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Abstract: We consider the facility layout problem (FLP) in which we find the arrangements of
departments with the smallest material handling cost that can be expressed as the product of distance
times flows between departments. It is known that FLP can be formulated as a linear programming
problem if the relative positioning of departments is specified, and, thus, can be solved to optimality.
In this paper, we describe a custom interior-point algorithm for solving FLP with relative positioning
constraints (FLPRC) that is much faster than the standard methods used in the general-purpose solver.
We build a compact formation of FLPRC and its duals, which enables us to establish the optimal
condition very quickly. We use this optimality condition to implement the primal-dual interior-point
method with an efficient Newton step computation that exploit special structure of a Hessian. We
confirm effectiveness of our proposed model through applications to several well-known benchmark
data sets. Our algorithm shows much faster speed for finding the optimal solution.

Keywords: facility layout problem; interior-point method; convex optimization

1. Introduction
1.1. Facility Layout Problem

Facility Layout Problem (FLP) is one of the most fundamental issues in the design of
production system. The goal of FLP is “locating the different facilities or departments in a
plant in order to achieve the greatest efficiency in the production of a product or service”
(Tompkins et al. 2010 [1]). In an industrial situation, putting in a poor layout may well
lead to serious blunders in the use of a company’s available land, in costly re-arrangements
in actually tearing down buildings, walls, or major structures which are still usable but
which subsequently turn out to be roadblocks to efficiency and low-cost operation [2].
Therefore, it is important for the facility planners to develop the facility layouts that avoid
such mistakes.

1.2. Related Research

FLP is a well studied problem and a number of different models and algorithms
have been developed. See the surveys Levary and Kalchik(1985) [3], Kusiak and Heragu
(1987) [4], Hassan (1994) [5], Meller and Gau (1996) [6], Drira et al.(2007) [7], Arikaran et al.
(2010) [8], Anjos and Vieira (2017) [9], and Hosseini-Nasab et al. (2018) [10].

Early research in this field include Koopmans and Beckmann (1957) [11], where the
FLP is formulated as QAP (Quadratic Assignment Problem), by approximating the problem
as model of assigning all facilities to different locations with the goal of minimizing the
sum of the distances multiplied by the corresponding flows. In the 1990s, several exact
formulation was presented by representing the candidate layout continuously (called
‘continuous representation’), as opposed to the QAP formulation represents the layout
candidate by a grid structure (called ‘discrete representation’). According to Liu and Meller
(2007) [12], “By representing the FLP in a discrete fashion, the FLP is simplified, but at the
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penalty of eliminating many solutions from consideration. Continuous representation is
more accurate and realistic than discrete representation, and thus is capable of finding the
‘real optimal’ final layout solution.” However, the continuous representation also increases
the complexity of the FLP. In the optimization point of view, FLP belongs to the non-convex
problem, and, unfortunately, there are no effective methods for solving the problem in
this class. Methods for the general non-convex problem therefore take several different
approaches: NLP (NonLinear Programming)-based approach; MH (Meta-Heuristics)-based
approach; and MIP (Mixed-Integer-Programming)-based approach, each of which involves
some compromise.

In the NLP-based approach, FLP is represented by purely continuous variables and
optimized by NLP techniques. The compromise is to give up seeking the optimal solution,
and instead they seek a point that is only a locally optimal solution. As a result, the
objective value of the local solution obtained is highly dependent on the choice of an initial
point. Hence, much of the research is focused on a method for producing a good enough
initial point. Those research include Van Camp, Carter and Vaneli (1992) [13], Anjos and
Vaneli (2002) [14], Anjos and Vaneli (2006) [15], Jankovits, Luo, Anjos and Vaneli (2011) [16],
and Anjos and Vieira (2016) [17]. The general framework is based on the combination of
two models: The first is a relaxation of the layout problem and intended to find a good
initial point for the iterative algorithm used to solve the second model; the second model is
an exact formulation of the facility layout problem and intended to find locally optimal
solution. These methods can be fast, can handle large-scale problems, but still have the
disadvantage of initial-dependency even with the relaxation step, since the relaxed model
that has been proposed is not convex as well.

In the MH-based approach, FLP is represented by a string of finite length integer-
variables and optimized by MH techniques (e.g., Simulated Annealing or Genetic Algo-
rithm). The compromise is the quality of solution; an approximate solution is found by
drawing some number of candidates from a probability distribution, and taking the best
one found as the approximate solution. This approach includes LOGIC and FLEX-BAY.
LOGIC is an improvement type algorithm developed by [18], where a candidate layout is
represented as a slicing tree. A slicing tree is a binary tree which shows the process of recur-
sive partitioning rectangular in such a way that each rectangular partition corresponds to
the space allocated to a facility. In the LOGIC, the slicing tree is optimized using a Genetic
Algorithm, and further extensions are conducted by Gau and Meller (1999) [19], Shayan
and Chittilappilly (2004) [20], Scholz, Petrick, and Domschke (2009) [21], and Kang and
Chae (2017) [22]. FLEX-BAY is an improvement-type algorithm based on a continuous
representation developed by Tate and Smith [23]. A layout is represented by a flexible
number of vertical bays of varying width, each divided into one or more rectangular
departments. Encoding flexible bay layouts is a two-part representation: permutation
of the departments and breakpoints for the bays. FLEX-BAY utilizes a genetic algorithm
to search the solution space by varying department-to-bay assignments or by adding
or removing a bay breakpoint. A family of this approach are Kulturel-Konak, Konak,
Norman and Smith(2006) [24], Wong and Komarudin (2010) [25], Kulturel-Konak and
Konak (2010) [26], Kulturel-Konak and Konak (2011) [27], Palomo Romero et al. (2017) [28],
Garcia-Hernandez et al. (2019) [29], and Garcia-Hernandez et al. (2020) [30]. Recent
papers study the multi-objective model. Liu et al. (2018) [31] developed a multi-objective
model to minimize material handling cost, to maximize the total adjacency value, and to
maximize space utilization. They applied a multi-objective particle swarm optimization.
Guan et al. (2019) [32] developed a multi-objective model to minimize material handling
cost, to minimize the number of available workshops required for departments, and to
maximize space utilization. They also applied a multi-objective particle swarm optimiza-
tion. Another research trend is the dynamic and stochastic model. Pourvaziri and Pierreval
(2017) [33] developed a dynamic facility layout problem based on an open queuing network
theory. Turanoğlu and Akkaya (2018) [34] introduced a hybrid heuristic algorithm based
on bacterial foraging optimization. Tayal et al. (2017) [35] developed a stochastic dynamic
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facility layout problem. Several studies integrated these multi-objective and dynamic
models. Azevedo et al. (2017) [36] developed a multi-objective model to minimize material
handling cost, to minimize reconfiguration cost, and to minimize unsuitability between
departments and location. Pourhassan and Raissi (2017) [37] developed a multi-objective
model to minimize the total material handling cost and machine rearrangement costs, and
to minimize the number of possible transporters accident that can be evaluated by the sim-
ulation. They proposed a simulation-based optimization framework in which the genetic
algorithm was applied to find an optimal arrangement. While MH-based methods work
very well in practice for larger sized problem instances, these approaches have a structural
disadvantage in which all these heuristics cannot consider all-feasible solutions due to the
encoding scheme that represents solutions as strings for the use of MH techniques.

In the MIP-based approach, FLP is represented by a combination of the binary vari-
ables that specify the relative positioning of each pair of departments and the continuous
variables that denote the department positioning and shapes. The outline of a general
MIP-based-method is as follows. It alternates between two steps: determining a rela-
tive position of departments, and the optimizing department positions and the shapes
under the specified relative positioning. If the relative positioning of the department is
specified, FLP can be reduced to the convex optimization problems such as LP (Linear
Programming), QP (Quadratic Programming), or SDP (SemiDefinite Programming), and,
thus, can be solved by several convex optimization techniques developed in the past few
decades (e.g., simplex method, active-set method, interior-point method). Unlike other two
approaches which may miss the optimal solution, MIP-based approach is the true global
optimization approach, and, thus, is absolutely reliable. The compromise is, however,
the scalability; the first MIP-based method presented by Montreuil in 1990 [38] can only
solve the problem with six or less departments. This model is now referred to as FLP0 and
several modification for MIP-FLP formulation has been conducted such as FLP1 presented
by Meller et al. (1999) [39]; FLP2 by Sherali et al. (2003) [40]; and ε-accurate scheme for
controlling the department area by Castillo and Westerlund (2005) [41]; a sequence-pair
representation by Liu and Meller (2007) [12]; a graph–pair representation by Bozer and
Wang (2012) [42]. Even with those improvements, however, the problem size that can be
solved to optimality is still less than twelve (Chae and Regan 2016 [43]).

1.3. Research Purpose

Corresponding to the above-mentioned two steps of MIP, there are two approaches for
speeding up MIP: searching the relative position more efficiently, or optimizing department
positions and the shapes under the specified relative positioning faster. In this study, we
focus primarily on the latter class approach.

In this paper, we describe a custom interior-point method for solving the FLP with
relative positioning constraints (FLPRC) that is substantially faster than the standard
methods used in the general-purpose solver. We build a compact formation of FLPRC
and its dual, which enables us to establish the optimal condition very quickly. We use this
optimality condition to implement the primal-dual interior-point method with an efficient
Newton step computation that exploits the special structure of a Hessian. The computation
effort of our method scales with linear-order of the number of departments, whereas that
of standard methods scales with cubic-order of the number of departments.

The outline of this paper is as follows. In Section 2, we describe the FLPRC, formulated
as a linear programming in a matrix form. In Section 3, we describe the overall algorithm.
We first derive a dual problem and the Karush–Kuhn–Tucker (KKT) optimal condition
of the model. We use this KKT condition to implement our optimization method with a
primal-dual interior-point. We describe the barrier subproblem associated with a primal-
dual interior-point method for the FLPRC, and we show how the special structure of the
FLPRC can be exploited to compute the search direction very efficiently. In Section 4,
we give numerical results to illustrate the effectiveness of proposed method. Finally, we
provide our conclusions and discuss some of the future research in Section 5.
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2. Facility Layout Problem with Relative Positioning Constraints

In this section, we first review the FLPRC based on the FLP2 presented by [40]. We
then describe our modified model and how our model can be faster than the FLP2.

2.1. The FLPRC Formulation

We consider N departments i = 1, · · · , N, which have centroid positions (xi, yi) ∈ R2

and shapes (wi, hi) ∈ R2 of half of their widths and heights, for i = 1, ..., N. They must be
placed in a rectangle area with width W and height H, and lower left corner at the position
(0, 0), under specified relative positioning.

The objective of FLP is to find a set of positions and shapes of department ri =
[xi, yi, wi, hi]

T that yield as small material handling costs as possible. In the FLP2, the mate-
rial handling cost is measured as the product of distance times flows between departments
as in (1)

minimize ∑N
i=1 ∑N

j=i+1 fijdij, (1)

where fij denotes the material flows from department i to department j and dij denotes the
distance between centroids of department i and department j. The choices of distance mea-
sures are usually either rectilinear or Euclidean, but, in the FLP2, the rectilinear distances
are used as in (2).

dij = dx
ij + dy

ij
= |xi − xj|+ |yi − yj|

(2)

The absolute values in the distance function (2) can be linearized as in (3)

−dx
ij ≤ xi − xj ≤ dx

ij
−dy

ij ≤ yi − yj ≤ dy
ij

(3)

We call these inequalities the distance constraints.
In the FLP, it is required that the departments lie inside the bounding rectangle with

width W and height H as in (4) and (5).

wi ≤ xi ≤W − wi, i = 1, · · · , N (4)

hi ≤ yi ≤ H − hi, i = 1, · · · , N (5)

These inequalities are called the within-boundary constraints.
The aspect-ratio constraints require that the aspect ratio of a department is bounded

within upper and lower limits, i.e.,

li ≤ hi/wi ≤ ui, i = 1, · · · , N, (6)

where aspect ratio of a department is defined by hi/wi and the upper and lower bound of
aspect ratio are defined by ui, li, respectively. Multiplying both sides of each inequality by
wi reduces to these constraints into linear inequalities as in (7).

liwi ≤ hi ≤ uiwi, i = 1, · · · , N, (7)

In case the dimension of a department is known a priori (often called Machine Layout
Problem, or MLP), we can use the fixed aspect ratio with li = ui, which results in a linear
equality constraint.

Let si be the quarter of minimal area of department i for i = 1, ..., N, thus the area
constraints require Equation (8):

wihi ≥ si, i = 1, · · · , N. (8)
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Instead of these exact constraints, we use an outer polyhedra approximation, proposed
by [40], to obtain the speed-up as (9):

siwi + 4w̄2
imhi ≥ 2siw̄im, i = 1, · · · , N, m = 1, · · · , M. (9)

where affine support points are defined by w̄im and the number of affine support points are
defined by M, respectively. By using the constraints (9), instead of (8), the area constraints
can be reduced to the standard linear inequalities, and thus can be solved much faster.

The relative-positioning constraints require that, for each pair of departments (i, j)
with i 6= j, the department i must be placed to the left, right, above, or below the department
j. These relations are specified with the binary variablesH (meaning ‘horizontal’) and V
(meaning ‘vertical’) as in (10) and (11):

Hij =

{
1 (if i is left of j)
0 (otherwise)

(10)

Vij =

{
1 (if i is below j)
0 (otherwise)

(11)

Using these variables, the following linear inequalities are imposed as in (12) and (13):

xi + wi ≤ xj − wj ifHij = 1 (12)

yi + hi ≤ yj − hj if Vij = 1 (13)

Although we will not determine the relative positioning, we mention that the following
condition must hold to ensure that the departments do not overlap (14):

Hij +Hji + Vij + Vji = 1 (14)

These constraints are included in the MIP-based FLP and make the problem a complicated
combinational problem.

We summarize the overall problem formulation as in (15).

minimize
N

∑
i=1

N

∑
j=i+1

fij{dx
ij + dy

ij} (15a)

subject to − dx
ij ≤ xi − xj ≤ dx

ij, i, j = 1, · · · , N. (15b)

− dy
ij ≤ yi − yj ≤ dy

ij, i, j = 1, · · · , N. (15c)

wi ≤ xi ≤W − wi, i = 1, · · · , N. (15d)

hi ≤ yi ≤ H − hi, i = 1, · · · , N. (15e)

liwi ≤ hi ≤ uiwi, i = 1, · · · , N, (15f)

xi + wi ≤ xj − wj ifHij = 1, i, j = 1, · · · , N. (15g)

yi + hi ≤ yj − hj if Vij = 1, i, j = 1, · · · , N. (15h)

siwi + 4w̄2
imhi ≤ 2siw̄im, i = 1, · · · , N, m = 1, · · · , M. (15i)

• N: number of departments;
• i, j: department indices (i, j = 1 · · ·N);
• fij: material flow between department i and department j;
• W, H: width and height of facility;
• Hij,Vij: binary constants to specify the relative positioning of department i and j in

the horizontal and vertical direction;
• li, ui: lower and upper limits on the aspect ratio of department i;
• si: quarter of minimum area of department i;
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• dx
ij, dy

ij: rectilinear distance between department i and j in x and y direction;

• xi, yi: x and y coordinates of centroid of department i;
• wi, hi: half length of width and height of department i;

2.2. Reducing Redundant Inequalities by Exploiting Relative-Positioning Constraints Structure

In this section, we describe the redundant inequalities that can be eliminated by
exploiting relative-positioning constraints structure. It yields more sparsity of the matrix in
the linear equation to compute the Newton step, which is the main effort of the algorithm,
and thus yields the speeding-up the algorithm.

2.2.1. Redundancy in Distance Constraints

For each pair of departments (i, j) with i 6= j, two inequalities in (12) and (13) can be
reduced to a linear equality, ifHij and Vij are specified as follows:

−dx
ij ≤ xi − xj ≤ dx

ij → dx
ij = xj − xi (ifHij = 1)

−dy
ij ≤ yi − yj ≤ dy

ij → dy
ij = yj − yi (if Vij = 1)

Substituting these equalities into dx
ij, dy

ij in the objective function (1), these variables and
equalities disappeared.

Assuming the non-overlapping condition (14) holds, at least NC2 variables and 2× NC2
inequalities can be reduced. We can further reduce the distance variables and constraints
in the similar way, for each pair of departments (i, j) with fij = 0.

2.2.2. Redundancy in Within-Boundary Constraints

The within-boundary constraints are also reduced by using the relative-positioning
structure. The constraints wi ≤ xi in (4) only needs to be imposed on the left-most
departments, i.e., for ∀i s.t. ∑N

j=1Hij = 0. In the similar way, the minimal set of within-
boundary constraints can be reduced as follows:

wi ≤ xi for ∀i s.t.
N

∑
j=1
Hji = 0

xi ≤W − wi for ∀i s.t.
N

∑
j=1
Hij = 0

hi ≤ yi for ∀i s.t.
N

∑
j=1
Vji = 0

yi ≤ H − hi for ∀i s.t.
N

∑
j=1
Vij = 0

Suppose Nle f t, Nright, Nupper, Nlower are the number of the most left, right, upper, and
lower departments, respectively, the number of inequalities can be reduced to Nle f t +
Nright + Nupper + Nlower. Assuming that the non-overlapping condition (14) holds, this
number becomes, at most, less than 2(N + 1), which is less than the original 4N inequalities.

2.2.3. Redundancy in Relative-Positioning Constraints

Finally, we mention the redundant inequalities in relative-positioning constraints. It is
obvious that, if the conditionsHij = 1 andHjk = 1 hold, then the conditionHik = 1 must
hold. Using these relations, we can reduce the redundant inequalities.

A minimal set of relative-positioning constraints can easily be obtained through
eliminating the indirect path inHij or Vij by the Warshall–Floyd algorithm.
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2.3. The FLPRC Formulation in a Matrix Form

In this section, we introduce simpler formulation in a matrix form. This formula-
tion does not reduce the total number of variables nor constraints, but it removes many
row/column permutation to solve the linear equation to compute the Newton step.

2.3.1. Notation

First, we describe the notation in this section. 0m denotes the (m× 1) vector with
all entries zero, 1m denotes the (m× 1) vector with all entries one. I means the identity
matrix, and diag(a) means diagonal matrix with diagonal entries a1 · · · am, where ai is i-th
entry of a.

2.3.2. Decision Vector

Let x, y, w, h ∈ RN denote the vector with ith entry xi, yi, wi, hi, respectively. We define
the layout vector r ∈ R4N as

r =


x
y
w
h

 ∈ R4N

and the distance vector d = [dx
T , dy

T ]T ∈ RN(N−1) as

dx =


dx

1
dx

2
...

dx
K

 =


dx

12
dx

13
...

dx
(N−1)N

, dy =


dy

1
dx

2
...

dy
K

 =


dy

12
dy

13
...

dy
(N−1)N


where dx

k = dx
ij with k = (i− 1)/2× (2N− i) + (j− i). We denote the overall set of decision

variables v ∈ R4N+(N−1)N as

v =

[
r
d

]
.

2.3.3. Objective Function

We define the flow vector f ∈ RN(N−1)/2 as

f =


f1
f2
...

fK

 =


f12
f13
...

f(N−1)N


and the overall cost vector c = [0T

4N , fT , fT ]T . Using these vectors, we can write the objective
function (1) as in (16):

N

∑
i=1

N

∑
j=i+1

fijdij = f1d1 + · · ·+ fKdK

= f1(dx
1 + dy

1) + · · ·+ fK(dx
K + dy

K)

= fTdx + fTdy

=

0
f
f

T r
dx
dy


= cTv (16)
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If a pair of department (i, j) can be reduced with Hij,Vij from the redundancy in
distance constraints, then the cost vector becomes c = [cT

r , fT , fT ]T with

(cr)k =


fij if k = (i− 1)/2× (2N − i) + (j− i)
− fij if k = (j− 1)/2× (2N − j) + (i− j)

0 otherwise
(17)

and the kth entry corresponding (i, j) in f becomes 0.

2.3.4. Distance Constraints

We define the distance constraints matrix Ad ∈ RN(N−1)×4N as

Ad =

[
Ax

d O O O
O Ay

d O O

]
,

where Ax
d = Ay

d are defined as

Ax
d = Ay

d =


Ad1
Ad2

...
AdN

,

and Adi is defined as

Adi =
[
O(N−i+1)×(i−1) 1(N−i+1) −I(N−i+1)×(N−i+1)

]
.

Using these matrices, we can write the distance constraints (3) as in (18).

−dx
ij ≤ xi − xj ≤ dx

ij, ∀i < j

−dy
ij ≤ yi − yj ≤ dy

ij, ∀i < j

⇔


xi − xj − dx

ij ≤ 0
yi − yj − dy

ij ≤ 0
−(xi − xj)− dx

ij ≤ 0
−(yi − yj)− dy

ij ≤ 0

, ∀i < j.

⇔


Ax

dx− dx ≤ 0
Ay

dy− dy ≤ 0
−Ax

dx− dx ≤ 0
−Ax

dy− dy ≤ 0

⇔
{

Adr− d ≤ 0
−Adr− d ≤ 0

⇔
[

Ad −I
−Ad −I

][
r
d

]
≤ 0 (18)

If there are redundant constraints that can be eliminated, the corresponding rows are
eliminated. Instead, the corresponding term is represented by the cost vector (17).

2.3.5. Within-Boundary Constraints

We define the within-boundary constraints matrix Awb ∈ R4N×4N and the within-
boundary constraints vector bwb ∈ R4N as follows:

Awb =

[
−I I
I I

]
, bwb =

 02N
W × 1N
H × 1N
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Using these matrices, the within-boundary constraints can be written as in (19).

wi ≤ xi ≤W − wi, i = 1, · · · , N.

hi ≤ yi ≤ H − hi, i = 1, · · · , N.

⇔


−xi + wi ≤ 0, i = 1, · · · , N.
−yi + hi ≤ 0, i = 1, · · · , N.
xi + wi ≤W, i = 1, · · · , N.
yi + hi ≤ H, i = 1, · · · , N.

⇔


−I O I O
O −I O I
I O I O
O I O I




x
y
w
h

 ≤


0N
0N

W × 1N
H × 1N


⇔ Awbr ≤ bwb. (19)

If there are redundant constraints that can be eliminated, the entries of corresponding
department become 0.

2.3.6. Aspect-Ratio Constraints

The aspect-ratio constraints (7) can be written as

liwi − hi ≤ 0, i = 1, · · · , N,

−uiwi + hi ≤ 0, i = 1, · · · , N.

We can express these bounds in a matrix form as

[
O O −L I
O O U I

]
x
y
w
h

 ≤ [02N
02N

]

or simply we can write as in (20)
Aarr ≤ bar (20)

where Aar ∈ R4N×4N , L ∈ RN×N , U ∈ RN×N , bar ∈ R4N are defined as follows:

Aar =

[
O O −L I
O O U I

]
, L = diag(l), U = diag(u), bar = 04N

2.3.7. Area Constraints

The approximated area constraints

−siwi − 4w̄2
imhi ≤ −2siw̄im, i = 1, · · · , N, m = 1 · · ·M.

can be written as follows:

[
O O −S −W̄m

]
x
y
w
h

 ≤ −2× SW̄m × 1N , m = 1, · · · , M

This can be compactly written as follows:

Asr ≤ bs, (21)
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where As ∈ RMN×4N , Asm ∈ RN×4N , bsM ∈ RMN , bsm ∈ RN , S ∈ RN×N , W̄m ∈ RN×N , s ∈
RN , w̄m ∈ RN are defined as follows:

As =

 As1
...

AsM

, Asm = −
[
O O S W̄m

]
, bsM =

 bs1
...

bsM

, bsm = −2× SW̄m × 1N ,

S = diag(s), W̄m = 4diag(w̄m)2, s =
[
s1, · · · , sN

]T , w̄m =
[
w̄1m, · · · , w̄Nm

]T .

2.3.8. Relative-Positioning Constraints

The relative-positioning constraints in a matrix form can be written as

Arpr ≤ brp (22)

where Arp ∈ RN(N−1)×4N , brp ∈ RN(N−1) are defined as follows:

Arp =

[
Axw

rp
Awh

rp

]

(Axw
rp )mn =


1 if (m = (i− 1)/2(2N − i) + (j− i)) ∧ (n = i, i + 2N, j + 2N) ∧ (Hij = 1)
−1 if (m = (i− 1)/2(2N − i) + (j− i)) ∧ (n = j) ∧ (Hij = 1)
0, otherwise

(Ayh
rp)mn =


1 if (m = (i− 1)/2(2N − i) + (j− i)) ∧ (n = i + N, i + 3N, j + 3N) ∧ (Vij = 1)
−1 if (m = (i− 1)/2(2N − i) + (j− i)) ∧ (n = j + N) ∧ (Vij = 1)
0 otherwise

brp = 0M

For a department pair (i, j) with Hij = 1, in mth row corresponding (i, j), the coeffi-
cient of xi, wi, wj becomes 1 and that of xj becomes −1. Similarly, for a department pair
(i, j) with Vij = 1, in mth row corresponding (i, j), the coefficient of yi, hi, hj becomes 1 and
that of yj becomes −1. We can eliminate the row corresponding the redundant inequalities
that can be reduced.

2.3.9. Overall Problem Formulation in Matrix Form

We define the overall constraint matrix A ∈ R(5/2N2+(11/2+M)N)×(4N+N(N−1)) and
constraint vector b ∈ R(5/2N2+(11/2+M)N) as

A =

 Ad −I
−Ad −I

Ar O

, b =

 0
0
br


and Ar ∈ R(1/2N2+(15/2+M)N)×(4N+N(N−1)) and br ∈ R(1/2N2+(15/2+M)N) are defined
as follows:

Ar =


Awb
Aar
As
Arp

, br =


bwb
bar
bs
brp
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Using these matrices and vectors, we can write the overall constraints as

[
Ad −I
−Ad −I

][
r
d

]
≤ 0

Awbr ≤ bwb
Aarr ≤ bar
Asr ≤ bs
Arpr ≤ brp

⇔ Av ≤ b

Thus, we can summarize the overall problem formulation as:

minimize cTv
subject to Av ≤ b

(23)

This problem (23) is the standard Linear Programming (LP), and, thus, can be solved
to optimality.

2.4. Dual Problem and Optimality Conditions for FLPRC

In this section, we derive a dual problem for the FLPRC (23) and outline the optimality
condition. We introduce Lagrangian Multiplier vectors λ = [λ1, · · · λ(5/2N2+(11/2+M)N)]

T ∈
R(5/2N2+(11/2+M)N) for the constraint corresponding to aT

i v ≤ bi, where aT
i is i-th row

vector of the constraints matrix A. We let nλ = dim(λ) = (5/2N2 + (11/2 + M)N) denote
the dimensions of λ. The Lagrangian is then

L(v, λ) =cTv +
nλ

∑
i=1

λi(aT
i v− bi)

=
(

c +
nλ

∑
i=1

λiai

)T
v− λTb

(24)

To obtain the dual function, we minimize L over the primal variables v. We find that the
minimum is −∞, unless c + ∑nλ

i=1 λiai ≤ 0. The dual function is therefore given by

inf L(v, λ)

= inf
{(

c +
nλ

∑
i=1

λiai

)T
v− λTb

}
=

{
−λTb if c + ∑nλ

i=1 λiai ≤ 0
−∞ otherwise

Thus, we can write the dual of the FLPRC as

maximize − λTb

subject to ATλ + c = 0

λ ≥ 0

(25)

The optimality condition, i.e., the Karush–Kuhn–Tucker (KKT) condition, is given as

∇xL(v, λ) = c + ATλ = 0 (26a)

diag(λ)(b− Av) = 0 (26b)

Av− b ≤ 0 (26c)

λ ≥ 0 (26d)
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The first equation (26a) that follows from the gradient of Lagrangian must be zero,
since the optimal point v* minimizes the L(v, λ) over v. The second equation (26b) is the
complementary slickness. The third and the last inequality (26c) and (26d) are the constraints
with respect to the primal and dual feasibility, respectively.

If (and only if) there are (v∗, λ∗) that satisfies the KKT condition (26), then the v∗ is
the optimal point. In other words, solving LP (23) is equivalent to the problem of finding
the point (v∗, λ∗) that satisfies the KKT conditions. As is the case in most other convex
problems, however, it is difficult to directly find such points due to a large number of linear
inequalities to maintain the primal and dual feasibility in the KKT conditions (26).

The interior-point method is a technique used to solve those inequality-constrained
problems by reducing it to a sequence of problems without inequalities. The details are
described in the next section.

3. Custom Interior-Point Method for Solving FLPRC

In this chapter, we describe an efficient method for solving FLPRC (23). The method is
primal-dual interior-point method, which is one of the most powerful techniques for solving
Linear Programming (LP) or other classes of convex optimization programming. We
propose an efficient Newton step computation that exploit the special structure of the
problem. Our algorithm is also applicable to other types of interior-point methods with a
minor change.

3.1. Barrier Subproblem

The main idea of the interior-point method is casting the inequality constraints into
the objective function as

minimize cTv

subject to Av ≤ b
→ minimize cTv +

1
t

φ(v) (27)

where t is the scaling parameter, and φ(v) is defined as

φ(v, λ) =
nλ

∑
i=1

φi(v) (28)

φi(v, λ) =

{
−log(bi − aT

i v)
∞.

(29)

The problem is called a barrier subproblem and the function φ is called a barrier function.
This function is convex and smooth, and, thus, the barrier subproblem becomes convex if
the original problem is convex. The first derivative of this function is

∇φ(v, λ) =
nλ

∑
i=1

ai

bi − aT
i v

(30)

We define z with elements zi = 1/(bi − aT
i v), and we have

∇φ(v, λ) = ATz

The optimality condition for the barrier subproblem is

∇
(
cTv +

1
t

φ(v)
)
= c +

1
t

ATz = 0. (31)

Comparing this with the gradient of Lagrangian (26a),

∇xL(v, λ) = c + ATλ = 0
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we have
λ =

1
t

z =
1

t(b− Av)
. (32)

Substituting this into the complementary slackness (26b) and eliminating linear inequali-
ties (26c) and (26d), we have the modified KKT condition:

c + ATλ = 0

diag(λ)(b− Av) = (1/t)1
(33)

The modified KKT conditions (33) satisfy the following two properties:

• These conditions are far easier to solve than the KKT condition (26)
• As t increases, these condition approaches the KKT condition (26).

Combining these two properties, the FLPRC is solved to optimality. The modified
KKT conditions (33) are solved by the Newton method, which is described in detail in the
next section.

3.2. Newton Method

We rewrite the modified KKT conditions (33) as in (34).

Rt(v, λ) =

[
Rv

t (v, λ)
Rλ

t (v, λ)

]
=

[
c + ATλ

diag(λ)(b− Av)− (1/t)1

]
= 0 (34)

In a primal-dual interior method, we start with some initial point (v0, λ0) and update
them in such a way that (v0, λ0) → (v1, λ1) → · · · → (vk, λk) with Rt(vk, λk) → 0 for
k→ ∞. These updates are made by a Newton method.

At each iteration, primal and dual search directions (∆vk, ∆λk) and step size γk are
computed, then the new point is obtained as (vk+1, λk+1) = (vk + γk∆vk, λk + γk∆λk).
In the Newton method, the search direction is characterized by the solution of the linear
equation

Rt(vk + ∆vk, λk + ∆λk) ≈ Rt(vk, λk) + DRt(vk, λk)[∆vk, ∆λk]
T = 0 (35)

⇔
[

∆vk
∆λk

]
= −D−1

Rt
(vk, λk)Rt(vk, λk) (36)

where

DRt(vk, λk) =

[
∇vRv

t (v, λ) ∇λRv
t (v, λ)

∇vRv
t (λ, λ) ∇λRλ

t (v, λ)

]
=

[
O AT

diag(λ)A diag(b− Av)

]
The first equation (35) follows from the 1st order Taylor approximation. Thus, the

solution of (35) may be a good estimate of the solution of Equation (34). After computing
the Newton step, we then carry out the back-tracking line search to find the step size γk.

3.3. Efficient Newton Step Computation

In this section, we show how to compute the Newton step (∆vk, ∆λk), i.e., solve
Equation (36), efficiently. These equations can be solved using standard methods for
linear equations; however, by exploiting the special structure of the equations, they can
be solved even faster. The method we describe in this section is based on a sequence
of three elimination steps, in which particular blocks of variables are eliminated by the
Schur Complement.
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3.3.1. 1st Elimination Step

Our first step is to eliminate the variables ∆λk from Equation (35). From the second
equation, we obtain

diag(λ)A∆vk + diag(b− Av)∆λk = −Rλ

⇔ ∆λk = −diag(b− Av)−1Rλ − diag(b− Av)−1diag(λ)A∆vk

⇔ ∆λk = −diag(z)Rλ − diag(zλ)A∆vk (37)

The second to third equation is derived using zi = 1/(bi − aT
i v). Substituting this into

the first equation in (35), we have ∆vk as follows:

AT∆λk = Rv

⇔ −ATdiag(z)Rλ − ATdiag(zλ)A∆vk = Rv

⇔ ∆vk = −[ATdiag(zλ)A]−1[Rv + ATdiag(z)Rλ]

⇔ ∆vk = −[ATZLA]−1[Rv + ATZRλ] (38)

where Z = diag(z), L = diag(λ). These Equations (37) and (38) are alternative for the
original Equation (36). Instead of solving the large set of linear Equations (36), we find ∆vk
from the smaller Equation (38), which can be easily solved as described in the next two
sections, and then calculate the ∆λ from Equation (37).

3.3.2. 2nd Elimination Step

We break down the equation and eliminate some of the blocks further to reduce the
size of linear equation. From our definition of v = [rT , dT ]T , and of A, we can rewrite the
Equation (37) as follows:

∆vk =

[
∆rk
∆dk

]
= −[ATZLA]−1[Rv + ATZRλ]

= −
([

AT
d −AT

d AT
r

−I −I O

]D+
d O O

O D−d O
O O Dr

 Ad −I
−Ad −I

Ar O

)−1[
gr
gd

]
(39)

= −
[

AT
d (D+

d + D−d )Ad + AT
r Dr Ar −AT

d (D+
d − D−d )

−(D+
d − D−d )Ad D+

d + D−d

]−1[gr
gd

]
where D+

d , D−d , Dr are defined as follows

D+
d = diag{λ+T

d (Adr− d)−1}
D−d = diag{λ−T

d (−Adr− d)−1}
Dr = diag{λT

r (Arr− br)
−1}

and gr, gd are defined as follows:

gr = 2(AT
d λ+

d − AT
d λ−d + AT

r λr)− (1/t)(AT
d z+T

d − AT
d z−T

d + ArzT
r )

gd = [fT , fT ]T + 2(−λ+
d − λ−d )− (1/t)(−z+d − z−d )

with (λ+
d , λ−d , λr) are Lagrangian multipliers and (z+d , z−d , zr) are inverse vectors for the

constraints (AT
d r− d ≤ 0,−AT

d r− d ≤ 0, Arr− br ≤ 0), respectively.
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(gr, gd) are derived from the right-hand-side as (40)

[Rv + ATZRλ] = [(c + ATλ) + ATZ(Lz−1 − (1/t)1)]

= [c + AT(λ + ZLz−1 − (1/t)z)]

= [c + AT(λ + LZz−1 − (1/t)z)]

= [c + AT(λ + L1− (1/t)z)]

= [c + AT(λ + λ− (1/t)z)]

= [c + AT(2λ− (1/t)z)]

=

 0[
f
f

]+

[
AT

d −AT
d AT

r
−I −I O

](
2

λ+
d

λ−d
λr

− (1/t)

z+d
z−d
zr

)
=

[
gr
gd

]
(40)

From the second equation in (40), we have ∆dk as (41).

−gd = −(D+
d − D−d )Ad∆rk + (D+

d + D−d )∆dk

⇔ ∆dk = −(D+
d + D−d )−1gd + (D+

d + D−d )−1(D+
d − D−d )Ad∆rk (41)

Substituting this into the first equation in (40), we have ∆r as follows:

−gr =
(

AT
d (D+

d + D−d )Ad + AT
r Dr Ar

)
∆rk − AT

d (D+
d − D−d )∆dk

= AT
d (D+

d + D−d )Ad∆rk + AT
r Dr Ar∆rk

+AT
d (D+

d − D−d )(D+
d + D−d )−1gd

−AT
d (D+

d − D−d )(D+
d + D−d )−1(D+

d − D−d )Ad∆rk

The sum of the first and forth terms can be summarized as follows:

AT
d

(
(D+

d + D−d )− (D+
d − D−d )(D+

d + D−d )−1(D+
d − D−d )

)
Adrk

= AT
d (D+

d + D−d )−1
(
(D+

d + D−d )2 − (D+
d − D−d )2

)
Ad∆rk

= AT
d

(
4D+

d D−d (D+
d + D−d )−1

)
Ad∆rk

We define Dd and g as follows:

Dd = 4D+
d D−d (D+

d + D−d )−1

g = gr + AT
d (D+

d − D−d )(D+
d + D−d )−1gd

Using these expressions, we have ∆r as in (42).

(AT
d Dd Ad + AT

r Dr Ar)∆rk = −g (42)

3.3.3. Third Elimination Step

Equation (42) can be further broken down into smaller pieces, and solved efficiently.
We rewrite Equation (42) as in (43)

E∆rk = −g (43)

E = Ed + Er

Ed = AT
d Dd Ad

Er = AT
r Dr Ar
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The term AT
r Dr Ar can be factorized as in Equation (44)

AT
r Dr Ar =

[
AT

wb AT
ar AT

s AT
rp

]
Dwb O O O
O Dar O O
O O Ds O
O O O Drp




Awb
Aar
As
Arp


= AT

wbDwb Awb + AT
arDar Aar + AT

s Ds As + AT
rpDrp Arp

= Ewb + Ear + Es + Erp, (44)

where Dwb, Dar, Ds, Drp are the diagonal matrices with entries with respect to within-
boundary, aspect-ratio, area, and relative-positioning constraints. We decompose ∆rk with
respect to (∆x, ∆y) and (∆w, ∆h) as ∆rk = [∆rT

(xy)k, ∆rT
(wh)k]

T . Factorizing (43) into block el-
ements with respect to (∆x, ∆y) and (∆w, ∆h) vectors, we have the following Equation (45)[

E11 E12
E21 E22

][
∆r(xy)k
∆r(wh)k

]
=

[
gxy
gwh

]
, (45)

We discuss the (m, n) block element Emn, m = 1, 2, n = 1, 2. We define the (m, n) block
element of Ed, Er, Ewb, Ear, Es, Erp as Ed

mn, Er
mn, Ewb

mn, Ear
mn, Es

mn, Erp
mn.

First, Ewb
mn, Ear

mn, Es
mn, m = 1, 2, n = 1, 2 are all diagonal matrices because the block

elements of Awb, Aar, Dwb, Dar are diagonal matrices. As for Erp
mn, the block elements of

Arp is a sparse matrix, and Drp is a diagonal matrix, so Erp
mn, m = 1, 2, n = 1, 2 is a sparse

symmetric matrix. Since Er
mn, m = 1, 2, n = 1, 2 is the sum of these diagonal matrices and a

sparse symmetric matrix, Er
mn, m = 1, 2, n = 1, 2 is a sparse symmetric matrix. On the other

hand, for Ed
mn, since it has only the components related to (x, y), Ed

11 is a dense matrix, and
the other block elements are Ed

12, Ed
21, Ed

22 = O. From the above, by taking the sum of each
block element, E11 is a dense matrix, and the other block elements E12, E21, and E22 are
sparse symmetric matrices.

Speed-up is achieved using this structure. From the first equation in (45), we can
obtain ∆rwh as Equation (46):

E11∆r(xy)k + E12∆r(wh)k = gxy

⇔ ∆r(wh)k = E−1
12 (gxy − E11∆r(xy)k). (46)

Substituting this into the second equation in (45), we have Equation (47) to get ∆rxy:

E21∆r(xy)k + E22(E−1
12 (gxy − E11∆r(xy)k)) = gwh

⇔ (E21 − E22E−1
12 E11)∆r(xy)k = E22E−1

12 gxy − gwh. (47)

Using this elimination, we can compute ∆r(xy)k efficiently, we then compute the
remaining variables ∆r(xy)k, ∆d, ∆λ, which is faster than just solving the larger set of
equations (33) using a standard factorization method.

Note that all of the matrices are non-singular, if there exists an optimal solution of
problem (15).

3.4. Complexity Analysis

In this section, we analyze the calculation complexity. The complexity is measured
by the number of floating operations (flops), and all of the calculation in this section is
based on Boyd and Vandenberghe [44]. Let nv = dim(v) = 4N + N(N − 1) denote the
dimension of v. The size of the coefficient matrix of the original Equation (36) is (nv + nλ).
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Using the standard LU decomposition, the computational complexity of the Equation (36)
is (2/3)(nv + nλ)

3. Expanding this, the amount of calculation is expressed as follows:

(2/3)(nv + nλ)
3 = 343

8 N6 + ( 2793
8 + 147

4 M)N5 + ( 7581
8 + 399

2 M + 21
2 M2)N4

+( 6859
3 + 1083

4 M + 57
2 M2 + M3)N3 (48)

On the other hand, the calculation effort after 1st elimination is performed is 2n2
vnλ +

(2/3)n3
v. In this equation, the complexity is proportional to nλ. Since nλ > nv, the

amount of calculation is greatly reduced. The amount of calculation after 1st elimination is
performed is as follows:

2n2
vnλ + (2/3)n3

v = 17
3 N6 + (47 + 2M)N5 + (129 + 12M)N4 + (117 + 18M)N3 (49)

The calculation effort in the second term can be further reduced by performing 2nd
elimination. Let nr = dim(r) = 4N be the dimensions of r, and let nd = dim(d) = N(N − 1)
denote the dimensions of d. The calculation effort after 1st elimination is performed is
(2/3)n3

v = (2/3)(nr + nd)
3. The calculation effort after 2nd elimination is performed is as

shown in 2n2
r nd + (2/3)n3

r . In this equation, the complexity is proportional to nd. Since
nd > nr in the range of N > 4, the amount of calculation is greatly reduced. The amount of
calculation after 2nd elimination that is performed is as follows:

2n2
vnλ + 2n2

r nd + (2/3)n3
r = 4

5 N6 + ( 79
5 + 2M)N5 + ( 526

5 + 12M)N4 + ( 329
3 + 18M)N3 (50)

The calculation effort in the second term can be further reduced by performing 3rd
elimination. Let nxy = dim(x) + dim(y) = 2N denote the dimensions of x and y, and
nwh = dim(w) + dim(h) = 2N denote the dimensions of w and h. The calculation effort
after 2nd elimination is performed is as shown in (2/3)n3

r = (2/3)(nxy + nwh)
3. The

calculation effort after 3rd elimination is performed is nwh + 2n2
xynwh + (2/3)n3

xy. Here, the
first term is the amount of calculation when sparse factorization is used by utilizing the
fact that the matrix E22 of Equation (47) is a symmetric and sparse matrix. The third term is
a block diagonal matrix. Therefore, it can be decomposed into equations related to x and y
and the calculation effort is (2/3)N3 × 2 = (4/3)N3. The amount of calculation after 3rd
elimination is performed is as follows:

2n2
vnλ + 2n2

r nd + nwh + 2n2
xynwh + (4/3)N3

= 4
5 N6 + ( 79

5 + 2M)N5 + ( 526
5 + 12M)N4 + ( 52

3 + 18M)N3 + 2N
(51)

These complexity is summarized in Table 1. From the above analysis, the problem can
be reduced to solving smaller equations by decomposing the matrix rather than solving
the original matrix.

Table 1. Summary of complexity to solve Newton equation.

Equation Complexity (# of Flops)

Original Newton Equation (36) (2/3)(nv + nλ)
3 343

8 N6 + ( 2793
8 + 147

4 M)N5

+( 7581
8 + 399

2 M + 21
2 M2)N4

+( 6859
3 + 1083

4 M + 57
2 M2 + M3)N3

After 1st elimination (38) 2n2
vnλ + (2/3)n3

v
17
3 N6 + (47 + 2M)N5

+(129 + 12M)N4

+(117 + 18M)N3

After 2nd elimination (42) 2n2
vnλ + 2n2

r nd
4
5 N6 + ( 79

5 + 2M)N5

+(2/3)n3
r +( 526

5 + 12M)N4

+( 329
3 + 18M)N3

After 3rd elimination (47) 2n2
vnλ + 2n2

r nd
4
5 N6 + ( 79

5 + 2M)N5

+nwh + 2n2
xynwh +( 526

5 + 12M)N4

+(4/3)N3 +( 52
3 + 18M)N3 + 2N
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3.5. Starting-Point Using Flexible Bay Structure

In this section, we present a technique to create the starting-point for further speeding-
up the computation. While our proposed primal-dual interior point method has enough
computation effectiveness in itself, there is a potential advantage in utilizing a ‘good’
starting point from a practical perspective. In the context of using interior point method, a
starting point should be strictly feasible. Therefore, we define a ‘good’ starting point as
points that are close to optimality, yet is sufficiently far from the boundary of the feasible solution.
We describe a technique to create such starting point in this section.

Our method is based on a relaxed Flexible-Bay Structure (FBS), in which the depart-
ments are located in parallel bays with the varying width associated the total area of the
departments in that bay, using two part representation: permutation of the departments
and breakpoints for the bays. Figure 1 presents an example illustrating the bay assignment
and the obtained layout from the horizontal and vertical relative-positioning graphs.

Figure 1. Example illustrating the bay assignment (shown at center) and the obtained layout (shown at right) from the
horizontal and vertical relative-positioning graphs (shown at left).

In our proposal, the permutation and breakpoints are specified using the relative-
positioning Hij,Vij, and the shapes of department (wi, hi) and the positioning of depart-
ments (xi, yi) are determined through the relaxed-FBS decoding scheme. However, those
obtained from the FBS procedure is near optimality and feasible, but not strictly feasible in
general, since each pair of adjacent departments has no separation between them. There-
fore, an additional small clearance ρ (say, 10−5) is used to make them strictly feasible. The
outline of starting-point generation using the relaxed-FBS is described as Algorithm 1.

Algorithm 1: Starting-point generation using the relaxed-FBS
givenHij, Vij, ρ

assign department ∀i to the bay k with the horizontal precedence ∑N
i=1Hij = k.

sort department ∀i in the bay ∀k in the order of vertical precedence ∑N
i=1 Vij = k

get bay area Bk as : Bk = ∑i∈k Si
get bay width WB

k as : WB
k = max∀i∈k(H/Bk, wmin

i )

get department widths and heights as wi = min(WB
k , wmax

i ), hi = Si/wi
get department coordinates as wi = min(WB

k , wmax
i ), hi = Si/wi

xi = wi + ρ, ∀i with ∑N
i=1Hij = 0 (root node)

yi = hi + ρ, ∀i with ∑N
i=1 Vij = 0 (root node)

xj = xi + (wi + wj) + ρ, ∀(i, j) withHij = 1
yj = xi + (hi + hj) + ρ, ∀(i, j) with Vij = 1,

where ρ ∈ R is an additional clearance between departments.
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3.6. Overall Algorithm

We summarize the overall algorithm is as Algorithm 2.

Algorithm 2: Overall Algorithm
given t0, A, b, c, ε
find initial points (v0, λ0) by warm-start algorithm.
repeat 1-4:
1. Find primal and dual search directions [∆vT

k , ∆λT
k ]

T by Newton equation.
2. Find step size γk ∈ R by back-tracking
3. Update primal and dual variables [vT

k+1, λT
k+1] := [vT

k , λT
k ] + γk[∆vT

k , ∆λT
k ]

T

4. Update tk → tk+1
until ||Rt(vk, λk)|| ≤ ε

Theoretically, the convergence proof for the primal-dual interior-point algorithm is
given in several books and papers such as Boyd and Vandenberghe (2004) [44]. In practice,
it is numerically difficult to converge when ε is very small. However, the extreme accuracy
is not necessary in the context of the intent of this study. The intent of the research is to
provide the decision-making support tool for the facility designers, in the phase of the block
layout design which the ”macro” flows in the facility is primarily concerned with, while the
detailed layout is often concerned with the ”micro” flows (Tompkins et al. (2010) [1]).

4. Numerical Experiments
4.1. Experimental Overview

In this chapter, we give some numerical examples to illustrate the effectiveness of
the algorithm described before. All of our examples use the data following from FLP
benchmark problem instances, summarized in Liu and Meller (2007) [12]. We generated
the randomized relative positioning constraints for each problem, using the following two
steps: giving the randomly distributed location first, then specifying the Hij,Vij for ∀i, j
with i 6= j as follows:

• if |xi − xj| ≥ |yi − yj|,Hij = 1
• otherwise Vij = 1

We abandoned infeasible combinations.
The FLPRC is a convex problem and the optimal solution can be obtained. Therefore,

the material handling cost is the same for all algorithms. For this reason, we only compared
the results in terms of the computation efficiency. To illustrate the efficiency of our proposed
elimination algorithm, we have compared the average CPU TIME for computing a Newton
step for each problem with two mathematical solvers (CPLEX, NEOS). We then have
compared the average CPU TIME for finding an optimal arrangement under relative
positioning constraints for each problem. The parameter settings and the computer specs
used to code and run are summarized in Table 2.

Table 2. The outline of experimental conditions.

OS Mac OS X (ver. 10.7.3)
Processor 3.4GHz Intel Core i7
Memory 8GB 1333MHz DDR3

Language MATLAB 2011Ra
α 0.5
β 0.5
t0 10−4

ε 10−3

4.2. Experimental Results

The results of the comparison of the average CPU TIME for computing a Newton step
for each problem with or without eliminations are summarized in Table 3. The results of
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the comparison of the average CPU TIME for computing an optimal arrangement under
relative-constraints are summarized in Table 4.

Table 3. Average CPU TIME for computing Newton Steps (µ sec).

Problem with Eliminations without Eliminations

O7 0.1 4.2
O8 0.1 4.5
O9 0.1 4.7
VC10 0.2 4.8
Ba10 0.2 5.3
M15a 0.2 7.8
M15s 0.2 8.7
AB20 0.2 8.9
Tam30 0.2 10.1
SC30 0.2 12.6
SC35 0.2 13.9

Table 4. Average CPU TIME for computing an optimal arrangement under relative-constraints (µ sec).

Problem Proposal CPLEX NEOS

O7 14 14 15
O8 14 13 22
O9 14 22 22
VC10 15 34 59
Ba10 15 37 89
M15a 15 47 94
M15s 15 66 136
AB20 15 77 162
Tam30 16 87 207
SC30 16 102 225
SC35 16 117 320

These examples show that, by exploiting the special structure of the problem, the
proposed method reduces the CPU TIME to compute Newton Steps. In our implementation,
it corresponds to around [0.1–0.2] µ sec. In particular, the proposed method is much faster
for large sized problems. For a FLPRC with N = 35, the proposed method solves the
Newton equations in 0.2 µ sec, approximately 70 times faster than the generic solvers.

The sparsity pattern of the coefficient matrix of the Newton equation for SC35 is shown
in Figure 2. In this example, the dimension of the coefficient matrix is nv + nλ = 1330 +
3955 = 5285 based on the (36) equation. However, due to the removal of some constraints
from redundancy, the size of the matrix is reduced to nv + nλ = 1330 + 3360 = 4690. We
see that the lower right block is a diagonal matrix. Therefore, by using this structure, the
main computational effort is reduced to the effort of solving Equation (38) whose coefficient
matrix size is nv = 1330. Therefore, it is possible to find the solution much more efficiently
than solving the original Equation (36).

The sparsity pattern of the coefficient matrix of Equation (38) is shown in Figure 3. As
is the same with Figure 2, the lower right block is diagonal, so using this structure can be
more efficient than solving Equation (38).

Furthermore, the sparsity pattern of the coefficient matrix of the Equation (42) is as
shown in Figure 4. This matrix is a dense matrix only for m = n = 1, · · · , N component
and m = n = N + 1, · · · , 2N component, and is a sparse matrix for the others. Therefore,
the main computational load is consistent with solving this dense matrix.

Table 5 shows the calculation effort based on the calculation shown in Table 1. The
required flops to compute the Newton steps are reduced a lot by the proposed block
eliminations. This reduction leads to the faster CPU Time for computing Newton steps as
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shown in Table 3, and then leads to the faster CPU Time for finding an optimal solution of
the FLPRC as shown in Table 4.

These results indicate that the proposed method reduction solves the problem faster, by
exploiting the special structure of the matrix. Since the dimension of the final dense matrix
matches the number of departments, no further decomposition is possible. Therefore, there
is little room for further improvement in this problem.

Table 5. Summary of complexity to solve Newton equation for SC35.

Equation Complexity (# of Flops)

Original Newton Equation (36) 68,774,472,667
After 1st elimination (38) 133,541,333
After 2nd elimination (42) 48,477,333
After 3rd elimination (47) 971,903
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0 500 1000 1500 2000 2500 3000 3500 4000 4500 
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Figure 2. Sparsity pattern of the coefficient matrix of the Newton equation for SC35.
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Figure 3. Sparsity pattern of the coefficient matrix after the 1st elimination for SC35.

Figure 4. Sparsity pattern of the coefficient matrix after the 2nd elimination for SC35.

4.3. Discussion

The method proposed in this study is the optimization of department position and
shape given a relative position Hij,Vij. This technique can be used as a subroutine for a
solution method using MIP. This approach also includes Liu and Meller [12] and Bozer and
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Wang [42], which combines MIP and MH. Among these algorithms, FLPRC is solved many
times. Therefore, by using the proposed method, the calculation time can be shortened and
more time can be devoted to the search of the relative positions.

The proposed method can also be used as a subroutine of the layout technique using
FBS, such as [30] because FBS is used to derive the starting point in the proposed method.
FBS has an encoding that divides the building into bays. Although this approach is simple,
it does not necessarily guarantee optimality due to the layout that cannot be expressed
by encoding. On the other hand, in the process of searching, if the proposed method is
applied based on the relative position obtained by FBS, the layout of FBS can be improved,
and there is a possibility that a better layout can be searched. In recent years, many MH
approaches have used FBS and have achieved very good results. Further improvement can
be considered by applying this technique.

5. Conclusions

We have considered the problem of computing an optimal arrangement of department
within a facility, as measured by the minimum material handling cost, subject to the con-
straints for departments with respect to within-boundary, aspect-ratio, non-overlapping,
and relative positioning. We have developed a primal-dual interior-point method that
exploits the special structure of a problem, and is much faster than a standard method. We
have proposed an efficient computation of the Newton step, using three types of block
eliminations. To illustrate the effectiveness of our algorithm, we have given numerical
results, using problem instances from several benchmark problems for FLP with speci-
fied relative-positioning given from randomized based rule. For a typical problem with
35 departments, the proposed algorithm is roughly 10 times faster. Using the proposed
algorithm, we can accelerate a MIP (Mixed-Integer Programming) based algorithm for
solving FLP, which is one of the most efficient methods for a continuous representation
based problem.

Future research includes applying the proposed method to the MIP-based approach
and MH-based approach. When applied to the MIP-based approach, the relaxed problem
in the branch-and-bound method can be solved faster, which may solve a larger problem.
The existing MIP-based approach can only solve problems for up to 12 departments. When
applied to the MH-based approach, the proposed technique can be applied using the
relative positional relationship of the layout obtained by FLEX-BAY or LOGIC. By doing
so, the better layout can be obtained at each iteration, and thus there is possibility to get a
better solution.
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