization of
the respective equipment must be weighed against each other. In order to perform ship
handling as quickly as possible and to reduce the waiting times of the QCs, it is preferable
to use more YTs however, this leads to longer waiting times and lower utilization of
YTs. Furthermore, using too many YTs leads to congestion and, therefore, to delays in
ship handling [2]. The better the balance between these conflicting objectives, the more
efficiently the terminal works.

There are several decision problems in the design and operation of container terminals,
which strongly influence the efficiency of container handling. Figure 1 shows an overview
of typical decision problems at container terminals.
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Figure 1. Decision problems at container terminals.

Decisions regarding the design of the terminal layout (e.g., location and size of the YBs)
or the equipment that must be used and how much of it to procure have a rather long-term
influence (refer to [3] for a recent overview). From a short-term perspective, on the quayside,
decisions include berth allocation, stowage planning, and QC assignment and scheduling
(refer to [4] for an overview). In horizontal transport, the decision problems are dispatching
or scheduling (assigning vehicles and transport orders) and routing. Dispatching (assigning
RTGs and storage orders), YB assignment, and YB position assignment are the primary
decision problems in the storage area. On the land side, there are also questions of order
assignment and gate control. Kizilay and Eliiyi [5] provide a recent overview of container
terminal decision problems.

These decision problems influence each other [6]. For example, berth allocation
directly influences the YB assignment and vice versa. The distances between the ship
at the berth and the assigned YBs should be as short as possible, and at the same time,
sufficient YBs should be assigned to a berth or QC. RTGs in the yard can typically move
15 containers within one hour, while QCs have a productivity of around 30 moves/h. Thus,
at least two YBs (each being served by at least one RTG) have to be connected to one QC.
Another example is the relationship between gate organization and dispatching in the yard:
If the number of truck arrivals is regulated by a truck appointment system, then this also
influences the number of handling orders for RTGs and thus affects dispatching [7]. These
are just two examples of the numerous interactions between decision problems. Therefore,
there is a risk that the overall solution will deteriorate if only one decision problem is
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optimized. Hence, it is necessary to combine the different related decision problems into a
single integrated decision problem. Usually, the operations on the waterside are focused
on due to the high costs related to the berth time of a ship. This means that the number
of QCs, YTs, and RTGs as well as the integration of the handling processes need to be
jointly considered to ensure efficient operations. Thus, this study analyzes a combination
of QC assignment and dispatching, as well as YB assignment as shown with a dark frame
around the respective boxes in Figure 1. Additionally, the dashed frame around the quantity
of equipment per type indicates that the number of YTs used is modified.

Integrated decision problems covering QCs, YTs, and RTGs have been traditionally
solved by formulating and solving a mathematical model. At first glance, this seems like a
reasonable approach. However, this results in a very complex problem for which a solution
is difficult to find and, especially under the real-time requirements of a container terminal,
is almost impossible to solve in terms of computing power. Therefore, it is worthwhile
stepping back and considering different methods, including the use of policies.

1.1. Literature Review on Integrated Decision Problems

There are two main approaches to addressing the operational decision problems
of container terminals [8]. The first approach takes into account the complex dynamic
environment of a container terminal. It typically uses priority rules, which are analyzed
with the help of simulation models that can represent stochastic processes. Simulation
models involving container terminals are reviewed in [9,10]. In the second approach, a
simplified deterministic mathematical model is formulated. Either the model can be solved
optimally for small instances, or an approximation can be found with the help of heuristics.

While the first approach is better suited to volatile processes at container termi-
nals, simulation studies that aim to investigate several decision problems quickly be-
come very complex [11]. The second approach also quickly reaches its limits. In this
context, Zhen et al. [12] showed that the integrated QC and YT scheduling problem is
non-deterministic polynomial-time hard, which means that the computing time required
to optimally solve the problem is too long to be used in practice. To take advantage of both
approaches, especially in order to investigate integrated decision problems that influence
each other, the approach of combining simulation and optimization has been developed
in recent years. He et al. [13] addressed integrated QC, YT, and RTG scheduling. They
developed a mixed-integer programming model and proposed a simulation-based opti-
mization method. Their optimization algorithm integrates genetic and particle swarm
optimization algorithms. Cao et al. [14] aimed to schedule RTGs and YTs simultaneously
in order to decrease the ship turnaround time. They introduced a multi-layer genetic
algorithm to solve the scheduling problem and designed an algorithm-accelerating strategy.
Castilla-Rodríguez et al. [15] focused on the QC scheduling problem: They integrated
artificial intelligence techniques and simulation, combining an evolutionary algorithm
with a simulation model to embed uncertainty. Kizilay et al. [16] studied the integrated
problem of QC assignment and scheduling, YB assignment, and YT dispatching. They
proposed a mixed-integer programming and constraint programming model and showed
that the constraint programming model performed much better in terms of calculating time.
Integrated quayside problems can also be investigated with other aims, such as saving
costs and energy simultaneously [17] or exploring different modes of integration [18].
Sislioglu et al. [19] combined discrete event simulation, data envelopment analysis, and
cost-efficiency analysis to investigate different investment alternatives based on the number
of QCs, total length of a quay, YTs, and RTGs. They applied their model to 16 different
scenarios but did not modify the operating policies. Furthermore, other research has com-
bined different simulation paradigms to solve optimization problems at different decision
levels. For example, in [20], a system-dynamic model was used to optimize the main
parameters of a dry port, and in [21], a combination of system-dynamic and discrete-event
simulation models was used. Kastner et al. [22] provide a literature overview of simulation-
based optimization at container terminals. They focused on the covered problems, chosen
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meta-heuristics, and the shapes of the parameter configuration space in the respective
publications. Similarly, Zhou et al. [23] present a summary of publications on the integra-
tion of simulation and optimization for maritime logistics. They classified five modes of
integration according to the interaction of the two techniques.

Kastner et al. [24] proposed applying the Tree-structured Parzen Estimation (TPE)
approach to scale the amount of utilized equipment in a simulation model. With the help
of simulation-based optimization, only a subset of the experiments was executed. At the
same time, a fine search grid (all equipment was scaled in step sizes of 1) enabled a very
good approximation of the unknown optimum.

The presented study is an extension of [24]. The reviewed literature is expanded and
updated. Previously, the three meta-heuristics TPE, Simulated Annealing (SA), and Ran-
dom Search (RS) were used to scale the number of QCs and YTs. In this study, in addition,
the number of YBs is alternated, and the coordination of equipment is varied by using
different policies. This enrichment required several extensions of the simulation model and
the parameter configuration space. In the new study, the number of QCs is considered to
be fixed during an optimization run and a caching mechanism is implemented to speed
up optimization. As a new meta-heuristic, Bayesian Optimization (BO) is introduced. The
application of dispatching and other policies differentiates this publication from most of the
previously mentioned publications. Previous works often directly search for near-optimal
sequences of container handling tasks. For larger container terminals, terminal operating
systems integrate the computed schedules of different equipment [25]. Smaller container
terminals tend to use less complex IT solutions that lack automated scheduling methods,
relying more on operational rules of thumb, such as dispatching policies [26]. This study
presents a solution method that is applicable for these smaller container terminals. The
simulation results describe the near-optimal combination of multiple decisions, such as the
quantity of equipment, the dispatching policy, and other policies for a given situation. In
this study, optimization plays a role that is very different from that in the above-mentioned
scheduling methods. Several parameters, some of them categorical, some discrete, and
some continuous, are adjusted in parallel. It is known from similar prior studies (e.g., [11])
that different parameters also affect each other. In this study, therefore, a multivariate
optimization problem is solved.

1.2. Optimizing Objective Functions without Mathematical Optimization

The integration of several operational problems leads to many decisions that are
made in parallel. In the presented study, the number of utilized resources is scaled, while,
concurrently, different storage and equipment control policies are taken into account,
potentially allowing for policy tuning. All of these parameters are optimized without a
mathematical model. This section elaborates on the options that a simulator can choose
from if no mathematical model is present but an optimum, or at least its approximation,
is sought.

For simulation studies, a full factorial design is often used, where each parameter
combination is tested by running a corresponding simulation experiment [27]. The param-
eter combination that performs best according to an objective function is then reported
as the best known solution. In other words, it is the best available approximation of the
unknown optimum. Such simulation studies do not include a mathematical model, and
hence, the distance between the best approximation of the optimum and the optimum of
the mathematical model cannot be reported.

A study that covers a full factorial design is only feasible for finite sets, such as
categorical values or selected numerical values. Continuous parameters (e.g., real numbers)
need to be restricted to a finite set of selected values. The search grid for such a study needs
to be sufficiently fine (i.e., for natural numbers, few omissions within a given range; for
real numbers, small step sizes are used) so that the optimum can be approximated well.
For high-dimensional parameter configuration spaces, the combination of all concurrently
varied parameters, at some point, becomes too large for exhaustive examination. This
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holds true for large simulation studies as well as for hyper-parameter optimization in
machine learning. Furthermore, if all permissible values of a parameter are exhaustively
examined, for real numbers, only an approximation for the optimal input parameter might
be identified.

As soon as the combination of all varied parameters results in an amount of expensive
simulation runs that could not be executed within a reasonable time frame, some of the
simulation runs need to be skipped or simplified. If the goal of the study is to approximate
an optimum, expensive simulation runs which are expected to result in a lower objective
function value need to be avoided. Several approaches presented in the following para-
graphs exist. However, if the simulation model is sufficiently complex, any approach might
fail to identify the best approximated optimum in the set of feasible solutions.

One option to reduce computational time is to use a multi-fidelity approach [28]. With
a low-fidelity simulation model, each parameter combination is evaluated. These results are
used to identify promising parameter configurations, which are further examined with a
high-fidelity simulation model. From that subset, the best solution can be determined. This
approach requires the simulator to create two simulation models of a different fidelity. The
low-fidelity simulation model requires special skills during creation as all important aspects
need to be covered in the model because, otherwise, a promising parameter configuration
for the high-fidelity simulation experiment may be omitted. At the same time, the processes
must be sufficiently simplified to improve the required time for running the experiments.

An alternative option to reduce computational time is to maintain a computing bud-
get, i.e., the total amount of computing resources that are available to approximate the
optimal solution [29]. The initial experiments are randomly chosen from the parameter
configuration space [30]. If, during the evaluation, a given parameter configuration is iden-
tified as having superior performance, more computing resources are invested to obtain a
better picture of the corresponding objective function value. The longer the total observed
time range for a given simulation model, the more that typically noisier sample statistics
approximate the population parameters. AlSalem et al. [29] stated that this approach
does not necessarily create optimal solutions, but solutions that are close to the optimum
with a very high probability. Furthermore, in industry, such approximations often satisfy
requirements [29]. Even if optimal input parameters are calculated for a given simulation
model, the difference in performance might be of little practical relevance.

Another option to reduce computational time is to embed the simulation into an outer
loop of optimization. The simulation model itself is regarded as a black-box function. If
the optimization problem (i.e., the objective values derived from the simulation model) has
some known structural properties, one might prefer to derive a simpler representation that
enables optimization with other tools than simulation [31]. The optimization algorithm
in the outer loop tests a subset of the feasible parameter configurations to approximate
the optimum of the black-box function. This concept goes by many different names, such
as “simulation optimization” [32], “simulation evaluation” [33], “simulation integrated
into optimization” [34], and “simulation-based optimization” [23]. For cases in which a
combinatorial optimization problem is solved, the term “simheuristic” has been coined [35].
This concept is the only combination of simulation and optimization that does not rely
on maintaining an additional mathematical model [34]. If the simulation model is suffi-
ciently complex, then the optimization algorithm can only consist of general guidelines for
searching good (but not necessarily optimal) solutions. These general guidelines, which
are applicable across research domains, are also referred to as meta-heuristics [36]. Meta-
heuristics often start with several randomly drawn parameter configurations, and the first
objective values that are obtained direct further search. A good meta-heuristic balances
exploration and exploitation. During exploration, parameter configurations that are quite
different from the previous samples are tested. During exploitation, well-performing pa-
rameter configurations are slightly altered to obtain an improved parameter configuration.
After several iterations, a stopping criterion is reached, and the best solution found so far is
returned as an approximation of the global optimum. For a guided search, a meta-heuristic
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needs to keep track of past evaluations. The large number of meta-heuristics reported in
the literature stems from the fact that it is a non-trivial decision as to how to continue a
search given a set of observations.

To the best of the authors’ knowledge [37], and the authors’ previous study [24] are
the only ones that have used the simulation-based optimization approach at a container
terminal for scaling the amount of several utilized resources. Kotachi et al. [37] simulta-
neously optimized the berth length, the number of QCs, the number of gates, the fleet
size of YTs, the number of export and import rows, and the number of RTGs per row. The
objective function balanced the throughput and the utilization, weighted by investment
costs. While a high throughput was achieved with more resources, the weighted utiliza-
tion ensured that no superfluous resources were added to the container terminal. Even
though not all permissible realistic values were taken into account, the authors calculated
72,576 possible parameter combinations. They decided that these were too many to fully
cover in a simulation study. They built an optimization framework that consisted of two
stages: First, the interactions between resources were examined to determine the most
promising sequence of resource optimization tasks. As seven different types of resources
were checked, 7! = 5040 possible permutations existed. Second, the gained sequence was
utilized to optimize each resource one by one. The resources that were not yet optimized
were selected according to stochastic sampling. Following the proposed optimization
framework, the number of executed experiments could be reduced by 34% and it is stated
that further enhancements are possible. In the following, some applicable ideas for such an
optimization framework are explored.

1.3. Relationship between Hyper-Parameter Optimization and Simulation-Based Optimization

Identifying high-performing solutions for a given model is a typical research question
in many fields of science. The speed of the necessary search process has increased since
the advent of computers and the new possibility of automating tedious and complex
computations. Complex computations often become quite resource-intensive and tend to
contain a large number of parameters that can be varied. Each parameter configuration
describes an alternative shape of the executed computation. For categorical parameters (i.e.,
an element of a finite set), the size of the parameter configuration space grows exponentially
with every additional parameter. For continuous parameters (e.g., a range of real numbers),
even for a single parameter, the search space is infinite. Therefore, for many applications,
the parameter configuration reaches a size that is impossible or impractical to cover. Hence,
scientists are forced to evaluate only a subset of all feasible parameter configurations.
This search process is further complicated if the model contains stochastic components.
Therefore, a single parameter configuration often needs to be tested several times before the
resulting statistics reliably inform the scientist of the quality of a parameter configuration.

One field of science that faces similar difficulties is machine learning. Here, often learn-
ing algorithms that consist of many exchangeable components are optimized according to
some metric. For neural networks, e.g., for the activation function, different mathematical
functions can be inserted, the weights inside a neural network can be adjusted by differ-
ent algorithms, the number of neurons for each layer can vary, etc. [38]. These decisions
are referred to as hyper-parameters. They are usually considered to be constant during
one experiment. It is a non-trivial problem to identify the best hyper-parameters for a
given machine learning problem. Since machine learning pipelines often contain stochastic
components, a repeated evaluation is often necessary.

The task of constructing and adjusting machine learning is so complex that, in some
cases, randomly picking parameter configurations outperforms manual model calibration
by scientists [39]. The authors explain these results by the higher resolution of the search
grid and less wasting of the computational budget on the variation of parameters that
have little or no impact on the final result. To support the expert in automating the search
through a parameter configuration space, Hutter et al. [40] were the first to present an
optimization procedure that can deal with numerical and categorical parameters in a
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problem-independent manner. Bergstra et al. [41] quickly followed with an alternative
approach that they called TPE. A comparison between several data sets showed that
the performance of such a hyper-parameter optimization technique varies with each
setup [42–44]. This research topic is often referred to as hyper-parameter optimization and
is the subject of active research and development [44–46].

In the past several years, many newly developed hyper-parameter optimization
approaches have advanced the field. Studies such as [42–44] have empirically compared
different meta-heuristics. This approach is the key to identifying characteristics of each
meta-heuristic, which, in turn, can result in the recommendation of one meta-heuristic.
Such an empirical approach is necessary because of the No Free Lunch Theorem (NFLT)
in the optimization of black-box functions: One cannot determine the most successful
optimization algorithm for an unseen problem [47]. This means that, for simulation-based
optimization, a meta-heuristic that has worked well in one study might fail to lead to
good approximations of the optimum for a different “problem”, i.e., the black-box function
that consists of a simulation model and an objective function. In machine learning, the
black-box function can be understood as a combination of the learning algorithm and the
data set on which it operates. Once one of the components is changed, it constitutes “an
unseen problem” according to the NFLT.

As McDermott [48] elaborated, this claim might not be in harmony with observations
from scientific literature as often, certain meta-heuristics tend to provide better results than
others. Therefore, no published ranking of different optimization algorithms is guaranteed
to be reproducible for other problem instances. However, when several optimization
studies are considered together, the observed characteristics of each optimization algorithm
(e.g., a meta-heuristic) should fit into the broader picture. Hence, a comparison study such
as [42–44] or this publication contributes to these deeper insights.

This study uses simulation-based optimization on a multivariate optimization prob-
lem at a container terminal. As parameters, only categorical, discrete, and continuous
value ranges are permissible. This makes it suitable for choosing policies, determining the
amount of employed equipment, and defining policies that accept tuning parameters. The
simulation model and the objective function together are treated as a black-box function
that is repeatedly evaluated because of its stochasticity. The novelty of this optimization
study is that meta-heuristics that have also been used in the context of hyper-parameter op-
timization are applied to a discrete event simulation model that models several integrated
problems of a container terminal. As only meta-heuristics are deployed, the parameter
configuration space and the simulation model can both be extended to represent additional
complex integrated decisions with little effort. Alternative approaches that couple simu-
lation and optimization require that both the simulation model and mathematical model
remain aligned [34].

2. Materials and Methods

First, the simulation model is presented in Section 2.1. Then, the subsequently used
meta-heuristics are presented in Section 2.2. Section 2.3 describes the method of identifying
good parameter configurations for the simulation model. In this context, the objective
function is presented.

2.1. Simulation Model

In the following, the created simulation model of the container terminal and its restric-
tions are presented. The discrete-event simulation model is implemented in Tecnomatix
Plant Simulation and is based on the data of a real terminal. The layout of the terminal is
shown in Figure 2.
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Figure 2. Layout and process illustration of the simulation model.

The terminal has a quay length of 800 m and a total of 20 YBs. The simulation model
represents container handling between the quayside and container yard. As displayed
in Figure 2, the specifics of the design of the land-side transport interface as well as the
berths are not considered in detail. In this study, parallel handling of several ships is not
modeled. Consequently, the simulation model of the container terminal is stressed by the
arrival of a single ship. For this, 12 bays of the ship with a total of 4000 containers have
to be handled. About half of them are import containers to be unloaded and the other
half are export containers to be loaded. The container transport orders are pre-defined
and contain details such as the origin and destination of the containers at the terminal and
the availability time for handling in the yard or quayside by gantry cranes. To reduce the
execution time of a simulation run, three variations for each parameter combination are
generated before all experiments. Depending on the experiment, at least 3 and at most
6 QCs are available for loading and unloading the ship. The ship is unloaded and loaded
bay by bay, whereby the QC always handles the entire bay that is assigned to it. Thus, the
QC moves after the unloading of a bay and before the loading of the next bay. These bay
changes are represented by a delay between the handling of two containers of the same
QC. When fewer QCs are used for one ship, more bays are served by each QC.

In the simulation model, an average quayside handling rate of 30 containers per hour
is assumed, which is represented by an expected handling frequency of 120 s by each
QC. To model stochastic influences, a triangular distribution of the QC handling times is
assumed with a minimum handling time of 80 s and a maximum value of 180 s. YTs carry
out horizontal transport between the quay and yard. Since YTs are unable to lift containers
themselves, the transfer between the QC and YT must be synchronized. The travel times of
the YTs are determined by the distances between QCs and YBs, as specified by the terminal
layout. For calculating the travel times, an average speed of 8.4 m/s is assumed for the YTs.
By inserting a triangular distribution, stochastic influences are taken into account when
calculating the travel times. The total number of YTs used per experiment is generated in
the yard at the beginning of the simulation.

The inbound and outbound yard operations are performed by RTGs. For the simula-
tion model, it is assumed that RTGs can handle an average of 15 containers per hour, which
corresponds to an expected value of 240 s per handling. Deviations and irregularities in
the process are modeled by a triangular distribution with a minimum handling time of
180 s and a maximum value of 420 s. For all experiments, at least two YBs are required for
each active QC. Thus, it can be ensured that sufficient stowage space is available for the
containers to be handled. Depending on the experiment, one of the two storage policies
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random YB assignment and close YB assignment is investigated with the simulation model.
For the storage policy random YB assignment, containers from all active YBs can be trans-
ported to and from each of the QCs. In addition, import containers are randomly assigned
to YBs, regardless of which QC is used for the unloading. All active YBs are ensured to be
equally burdened as much as possible. The second storage policy is close YB assignment,
which seeks to minimize the distance between QCs and YBs. YBs with the shortest possible
distance for horizontal transport are assigned to every QC. The handling of containers only
takes place between the defined QCs and YBs.

Furthermore, the two different dispatching policies fixed QC-YT assignment and free
QC-YT assignment are implemented in the simulation model. In the first policy, fixed QC-YT
assignment, a fixed number of YTs are assigned to each QC. This policy is typically used in
practical terminal operations, as it is the simplest to apply. Every YT receives an attribute
that assigns it to a specific QC. In the second dispatching policy, free QC-YT assignment,
each YT can approach every QC. This policy is a modified version of the hybrid method
from Schwientek et al. [11]. The next suitable job is chosen on the basis of the necessary
driving time at the terminal and the waiting time of orders. The driving time and waiting
time can be weighted differently for each experiment, controlled by the policy tuning
parameter Dispatching Weight. For the selection of the next suitable order, each free YT
inspects the next 20 orders. The order with the earliest availability time is determined. For
the other 19 orders, the difference between the order’s availability time and the earliest
availability time is determined. Additionally, the required travel time to the start position
of the respective order is calculated. Both values are multiplied by the intended weighting
factor Dispatching Weight of the experiment. Finally, the results are added, and the order
with the smallest sum is chosen by the YT. If no YT is available at the quay, the QCs have
to wait. Otherwise, the containers can be loaded directly onto the YTs. Loaded YTs drive
the containers to the defined YB. There, the YTs and containers are separated from each
other. The same process steps for handling export containers occur in the reverse sequence
of that described above.

2.2. Employed Meta-Heuristics

Meta-heuristics are used to approximate the best parameter configuration for the
given simulation model described in the previous subsection. The corresponding process
is depicted in Figure 3. First, the history H and the counter i are initialized as an empty
set and 0, respectively. Since no prior observations are recorded in H, the meta-heuristic
must select the experiment randomly. In the next step, the meta-heuristic suggests a
parameter configuration x(i). If this is a previously unseen parameter configuration, a
simulation experiment is executed and the fitness is calculated. Otherwise, from the
previous experiment runs stored in H, the fitness value corresponding to x(i) is retrieved.
In both cases, H is extended with the new value, and the meta-heuristic is set up with
this H. After 50 evaluations, the results are reported, and the optimization study is
completed. The history H is implemented with a global database that shares the history
over several optimization runs independently from the employed meta-heuristic during
the retrieval phase, which helps to reduce the wall time. The meta-heuristic is only set
up with experiments that are previously suggested within the same optimization run to
ensure the independence of each optimization run for the subsequent evaluation.

Without having executed any simulation experiments, the simulation model must
be considered a black-box. It is, therefore, impossible to know which of a set of given
meta-heuristics would lead to the best approximation. Since many meta-heuristics them-
selves have a stochastic component, even two different optimization runs of the same
meta-heuristic can result in different approximations of the optimum. Hence, for a yet
unknown simulation model, it is unpredictable whether the optimum will be approximated
sufficiently well and, if so, which meta-heuristic will achieve this. Each meta-heuristic
needs to empirically prove its applicability to a problem [48]. In this study, TPE was
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applied to a discrete event simulation model and compared with SA, BO, and RS. These
meta-heuristics are introduced next.

Initialize variables
History 𝐻 ≔ ∅
Counter 𝑖 ≔ 0

Report results

Run simulation 
experiment:

𝑦(𝑖) = 𝑓 𝑥(𝑖)

𝑥(𝑖) ∈
p2 h h ∈ H}?

Record experiment:

𝐻 ≔ 𝐻 ∪ { 𝑖, 𝑥(𝑖), 𝑦(𝑖) }

Setup meta-
heuristic with 𝐻, 

𝑖 ≔ 𝑖 + 1

Meta-heuristic 
suggests 

𝑥(𝑖) ∈ Χ

Retrieve from history:

𝑦(𝑖) = p3 h
h ∈ H ∧ p2 h = 𝑥(𝑖)}

yes no

𝑖 ≤ 50

yes

no

Figure 3. The optimization process.

2.2.1. Tree-Structured Parzen Estimator

TPE was developed to automate the search for a sufficiently well-performing config-
uration of a Deep Belief Network [41]. For a Deep Belief Network, parameters are either
categorical variables (e.g., the decision whether to use pre-processed or raw data) or contin-
uous variables (e.g., the learning rate). Integer values can be modeled as either categorical
variables (the numbers are mere labels) or continuous variables that are rounded before
further use. In addition, dependencies between variables exist: One variable determines
the number of network layers and then each layer is configured on its own. Having the
configuration of the third layer as part of a parameter configuration is only reasonable if
the variable encoding the number of layers is set to at least three. Such a parameter is called
a conditional parameter. To reflect the dependencies, this type of parameter configuration
space is adequately represented as a tree. This requires specific meta-heuristics that support
such a tree structure. The TPE approach has produced good benchmark results [42,49], and
the initial paper is among the most cited publications on hyper-parameter optimization; at
the time of writing, Scopus indicates that there are 939 citations.

The TPE models p(y < y∗), p(x|y < y∗), and p(x|y ≥ y∗), where p denotes a
probability density function (short: density), y is a point evaluation of the model, and x is a
parameter configuration. The first density p(y < y∗) = γ is a fixed value (e.g., 0.15 was
used in the first publication) set by the experimenter, and y∗ is altered to fit the set value of
γ for each iteration. The other two densities can be summarized as p(x|y): The probability
that a certain parameter configuration has been used, given a desired point evaluation value.
Typically, TPE is formulated to find a minimum and, therefore, p(x|y < y∗) describes the
density of parameters that have shown better results, whereas p(x|y ≥ y∗) describes the
density of the parameters that have led to poorer performance. As the true densities are
unknown, they need to be estimated based on the obtained evaluations in each iteration.
For each categorical parameter, two probability vectors are maintained and updated: Given
the prior vector of probabilities p = (p1, ..., pN), with each probability pi for i ∈ 1, ..., N
representing one category, the posterior vector elements are proportional to N · pi + Ci,
where Ci counts the occurrences of choice i in the recorded evaluations so far. An example
is depicted in Figure 4a. The estimator for the better-performing parameters (the top 15%)
and that for the worse-performing parameters (the bottom 85%) are calculated based on
the observations already recorded. For each continuous parameter, two adaptive Parzen
estimators are used. Given a prior probability density distribution determined by the
experimenter, with each point evaluation of the parameter configuration space with the help
of the simulation model and the objective function, the densities are further approximated.
An example is depicted in Figure 4b. The parameter choices of the better- and worse-
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performing models are used to create the respective densities. In each iteration, the
model consisting of the two densities is used to select the next parameter configuration x to
evaluate. To achieve this, several parameters x are sampled from the promising distribution
p(x|y < y∗). The parameter configuration x with the greatest expected improvement is
chosen. This criterion is positively correlated with the ratio p(x|y < y∗)/p(x|y ≥ y∗) [41].
In Figure 4, this is referred to as ratio. The criterion favors the parameter configuration
that has a high probability of leading to small evaluation values and a low probability
of obtaining large evaluation values for the minimization problem at hand. After the
parameter configuration has been evaluated by running the experiment and calculating
the objective function value, the probability estimators are updated. For this publication,
the reference implementation [49] in version 0.2.5 (the newest at the time of conducting the
study), provided by the original authors, was chosen. As the prior distribution, a uniform
distribution was chosen.
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(a) Categorical variable.
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(b) Continuous variable.

Figure 4. The Tree-structured Parzen Estimation (TPE) uses the ratio of better- and worse-performing
parameters to guide the search. In the example on the left, the categorical variable takes one of the
three values “a”, “b”, and “c”. For the continuous variable, in the example on the right the values
range from 0 to 20.

2.2.2. Simulated Annealing

SA is a meta-heuristic that is applicable to both combinatorial and multivariate prob-
lems [50], the latter of which is relevant for this optimization study. For this publication,
the implementation of [49] in version 0.2.5 (the newest at the time of conducting the study)
was used. This version of SA works on the tree structure presented in Figure 5. The tree
structure requires some specific adjustments of the algorithm documented in [51]. The
default initialization values of the implementation were used.

root

QC-YT Assignment YB Assignment

fixed free close random

#YTs #YBs #YBs#YTs
Dispatching 

Weight

[3,7] [#QCs ∙ 2, 20]
[#QCs ∙ 3, 

#QCs ∙ 7 ]
[#QCs ∙ 2, 20] {0, 0.1, ..., 1}

Policy

Equipment

Value

Figure 5. The parameter configuration space in tree form.
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2.2.3. Bayesian Optimization

BO, also referred to as Gaussian process optimization, aims to minimize the expected
deviation [52]. The response surface (i.e., the objective function values for given parameter
configurations), including the uncertainty about the result, is estimated. For this publica-
tion, the implementation from [53] in version 1.2.6 (the newest at the time of conducting
the study) was used. Since this procedure does not support tree-structured parameter
configuration spaces, two simplifications are made. First, the numbers of YTs for the QC-YT
Assignment fixed and free are grouped together. The parameter value ranges as in the right
branch. If the fixed assignment is chosen, the number of YTs is divided by the number of
QCs, and the result is rounded to the closest integer. Second, the dispatching weight is
always set, even if it is not interpreted by the simulation model. During the initialization
of an optimization run, five random experiments are conducted before BO takes over and
guides the search.

2.2.4. Random Search

RS serves as a baseline. According to the NFLT, for some optimization problems, meta-
heuristics perform worse than RS. It is crucial to identify meta-heuristics that misguide the
search (e.g., by becoming stuck in local optima). For this publication, the implementation
of [49] in version 0.2.5 (the newest at the time of conducting the study) was used, which is
capable of sampling from a tree-structured parameter configuration space.

2.3. Optimization Procedure

The optimization procedure is written as an external program that encapsulates the
simulation. First, the simulation model is initialized with the parameter configuration
to examine. After the simulation runs for one experiment are finished, the output of the
simulation model is read. The communication between the two programs is realized
through the COM-Interface. The output values of the simulation model are inserted into
the objective function, which determines the fitness of a given solution. This optimization
procedure is described in more detail in the following.

2.3.1. Parameter Configuration Space

During initialization, each parameter of the parameter configuration is set as a global
variable in the simulation model. The interpretation of one global variable in the simu-
lation model can depend on another global variable. For example, the parameter #YTs
is interpreted as the number of YTs for each QC for a fixed QC-YT assignment, but it
is interpreted as the number of YTs for all QCs for a free QC-YT assignment. The pa-
rameter Dispatching Weight is the weight for the travel time and ranges from 0 to 1 in
steps of 0.1. The weight for the availability time for handling is deduced by calculating
1−dispatching weight for travel time. This parameter is only used for a free QC-YT assign-
ment. Although setting this uninterpreted parameter does not harm the simulation ex-
periment, the recorded observations for the meta-heuristic are flawed. This is because
the meta-heuristic might use a record that includes the uninterpreted parameter to guide
further search, despite the lack of any effect, which might guide the search process in the
wrong direction.

In Figure 5, the parameter configuration space is depicted in its tree form. It is
dependent on the number of QCs, which can be either 3, 4, 5, or 6. Each case is considered
to be independent and requires optimization.

The presented tree is used for TPE, SA, and RS. For BO, a vector representation is
derived whereby each of the parameters QC-YT Assignment, YB Assignment, #YTs, #YBs,
and Dispatching Weight are represented by one dimension of this vector. The different
interpretation of #YTs is alleviated by varying the value over the range from #QCs · 3 to
#QCs · 7 and, in the case of a fixed assignment, dividing by #QCs and then rounding that
value to the closest integer value before using it to parameterize the simulation model. The
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parameter Dispatching Weight can theoretically take any value between 0 and 1. To make
use of the caching mechanism, only steps of 0.1 were permitted in this study.

2.3.2. Objective Function

After a simulation run is executed, the objective function is invoked to calculate
the fitness for the given parameter configuration. The objective function needs to reflect
the fact that the unloading and loading process needs to be fast, while at the same time,
resources are only added if they are needed. Therefore, the following objective function
was developed (based on [37]):

f itness =
t̃ship

tship
·

50 · #QCs · utilQCs + 5 · #RTGs · utilRTGs + #YTs · utilYTs

50 · #QCs + 5 · #RTGs + #YTs
(1)

The left factor of the multiplication reflects the inverted relative makespan of the ship.
tship is the time used to unload and load the ship. As an approximation of t̃ship, prior to the
optimization runs, 100 random samples are drawn from the parameter configuration space,
and the makespan for the ship is measured. This normalization process centers the left
factor to around 1 and ensures that it remains in proportion to the right factor. The shorter
the makespan, the larger the left factor becomes.

The right factor of the multiplication is the weighted utilization. #QCs refers to the
number of QCs, #RTGs is the number of RTGs and, therefore, also the number of YBs,
and #YTs is the number of trucks. util<equipment> refers to the ratio of the time for which
the equipment has been working to the overall makespan. When summarizing these
utilization values to one factor, weights are assigned according to the investment costs. It
is assumed that a QC is 50 times more expensive than a truck, and the cost of an RTG is
10% of a QC [37]. The higher the equipment utilization (with a special focus on expensive
equipment), the larger the right factor becomes.

2.3.3. Structure of Optimization Study

For each scenario (3, 4, 5, and 6 QCs) and meta-heuristic (TPE, BO, SA, and RS),
50 optimization runs are executed. This allows for gaining insights on the reproducibil-
ity of the optimization results using meta-heuristics. Each optimization run consists of
50 experiments. For each experiment, 30 simulation runs are executed. The results of each
simulation run vary slightly due to stochastic factors. These are implemented by drawing
handling times from random distributions, as described in Section 2.1.

3. Results and Discussion

In the following, the experimental results of the optimization study are analyzed.
Then, the solutions found for the different meta-heuristics are compared and discussed.

3.1. Preparatory Study

The objective function (see Equation (1)) requires t̃ship, the median of tship. The popu-
lation parameter is only known after exhaustive coverage of the parameter configuration
space, which must be avoided for an optimization study. As a replacement, a sample
estimate must suffice. For this purpose, for each scenario, 100 parameter configurations
were sampled randomly, and the corresponding simulation experiments were run. For
each of these simulation experiments, the makespan of the ship was recorded. The median,
minimum, and maximum of the makespan are noted in Table 1. The values in the median
column are used as t̃ship for the respective scenario.
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Table 1. Makespan of the ship for 100 randomly drawn experiments.

Number of QCs Makespan (in Hours, Rounded)

Median Minimum Maximum

3 61 51 158
4 49 39 161
5 47 38 160
6 35 29 161

Table 1 shows that the median and minimum both decrease as the number of QCs
increases. The median shows that using 4 QCs instead of 3 results in a reduction of ca. 20%
in the makespan. By doubling the number of QCs from 3 to 6, the performance can be
increased by ca. 57%. This is not true for the maximum, which remains nearly constant at
around 160 h. Furthermore, the difference between 4 and 5 QCs is rather small. This can be
explained by the fact that in the simulation model, 12 bays of the ship are handled. With
4 QCs, each QC handles exactly 3 bays. With 5 QCs, 3 QCs are responsible for 2 bays each,
and 2 QCs are responsible for 3 bays each. Thus, 3 QCs complete the container handling
task earlier, but the makespan is based on the QC that finishes last.

3.2. Observations from All Experiments

In the scope of the optimization study, 40,000 experiments in total were evaluated.
For each scenario (3, 4, 5, and 6 QCs) and each meta-heuristic (TPE, BO, SA, and RS), 50
optimization runs were executed, each consisting of 50 experiments. This set of experiments
covers many randomly chosen experiments (e.g., RS or initialization phase of any of the
meta-heuristics) in addition to experiments that are biased by the manner in which each
meta-heuristic works during its search process. This overview, which omits the search
process, provides some insights into the characteristics of the simulation model.

For each experiment, among others, the makespan, as well as the utilization of the
equipment, is measured. The utilization is the arithmetic mean of the working time of
all equipment of its respective type. In Figure 6, the utilization of YTs, YBs, and QCs is
shown. Due to the larger investment costs, the weighted utilization is closest to the QCs.
The median of the utilization of the YTs is the lowest. Since a YT cannot lift a container
itself, it must wait for a gantry crane (either QC or RTG) to load or unload the YT. High
utilization of QCs and YBs is only possible if enough YTs are available, which inevitably
results in lower utilization on the YT side. As the utilization of YTs is assigned a rather
small weight in the fitness function, the lower utilization rate carries no relevant weight.

In Figure 7, the difference between the maximum and minimum working times of
the YTs for each experiment that used the global assignment policy is depicted. This is an
indicator of how effectively the work is shared among YTs. As a general tendency, it can be
seen that more QCs lead to less statistical scattering.
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Figure 6. The utilization of the equipment over all experiments.
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Figure 7. Time difference between maximum and minimum working times of YTs.

3.3. Approximated Optima

Both the preparatory study and the first screening of all executed experiments created
first impressions of the underlying processes. Within the parameter configuration tree, there
are exceptionally low-performing solutions. This raises the following question: Which of
the meta-heuristics identified the best parameter configuration? To determine this, for each
optimization run, the experiment with the highest fitness is extracted. During optimization,
both TPE and BO select the next experiment with the greatest expected improvement.
Hence, in contrast to SA, after a phase of exploitation (i.e., minor adjustments), a phase
of exploration (i.e., larger changes) can follow. RS is the most extreme example since
exploitation is never sought. This, in turn, means that the best result of an optimization
run can appear at any position of the sequence of recorded experiments.

In Figure 8, the four meta-heuristics TPE, BO, SA, and RS are compared for each
scenario with 3, 4, 5, and 6 QCs. Consistent with the preparatory study, the results for
5 QCs are far worse than those of all other scenarios. Each of the meta-heuristics shows
outliers in at least three of the boxplots, which indicates the importance of stochastic
influences during the search process. There is no clear ranking among the meta-heuristics.
For 3 QCs, BO performs considerably worse than the other three meta-heuristics. These
results are similar for 4 and 5 QCs, although with less severity. This is especially interesting
since, for 6 QCs, BO produces the highest median. Over the first three scenarios, RS and
SA have very similar performances, and for 6 QCs, SA has the worst median, with outliers
in both directions. TPE performs very well in the first three scenarios, providing many of
the best solutions with few outliers that are substantially worse. For 6 QCs, the median of
TPE is much lower than that of BO. However, in two instances, BO arrived at substantially
lower-performing solutions.

The differences between meta-heuristics were examined statistically. A significance
level of α = 0.01 was chosen for the whole study and corrected for each test using Bonfer-
roni correction. To make general statements regarding the meta-heuristics, all scenarios
(different numbers of QCs) are agglomerated. The large number of outliers for some
of the meta-heuristics precludes the assumption of a normal distribution and requires a
nonparametric approach. Hence, a Kruskal–Wallis H test was employed. The test statistic
of H = 31.303 leads to p � 0.005. Hence, the null hypothesis that the four groups stem
from a single population is rejected. In a posthoc Nemenyi’s test for pairwise comparison,
only TPE was significantly different from the other meta-heuristics. In other words, BO
and SA are not significantly different from RS. The comparison of descriptive statistics (as
the reader can approximate from Figure 8) shows the superiority of TPE in this study.

The wide range of approximated optima and the large difference between meta-
heuristics are indicators of the complexity of the simulation model. The parameter con-
figurations of all optima are more closely examined in the following. The meta-heuristics
always determine that the fixed assignment of YTs to QCs leads to an inferior performance
compared with pooling. Furthermore, in all instances, the pairing of each QC with its clos-
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est YBs performs better than delivering each container to a randomly chosen YB. In contrast
to these parameters, the parameter Dispatching Weight shows no clear interpretable results.

TPE BO SA RS
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Fitness after 50 iterations for 3 QCs

TPE BO SA RS

Fitness after 50 iterations for 4 QCs

TPE BO SA RS

0.70

0.75

0.80

0.85

0.90
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Fitness after 50 iterations for 5 QCs

TPE BO SA RS

Fitness after 50 iterations for 6 QCs

Figure 8. The approximated optima for each scenario and each meta-heuristic.

In Figure 9, the frequencies of specific numbers of YBs for 3, 4, 5, and 6 QCs are
depicted. A small number of YBs creates a bottleneck in the yard, while having too many
YBs leads to a low utilization of each YB as well as longer travel paths of the YTs. The fewer
YBs are used, the shorter the traveled paths, the higher the probability that an unloading
job and a loading job can be combined. The number of used YBs is often a multiple of
the number of QCs. This can be explained by the rather conservative transportation job
assignment policy in place, which is designed to avoid traffic jams but rather postpones
a job.

In Figure 10, the number of YTs per QC for each scenario is presented. The large
number of outliers to the right can be explained by the rather small impact of the number
of trucks on the weighted utilization and, therefore, on the objective function.
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Figure 9. The number of YBs in the set of approximated optima. The parameter value that leads to
the best objective function value over all optimization runs is marked with an asterisk.
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Figure 10. The number of YTs in the set of approximated optima. The parameter value that leads to
the best objective function value over all optimization runs is marked with an asterisk.

In this study, as in [24], TPE exhibits the most robust behavior. Of the 200 optimization
runs, TPE never returns the worst approximation of the optimum. For some scenarios,
other meta-heuristics provide better medians of approximations. At the same time, only
TPE is significantly different from RS when the data are agglomerated over all scenarios.
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These observations provide evidence that TPE is an appropriate approach. For an explicit
recommendation, meta-analyses of several publications using the same meta-heuristics are
required in future to accumulate such evidence.

In comparison with [37], this study shows an alternative approach to calibrating the
quantity of equipment used in different functional areas of a container terminal. In addition,
policies are selected and tuned (if the policy accepts a parameter). The approach of Kotachi
et al. [37] requires all parameters to be at least on an ordinal scale since the mutation
is defined as changing a parameter one level up or down. For categorical parameters
that can take more than two values, there is no order. For continuous parameters, this
mutation makes it necessary to define a step size. The approach presented in this study
also discretizes the parameter Dispatching Weight to the the set {0, 0.1, ..., 1}. However,
this is performed to enable caching to speed up the optimization study. All of the meta-
heuristics used support continuous parameters, which might be of interest for future
optimization studies.

4. Conclusions

This study provides an approach to solving integrated decision problems at container
terminals. Earlier studies have often approached such problems by using a mathematical
model that aims to optimize the schedule of jobs. Depending on the concept, sometimes the
schedule is determined hours before the actual execution of a job, which is an appropriate
approach in rather deterministic environments. Another common approach in the literature
is to define a policy that is evaluated using a simulation study. The design of experiments—
e.g., a full-factorial design with a coarse grid—leads to either very large simulation studies
or a selection of experiments biased by the researcher’s beliefs. These shortcomings of
optimization alone and manually designed large simulation studies are partly overcome
by the presented simulation-based optimization approach. This approach uses simulation
to evaluate the quality of a given solution, and only in this way can the dynamics of real
systems be properly represented. Simulation-based optimization allows for the possibility
of illustrating these dynamics, providing an approximated solution to the problem without
maintaining a separate mathematical model. Therefore, further decision problems can
be integrated into the simulation model and the parameter configuration space with
little effort.

The authors showed the transferability of meta-heuristics, which originate from the
domain of machine learning or have been successfully applied in that area. These methods
could be used to optimize discrete event simulation models. A special focus was placed
on discrete and continuous parameters that were potentially interdependent. Several
optimization runs guided by different meta-heuristics were executed and with a restricted
computational budget, promising parameter configuration ranges were identified. This
publication focused on examining the results of different optimization runs. For this
purpose, the numbers of QCs, YTs, and YBs were modified during different experiments.
At the same time, different dispatching policies, as well as QC-YB assignment policies,
were investigated. Furthermore, different allocation policies of YBs were applied. In this
study, the approximated optima suggest that the pooling of YTs was preferable to free
allocation. Furthermore, a YB assignment close to the QCs was considered better than a
random one. By choosing more QCs, the number of bays to be served per QC decreased.
Thus, a reduction of the makespan could be achieved. A doubling of the number of QCs
from 3 to 6 led to a reduction of the makespan by 57%.

Due to the NFLT, it is not clear whether these empirical results can be generalized to
future studies that use simulation-based optimization. The applicability of meta-heuristics
such as TPE or BO needs to be demonstrated by further optimization studies, poten-
tially with various simulation models, different objective functions, and additional meta-
heuristics or different fine-tuning of the same meta-heuristic for comparison.
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BO Bayesian Optimization
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