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Abstract: We present algorithms computing the non-overlapping Lempel–Ziv-77 factorization and
the longest previous non-overlapping factor table within small space in linear or near-linear time
with the help of modern suffix tree representations fitting into limited space. With similar techniques,
we show how to answer substring compression queries for the Lempel–Ziv-78 factorization with a
possible logarithmic multiplicative slowdown depending on the used suffix tree representation.
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1. Introduction

The Lempel–Ziv-77 (LZ77) [1] and Lempel–Ziv-78 (LZ78) [2] factorizations are some
of the most well-studied techniques for lossless data compression. Several variants such as
Lempel–Ziv–Storer–Szymanski (LZSS) [3] have been proposed, and nowadays we often
perceive the LZSS factorization as the standard variant of the LZ77 factorization. Both are
defined as follows: Given a factorization T = F1 · · · Fz for a string T:

• it is the LZSS factorization of T if each factor Fx, for x ∈ [1 . . z], is either the leftmost
occurrence of a character or the longest prefix of Fx · · · Fz that occurs at least twice in
F1 · · · Fx; or

• it is the classic LZ77 factorization of T if each factor Fx, for x ∈ [1 . . z − 1], is the
shortest prefix of Fx · · · Fz that has only one occurrence in F1 · · · Fx (as a suffix). The
last factor Fz is the suffix T[1 + |F1 · · · Fz−1| . .] that may have multiple occurrences in
F1 · · · Fz.

The non-overlapping variation is to restrict, when computing Fx, all candidate occur-
rences of Fx to end before Fx starts. For LZSS, this means that a factor Fx must occur at
least once in F1 · · · Fx−1. Given a text T of length n whose characters are drawn from
an integer alphabet of size σ = nO(1), we want to study the problem of computing the
non-overlapping LZSS factorization memory-efficiently with the aid of two suffix tree rep-
resentations, which were used by Fischer et al. [4] (Section 2.2) to compute the classic LZ77,
LZSS, and LZ78 factorizations in linear time within the asymptotic space requirements of
the respective suffix tree. In this article, we obtain the non-overlapping LZSS factorization
with similar techniques and within the same space boundaries:

Theorem 1. Given a text T[1 . . n] of length n whose characters are drawn from an integer alphabet
with size σ = nO(1), we can compute its non-overlapping LZSS factorization

• in O(ε−1n) time using (1 + ε)n lg n +O(n) bits (excluding the read-only text T); or
• in O(n lgε n) time using O(n lg σ) bits,

for a selectable constant ε ∈ (0, 1]. We support outputting the factors directly or storing the
factors within the (asymptotic) bounds of the working space such that we can retrieve a factor in
constant time.
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We also show that we can compute the longest previous non-overlapping factor
table [5] within the same space and time complexities (Theorem 3) by providing a succinct
representation of this table (Lemma 1).

Subsequently, we study the substring compression query problem [6], where the
task is to compute the factorization of a given substring of the text in time related to the
number of computed factors and possibly a logarithmic dependency on the text length.
However, this problem has only been conceived for the LZ77 factorization family. Here,
we provide the first non-trivial solutions for LZ78, again with the help of several suffix
tree representations:

Theorem 2. Given a text T[1 . . n] of length n whose characters are drawn from an integer alphabet
with size σ = nO(1), we can compute a data structure on T in O(n) time that computes, given an
interval I ⊂ [1 . . n], the LZ78 factorization of T[I ] in

• O(z78[I ]) time using O(n lg n) bits of space;
• O(z78[I ](logσ n + lg z78[I ])) time using O(n lg σ) bits of space; or
• O(ε−1z78[I ] lg z78[I ]) time using (1 + ε)n lg n +O(n) bits of space,

where z78[I ] is the number of computed LZ78 factors and ε ∈ (0, 1] is a selectable constant. In the
last result, we need additionally the n lg σ bits of space for the read-only text during the queries if
there is any character of the alphabet omitted in the text (otherwise, we can then simulate a text
access with the function head as described in [4]).

We can further speed-up the last two solutions of Theorem 2 by spending more space
(Theorem 4). Figure 1 shows a juxtaposition of all Lempel–Ziv factorizations addressed in
this article.

a a a b a b a a a b a
1 2 3 4 5 6 7 8 9 10 11

T =

(1,2)

(3,3) (2,4)

Coding:
a(1,2)b(3,3)(2,4)

a a a b a b a a a b a
1 2 3 4 5 6 7 8 9 10 11

T =

(1,1)

(1,1) (3,2)

(1,5)

Coding:
a(1,1)(1,1)b(3,2)(1,5)

a a a b a b a a a b a
1 2 3 4 5 6

T =

(1,a)

(1,b)

(2,a) (3,a)

Coding:
a(1,a)b(1,b)(2,a)(3,a)

overlapping LZSS non-overlapping LZSS LZ78

Figure 1. Juxtaposition of the overlapping LZSS factorization, the non-overlapping LZSS factorization, and the LZ78
factorization on the string T = aaababaaaba. A factor is visualized by a rounded rectangle. Its coding consists of a mere
character if it has no reference; otherwise, its coding consists of its referred position and its lengths for both LZSS variants or
its referred index and its last character for LZ78.

2. Preliminaries

With lg we denote the logarithm log2 to base two. Our computational model is the
word RAM model with machine word size Ω(lg n) for a given input size n. Accessing a
word costs O(1) time.

Let T be a text of length n whose characters are drawn from an integer alphabet
Σ = [1 . . σ] with σ = nO(1). Given X, Y, Z ∈ Σ∗ with T = XYZ, then X, Y, and Z are called
a prefix, substring, and suffix of T, respectively. We call T[i . .] the ith suffix of T and denote a
substring T[i] · · · T[j] with T[i . . j].

Given a character c ∈ Σ and an integer j, the rank query T. rankc(j) counts the
occurrences of c in T[1 . . j] and the select query T. selectc(j) gives the position of the jth
c in T. We stipulate that rankc(0) = selectc(0) = 0. If the alphabet is binary, i.e., when
T is a bit vector, there are data structures [7,8] that use o(|T|) extra bits of space and can
compute rank and select in constant time, respectively. Each of those data structures
can be constructed in time linear in |T|. We say that a bit vector has a rank-support and a
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select-support if it is endowed by data structures providing constant time access to rank and
select, respectively.

From now on, we assume that T ends with a special character $ smaller than all other
characters appearing in T. Under this assumption, there is no suffix of T having another
suffix of T as a prefix. The suffix trie of T is the trie of all suffixes of T. There is a one-to-one
relationship between the suffix trie leaves and the suffixes of T. The suffix tree ST of T is
the tree obtained by compacting the suffix trie of T. Similar to the suffix trie, the suffix tree
has n leaves, but the number of internal nodes of the suffix tree is at most n because every
ST node is branching. The string stored in a suffix tree edge e is called the label of e. We
define the function c(e) returning, for each edge e, the length of e’s label. The string label of
a node v is defined as the concatenation of all edge labels on the path from the root to v; its
string depth, denoted by str_depth(v), is the length of its string label. The leaf corresponding
to the ith suffix T[i . .] is labeled with the suffix number i ∈ [1 . . n]. We write sufnum(λ) for
the suffix number of a leaf λ. The leaf-rank is the preorder rank (∈ [1 . . n]) of a leaf among
the set of all ST leaves, denoted by leaf_rank(λ) for a leaf λ. For instance, the leftmost leaf
in ST has leaf-rank 1, while the rightmost leaf has leaf-rank n. The function next_leaf(λ)
returns the leaf whose suffix number is the suffix number of λ incremented by one, or 1 if
the suffix number of λ is n.

Reading the suffix numbers stored in the leaves of ST in leaf-rank order gives the
suffix array [9]. We denote the suffix array and the inverse suffix array of T by SA and ISA,
respectively. The array ISA is defined such that ISA[SA[i]] = i for every i = 1, . . . , n. The
two arrays SA and ISA have the following relation with the two operations leaf_rank and
sufnum on the ST leaves:

• For the ST leaf λ with sufnum(λ) = i, we have leaf_rank(λ) = ISA[i].
• For the ST leaf λ with leaf_rank(λ) = j, we have sufnum(λ) = SA[j].

LCP[1 . . n] is an array with LCP[1] := 0 and LCP[j] being the length of the longest com-
mon prefix (LCP) of the lexicographically jth smallest suffix T[SA[j] . .] with its lexicographic
predecessor T[SA[j− 1] . .] for j ∈ [2 . . n]. The permuted LCP array PLCP ([10] [Section 4])
is a permutation of LCP with PLCP[i] := LCP[ISA[i]] for i ∈ [1 . . n], and can be stored
within 2n + o(n) bits of space. The Ψ-function [11] is defined by SA[i] = SA[Ψ(i)]− 1 for
i ∈ [1 . . n] with SA[i] 6= n (and Ψ(i) = ISA[1] for SA[i] = n). It can be stored in O(n lg σ)
bits while supporting constant access time [12].

In this article, we focus on the following two suffix tree representations, which are an
ensemble of some of the aforementioned data structures:

• The succinct suffix tree (SST), using (1 + ε)n lg n + O(n) bits of
space ([4] [Section 2.2.3]) for a selectable constant ε > 0, contains, among others, a
(1 + ε)n lg n-bits representation of SA and ISA with O(1/ε) access time for each array.

• The compressed suffix tree (CST) usingO(n lg σ) bits of space [10,13] contains, among
others, the Ψ-function.

Both suffix tree representations can be constructed in linear time within their final
space requirements (asymptotically) when neglecting the space requirements of the read-
only text T. They store the PLCP array and a succinct representation of the suffix tree
topology such as a balanced parentheses (BP) [7] sequence. The BP sequence represents
a rooted, unlabeled but ordered tree of n nodes by a bit vector of length 2n + o(n) bits.
Since the suffix tree has at most 2n nodes, the BP representation of the ST topology uses
at most 4n + o(n) bits. For example, the BP sequence of the suffix tree given in Figure 2 is
1

(
2

()
3

(
4

()
5

(
6

()
7

())
8

(
9

()
10

()))
11

(
12

()
13

())), where we label the starting of an internal node and the
center of a leaf ‘()’ with the respective preorder number on top. The BP sequence can
be conceptionally constructed by performing a preorder traversal on the tree, writing an
opening parenthesis when walking down an edge and writing a closing parenthesis when
climbing up an edge. We augment the BP sequence of ST with auxiliary data structures [14]
of o(n) bits to support queries such as parent(v) returning the parent of a node v, a level
ancestor query level_anc(λ, d) returning the ancestor on depth d of the leaf λ, or leaf_rank(λ),
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all in constant time. Note that the depth of a node v, i.e., the number of edges from v to the
root, is at most str_depth(v).

1

2

8

$

3

a

4

7

$

5

a

6

6

$

7

5

a

$
8

b

a

9

3

a

a

$

10

1

b

a

a

a

$

11

b

a

12

4

a

a

$

13

2

b

a

a

a

$

3

8

10

13

9

7

6

4

2

a b a b a a a $
1 2 3 4 5 6 7 8

(1,2)

(1,1) (1,1)

(1,1)

Coding:
ab(1,2)(1,1)(1,1)(1,1)$

Figure 2. (Left) Suffix tree of the text T = ababaaa$ with the witness nodes and the corresponding
leaves of the non-overlapping LZSS factorization highlight in red ( ) and in green ( ), respectively.
We additionally mark the string ab with an implicit node ( ) whose string label is equal to the factor
with Type 3. The nodes are labeled by their preorder numbers. The suffix number of each leaf λ is
the underlined number drawn in dark yellow below λ. (Right) Non-overlapping LZSS factorization
of T.

For our algorithms, we want to simulate a linear scan on the text from its beginning
to its end by visiting the leaves in ascending order with respect to their suffix numbers
(starting with the leaf with suffix number 1, and ending at the leaf with suffix number
n). For that, we iteratively call next_leaf. We can compute next_leaf by first computing
the leaf-rank of the succeeding leaf next_leaf(λ) of a leaf λ with leaf_rank(next_leaf(λ)) =
Ψ[leaf_rank(λ)], and then selecting next_leaf(λ) by its leaf-rank; we can select a leaf by its
leaf-rank in constant time due to the BP sequence representation of the suffix tree topology
(the BP sequence can be augmented with a rank- and select-support for leaves represented
by the empty parentheses ‘()’). Since we can simulate Ψ with SA and ISA, the SST needs
O(1/ε) time for evaluating next_leaf.

Finally, a factorization of T of size z partitions T into z substrings F1 · · · Fz = T. Each
such substring Fx is called a factor. In what follows, we deal with the non-overlapping LZSS
factorization in Section 3, and subsequently (in Section 4) with the LZ78 factorization in the
special context that we want to compute it on a substring of T after a preprocessing step.

3. Non-Overlapping LZSS

Let zov and z denote the number of factors of the overlapping LZSS factorization (i.e.,
the standard LZSS factorization supporting overlaps) and of the non-overlapping LZSS
factorization, respectively. Kosolobov and Shur [15] showed that zov ≤ z ≤ zov · O(lg(n/
(zov logσ zov))). Although being inferior to the overlapping LZSS factorization with respect
to the number of factors, the non-overlapping LZSS factorization is an important tool for
finding approximate repetitions [16], periods [17], seeds [18], tandem repeats [19], and
other regular structures (cf. the non-overlapping s-factorization in ([20] [Chpt. 8])).

Algorithms computing the non-overlapping LZSS factorization usually compute the
longest previous non-overlapping factor table LPnF[1 . . n], where LPnF[i] stores the length
of the LCP of T[i . .] with all substrings T[j . . i− 1] for j ∈ [1 . . i− 1], which we set to zero if
no such substring exists (i.e., LPnF[1] = 0). Having LPnF, we can iteratively compute the



Algorithms 2021, 14, 44 5 of 21

non-overlapping LZSS factorization because Fx = T[kx . . kx + max(0, LPnF[kx]− 1)] with
kx := ∑x−1

y=1

∣∣Fy
∣∣+ 1 for x ∈ [1 . . z].

We are aware of the algorithms of Crochemore and Tischler [5] and Crochemore et
al. [21] computing LPnF in linear time with a linear number of words. There are further
practical optimizations [22–24] computing LPnF in linear time for constant alphabets.
Finally, Ohlebusch and Weber [25] gave a linear time conversion algorithm from the longest
previous factor table LPF [26] to LPnF if the leftmost possible referred positions P[1 . . n]
with T[P[i] . . P[i] + LPF[i] − 1] = T[i . . i + LPF[i] − 1] for each text position i ∈ [1 . . n]
are provided. It seems possible that, instead of overwriting the LPF array with the LPnF
array, we could run their algorithm on a 2n-bits succinct representation of the LPF array
supporting sequential scan in constant time ([27] [Corollary 5]) to produce an LPnF array
representation within the same space due to the following lemma:

Lemma 1. LPnF[j− 1]− 1 ≤ LPnF[j] ≤ n− j for j ∈ [2 . . n].

Proof. Assume that LPnF[j − 1] > 0 (since LPnF[j] ≥ 0 trivially holds). According to
the definition, there exists an occurrence T[i . . i + LPnF[j − 1] − 1] of T[j − 1 . . j − 1 +
LPnF[j− 1]− 1] with i + LPnF[j− 1]− 1 < j− 1. Hence, T[i + 1 . . i + LPnF[j− 1]− 1] =
T[j . . j + LPnF[j− 1]− 2] and |T[j . . j + LPnF[j− 1]− 2]| = LPnF[j− 1]− 1. Thus, T[j . .]
has a common prefix with a substring of T[1 . . j− 1] of (at least) length LPnF[j− 1]− 1,
i.e., LPnF[j− 1]− 1 ≤ LPnF[j]. The upper bound follows from the fact that a factor cannot
protrude T to the right.

Consequently, LPnF[1] + 1, LPnF[2] + 2, . . . , LPnF[n] + n is non-decreasing. By storing
the differences LPnF[j]− LPnF[j− 1] + 1 ≥ 0 for j ∈ [2 . . n] in a unary bit sequence, we
can linearly decode LPnF from this unary bit sequence because we know that LPnF[1] = 0.
Since LPnF[n] + n ≤ n by the above lemma (in particular LPnF[i] ≤ LPF[i]), the sequence
has at most 2n bits. Obviously, this sequence can be written sequentially from right to
left in constant time per LPnF value in reverse order LPnF[n], . . . , LPnF[1] (the algorithm
of Ohlebusch and Weber [25] computes LPnF in this order). It is therefore possible to
compute LPnF within O(n) bits on top of P and a compressed indexing data structures
such as the FM-index [28] of the text: For that purpose, Okanohara and Sadakane [29]
proposed an algorithm computing LPF and P with the FM-index in O(n lg3 n) time, which
was improved by Prezza and Rosone [30] toO(n lg2 n) time. However, the need of P, using
n lg n bits when stored in a plain array, makes an approach that transforms LPF to LPnF
after computing LPF and P rather unattractive. In what follows, we present a different way
that directly computes the non-overlapping LZSS factorization or LPnF with near-linear or
linear running time, without the need of P.

3.1. Setup

Our idea is an adaptation of the LZSS factorization introduced in ([4] [Section 3]).
To explain our approach, we first stipulate that T ends with a unique character $ that is
smaller than all other characters appearing in T. Next, we distinguish between fresh and
referencing factors. We say that a factor is fresh if it is the leftmost occurrence of a character.
We call all other factors referencing. A referencing factor Fx has a reference pointing to
the starting position of its longest previous occurrence (as a tie break, we always select
the leftmost such position). We call this starting position the referred position of Fx. More
precisely, the referred position of a factor Fx = T[i . . i + `− 1] is the smallest text position j
with j + ` ≤ i and T[j . . j + `− 1] = T[i . . i + `− 1]. Compared to the overlapping LZSS
factorization, we require here the additional restriction that j + ` ≤ i. This makes the
computation of the referred positions more technical: Let j be the referred position of a
factor F := T[i . . i + `− 1], and let S be the longest substring starting before i that is a prefix
of T[i . .]. We associate the factor F with one of the following three types:
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Type 1: T[j . . j + `− 1] = S (the factor F coincides with the overlapping LZSS factor that
would start at T[i . .]);

Type 2: T[j . . j + `− 1] is shorter than S, but T[j + `] 6= T[i + `] (then there is a suffix tree
node that has the string label F); or

Type 3: T[j + `] = T[i + `] and j + ` = i (otherwise, the factor F could be extended to the
right).

An example is T = a|b| 3

ab| 1

a| 2

a| 1

a|$, where the factor borders are symbolized by the
vertical bar |, and the referencing factors are labeled with their types (fresh factors are not
labeled). If F is of Type 3, the suffixes T[j . .] and T[i . .] share more than ` characters such
that F is not a string label of any suffix tree node in general, but it is at least a prefix of the
string label of a node. This is the case for the third factor ab in the aforementioned example,
as can be seen in Figure 2.

To find the referred positions, we mark certain nodes as witnesses, which create a
connection between corresponding leaves and their referred positions. A leaf is called
corresponding if its suffix number is the starting position of a factor. We say that the witness
of a fresh factor is the root. For a referencing factor F, the witness of F is the highest node
whose string label has F as a prefix; the witness of F determines the referred position of F,
which is the smallest suffix number among all leaves in its subtree.

Despite this increased complexity compared to the overlapping LZSS factorization, the
non-overlapping factorization can be computed with the suffix tree in O(n lg σ) time using
O(n lg n) bits of space ([31] [APL16]). Here, we adapt the algorithms of (Fischer et al. [4]
[Section 3]) computing the overlapping LZSS factorization to compute the non-overlapping
factorization by following the approach of Gusfield [31]. Our goal is to compute the coding
of the factors, i.e., the referred position and the length of each factor (cf. Figure 1).

3.2. The Factorization Algorithm

All LZSS factorization algorithms of (Fischer et al. [4] [Section 3]) are divided into
passes. A pass consists of visiting suffix tree leaves in text order (i.e., in order of their
suffix numbers). On visiting a leaf, they conduct a leaf-to-root traversal. In what follows,
we present our modification, which merely consists of a modification of Pass (a) in all
LZSS factorization variants of ([4] [Section 3]): In Pass (a), Fischer et al. computed the
factor lengths and the witnesses. To maintain the witnesses and lengths in future passes,
they marked and stored the preorder numbers of the witnesses and the starting positions
of the LZSS factors in two bit vectors BW and BT , respectively. In succeeding passes,
they computed, based on the factor lengths and the witnesses, the referred positions and
with that the final coding. Therefore, it suffices to only change Pass (a) according to our
definition of witnesses and factors, while keeping the subsequent passes untouched. In this
pass, we do the following:

Pass (a) Create BW and BT to determine the witnesses and the factor lengths, respectively.

(a)The main technique of a pass in [4] are leaf-to-root traversals. Here, we do the opposite:
We traverse from the root to a specific leaf. We perform a root-to-leaf traversal by level
ancestor queries such that visiting a node takes constant time. We perform these traversals
only for all corresponding leaves since the other leaves are not useful for determining a factor.

Suppose we visit a leaf λ corresponding to a factor F. We already know the starting
position of F (i.e., sufnum(λ)), but not its length, referred position, or witness w. To detect
w, we use the following observation: Given ju is the smallest suffix number among all
leaves in the subtree rooted at a node u, w is the highest node that maximizes

`w := min(str_depth(w), sufnum(λ)− jw). (1)

If jw = sufnum(λ), then F is a fresh factor. Otherwise, w determines the length
|F| = `w and the referred position jw of F. However, the two functions v 7→ str_depth(v)
and v 7→ sufnum(λ)− jv are strictly increasing and monotonically decreasing, respectively,
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when applied to each node v visited when walking downwards the path from the root to λ.
Thus, our goal is to find the lowest node u, where the value `u of Equation (1) still results
from str_depth(u), and not from the second argument sufnum(λ)− ju. We give a sketch in
Figure 3 and study a particular case in Figure 4 for factors of Types 2 and 3.

root

u

v

λ
ju

jv

Figure 3. Determining the witness of a factor F whose starting position is the suffix number of
the leaf λ. Straight arcs symbolize edges, while curly arcs symbolize paths that can visit multiple
nodes (which are not visualized). Given jw is the smallest suffix number among all leaves in the
subtree rooted at a node w, and that u is the lowest ancestor of λ with [ju . . ju + str_depth(u)− 1] ∩
[sufnum(λ) . . sufnum(λ) + str_depth(u)− 1] = ∅, then either u or its child v is the witness of F (see
Section 3.2 for an explanation). The idea behind detecting whether the two intervals are intersecting
is that a factor starting at sufnum(λ) of length str_depth(u) would be of Type 1 or Type 2 with referred
position ju. In fact, if F is of Type 1, then its witness is the lowest ancestor of λ having a leaf with a
suffix number smaller than sufnum(λ) in its subtree (this definition coincides with the witnesses of
the overlapping LZSS factorization of ([4] [Section 2.3])). It is possible that ju = jv, i.e., the leaf with
suffix number ju is also in the subtree rooted at v. We can observe this case in Figure 4.

root

u

v

λ

ρ

jv = ju

str depth(v)
str depth(u) str depth(u)

T =

jv = ju sufnum(ρ)

sufnum(λ)

I

F

Figure 4. Special case of the setting considered in Figure 3 for factors of Types 2 and 3. Here,
we assign u and v the same roles as in Figure 3, but we additionally assume that jv = ju and
sufnum(λ) ∈ I := [ju + str_depth(u) . . ju + str_depth(v)− 1]. If sufnum(λ) = ju + str_depth(u), as in the
right figure, then the factor F of λ starting at sufnum(λ) is of Type 2, and the witness of F is u, although
u is not the lowest ancestor of λ having λ and ju in its subtree. If sufnum(λ) ∈ I \ {ju + str_depth(u)},
then F is of Type 3 and the witness of F is v; the witness of F is v even if λ and the leaf with suffix
number jv are shared by a descendant of v as shown in the left figure.

To achieve our goal, let Iv := [jv . . jv + str_depth(v) − 1] and Iλ,v := [sufnum(λ) . .
sufnum(λ) + str_depth(v)− 1] be two intervals. These two intervals have the property that
T[Iv] = T[Iλ,v]. The idea is that T[Iλ,v] is a candidate for F with T[Iv] being its leftmost
occurrence in T. We compute the values of jv, Iv and Iλ,v for every node v on the path
from the root to λ until reaching a node v such that the intervals Iv and Iλ,v overlap (cf.
Line 9 in Algorithm 1). Let u be the parent of v. Then, the edge (u, v) determines the factor
F: We consider the following two cases that determine whether F is a fresh or referencing
factor, and whether the witness and the referred position of F are u and ju, or v and jv,
respectively, in case F is a referencing factor:
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• If jv = sufnum(λ), there is no leaf in v’s subtree with a suffix number smaller than
sufnum(λ).

– If u is the root, then there is no candidate for a referred position available, i.e., F
is a fresh factor (cf. Line 13 in Algorithm 1).

– Otherwise, str_depth(u) > 0 and Iu ∩ Iλ,u = ∅ (since v is the highest node on
the path from the root to λ for which Iv ∩ Iλ,v 6= ∅ holds). Hence, the longest
substring occurring before sufnum(λ) that is a prefix of T[sufnum(λ) . .] has an
occurrence in T[1 . . sufnum(λ)− 1] (Type 1). One of those occurrences starts at
position ju. This means that the referred position is ju, and the witness of F is u;
the length of F is str_depth(u) (cf. Line 17 in Algorithm 1).

• If jv 6= sufnum(λ) (i.e., jv < sufnum(λ)), the length of F is in the interval [str_depth(u) . .
str_depth(v)− 1]. If the factor F refers to the position jv, then its length is the minimum
of sufnum(λ)− jv and the length of the LCP of the suffixes starting at jv and sufnum(λ).
(Note that this LCP can be longer than the string label of v.) Let us denote the value
of this minimum by `, which coincides with `v of Equation (1) due to str_depth(v) ≥
sufnum(λ)− jv, and determines whether F refers to jv or ju (cf. Line 20 in Algorithm 1):

– If ` = str_depth(u), then the referred position of F is actually the suffix number
of a leaf contained in u’s subtree (Type 2). In this case, the length of F is |Iu| =
str_depth(u) because Iu ∩ Iλ,u = ∅. The witness of F is u, and ju is the referred
position (cf. Line 21 in Algorithm 1).

– Otherwise, str_depth(u) < |F| < str_depth(v), hence F is not the string label of
any suffix tree node (Type 3). The node v is the highest node whose string label
has F as a prefix. We conclude that the witness, referred position, and length of F
are v, jv, and `, respectively (cf. Line 23 in Algorithm 1).

3.3. Complexity Bounds

To determine the value of jv, we need to answer a range minimum query (RMQ) on
SA. Given an array A[1 . . n], an RMQ for an interval I ⊂ [1 . . n] asks for the index
of the minimum value in A[I ]. To answer an RMQ, we can make use of the following
data structure:

Lemma 2 ([32] [Thm 5.8]). Let A[1 . . n] be an integer array, where accessing an element A[i]
takes tA time for i ∈ [1 . . n]. There exists a data structure of size 2n + o(n) bits built on top of A
that answers RMQs in constant time. It is constructed in O(tAn) time with o(n) additional bits of
working space.

According to Lemma 2, we can construct an RMQ data structure in O(tSAn) time
using 2n + o(n) bits of space, where tSA is the time for accessing SA. We can access SA in
O(1/ε) time and in O(lgε n) time with the SST and CST, respectively, where the last time
complexity is due to the following lemma:

Lemma 3 (Grossi and Vitter [11] [Section 3.2]). There is a data structure using O(ε−1n) bits
that can access SA in O(lgε n) time, where ε ∈ (0, 1] is a selectable constant.

As shown by (Fischer et al. [33] [Lemma 3]), the operation str_depth(u) for a node u
can be computed with SA, LCP, and an RMQ data structure on LCP because the leaf-ranks
of the leftmost leaf λL and rightmost leaf λR in the subtree rooted u define the interval
[leaf_rank(λL) + 1 . . leaf_rank(λR)] in SA, and selecting the minimum value in LCP within
this interval gives the length of the longest common prefix shared among all leaves in
u’s subtree, which is str_depth(u). However, we do not store LCP explicitly, but instead
simulate an access of its jth entry for j ∈ [2 . . n] by LCP[j] = PLCP[SA[j]]. Hence, we can
access an entry of LCP in O(tSA) time. Consequently, we can build the data structure of
Lemma 2 on LCP inO(tSAn) time, which takes 2n+ o(n) bits of additional space. Equipped
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with this data structure, we finally can evaluate str_depth in O(tSA) time. The total time
bounds are composed as follows:

(a) Since the number of visited nodes is at most the factor length of a corresponding
leaf λ during a root-to-leaf traversal to λ, and ∑z

x=1|Fx| = n, we conclude that the
RMQs take O(ntSA) time in total.

(b) For each root-to-leaf traversal to a leaf corresponding to a factor F, we stop at an
edge (u, v) and compute the length of the LCP of T[jv . .] and T[sufnum(λ) . .] by
naïvely comparing O(|F|) characters. In total, the number of compared characters
is O(∑z

x=1|Fx|) = O(n).
Altogether, Pass (a) takes takes O(ntSA) time, since all applied tree navigational operations
take constant time. With Lemma 3, we obtain the time and space complexities claimed in
Theorem 1.

Algorithm 1: Pass (a) of the non-overlapping LZSS algorithm of Section 3. The
function report(w, j, `) outputs the referred position j and the length ` of the
respective referencing factor; marks the witness w and the starting position of
the next factor (determined by `) in BW and in BT , respectively; and appends
the unary value of depth(w) to BL (defined in Section 3.4). lmost_leaf(v) and
rmost_leaf(v) return the leftmost and the rightmost leaf of the subtree rooted at
v in constant time, respectively. All break statements exit the nested inner loop
and jump to Line 25.

1 λ← leaf with suffix number 1 . invariant: λ is always corresponding leaf
2 repeat
3 d← 1 . depth counter for level_anc(λ, d)
4 `← 0 . length of the factor corresponding to λ

5 while d 6= depth(λ) do
6 v← level_anc(λ, d) . jv is the smallest suffix number of all leaves of v’s subtree

7 jv ← SA
[
SA.RMQ[leaf_rank(lmost_leaf(v)), leaf_rank(rmost_leaf(v))]

]
8 `← str_depth(v)
9 if [jv . . jv + `− 1] ∩ [sufnum(λ) . . sufnum(λ) + `− 1] = ∅ then

10 d← d + 1
11 continue . goto Line 5

12 u← parent(v)
13 if jv = sufnum(λ) then . λ has smallest suffix number in v’s subtree
14 if u is the root then . λ corresponds to a fresh factor
15 `← 1 and report fresh factor
16 break

17 `← str_depth(u) . Type 1
18 report(u, ju, `) . ju has already been computed in the previous iteration
19 break

20 `← min(lcp(T[jv . .], T[sufnum(λ) . .]), sufnum(λ)− jv)
21 if ` ≤ str_depth(u) then . Type 2
22 `← str_depth(u) and report(u, ju, `)

23 else report(v, jv, `) . Type 3
24 break

25 λ← next_leaf(`)(λ) . visit the next corresponding leaf

26 until sufnum(λ) = 1
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3.4. Storing the Factorization

From here on, we have two options: We can either directly output the referred posi-
tions and the lengths of the computed factors during Pass (a), or we can store additional
information for retrieving the witnesses in a later pass. Such a later pass is interesting when
working with the SST, as we can store the factors in the (1+ ε)n lg n+O(n) bits of working
space ([4] [Section 3.3]). There, a later pass overwrites the space occupied by the SST, in
particular the suffix array representation, such that later passes no longer can determine
witnesses. Although we mark each witness in the bit vector BW during Pass (a), there can
be multiple nodes marked in BW on the path from the root to a leaf corresponding to a
factor F. The overlapping LZSS factorization obeys the invariant that the witness of F is the
lowest ancestor of λ that is marked in BV , given that BV marks all ancestors of the leaves
with a suffix number smaller than sufnum(λ) when conducting a leaf-to-root traversal at λ
during the overlapping LZSS computation ([4] [Section 3]). Due to the existence of factors
of Types 2 and 3, this invariant does not hold for the non-overlapping factorization.

For the later passes, we want a data structure that finds the witness w of a factor F
based on F’s starting position in constant time. Fortunately, w is determined by the leaf
λ corresponding to F and w’s depth due to w = level_anc(λ, depth(w)). To remember the
depth of each witness, we maintain a bit vector BL that stores the depth of each witness
in unary coding sorted by the suffix number of the respective corresponding leaf. Given
that we find the witness w of a leaf λ in Pass (a) during the traversal from the root to λ,
we store the unary code 0d1 in BL, where d := depth(w). For a leaf corresponding to a fresh
factor, we store the unary code 1 in BL. Similar to BD in ([4] [Sect. 3.4.3 Pass (2)]), we do
not need to add a select-support to BL, since we process the corresponding leaves always
sequentially in text order. Given a corresponding leaf λ, we can jump to its witness (or
to the root if λ corresponds to a fresh factor) with a level ancestor query from λ with the
depth BL. select1(sufnum(λ) + 1)− BL. select1(sufnum(λ))− 1. The length of BL is at most
n + z since the depth of a witness is bounded by the length of its corresponding factor and
the sum of all factor lengths is n.

3.5. Computing LPnF

Finally, we can compute LPnF with the same algorithm by visiting all leaves (i.e.,
not only the corresponding ones). However, we no longer can charge the visited nodes
during a root-to-leaf traversal with the length of a factor as in Section 3.3 (a). In fact, such
an algorithm may visit O(n2) nodes since ∑n

i=1 LPnF[i] = O(n2) (and this sum is Θ(n2)
for the string T = a · · · a). To reduce the number of nodes to visit, we can make use of
Lemma 1: having LPnF[1 . . i − 1] computed, we know that LPnF[i] ≥ LPnF[i − 1] − 1;
hence, it suffices to start the root-to-leaf traversal at the lowest node w̃ whose string depth
is at most LPnF[i − 1]− 1. We find this node w̃ by a suffix link. A suffix link connects a
node with string label S ∈ Σ+ to the node with string label S[2 . .] or to the root node if
S ∈ Σ1. All nodes except the root have a suffix link. However, we do not store suffix
links as pointers explicitly, but simulate them with the leaves since we can compute the
suffix link of a leaf λ with next_leaf(λ): Suppose that we have processed the leaf λ with
suffix number i− 1 for computing LPnF[i− 1]. In what follows, we first assume that the
computed factor starting at i− 1 is not of Type 3. Then, the witness of λ is λ’s ancestor u
with str_depth(u) = LPnF[i− 1] being the computed factor length. First, we select another
leaf λ′ of the subtree rooted at u such that the lowest common ancestor (LCA) of λ and λ′ is
u (e.g., we can select the leftmost or rightmost leaf in u’s subtree). Then, λ̃ := next_leaf(λ)
is the leaf with suffix number i, and the LCA ũ of λ̃ and next_leaf(λ′) is the node on the
path from the root to λ̃ with str_depth(ũ) = str_depth(u)− 1. By omitting the nodes from
the root to ũ in the traversal to λ̃ for computing LPnF[i], we only need to visit at most
LPnF[i]− LPnF[i− 1] + 1 nodes for determining LPnF[i]. A telescoping sum with the upper
bound of Lemma 1 shows that we visit O(n) nodes in total.

It is left to deal with the text positions i− 1 for which we computed a factor of Type 3.
Here, the leaf λ has a witness v with LPnF[i− 1] < str_depth(v), i.e., the computed factor is
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implicitly represented on the edge from u := parent(v) to v. We apply the same technique
(i.e., taking the suffix link) as for the other types, but apply this technique on u instead
of the witness v, such that we end up at a node ũ with str_depth(ũ) = str_depth(u) − 1.
We sketch the setting in Figure 5. Now, we additionally need to walk down from ũ towards
λ̃ = next_leaf(λ) to reach the lowest node ṽ with str_depth(ṽ) ≤ LPnF[i− 1]− 1. There can
be at most c(u, v) nodes on the path from ũ to ṽ. We can refine this number to at most
δ := LPnF[i − 1] − str_depth(u), where δ is the number of characters on the edge (u, v)
contributing to LPnF[i− 1]. Nevertheless, these extra δ nodes seem to invalidate the O(n)
bound on the number of visited nodes.

root

u

v

λ

i− 1

LPnF[i− 1]

δ

str depth(u)

λ′

ũ

ṽ

λ̃

i

str depth(u)− 1

≤ δ

next leaf(λ′)

Figure 5. Computing LPnF[i] from LPnF[i− 1] by simulating a suffix link from u to ũ (cf. Section 3.5).
Straight arcs symbolize edges, while curly arcs symbolize paths visiting multiple nodes (which are not
visualized). We have str_depth(u) + δ = LPnF[i− 1], and hence str_depth(ũ) + δ = LPnF[i− 1]− 1.
We have δ > 0 if and only if the factor starting at text position i− 1 is of Type 3. In that case, we
additionally walk down from ũ towards λ̃ to find the lowest node ṽ with str_depth(ṽ) ≤ LPnF[i−
1]− 1 = str_depth(u) + δ− 1. While u and v are directly connected with an edge, the path from ũ to ṽ
may contain multiple edges.

To retain our claimed time complexity, we switch from counting nodes to counting
characters and use the following charging argument: We charge each edge we traversed
by c(e) characters, or δe characters if we only traversed δe ≤ c(e) characters on an edge.
With the above analysis, we again obtain O(ntSA) time for the algorithm computing the
non-overlapping factorization (as well as the non-Type 3 LPnF values) by spending O(tSA)
time for each charged character (instead of each visited node).

Let us reconsider that the factor of LPnF[i− 1] is of Type 3, where we charge the last
edge (u, v) for computing LPnF[i− 1] with δ characters. Here, we observe that we actually
spend only O(tSA) time for processing this edge. Hence, we have δ− 1 characters as a
credit left, which we can spend on traversing O(δ) descendants of ũ. If the factor starting
at i is again of Type 3, we add the remaining credit to the newly gained credit, and recurse.

Regarding Section 3.3 (b), computing the length of the LCP of T[jv . .] and
T[sufnum(λ) . .] naïvely results again in O(n2) overall running time since we need to
compute these lengths for all n positions. Here, instead of computing the length of such
an LCP naïvely, we determine it by computing str_depth(w) of the LCA of λ and the leaf
λ′ with suffix number jv in O(tSA) time. We find λ′ with the RMQ data structure on SA
that actually reports the leaf-rank instead of the suffix number jv, which we obtain by
accessing SA. Altogether, we obtain the same time and space bounds for computing the
non-overlapping LZSS factorization:

Theorem 3. We can compute the 2n-bits representation of LPnF within the same time and space
as the non-overlapping LZSS factorization described in Theorem 1.
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4. Substring Compression Query Problem

The substring compression query problem [6] is to find the compressed representation
of T[I ], given a query interval I ⊂ [1 . . n]. Cormode and Muthukrishnan [6] solved this
problem for LZSS with a data structure answering the query for I in O(zSS[I ] lg n lg lg n)
time, where zSS[I ] denotes the number of produced LZSS factors of the queried substring
T[I ]. Their data structure uses O(n lgε n) space, and it can be constructed in O(n lg n)
time. This result was improved by Keller et al. [34] to O(zSS[I ] lg lg n) query time for the
same space or toO(zSS[I ] lgε n) query time for linear space. They also gave other trade-offs
regarding query time and the size of the used data structure for larger data structures.

The main idea of tackling the problem for LZSS (and similarly for the classic LZ77
factorization) is to use a data structure answering interval LCP queries, which are usually
answered by two-dimensional range successor/predecessor data structures. Most recently,
Matsuda et al. [35] proposed a data structure answering an interval LCP query in O(nε)
time while taking O(ε−1n(H0(T) + 1)) bits of space, where H0 denotes the zeroth order
empirical entropy. Therefore, they could implicitly answer a substring compression query
in O(zSS[I ]nε) time within compressed space. Recently, Bille et al. [36] proposed data
structures storing the LZSS-compressed suffixes of T for answering a pattern matching
query of an LZSS-compressed pattern P without decompressing P. Their proposed data
structures also seem to be capable of answering substring compression queries.

As a warm up for the more-involving techniques for the LZ78 factorization below
(cf. Section 4.5), we show that our techniques studied for the non-overlapping LZSS
factorization in Section 3 can be adapted to the substring compression query problem
under the restriction that the query interval starts at text position 1 (meaning that we query
for prefixes instead of arbitrary substrings). Given an interval I = [1 . . p] for a text position
p ∈ [1 . . n], the algorithm of Theorem 1 achieves O(ptSA) time, where tSA is the time to
access SA. We can improve the running time by replacing the linear scan on Line 10 of
Algorithm 1 with an exponential search [37]: As long as the condition on Line 9 is true (the
condition for walking downwards), we do not increment the depth d by one, but instead
double d. Now, when the condition on Line 9 becomes false, we may have overestimated
the desired depth (we want the first d for which the condition on Line 9 becomes false).
Thus, we need to additionally backtrack by performing a binary search on the interval
[d/2 . . d]. If we perform this search for computing a factor of length `, then we double
d at most lg ` times, and visit O(lg `) depths during the binary search (see also Figure 6
for a visualization). In total, we obtain O(zSS[1. .p]tSA lg `) time, where ` is the length of
the longest non-overlapping LZSS factor (here, zSS[1. .p] denotes the number of computed
non-overlapping factors). Note that the result is not particularly interesting since we can just
store the whole factorization of T[1 . . n], scan for the leftmost factor Fx that ends at p or
after, trim Fx’s length to end at p, and finally return F1, · · · , Fx, all in O(zSS[1. .p]) time.

To generalize this algorithm for an interval I with b(I) > 1, we need to change the
definition of jv for a node v in Section 3.2 to be the smallest suffix number of at least b(I)
among the leaves in the subtree rooted at v. However, this additional complexity makes
the approach selecting jv with an RMQ on SA infeasible and leads us back to the interval
LCP query problem.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

root λ

root

λ

17 nodes
π

Figure 6. Exponential search on a root-to-leaf path for the first node that does not meet a specific
condition. In the setting of the non-overlapping LZSS factorization of Section 4 as well as in the LZ78
factorization of Section 4.5, the path from the root to a leaf λ contains a sub-path π including the root
whose contained nodes all share a common property (for LZSS they meet the condition on Line 10 of
Algorithm 1, while for LZ78 they are edge witnesses marked in the bit vector BE). We symbolize the
path from the root to λ as an array, where each node is represented by its depth. The sub-path π is
visualized by the shaded entries ( ). Here, the leaf λ has depth 18, and we want to find the first
unshaded node on depth 15. The exponential search and the subsequent binary search in the range
[8 . . 16] is conducted by following the edges below and above the path array, respectively.

4.1. Related Substring Compression Query Problems

As far as the author is aware of, the substring compression query problem has only
been studied for LZSS. However, Lifshits [38] mentioned that it is also feasible to think
about the substring compression query problem in context of straight-line programs (SLPs):
Given an SLP of size g representing T, we can construct an SLP of size O(g) on T[I ]
in O(g) time. Actually, we can do better if the SLP is locally consistent. For that, we
augment each non-terminal with the number of terminal symbols it expands to (after
recursively expanding all non-terminals by their right hand sides). For a grammar such
as HSP ([39] [Theorem 3.5]), we can compute the SLP variant of HSP (analogously to
the SLP variant of ESP [40]) in O(lg |I| lg∗ n) time, or ESP [41] in O(lg2 |I| lg∗ n) time
due to ([39] [Lemma 2.11]).

Here, we consider answering substring compression queries with the LZ78 factor-
ization (which is actually also an SLP ([42] [Section VI.A.1])), i.e., the goal is to compress
the substring T[I ] with LZ78. Let z78[I ] denote the number of LZ78 factors of the string
T[I ]. When the text is given as an SLP of size g, we can first transform this SLP into an
SLP of T[I ] in O(g) time, and then apply the algorithm of Bannai et al. [43] on this SLP to
compute the LZ78 factorization in O(g + z78[I ] lg z78[I ]) time. Let us consider from now
on that T is given in its plain form as a string with n lg σ bits. A possible way is to apply
first a solution for computing an LZ77 substring compression query, and then transform
the LZ77-compressed substring into an SLP of size O(zSS[I ] lg |I|) in O(zSS[I ] lg |I|) time
by a transformation due to Rytter [44], to finally apply the aforementioned algorithm
of Bannai et al. [43]. The fastest LZ78 factorization algorithms [4,45] can answer a LZ78
substring compression query in O(|I|) time alphabet independently. For small alphabet
sizes, the running time O(|I|(lg lg |I|)2/(logσ |I| lg lg lg |I|)) of the LZ78 factorization
algorithm of Jansson et al. [46] becomes even sub-linear in |I|. However, for large I and a
compressible text T, these approaches are rather slow compared to the solutions for LZSS
mentioned above, whose running times are bounded by the number of computed factors
and a logarithmic multiplicative factor on the text length.

To obtain similar bounds for LZ78, we could adapt the approach of Bille et al. [36] to
preprocess the LZ78 factorization of all suffixes of T, but that would give us a data structure
with super-linear preprocessing time (and possibly super-linear space). Here, we borrow
the idea from Nakashima et al. [45] to superimpose the suffix tree with the LZ78 trie, and
use a data structure for answering nearest marked ancestor queries to find the lowest
marked suffix tree node on the path from the root to a leaf. This data structure [47] takes
O(n lg n) bits of space, and can answer a nearest marked ancestor query inO(1) amortized
time. We are unaware whether there are improvements for this type of query, even under
the light that they only need to answer fringe marked ancestor queries, a notion coined
by Breslauer and Italiano [48], which is a special case of nearest marked ancestor queries:
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in the fringe marked ancestor query problem, the root of a tree (here: the suffix tree) is
already marked, and we can only mark the children of an already marked node. In what
follows, we formally define the LZ78 factorization, and then propose approaches for the
LZ78 substring compression query problem based on different suffix tree representations.

4.2. LZ78 Factorization

Stipulating that F0 is the empty string, a factorization F1 · · · Fz = T is called the
LZ78 factorization [2] of T iff, for all x ∈ [1 . . z], the factor Fx is the longest prefix of
T[|F1 · · · Fx−1|+ 1 . .] with Fx = Fyc for some y ∈ [0 . . x − 1] and c ∈ Σ, that is, Fx is the
longest possible previous factor Fy appended by the following character T[|F1 · · · Fx|] in
the text. We say that y is the referred index of the factor Fx. A factor is thus determined by
its referred index and its last character, which lets us encode the factors in a list of (integer,
character)-pairs, as shown in the example of Figure 1 where we simplify the coding of
factors with referred index 0 to plain characters (to ease the comparison with the LZSS
variants). Figure 7 gives another visualization of the same example with the LZ trie, which
represents each factor as a node (the root represents the factor F0). The node representing
the factor Fy has a child representing the factor Fx connected with an edge labeled by a
character c ∈ Σ if and only if Fx = Fyc. An observation of Nakashima et al. [45] (Section 3)
is that the LZ trie is a connected subgraph of the suffix trie containing its root. We can
therefore simulate the LZ trie by marking nodes in the suffix trie. Since the suffix trie
has O(n2) nodes, we use the suffix tree ST instead of the suffix trie to save space. In ST,
however, not every LZ trie node is represented; these implicit LZ trie nodes are on the
ST edges between two ST nodes (cf. Figure 8). Since the LZ trie is a connected subgraph
of the suffix trie sharing the root node, implicit LZ trie nodes on the same ST edge have
the property that they are all consecutive and that they start at the first character of the
edge. To represent them, it thus suffices to augment an ST edge with a counter counting
the number of its implicit LZ trie nodes. We call this counter an exploration counter, and we
write nv ∈ [0 . . c(e)] for the exploration counter of an edge e = (u, v), which is stored in
the lower node v that e connects to. Additionally, we call an ST node v an edge witness if nv
becomes incremented during the factorization. We additionally stipulate that the root of
ST is an edge witness, whose exploration counter is always full. Then, all edge witnesses
form a sub-graph of ST sharing the root node. We say that nv is full if nv = c(parent(v), v),
meaning that v is an explicit LZ78 trie node. We give an example in Figure 9.

However, since we do not know the shape of the LZ trie in advance, we also do not
know which nodes will become an edge witness. For the time being, we augment each
node with an exploration counter, spending O(n lg n) bits in total. As in Section 3, we
assume that our text T has length n and ends with a special symbol $ smaller than all other
characters appearing in T.

i 1 2 3

Factor a aa b
Coding (0,a) (1,a) (0,b)

i 4 5 6

Factor ab aaa ba
Coding (1,b) (2,a) (3,a)

0

1

a

3

b

2

a

4

b

6

a

5

a

Figure 7. The LZ78 factorization and its LZ trie for the text T = aaababaaaba. The xth factor is the
concatenation of the edge labels of the path from the root to the node labeled with x. Its referred
index is the label of its parent.
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Figure 8. (Left) The suffix tree of T superimposed by the LZ trie (cf. Figure 7) computed on T = aaababaaaba$. Blue ( )
colored ST nodes represent the explicit LZ trie nodes, i.e., those nodes that are present in ST. Implicit LZ trie nodes are
represented by the small rounded nodes ( ). The edge witnesses are the nodes with the preorder numbers 3, 5, 6, 12, and 16.
(Right) cpST of T described in Section 4.8. The label of a node is the list of preorder numbers of the nodes in its respective
heavy path. For instance, the heavy path from the root contains the nodes with the preorder numbers 1, 3, 5, and 6.
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Figure 9. Excerpt of the suffix tree depicting three edge witnesses. Implicit trie node are represented
by small rounded nodes ( ), which are shaded if they are LZ trie nodes ( ). The explicit LZ trie nodes
u and w are shaded in blue ( ). According to the figure, nv = 1 and nw = 2. In particular, the
exploration counters of u and w are full.

4.3. Linear-Time Computation

Now, we can give our first result of Theorem 2 on the LZ78 substring compression
query problem by a simple modification of the LZ78 factorization algorithm presented by
Nakashima et al. [45]. This algorithm uses a pointer-based suffix tree, which is augmented
by a nearest marked ancestor data structure [47], using altogether O(n lg n) bits of space.

The algorithm works as follows: Suppose that we have computed the factors F1 · · · Fx−1
and now want to compute Fx. Since Fx is a prefix of the suffix T[p . .] with p = |F1 · · · Fx−1|+
1, Fx is a prefix of the concatenation of edge labels on the path π from the root to the leaf
with suffix number p in the suffix tree. The additional requirement that Fx, excluding its
last character, has to coincide with a preceding factor Fy means that Fy = Fx[1 . . |Fx| − 1] is
the string label of the lowest LZ trie node on π; this LZ trie node is represented either

• explicitly as an ST node w being the lowest edge witness on π; or
• implicitly by the exploration counter of w.

In either case, w is the edge witness of Fy and determines its length
|Fy| = str_depth(parent(w)) + nw. We create an LZ trie node representing Fx as follows:

• If nw is not full, we make w the edge witness of Fx, and increment nw by one.
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• Otherwise (nw is full), we make the child w′ of w on the path π the edge witness of Fx,
and set nw′ ← 1.

It is left to find w, which we can by traversing π from the root until reaching an edge
e = (u, v) whose exploration counter nv is less than the length of its label c(e), where either
u or v is w. However, a linear scan of π for finding w would result in O(z) time per factor.
Here, the fringe marked ancestor queries come into the picture, which allow us to find a
lowest edge witness in amortized constant time: by marking all edge witnesses, querying
the lowest marked ancestor of the leaf with suffix number p yields either u or v. This gives
us O(1) amortized time per LZ78 factor, and concludes the LZ78 factorization algorithm
of Nakashima et al. [45] (Theorem 3).

Finally, to obtain the LZ78 factorization of T[b(I) . . e(I)] for a given interval I with
I = [b(I) . . e(I)], we do not start the computation at T[1 . .], but directly at T[b(I) . .], and
terminate when a factor ends at T[e(I)] or protrudes T[I ] to the right. In the latter case,
we trim this factor. Hence, we can compute the factorization of T[I ] in O(z78[I ]) time with
O(n lg n) bits of space, in which we can store a pointer-based suffix tree on T.

4.4. Outline

In what follows, we want to study variants of this algorithm that use more lightweight
data structures at the expense of additional running times. All LZ78 factorization algo-
rithms here presented stick to the following general framework, which we call a pass: For
each leaf λ whose suffix number is the starting position of a factor F, locate the lowest edge
witness w on the path from the root to λ and create a new LZ trie node by incrementing
either nw or the exploration counter of its child on the path towards λ as described in
Section 4.3. Since w determines the length of the factor F, we know the suffix number of
the leaf that starts with the next factor.

After a pass, we know the LZ trie topology due to the exploration counters. In a
subsequent pass (Section 4.7), we use this knowledge to associate an edge witness w with
the index of the most recent factor having w as its edge witness such that we can identify the
referred indices with this association. However, before that, we reduce the space (Section 4.5)
and subsequently show how to perform a pass within the reduced working space (Section 4.6).
Finally, we accelerate a root-to-leaf traversal for long factors in Section 4.8.

4.5. Space-Efficient Computation

In what follows, we give trade-offs for less space but slightly larger time bounds by
using SST and CST. To get below O(n lg n) bits of space, we need to get rid of: (a) the
O(n lg n)-bits marked ancestor data structure; and (b) the O(n lg n) bits for the exploration
counters. For the latter (b), Fischer et al. [4] (Section 4.1) presented a data structure
representing the exploration counters within O(n) bits on top of the suffix tree. For the
former (a), we use level ancestor queries to simulate a fringe marked ancestor query: to
this end, we mark all edge witnesses in a bit vector BE of length 2n such that BE[j] =
1 if and only if the ST node with preorder rank j is an edge witness (remember that
the number of nodes in ST is at most 2n). Suppose now that we want to compute the
factor Fx. For that, we visit the leaf λ with suffix number b(I) + |F1 · · · Fx−1|. As in
Section 4.3, we want to find the lowest edge witness on the path from the root to λ, which
we find with a fringe marked ancestor query. Here, we answer this query by scanning
the path from the root to λ until reaching the lowest marked node in BE. We can traverse
linearly from the root to this node by querying d 7→ level_anc(λ, d) for each depth d ≥ 0.
However, we then visit O(|Fx|) nodes for computing the factor Fx, or O(|I|) nodes in
total. To improve this bound, we can apply again exponential search (cf. Figure 6). To
see why that can be done, let (v0, . . . , vm) be the path from the root v0 to λ = vm. If
each node vd (for each depth d ∈ [0 . . m]) is represented by its preorder number, then
BE[v0] · · · BE[vm] = 1k+10m−k if the lowest edge witness has depth k, which is the smallest
k ≤ |Fx| such that str_depth(level_anc(λ, k)) ≥ |Fx| − 1. Although we do not know k in
advance, we can find the rightmost ‘1’ in BE[v0] · · · BE[vm] with an exponential search
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visiting O(lg k) = O(lg |Fx|) nodes (we evaluate d 7→ level_anc(λ, d) for specific d and
check each time whether the returned node is marked in BE). Thus, we can determine |Fx|
and Fx’s edge witness in O(lg |Fx|) time. Since |Fx| ≤ x, we spend O(z78[I ] lg z78[I ]) time
in total.

4.6. Navigation in Small Space

To complete our algorithm for SST and CST, it is left to study how to access the
leaves when issuing the level ancestor queries. While the LZ78 factorization algorithms
of Fischer et al. [4] used the fact that they can scan the leaves linearly in suffix number
order to simulate the scan of the text in text order within their O(n) time budget, we want
to accelerate this algorithm by visiting only the leaves whose suffix numbers match the
starting positions of the factors. With the SST, we can select the leaf λ with suffix number
i ∈ [1 . . n] in O(1/ε) time since we have access to ISA[i] returning the leaf-rank of λ.

With the CST, we can visit the leaf with the subsequent suffix number with next_leaf
in constant time, but may need O(n) time to visit an arbitrary leaf. Here, the idea is to
store a sampling of ISA within O(n lg σ) bits of space during a precomputation step. We
can produce the values of this sampling by iterating over next_leaf such that we obtain
an array that stores in its ith entry the leaf-rank of the leaf with suffix number i logσ n.
Consequently, we can jump to a leaf with suffix number j ∈ [1 . . n] in O(logσ n) time
by jumping to the closest sampled predecessor of j, and subsequently applying next_leaf
O(logσ n) times to reach the leaf with suffix number j. To sum up, we need O(logσ n) time
to traverse between two corresponding leaves. The total time becomesO(ε−1z78[I ] lg z78[I ])
and O(z78[I ](lg z78[I ] + logσ n)) for the SST and the CST, respectively.

4.7. LZ78 Coding

Finally, to obtain the LZ78 coding, we need to compute the referred indices. In a classic
LZ78 trie, we would augment each trie node with the index of its corresponding factor.
Here, we additionally need a trick for the implicitly represented LZ trie nodes: For them,
we can now leverage the edge witnesses by augmenting each of them with the factor index
of the currently lowest LZ trie node created on its ingoing edge. Fortunately, we know
all nodes that become edge witnesses thanks to BE (cf. Section 4.5) marking the preorder
numbers of all edge witnesses. We now enhance BE with a rank-support such that we
can give each edge witness a rank within [1 . . z78[I ]]. Therefore, we can maintain the most
recent factor indices corresponding to each edge witness in an array W of z78[I ] lg z78[I ]
bits. We again conduct a pass as described in Section 4.4, but this time we use W to write
out the referred indices (see ([4] [Section 4.2.1 Pass (b)]) for a detailed description on how
to read the referred indices from W). By doing so, we finally obtain Theorem 2. For an
overview, we present the obtained complexity bounds in Table 1.

4.8. Centroid-Path Decomposed Suffix Tree

If the length ` ≤ z78[I ] of the longest factor is so large that lg ` = ω(lg lg n), then
we can speed up the exponential search of Section 4.5 by searching in the centroid-path
decomposed suffix tree cpST. The centroid path decomposition [49] of the suffix tree is
defined as follows: For each internal node, we call its child whose subtree is the largest
among all its siblings (ties are broken arbitrarily if there are multiple such children) a
heavy node, while we call all other children light nodes. Additionally, we make the root
and all leaves light nodes (here we differ from the standard definition because we need a
one-to-one relationship between leaves in the original tree and in the path-decomposed
one). A heavy path is a path from a light node u to the parent of a leaf containing, except
for u, only heavy nodes. There is a one-to-one relationship between light nodes and heavy
paths. Since heavy paths do not overlap, we can contract all heavy paths to single nodes
and thus form cpST (see ([49] [Section 4.2]) for details and Figure 8 for an example). The
centroid path decomposition is helpful, because the number of light nodes on a path from
the root to a leaf isO(lg n), which means that a path from the root to a leaf in cpST contains
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O(lg n) nodes. This can be seen by the fact that the subtree size of a light node is at most
half of the subtree size of its heavy sibling; thus, when visiting a light node during a
top-down traversal in ST, we at least half the number of ST nodes we can visit from then
on. Consequently, a root-to-leaf path in cpST has O(lg n) nodes.

For that to be of use, we need a connection between ST and cpST: observe that the
number of leaves and their respective order is the same in both trees, such that we can
map leaves by their leaf-ranks in constant time. If we mark the light nodes in the suffix
tree in a bit vector BL, then the rank of a light node v in BL is the preorder number of the
node in cpST representing the heavy path whose highest node is v. To stay within our
space budget, we represent the tree topology of cpST with a BP sequence (which we briefly
introduced in Section 2). First, we mark all light nodes in BL by an Euler tour, where we
query the ST topology for the subtree size rooted at an arbitrary node in constant time.
Next, we perform a depth-first search traversal on the suffix tree while producing the BP
sequence of cpST. For that, we use a stack to store the light node ancestors of the currently
visited node. Since a node has O(lg n) light nodes as ancestors, the stack uses O(lg2 n) bits
of space. Finally, we endow BL with a select-support such that we can map a node of cpST
to its corresponding light node in ST.

Our algorithm conducting a pass works as follows: Suppose that we visit the leaf
λ with suffix number b(I) + |F1| + · · · + |Fx−1|. This time, we map λ to the leaf λ′ of
cpST having the same leaf-rank as λ in ST. Next, we apply the exponential search with
d 7→ level_anc(λ′, d) on cpST, to obtain a cpST node representing the heavy path whose
highest node is a light node v, i.e., v is the lowest light node on the ST path from the root
to the leaf λ that is an edge witness. Since a root-to-leaf path in ST has O(lg n) light nodes,
we spend O(min(lg |Fx|, lg lg n)) time to find v.

Finally, it is left to move from v to the lowest edge witness on the path from v to λ in
ST. For that, we use a dictionary D that associates a light node with the number of edge
witnesses in its heavy path. This number is at most z78[I ] ≤ |I|, and thus it can be stored
in lg |I| bits, while a light node can be represented with its preorder number in O(lg n)
bits. D has to be dynamic since we do not know in advance which nodes will become edge
witnesses; we can make use of one of the dynamic dictionaries given in Table 2, where
tD denotes the time for an operation such as a lookup or an insertion and sD denotes the
dictionary size in bits.

Now, suppose that D stores that d nodes in v’s heavy path are edge witnesses. Let w
be the next light node on the path from v to λ (i.e., w is the highest light node on the path
from the root to λ whose exploration counter is still zero).

• If d− 1 is at least the height difference between v and w, then the parent u of w is
already an edge witness, and u is a node on the heavy path of v. If the exploration
counter of u is full, i.e., nu = c(parent(u), u), then we increment the exploration
counter of w, and hence make w an edge witness and add w to D.

• Otherwise (d− 1 is smaller than this height difference), the node whose exploration
counter we want to increment is within the heavy path, and is either the dth or
(d + 1)th descendent of v.

In total, for z := z78[I ], we can improve the z lg z factor in the time bounds to z ·
min(lg z, tD + lg lg n), which is z ·min(lg z, lg z/ lg lg z + lg lg n) when implementing D
with the dynamic dictionary of Raman et al. [50], costing sD = z lg(nz) + o(z) bits of
additional working space during a query. More formally:

Theorem 4. Given a text T[1 . . n] of length n whose characters are drawn from an alphabet with
size σ = nO(1), we can compute a data structure on T in O(n) time that computes, given an
interval I ⊂ [1 . . n], the LZ78 factorization of T[I ] in

• O(z78[I ](logσ n +min(lg z78[I ], tD + lg lg n))) time usingO(n lg σ) + sD bits of space, or
• O(ε−1z78[I ] min(lg z78[I ], tD+ lg lg n)) time using (1+ ε)n lg n+ sD+O(n) bits of space,
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where z78[I ] is the number of computed LZ78 factors, ε ∈ (0, 1] is a selectable constant, and tD and
sD are the time and space complexities of a dynamic dictionary associating a lg n-bit integer with a
lg |I|-bit value (cf. Table 2). Similar to Theorem 2, we need the read-only text stored for queries if
there is a character in the alphabet that does not appear in T.

Table 1. Complexities for answering an LZ78 substring compression query with different suffix tree
representations. The query is on an interval I ⊂ [1 . . n]. A query additionally needs an array of
z78[I ] lg n = O(n lg σ) bits of space as described in Section 4.7. If there are characters of the alphabet
appearing nowhere in the text, we additionally need to keep the text available during a query, which
adds n lg σ bits to the query space complexity of the SST solution.

Construction

Data Structure Time Space in Bits

suffix tree [45] O(n) O(n lg n)
SST [4] [Section 2.2.3] O(nε−1) n lg σ + (1 + ε)n lg n +O(n)
CST [4] [Section 2.2.2] O(n) O(n lg σ)

Query

Data Structure Time Space in Bits

suffix tree [45] O(z78[I ]) O(n lg n)
SST [4] [Section 2.2.3] O(z78[I ] lg z78[I ]ε−1) ((1 + ε)n + z78[I ]) lg n +O(n)
CST [4] [Section 2.2.2] O(z78[I ](lg z78[I ] + logσ n)) O(n lg σ)

Table 2. Dynamic dictionary representations usable in our cpST approach (cf. Section 4.8) for D
mapping a light node represented in lg n bits to the lowest edge witness within its heavy path
represented in lg |I| bits. z := z78[I ] denotes the number of LZ78 factors of T[I ], which is an upper
bound on the number of edge witnesses. An operation is a lookup or an insertion. We are interested
in instances with tD = o(lg z) (since, otherwise, the approach of Section 4.5 is favorable). ε ∈ (0, 1) is
a selectable constant.

Data Structure D Operation Time tD Space sD in Bits

plain array O(1) n lg |I|
Raman et al. [50] O(lg z/ lg lg z) amortized z lg(n|I|) + o(z)
backyard Cuckoo hashing [51] O(lg(1/ε)/ε2) expected (1 + ε)z lg(n|I|)

5. Conclusions

We used techniques introduced by Fischer et al. [4], which work on the succinct suffix
tree (SST) and the compressed suffix tree (CST), to tackle the non-overlapping LZSS factor-
ization and the LZ78 substring compression query problem. One of the main techniques
is the usage of level ancestor queries to traverse a root-to-leaf path. For computing the
non-overlapping LZSS factorization, our idea was to merge these techniques with the
algorithm of Gusfield [31] working in root-to-leaf traversals. To answer an LZ78 substring
compression query, we combined exponential search with the level ancestor queries and
could accelerate this by first searching in the centroid path-decomposed suffix tree cpST
whenever the factor lengths become large.

We wonder whether we can improve the space bounds for solving the semi-dynamic
fringe marked ancestor problem (addressed in Section 4), where updates are restricted to
marking a node that is a child of an already marked node; hence, the marked nodes form a
connected subgraph of the suffix tree sharing at least the root. Without the need of theO(n)
words for the marked ancestor data structure, it becomes interesting to devise algorithms
computing the reversed LZSS factorization [52] (see ([53] [Chapter 3.6.2])) in low memory.
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