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Abstract

:

We consider the problem of determinizing and minimizing automata for nested words in practice. For this we compile the nested regular expressions ( NREs ) from the usual XPath benchmark to nested word automata ( NWAs ). The determinization of these  NWAs , however, fails to produce reasonably small automata. In the best case, huge deterministic  NWAs  are produced after few hours, even for relatively small  NREs  of the benchmark. We propose a different approach to the determinization of automata for nested words. For this, we introduce stepwise hedge automata ( SHA s) that generalize naturally on both (stepwise) tree automata and on finite word automata. We then show how to determinize  SHA s, yielding reasonably small deterministic automata for the  NREs  from the XPath benchmark. The size of deterministic  SHA s automata can be reduced further by a novel minimization algorithm for a subclass of  SHA s. In order to understand why the new approach to determinization and minimization works so nicely, we investigate the relationship between  NWAs  and  SHA s further. Clearly, deterministic  SHA s can be compiled to deterministic  NWAs  in linear time, and conversely  NWAs  can be compiled to nondeterministic  SHA s in polynomial time. Therefore, we can use  SHA s as intermediates for determinizing  NWAs , while avoiding the huge size increase with the usual determinization algorithm for  NWAs . Notably, the  NWAs  obtained from the  SHA s perform bottom-up and left-to-right computations only, but no top-down computations. This  NWA  behavior can be distinguished syntactically by the (weak) single-entry property, suggesting a close relationship between  SHA s and single-entry  NWAs . In particular, it turns out that the usual determinization algorithm for  NWAs  behaves well for single-entry  NWAs , while it quickly explodes without the single-entry property. Furthermore, it is known that the class of deterministic multi-module single-entry  NWAs  enjoys unique minimization. The subclass of deterministic  SHA s to which our novel minimization algorithm applies is different though, in that we do not impose multiple modules. As further optimizations for reducing the sizes of the constructed  SHA s, we propose schema-based cleaning and symbolic representations based on apply-else rules that can be maintained by determinization. We implemented the optimizations and report the experimental results for the automata constructed for the XPathMark benchmark.
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1. Introduction


Nested words are hierarchical structures that are omnipresent in computer science. They were used to represent sequences of data trees, like XML or JSON documents, and to analyze the call structure of recursive programs. The idea of nested words is to generalize on both words and trees, resulting in sequences of unranked trees that are also known as hedges. Otherwise, nested words can be obtained by enriching Dyck words with internal letters, besides opening and closing parentheses. Furthermore, nested words are the elements of the least set containing internal letters from a given alphabet, triples consisting of an opening parenthesis, a nested word, and a closing parenthesis, and all sequences of nested words. Last but not least, nested words can be seen as words over an alphabet with internal letters, opening parentheses, and closing parentheses, under the conditions that the parenthesis are well nested, so that every opening parenthesis is properly closed and every closing parenthesis properly opened.



From the viewpoint of formal language theory, a natural question is how to lift the notions of finite automata and regular expressions, from words and trees to nested words, while preserving their well-known relationships. Nested word automata ( NWAs ) were heavily studied since the 1980s  [1,2,3,4], under the name input-driven automata. They are the same as visibly pushdown automata [5], pushdown forest automata [6], and streaming tree automata [7].  NWAs  can recognize the same languages of unranked trees as hedge automata [8], a generalization of tree automata for ranked trees [9].  NWAs  are often defined as pushdown automata with visible stacks, meaning that exactly one symbol is pushed when reading an opening parenthesis, and exactly one symbol is popped when reading a closing parenthesis, while the stack is not used otherwise. Their main advantage is a powerful notion of determinism, generalizing both over bottom-up and top-down determinism of tree automata for ranked trees [2,3]. We note that general pushdown automata do not permit determinization in contrast.



Regular expressions for nested words were proposed more recently by Hosoya and Pierce [10] under the name of regular expression types. In the present article, we will call them nested regular expressions ( NREs ) instead. Independently, more complex notions of nested regular expressions were introduced  [11,12] in order to deal with generalizations of nested words with dangling opening and closing parentheses, which are not of interest to us. It was already claimed in [10], that our simpler notion of  NREs  has the same expressiveness as hedge automata [8,9], which in turn have the same expressiveness as  NWAs   [3]. However, the question under which conditions  NREs  can be compiled to small deterministic  NWAs  has not been studied. For classes of  NREs  for which deterministic  NWAs  can be computed in polynomial time, we can decide language inclusion or equivalence in polynomial time too. For other classes, these problems may not be feasible since language inclusion for nondeterministic  NWAs  is EXP-complete.



Our concrete interest in the universality of deterministic  NWAs  is motivated by XML stream processing: we want to compute the certain answers of a navigational XPath query on an XML stream  [13,14], i.e., those elements that are selected in all possible futures of the stream. Whether an answer is certain is computationally hard, even for tiny syntactic fragments of navigational XPath  [14,15], but can be done in polynomial time for queries defined by deterministic  NWAs   [16]. A natural question is, therefore, whether it is possible to compile navigational XPath queries as in the usual benchmark [17] to deterministic  NWAs  of reasonable size. Unfortunately, the existing compilers fail to do so [18], as they are based on  NWA  determinization for dealing with disjunction, negation, and recursive steps. Thereby, they produce huge deterministic automata even for very simple navigational XPath queries from the benchmark, or do not terminate after some hours.



In this article, we consider  NREs  for defining queries on nested words. For benchmarking with realistic example, we consider the navigational XPath queries in the XPathMark benchmark with only forwards axis, that we compiled to  NREs  of the same size up to a constant factor. The question is then whether these  NREs  can be compiled to reasonably small deterministic  NWAs .



As a first approach, we distinguish a subclass of “deterministic”  NREs  that can be compiled in polynomial time to deterministic  NWAs  by generalizing on Glushkov’s construction of deterministic finite-state automata (DFAs) from “deterministic” regular expressions  [19,20]. However, the  NREs  obtained by compilation from navigational XPath queries are rarely deterministic, so neither are the  NWAs  compiled from them. Moreover, as we cannot apply  NWA  determinization to them in practice as argued above, this first approach has a much too low coverage to reach the objective. Therefore, we will report it only at the end in Section 9.



For our second approach, we propose a novel variant of automata for nested words that we call stepwise hedge automata ( SHA s). Even though motivated by the wish to create deterministic automata for the  NREs  of our benchmark, they are of general interest: they generalize naturally on both (stepwise) tree automata [21] and on finite word automata. In contrast to stepwise tree automata,  SHA s can not only recognize unranked trees, but also sequences thereof, i.e., hedges or nested words. Furthermore,  SHA s can be determinized in a bottom-up and left-to-right manner by combining in a natural manner the determinization procedures for tree and word automata.



By adapting existing compilers for stepwise tree automata  [21],  SHA s can be compiled to  NWAs  with the same language in linear time while preserving determinism. Conversely,  NWAs  can be compiled to  SHA s in polynomial time, but at the cost of introducing nondeterminism. By compiling  NWAs  to  SHA s, determinizing the  SHA , and compiling the obtained deterministic  SHA  back to a deterministic  NWA , we can determinize  NWAs  by determinizing the corresponding  SHA s. This alternative determinization algorithm for  NWAs  is different from the usual determinization algorithm for  NWAs   [2,3,18]. Indeed, it yields reasonably small deterministic  NWAs  for the  NREs  from the XPath benchmark.



Yet another alternative algorithm for determinizing  NWAs  can be obtained by compiling  NWAs  to  SHA s and back, and then determinizing the  NWAs  obtained in this manner. When applied to back-and-forth converted  NWAs , the usual  NWA  determinization algorithm turns out to be well behaved: it produces deterministic  NWAs  of reasonable size for all our benchmark  NREs . This might be surprising, given that the same determinization algorithm behaved so poorly for the non-converted  NWAs  that were obtained from the benchmark  NREs   directly.



We contribute two further solutions for producing deterministic  NWAs  for our benchmark  NREs . These are both based on a direct compiler from  NREs  to  SHA s. We can then determinize these  SHA s, followed by compilation to deterministic  NWAs . Otherwise, we can first compile the  SHA s to  NWAs  and then determinize these NWAs.



The next question is why the new determinization algorithms for  NWAs  that use  SHA s as intermediates work so nicely. In order to understand this, we need to investigate the relationship between  NWAs  and  SHA s more deeply. Clearly, the  NWAs  obtained via  SHA s do all their work in a bottom-up and left-to-right manner, and nothing when moving top-down. We can characterize the subclass of  NWAs  with this restricted behavior syntactically by the (weak) single-entry property: it requires that all opening rules of the  NWA  go into into the same target state while popping the sources state onto the stack. Note that our single-entry property is weaker than the (multi-module) single-entry property studied previously [22,23,24], which in addition requires that the automaton can be split into at least 2 modules, one for the top level and one for the nested level. The  NWAs  obtained by compilation from  SHA s all have the (weak) single-entry property (but not necessarily multiple modules). Therefore, when compiling  NWAs  to  SHA s and back, the resulting  NWAs  also have the (weak) single-entry property. It seems that the usual determinization algorithm from  NWAs  is well-behaved when applied to  NWAs  with the (weak) single-entry property. The relationship between  SHA s and (weak) single-entry  NWAs  seems sufficiently close, so that their determinization algorithms seem to operate in somehow similar manners.



It is known that the subclass of deterministic multi-module single-entry  NWAs  (also called call-driven automata) enjoys unique minimization  [22,23]. The separation of the module for the top level from the module for the nested level can be obtained w.l.o.g., by building a product with the  NWA  with two hedge states that distinguishes the two levels. In our application, minimization could thus be used to reduce the size of the deterministic  NWAs  produced by our four algorithms for converting  NREs , with the hope to eventually obtain a unique outcome after minimization. However, as we will use some symbolic representations for sets of rules, the uniqueness will hold only for the non-symbolic counterpart. In any case, the number of states of the deterministic minimal  NWAs  obtained for the same  NRE  could be expected to become unique.



Motivated by our application, we found it more relevant to minimize deterministic  SHA s rather than deterministic (weak) single-entry  NWAs  (despite of their close correspondence). As for the class of deterministic (weak) single-entry  NWAs , a restriction is needed for the class of deterministic  SHA s to obtain unique minimization. We could have required the existence of multiple modules as for multi-module single-entry  NWAs . Instead, we restrict ourselves to deterministic  SHA s for which the initial states for trees and hedges coincide. We then show that minimization for such  SHA s can be reduced to the minimization of tree automata up to a novel encoding of hedges to binary trees.



We implemented all four algorithms for compiling our benchmark  NREs  to deterministic  NWAs  and report the experimental results. We have also implemented the novel minimization algorithm for  SHA s with equal tree and hedge initial states, and used it in our experiments. We propose two further optimization methods for reducing the sizes of the constructed automata.



First, we introduce schema-based cleaning both for  SHA s and  NWAs . In our application, the schema expresses the Xml data model, stating that hedges must encode valid Xml documents. More generally, an automaton A can be cleaned relative to an automaton S for the schema, if the language of interest is the intersection   L ( A ) ∩ L ( S )   rather than   L ( A )   itself. The idea of schema-based cleaning is to keep only those transition rules of A that are used to recognize some hedge of   L ( S )  . These transition rules can be computed from the product of A and S. Note that schema-based cleaning may change the language of the automaton. Only the intersection   L ( A ) ∩ L ( S )   is preserved, not necessarily   L ( A )  .



Second, we propose a symbolic representations for  SHA s based on apply-else rules. They help to represent more compactly a large number of apply rules produced by the determinization of  SHA s. Before compiling  SHA s to  NWAs , however, we need to eliminate the apply-else rules. This is because we have not developed analogous symbolic representations for  NWAs  so far. A second limitation is that we have not implemented any minimization algorithm for  NWAs  at the time being.



The main improvement of this journal article compared with the conference version [25] is the addition of the minimization algorithm for the subclass of  SHA s with equal tree and hedge initial states. Furthermore, we added the idea of schema-based cleaning and the symbolic representations for  SHA s by apply-else rules. The experimental results were enhanced with minimization, symbolic representations of rules, and schema-based cleaning. All the nested regular expressions generated for the XPathMark benchmark queries that we consider, as well as their corresponding automata—when we could produce them—can be found at http://researchers.lille.inria.fr/niehren/complementary-material (accessed on 1 February 2021).



Related Work. In the present article, we restrict ourselves to nested words over signatures with a single opening parenthesis, a single closing parenthesis, and possibly many internal letters   a , b  . This permits us to simplify the presentation of nested regular expressions, the notions of  NWAs  and  SHA s, their forth and back compilers, as well as the determinization algorithms. Note that any multi-module  NWA  for such signatures must have exactly 2 modules. From an application perspective, multiple parentheses can be encoded by using internal letters, that is a named opening parenthesis   〈 a   by the word   a · 〈   and a named closing parenthesis    〉  b   by the word   b · 〉  . When encoding XML documents as nested words, such some encoding is needed anyway in order to deal with the complex information in XML tags, and also to provide symbolic representations with else rules that are able to deal with infinite signatures.   



For the minimization of deterministic  NWAs , general signatures with multiple parentheses raise additional problems. Chervet and Walukiewicz  [23] solved such problems by reducing the minimization for expanded CDAs to the minimization of CDAs. Gauwin, Muscholl, and Raskin [24] showed that the minimization for deterministic  NWAs  is NP-hard in the case with general signatures. Their approach is based on a reduction from the problem of minimal immersion for sequences of Dfas, for which they construct  NWAs  with an unbounded number of opening parenthesis and an unbounded number of entry states. Weak single-entry  NWAs  in our setting do not permit this. Neither do  NWAs  over fixed general signatures with a finite number of opening parenthesis.



Navigational XPath queries on XML documents can be formalized in the language CoreXPath [26], or more generally by nested regular path queries [27] on data trees. Nested regular path queries were introduced earlier under the name of the propositional dynamic logic (PDL) in the 1970s  [28], where they are applied to labeled graphs that generalize on data trees.



As certain query answering for XPath was considered difficult, the currently existing approaches to XPath query evaluation on XML streams [13,18] either approximate certain query answers based on nondeterministic machines or restrict the queries so that answer certainty can be decided without latency [15,29]. This also holds for recent streaming algorithms on words without nesting in the context of complex event processing [30].




2. Nested Words


Nested words are words with parentheses that are well nested. They can be identified with hedges, that is, sequences of internal symbols and unranked trees.



Nested words are constructed with opening and closing parentheses, respectively, 〈 and 〉. An unranked alphabet  Σ  is a possibly infinite set of so-called “internal” symbols, that does not contain the two parentheses. The set of nested words over  Σ  is denoted   N Σ   and is defined by the following abstract syntax:


     h ,  h ′  ∈  N Σ      : : =      ε  |  a  |   〈 h 〉   |  h  ·  h ′    where  a ∈ Σ     








The empty nested word is denoted by  ε  and assumed to be the neutral element of the composition operator   ε · h = h = h · ε  , which furthermore is assumed to be associative, i.e.,    h 1  ·  (  h 2  ·  h 3  )  =  (  h 1  ·  h 2  )  ·  h 3   .



Nested words can be identified with hedges, i.e., words of trees and internal symbols. Seen as a graph, the inner nodes are labeled by the tree constructor   〈 〉   and the leaves by symbols in  Σ  or the tree constructor. For instance,   〈 a · 〈 b 〉 · ε 〉 · c · 〈 d · 〈 ε 〉 〉   corresponds to the hedge in Figure 1. A nested word of type tree has the form   〈 h 〉  .



Variants. Our notion of nested words accepts only well-nested words without dangling opening or closing parentheses in contrast to others  [3,5]. This will lead to simpler notion of regular expressions, avoiding the more complex operators as with visibly rational expressions  [12,31]. A less important difference is that we do not support labeled parentheses.



Labeled unranked trees. Labeled parentheses can be simulated by using internal letters. For instance, the labeled tree   a ( b ( ) , c ( ) )   can be represented by the nested word of type tree   〈 a · 〈 b 〉 · 〈 c 〉 〉  . In this way, the labeled tree   a ( )   is represented by the nested word   〈 a 〉  , which is of type tree (while the internal letter a alone is not). Unranked sequences of subtrees, often called hedges and sometimes forests, can be composed by using the sequence operator.   



XML Documents. Our notion of nested words is sufficiently powerful to express general XML documents. An example of an XML document is given in Figure 2 and the representing nested word in Figure 3.



We use the names of XML elements as labels of the nested word, as well as the letters of UTF8 for the string data values. Further labels such as doc and elem are added to express the types of the XML data model document and element, respectively.



When it comes to querying for nodes in Xml documents, we will be interested in nested words encoding Xml documents, in which a unique node is marked. We will use the label x to mark the selected node and the label   ¬ x   for all others. When marking the date in the XML document of Figure 2, we obtain the nested word in Figure 4.




3. Nested Regular Expressions


We present nested regular expressions ( NREs ), which were introduced under the name regular expression types in the context of XDuce [10] up to minor details. Note that similar nested regular expressions for ranked trees are folklore in the context of tree automata [32].



3.1. Syntax and Semantics


Let the alphabet  Σ  be a set. An  NRE  over  Σ  is a term describing a language of nested words. It has the following abstract syntax where   a ∈ Σ  :


  E ,  E ′  : : = ε ∣ a ∣ _ ∣ ∅ ∣ E ·  E ′  ∣ E +  E ′  ∣ E &  E ′  ∣  E *  ∣  E ¯  ∣  〈 E 〉  ∣ μ a . E  








The   μ a . E   expressions are the same as in  μ -calculus [33], except that we restrict them such that all occurrences of a in E are nested below parentheses. Otherwise, nonregular languages could be defined such as with   μ a .  ( b · a · c + ε )   whose language would be   {  b n  ·  c n  ∣ n ∈ N }  . We also forbid intersections and complements in expression   μ a . E   on all paths between the   μ a  -operator and the occurrences of a in E that are bound by this operator. The expressions   μ a . E   allow for vertical recursion, while the expressions with the Kleene star   E *   support horizontal recursion.



Our syntax allows for conjunctions   E &  E ′    and negations   E ¯  , which are well known to not add expressiveness if  Σ  is finite. They are still relevant from the viewpoints of modeling, and for the treatment of infinite signatures. This comes at the price of increasing the complexity, as for the well-known case of words [34].



For infinite signatures, we can define for any finite subset   Σ ′   of labels the language of single-letter words   Σ \  Σ ′    by some  NRE . This can be seen as follows. If    Σ ′  = ∅  , then the expression _ does the job: it matches exactly the set of all labels in  Σ . Moreover, if   Σ ′   is nonempty then we can use negation. For instance, if    Σ ′  =  { a , b }    then the expression     a + b  ¯  & _   describes the language   Σ \  Σ ′   .



The sets of free and bound letters   fn ( E )   and   bn ( E )   are defined as usual. The only binder   μ a . E   binds the symbol a with scope E. Note that   f n ( _ ) = ∅  .



There are three differences with respect to the regular expression types from  [10]. First, our  NREs  treat labels as internal symbols instead of labels of parentheses. Second, they provide recursion through the  μ -operator instead of using recursive equation systems. Third, conjunctions and general negations are not considered there.



Any  NRE  E describes a language   L ( E )   of nested words that we define by induction on the structure of E as follows:   N Σ   is the set of nested words over  Σ , as defined in Section 2.


     L ( ε ) = { ε }  L ( a ) = { a }     L ( _ ) = Σ       L  ( E ·  E ′  )  = L  ( E )  · L  (  E ′  )      L  (  E ¯  )  =  N Σ  \ L  ( E )        L  ( E +  E ′  )  = L  ( E )  ∪ L  (  E ′  )      L  ( E &  E ′  )  = L  ( E )  ∩ L  (  E ′  )        L ( 〈 E 〉 ) = { 〈 h 〉 ∣ h ∈ L ( E ) }     L  ( μ a . E )  =  ∪  n ≥ 0   L  (  μ n  a . E )        L  (  E *  )  = L   ( E )  *      L ( ∅ ) = ∅     











For all expressions—  E ,  E 1   , and   E 2  , the notation   E [  E 1  /  E 2  ]   stands for the expression E where all the occurrences of   E 1   have been replaced by   E 2  . The semantics of a  μ -operator is then defined using the shortcuts    μ 0  a . E = E  [ a / ∅ ]    and    μ n  a . E = E  [ a /  μ  n − 1   a . E ]    for all   n ≥ 1  . In particular   L ( μ a . _ ) = L ( _ ) = Σ  , so that   a ∈ L ( μ a . _ )  . The semantics of the complement expression   L (  E ¯  )   is the complement of   L ( E )   in the set of all nested words, that is    N Σ  \ L  ( E )   .




3.2. XPath  Example


We now show how to express navigational XPath queries by  NREs  that are restricted to forward axis. The idea is to adapt the spirit of a generate-and-test algorithm for query answering. The generation produces a nested word from Xml documents by guessing a single node and marking it by x. This node is a candidate for a query answer that is to be tested. The test is done by a  NRE .



For expressing XPath queries with child and descendant-or-self axes we will use the following  NREs  where   a ∉ fn ( E )  :


    T    = df     μ a .    (  〈 a 〉  + _ )  *        c h ( E )     = df     T · 〈 E 〉 · T       c  h *   ( E )      = df     μ a .  ( E + c h ( a ) )       c  h +   ( E )      = df     μ a .  ( c h ( E ) + c h ( a ) )     








For instance, consider the XPath query A5 from the XPathMark benchmark  [17]:



	/site/closed_auctions/closed_auction[descendant::keyword]/date








Applied to the above Xml document, it selects all date children of closed_auctions nodes that contain at least one keyword descendant. Query A5 can be compiled to the following  NRE , which will accept the nested word in Figure 4 in particular:







	
	  〈 d o c · _ · 〈 e l e m · s i t e · _ · c h ( e l e m · c l o s e d _ a u c t i o n s · _ · c h (  



	
	     e l e m · c l o s e d _ a u c t i o n · _ · ( c  h +   ( e l e m · k e y w o r d · _ · T )   &  c h  ( e l e m · d a t e · x · T )  ) ) ) 〉 〉  








The only label that the expression _ may match on a document that is properly annotated with the variable x will be the letter   ¬ x ∈ Σ  . The label x is annotated to the marked node, which is tested for being selected by the query. The label   ¬ x   is annotated to all nodes except a unique x-marked node.



Note also that the  μ -operator of the   c  h +   ( … )   -expression expresses the recursion of the descendant axis. Furthermore, the conjunction permits us to connect the main path of A5 with its only filter.




3.3. XPath Benchmark


For testing  NREs , we rely on the usual XPathMark benchmark  [17]. We restrict ourselves to navigational path queries with forward axis: child, descendant, and following-sibling. We notice that the following axis is excluded in contrast to following-sibling, as following is not strictly forwards. We can also admit path composition and filters with conjunction, disjunction, and negation.



The XPath queries of the benchmark satisfying these restrictions are the queries A1, …, A8 and B3 given in Figure 5. We developed a more general compiler from navigational forward XPath queries to  NREs , which yields the  NREs  in Figure A1 of the Appendix B for the benchmark XPath queries. The  NREs  for A1–A3 do have neither conjunctions nor negations, while the queries A4–A8 contain filters, which are mapped to conjunctions in  NREs . The compiler uses the  μ -operator to capture the recursion of descendant axis as in A2, A3, and A5. Furthermore, nondeterminism is introduced by disjunctions in filters as in A7 and A8. Conjunction in filters appears in A6 which is mapped to conjunctions in  NREs  too. A detailed description of this compiler is not in the scope of the present article though.





4. Nested Word Automata


Nested word automata ( NWAs ) are pushdown automata reading nested words, whose stacks are visible: they push a single stack symbol when reading an opening parenthesis, pop a single stack symbol when reading a closing parenthesis, and do not alter or inspect the stack otherwise.



Definition 1.

An  NWA  is a tuple   A = (  Q h  ,  Q t  , Σ , Γ , Δ , I , F )   consisting of a possibly infinite set Σ of internal symbols; finite sets   Q h   and   Q t   of states of type hedge and tree, respectively; sets of initial and final states   I , F ⊆  Q h   ; a finite set Γ of stack symbols; and a finite set Δ of transition rules of the forms:


      hedge  rules      a Δ  ,  _ Δ  ,  ε Δ  ⊆  Q h  ×  Q h      where  a ∈ Σ       opening  rules      〈 γ Δ  ⊆  Q h  ×  Q h     where  γ ∈ Γ     tree  rules   T   Δ  ⊆  Q h  ×  Q t       closing  rules    〉 γ Δ  ⊆  Q t  ×  Q h       













Our  NWAs  are symbolic, in that they come with else rules, i.e., elements of    ( q ,  q ′  )  ∈  _ Δ    that we will denote by   q  → _   q ′   , for dealing with large or infinite alphabets.



An example for an  NWA  is given in a graphical syntax in Figure 6. Tree states are drawn in circles that are filled in light gray  [image: Algorithms 14 00068 i001], while hedge states are in unfilled circles    q   . Initial states are drawn as   →   q    and final states as  [image: Algorithms 14 00068 i002]. Hedge rules that have the form    (  q 1  ,  q 2  )  ∈  o Δ    where   o ∈ Σ ∪ { _ , ε }   are denoted by    q 1   → o   q 2   , while any tree rule    (  q 1  ,  q 2  )  ∈  T Δ    is denoted    q 1  −  →  q 2   . Opening rules    (  q 1  ,  q 2  )    ∈ 〈  γ Δ    are represented as    q 1    −  🠆   ↓ γ     q 2    and closing rules    (  q 1  ,  q 2  )    ∈ 〉  γ Δ    as    q 1    −  🠆   ↑ γ     q 2   .



Our notion of  NWAs  supports factorization in the spirit of the work in [35]. It is obtained by distinguishing two types of states,   q ∈  Q h    and   p ∈  Q t   , and adding explicit type coercion rules   q −  → p  . Semantically, both kinds of states could be merged when replacing the type coercion rules by the epsilon rule   q  → ε  p  , but at the cost of introducing additional nondeterminism. This may lead to quadratically larger deterministic automata, as we will illustrate at the  NWA  in Figure 20.



The language of nested words between two states    q 1  ,  q 2  ∈  Q h    is defined as the least language such that


      L   q 1  ,  q 2     ( Δ )     =     { ε ∣ if   q 1  =  q 2   or   q 1   → ε   q 2  ∈ Δ }  ∪   ⋃   q 3  ∈  Q h      L   q 1  ,  q 3     ( Δ )  ·  L   q 3  ,  q 2     ( Δ )        ∪    { a ∣ if   q 1   → a   q 2  ∈ Δ  or   (  q 1   → _   q 2  ∈ Δ  and  ¬ ∃  q 2 ′  .   q 1   → a   q 2 ′  ∈ Δ )  }       ∪    {  〈 h 〉  ∣ ∃  q 1 ′  ,  q 2 ′  ∈  Q h  . ∃  q 3  ∈  Q t  . ∃ γ ∈ Γ .   q 1    →    ↓ γ    q 1 ′  , h ∈  L   q 1 ′  ,  q 2 ′     ( Δ )  ,            q 2 ′  −  →  q 3  ∈ Δ  and   q 3    −  🠆   ↑ γ     q 2   ∈ Δ } .      











The language of the  NWA  is then   L  ( A )  =   ⋃   q 1  ∈ I ,  q 2  ∈ F     L   q 1  ,  q 2     ( Δ )   .



4.1. Determinization of  NWAs 


Determinization for  NWAs  was first studied by von Braunmühl and Verbeek [2] in the 1980s, where  NWAs  are named input-driven pushdown automata. We notice that the determinization algorithm was published only in the journal version of this paper, but not in the conference version. Later on, the same algorithm was rediscovered in the context of visibly pushdown automata and republished for nested word automata.



Definition 2.

An  NWA  A is called deterministic or equivalently a  dNWA  if




	
I contains at most one element;



	
there is no epsilon rule, i.e.,    ε Δ  = ∅  ,



	
  a Δ   and   _ Δ   are partial functions from   Q h   to   Q h   for all   a ∈ Σ  , and   T Δ   is a partial function from   Q h   to   Q t  ;



	
for all   q ∈  Q h    and   γ ∈ Γ   there exists a most one    q ′  ∈  Q h    such that    q ′    ∈ 〈  γ Δ   ; and



	
   〉  γ Δ   is a partial function from   Q t   to   Q h   for all   γ ∈ Γ  .










Proposition 1

(von Braunmühl and Verbeek [2]). A  NWA  with n states can be determinized in time   O (  2  n 2   )  .





Many of our results are based on the determinization algorithm going back to von Braunmühl and Verbeek. For self-containedness, we recall the version of this algorithm that we will use in the Appendix A. For illustrations, the determinization of the  NWA  in Figure 6 is also presented here too, see Figure A1. It has size 271 while the nondeterministic  NWA  has size 39 (12 states + 2 letters + 3 stack symbols + 22 rules). The blow-up is even worse in general as our experimental results will show and as noticed earlier by [18].




4.2. Multi-Module  NWAs 


Multi-module  NWAs  will play a prominent role for our  NWA  constructions and are relevant for minimization [23]. For signatures with a single opening parenthesis, each multi-module  NWAs  has exactly two modules, one for the top level and one for the nested level.



We can define multi-module  NWAs  based on the natural notion of homomorphisms for  NWAs . A homomorphism from an  NWA  A to an  NWA    A ′   with the same signature is a triple of functions   (  α h  :  Q h  →  Q h ′  ,  α t  :  Q t  →  Q t ′  , β : Γ →  Γ ′  )   that maps all concepts of A to the corresponding concepts of   A ′  . These concepts are hedge initial states, final states, opening, closing, internal, and tree transitions. We do not enforce the preservation of epsilon rules by homomorphisms.



Definition 3.

A multi-module  NWA  A is an  NWA  for which there exists a homomorphism from A to the  NWA   T  in Figure 7.





The  NWA   T  evaluates all top level positions of a nested word to state 0: all those positions that are not between parentheses. All nested positions are evaluated to state 1. The homomorphism of a multi-module  NWA  A to  T  thus partitions the states of A between those that can be assigned to top level positions, and the others that can be assigned to nested positions.




4.3. Compilation of  NREs  to  NWAs 


We next discuss a compiler from  NREs  E to  NWAs    nwa ( E )  . This compiler extends on the McNaughton–Yamada–Thompson algorithm [36] for regular expressions, which introduces epsilon edges for constructing the automata of composition   E ·  E ′   .



Theorem 1.

For any  NRE  E, we can construct an  NWA  A such that   L ( A ) = L ( E )  . If E contains neither conjunctions nor negations, then the construction is in time   O ( | E | )  .





Proof sketch.

Conjunctions   E &  E ′    are compiled to products of automata, so repeated conjunctions may lead to an exponential blow up. Negations   E ¯   are computed by complementing automata based on determinization. Each complementation may lead to an exponential blow-up, so when this is repeated, the construction may become non-elementary.



For expressions without conjunction and negation, no such blow-up may arise. As stated by the theorem, we have to show that expressions can be compiled in linear time.




	Case   E =  E ′  ·  E  ″    :

	
We use the McNaughton–Yamada–Thompson algorithm for composing the  NWAs  of   nwa (  E ′  )   and   nwa (  E  ″   )  .




	Case   E = 〈  E ′  〉  :

	
Let   Q h ′  ,   Q t ′  , and   Γ ′   be, respectively, the set of hedge states, tree states, and stack symbols of   nwa (  E ′  )  . We consider new hedge states   q i   and   q f   that are not in   Q h ′  , a new tree state p not in   Q t ′   and a new stack symbol  γ  not in   Γ ′  . Then,   nwa ( E )   is constructed by adding to   nwa (  E ′  )   opening rules    q i    −  🠆   ↓ γ    q   for all the initial states q of   nwa (  E ′  )  , tree rules    q ′  −  → p   for all the final states   q ′   of   nwa (  E ′  )   and a closing rule   p   −  🠆   ↑ γ     q f   . Furthermore, we set   q i   as the only initial state of   nwa ( E )  , and   q f   as its sole final state.




	Case   E = μ a .  E ′   :

	
Special care has to be given to repeat expression   μ a . E  . First of all, the naive compilation approach for these expression turns out to be wrong. Second, fixing the problem in the simplest possible manner does not lead to a linear time algorithm.



Note that we can assume w.l.o.g. that a occurs at most once in E by using the golden lemma of the  μ  calculus [37], stating for all names    a 1  , … ,  a n    and expressions   E  ″    in which    a 1  , … ,  a n    can appear free that   μ  a 1  . … . μ  a n  .   E  ″   ≡ μ a .  E  ″    [  a 1  / a , … ,  a n  / a ]   . Our construction guarantees that all transitions of the form   q  → a   q ′    in   nwa ( E )   will start with the same state q. The wrong naive construction would remove the transitions   q  → a   q ′    from   nwa ( E )   and add  ε -rules from q to all the initial states of   nwa ( E )  , and from all final states of   nwa ( E )   to   q ′  . Unfortunately, the construction is not correct. For illustration, we consider the  NRE    E = μ a . 〈  a *  〉  . The reader should be warned that constructing an  NWA  for E is less trivial than it might seem at first sight. One has to start from the  NWA  for   〈  a *  〉   which is given in Figure 8. Simply adding epsilon edges to capture the operator   μ a   will not work though. It will lead to the wrong automaton in Figure 9. This automaton will wrongly accept the hedge   〈 〉 〈 〉  , as this hedge does not belong to   L ( E )  .



If the  NWA  for E is multi-module, then the naive construction of compiling   μ a . E   can be made correct. Therefore, the simplest fix is to make the  NWA  multi-moduled, before applying the naive construction. This can be achieved by typing the states of the automaton, by states of the  NWA   T  in Figure 7. The added types yield the homomorphism of the constructed automaton to  T .



The naive algorithm is then adapted as follows. Let  P  be the multi-module  NWA  obtained from the product of   nwa ( E )   and  T . Note that we keep only the accessible top level states (type 0), but all nested states (type 1). In our example, this yields the  NWA  in Figure 10. We then remove transition    ( q , 1 )   → a   (  q ′  , 1 )    and add  ε -rules from state   ( q , 1 )   to all states in   I × { 1 }  , and from all states in   F × { 1 }   to   (  q ′  , 2 )  , where I and F are, respectively, the set of initial and final states of   nwa ( E )  . Then,  P  recognizes   L ( μ a . E )  . The result obtained in the example is shown in Figure 11.



The algorithm described so far makes the  NWA  multi-moduled before compiling a  μ -operator. For this, two copies of all states are introduced. This, however, could lead to an exponential construction if multiple  μ -operators are nested. This problem can be avoided by preserving multi-moduledness as an invariant. Whenever a new state is created, it is created twice: once for the top level and once for the nested level. This information is maintained by typing the states, so that no further copies of the same state are produced later on.









We omit the correctness proof of this construction. □






4.4. Experimental Results Starting with the  NWA   Compiler


In the first two column of Figure 12, we report the sizes of the  NWAs  obtained from  NREs  by our compiler, and the size of the deterministic  NWAs  produced thereof. For each automaton, we give its total size and in parentheses the number of states.



The sizes of the nondeterministic  NWAs  produced by the compiler for the  NREs  for A1–A8 and B3 are given in column   n w a ( . )   of Figure 12. Note that the  NWAs  are cleaned so that only accessible and co-accessible states remain. The sizes of the nondeterministic  NWAs  are acceptable for all  NREs , except for A8, for which the  NWA  has more than 3000 states and an overall size greater than   10 , 000  . This can be partially explained by the fact that the  NRE  for A8 contains three conjunctions (one for the filter and two for the conjunctions in the filter). Still, the number of states remains surprising.



The determinized  NWAs  are given in column   d e t ( n w a ( . ) )  . It turns out that only A2 and A3 could be determinized successfully with some few hours of computation time on a standard laptop. However, even in the successful cases, the resulting deterministic  NWAs  are simply huge. This confirms similar problems first noticed in [18] and not solved since then.



The remaining columns of Figure 12 based on the back-and-forth compiler from  SHA s to  NWAs  from the following Section 6. They show that better determinization algorithms can indeed be obtained, yielding  NWAs  of acceptable size for all benchmark queries, with the exception of A8. The idea of   d e t ( n w a ( s t e p ( n w a ( . ) ) )   is to compile the  NWAs  obtained from the  NREs  to stepwise hedge automata and back before applying the above algorithm for  NWAs . This might be surprising, as this determinization algorithm failed for the original  NWAs , while it now proves successful on the forth-and-back transformed  NWAs .





5. Stepwise Hedge Automata


We propose  SHA s as an extension of stepwise tree automata [21] that allows to recognize not only unranked trees but also hedges. We avoid more classical hedge automata from [9] that were already introduced in 1967 by Thatcher [8], as their notion of determinism is problematic. For instance, it makes unique minimization fail [38] and universality hard.



Our notion of  SHA s will be symbolic in using else rules, and factorized as in [35]: there are two types of states for hedges and trees and an operator for explicit type coercion. We also propose a novel treatment of internal letters inspired by nested word automata, so that  SHA s generalize both on stepwise tree automata and on Nfas.



Definition 4.

A  SHA  is a tuple   A = (  Q h  ,  Q t  , Σ , Δ , I , F )   such that   Q t   and   Q h   are finite sets of states of two types: t for tree and h for hedge, respectively; Σ an alphabet of internal letters (that may be infinite);   I , F ⊆  Q h    are subsets of hedge initial and final states, respectively; and Δ is a finite set of transition rules such that for all   q ∈  Q t    and   a ∈ Σ  :


     hedge  rules      q Δ  ,  a Δ  ,  _ Δ  ,  ε Δ  ⊆  Q h  ×  Q h        tree  final  rules      T Δ  ⊆  Q h  ×  Q t        tree  initial  states       〈 〉  Δ  ⊆  Q h      













An example for a  SHA  is given in graphical syntax in Figure 13. It recognizes all hedges that are either just a or b or contain some tree node that contains either just a or b. In the graphical syntax, the states of type tree   q ∈  Q t    are drawn in circles filled in light gray  [image: Algorithms 14 00068 i001], while the states of type hedge    q ′  ∈  Q h    are drawn in unfilled circles     q ′    . The right part of the graph is an Nfa which uses tree states as additional edge labels, while the left part is a stepwise tree automaton that defines the tree languages of these tree states.



Let   Δ h   be the restriction of  Δ  to the hedge rules. Then,   (  Q h  , Σ ⊎  Q t  ,  Δ h  , I , F )   is a standard Nfa with  ε -rules, which is symbolic [39] in providing else rules for dealing with large or infinite alphabets in addition. Therefore, we denote the hedge initial states   q ∈ I   by    → h    q    and the final states   q ∈ F   by  [image: Algorithms 14 00068 i002]. A rule with an internal letter    (  q 1  ,  q 2  )  ∈  a Δ    is denoted by    q 1   → a   q 2  ∈ Δ   stating that a hedge in state   q 1   can be extended by the internal letter a leading to a hedge in state   q 2  . Similarly, an epsilon rule    (  q 1  ,  q 2  )  ∈  ε Δ    is denoted by    q 1   → ε   q 2   , and an else rule    (  q 1  ,  q 2  )  ∈  _ Δ    is denoted by    q 1   → _   q 2   . In the same spirit, a hedge rule    (  q 1  ,  q 2  )  ∈  q Δ   —also called apply rule—is denoted by    q 1    −  🠆  q    q 2  ∈ Δ  , stating that a hedge in state   q 1   can be extended by a tree in state q leading to a hedge in state   q 2  .



A tree initial state   q ∈   〈 〉  Δ    is graphically denoted by    → t    q    and a tree final rule    (  q 1  ,  q 2  )  ∈  T Δ    by    q 1  −  →  q 2   . Intuitively, a tree   〈 h 〉   can be evaluated to state q if h can be evaluated starting with some tree initial state    q 1  ∈   〈 〉  Δ    to some state   q 2   such that    q 2  −  → q ∈ Δ  . More formally, the hedge languages    L   q 1  ,  q 2     ( A )    between any two hedge states    q 1  ,  q 2  ∈  Q h    are defined as


      L   q 1  ,  q 2     ( A )     =     { ε ∣ if   q 1  =  q 2   or   q 1   → ε   q 2  ∈ Δ }  ∪   ⋃   q 3  ∈  Q h      L   q 1  ,  q 3     ( A )  ·  L   q 3  ,  q 2     ( A )          ∪    { a ∣ if   q 1   → a   q 2  ∈ Δ  or   (  q 1   → _   q 2  ∈ Δ  and  ¬ ∃  q 2 ′  .   q 1   → a   q 2 ′  ∈ Δ )  }         ∪      ⋃   q 1    −  🠆  q    q 2  ∈ Δ     L q   ( A )      








This definition is mutually recursive with the definition of the tree languages    L q   ( A )    of all tree states   q ∈  Q t   :


      L q   ( A )     =    {  〈 h 〉  ∣   → t      q 1    ∈ Δ ,  h ∈  L   q 1  ,  q 2     ( A )  ,   q 2  −  → q ∈ Δ }     








The hedge language   L ( A )   that is recognized by the automaton is     ⋃   q 1  ∈ I ,  q 2  ∈ F     L   q 1  ,  q 2     ( S )   . The rules of standard bottom-up tree automata have the form   a (  q 1  , … ,  q n  ) → q   where a is a symbol of arity n. With  SHA s, this rule can be encoded by the sequence    → t      p 0     → a     p 1      −  🠆   q 1    …   −  🠆   q n      p n   −  → q   where the states    q 1  , … ,  q n  , q   are all tree states, and    p 0  , … ,  p n    new hedge states.



5.1. Determinization of  SHA s


We formalize the notion of determinism for stepwise hedge automata and show how determinization works.



Definition 5.

A  SHA    (  Q h  ,  Q t  , Σ , Δ , I , F )   is deterministic or equivalently a  dSHA , if it satisfies the following conditions:




	
I contains at most one element;



	
   〈 〉  Δ   contains at most one element;



	
there is no epsilon transition, i.e.,    ε Δ  = ∅  ;



	
   a Δ  ,  q Δ   ,   _ Δ   are partial functions from   Q h   to   Q h   for all   a ∈ Σ   and   q ∈  Q t   ; and



	
  T Δ   is a partial function from   Q h   to   Q t  .










Proposition 2.

A  SHA  of size n can be made deterministic in time   O (  2 n  )   while preserving the hedge language.





Proof. 

The determinization procedure for  SHA s combines the determinization algorithms of word and tree automata in the natural manner, while eliminating epsilon transitions. Let   ε  Δ *    be the reflexive and transitive closure of   ε Δ  , and for any subset   Q ⊆  Q h  ∪  Q t    let    ε  Δ *    ( Q )  =   ⋃  q ∈ Q     ε  Δ *    ( q )   . Given a  SHA    A = (  Q h  ,  Q t  , Σ , Δ , I , F )  , we define an equivalent deterministic  SHA    d e t  ( A )  = (  Q h det  ,  Q t det  , Σ ,      Δ det  ,  I det  ,  F det   )    such that    Q h det  =  2  Q h    ,    Q t det  =  2  Q t    ,    I det  =  {  ε  Δ *    ( I )  }    and    F det  =  {  Q ′  ⊆  Q h  ∣  Q ′  ∩ F ≠ ∅ }   . There is a unique tree initial state in     〈 〉   Δ det   =  {  ε  Δ *    (   〈 〉  Δ  )  }    and no  ε -rule, that is,    ε  Δ det   = ∅  . The inference rules in Figure 14 define the missing part of   Δ det  .



We can show for all    Q 1  ,  Q 2  ⊆  Q h    and   P ⊆  Q t    that


   L   Q 1  ,  Q 2     ( det  ( S )  )  =   ⋃   q 1  ∈  Q 1  ,  q 2  ∈  Q 2      L   q 1  ,  q 2     ( S )   








so that    L P   ( det  ( S )  )  =   ⋃   q ′  ∈  Q ′      L  q ′    ( S )   . Therefore,   L  ( d e t  ( S )  )  =   ⋃   Q ′  ∈  F det      L  I ,  Q ′     ( d e t  ( S )  )    and thus   L  ( d e t  ( S )  )  =   ⋃   q 1  ∈ I ,  q 2  ∈ F     L   q 1  ,  q 2     ( S )  = L  ( S )   . □





For illustration, the deterministic  SHA  in Figure 15 is obtained by determinization of the  SHA  in Figure 13.




5.2. Compilation of  NREs  to  SHA s


As for  NWAs , we introduce the notion of multi-module  SHA s for which the sets of hedge states are partitioned between those that can evaluate top level positions and those to which nested positions are assigned. Therefore, multi-module  SHA s will have exactly two modules too.



Definition 6.

A  SHA    A = (  Q h  ,  Q t  , Σ , Δ , I , F )   is a multi-module  SHA  if there is a subset of states    Q h 0  ⊆  Q h   , that we call top level states, such that




	
  I ⊆  Q h 0    and



	
the states in   Q h 0   can reach only other states in   Q h 0   via Δ.










For instance, consider the multi-module  SHA  in Figure 13. The states of module for the top level are    Q 0  =  { 1 , 2 , 3 , 4 , 5 , 6 , 12 }   . The others belong to the module for the nested level.



Any  NRE  E can be compiled to a multi-module  SHA    step  ( E )  =  (  Q h  ,  Q t  , Σ , Δ , I , F )    such that    Q t  =  {  E ′  ∣  E ′  =  〈  E  ″   〉   subexpression  of  E }    and    L t   (  E ′  )  = L  (  E ′  )    for all tree states    E ′  ∈  Q t   . The  SHA    step ( E )   can be partitioned into disjoint  SHA s   step  ( E )  =  A  t o p   ∪   ⋃   E ′  ∈  Q t      A  E ′     such that    A  t o p   =  (  Q h  t o p   ,  Q t  , Σ ,  Δ  t o p   , I , F )    and    A  E ′   =  (  Q h  E ′   ,  Q t  , Σ ,  Δ  E ′   , ∅ , ∅ )    for all    E ′  ∈  Q t    and     〈 〉   Δ  t o p    = ∅  . Note that the transitions relation  Δ  is decomposed thereby into independent connected components. The automaton   A  t o p    can be identified with an Nfa with signature   Σ ∪  Q t    given that it has no tree initial states. The automata   A  E ′    are stepwise tree automata that recognize the tree language   L (  E ′  )   when taking   E ′   as final state. For this, they may have tree initial states, but will not have any initial nor final states.



Theorem 2.

For any  NRE  E, we can construct a  SHA  A such that   L ( A ) = L ( E )  . If E contains neither conjunctions nor negations, then the construction is in time   O ( | E | )  .





Proof sketch.

For the case of expressions with conjunctions or negations, the construction is analogous to the way it is done for  NWAs . We next sketch the construction of  SHA s for expressions without conjunction and negation.




	Case   E =  E ′  ·  E  ″    :

	
We use McNaughton–Yamada–Thompson algorithm [36] for composing the multi-module Nfas of   step (  E ′  )   and   step (  E  ″   )  . The stepwise tree automata   A  〈  E  ‴   〉    of the subexpressions of type tree are preserved. For succinctness, if some subexpression   〈  E  ‴   〉   occurs more than once, then only a single copy of   A  〈  E  ‴   〉    is kept. References to states of the removed copy should be renamed to their equivalent counterparts.




	Case   E = 〈  E ′  〉  :

	
We construct   step ( E )   from   step (  E ′  )  . The initial states of   step (  E ′  )   are turned into tree initial states. We then add a new tree state   〈  E ′  〉   and connect it to all final states of   step (  E ′  )   by a tree final rule   q → 〈  E ′  〉  . Furthermore, the previously final state q becomes non final. Finally we add a new initial state   q i  , a new final state   q f   and a transition rule    → h      q i      −  🠆   〈  E ′  〉       q f     .




	Case   E = μ a .  E ′   :

	
The main idea of the construction is similar to the case of  NWAs . The correctness argument relies on the invariant that only multi-module  SHA s are built.



Again by the golden lemma of the  μ -calculus, we can assume w.l.o.g. that a occurs at most once in   E ′  . By using  ε -rules, we can preserve the invariant that there will be at most one pair   ( q ,  q ′  )   such that   q  → a   q ′    in   step (  E ′  )  . Furthermore, these transitions cannot be on top level, given that the occurrence of a in   E ′   must be nested below parentheses. The automaton   step ( E )   is obtained from   step (  E ′  )   by first copying the top level Nfa of   step (  E ′  )  , as in Figure 16. We thus obtain two versions for each state of the top level Nfa of   step (  E ′  )  : one referred to as the top level copy—  q  0 , 0    and   q  3 , 0    in Figure 16, and another one as the nested level –   q  0 , 1    and   q  3 , 1    in Figure 16. Only top level states may be initial or final. Then, we add  ε -rules from q to the nested states that correspond to the initial states of   step (  E ′  )  , and from the nested states corresponding to the final states of   step (  E ′  )   to   q ′  . Finally we remove the rule   q  → a   q ′   . The resulting automaton is shown in Figure 17.



Note that every transition added for a state–top level or nested—in a subsequent step of the construction—except the  ε -rules added for  μ -expressions—must also be added for its copy.



The construction is correct as the  μ -bound name a is nested below parenthesis in   E ′  . Therefore, it can be shown that the  ε -edges introduced cannot be used to produce unwanted order in successful runs. Maintaining this invariant in polynomial time requires an additional argument. Instead of copying the top level parts of subexpressions, each state is introduced twice during the construction: one version for nesting, and another one for being part of top level parts. This way the size of the automaton is not doubled at each step, but only once.









We omit the correctness proof of this construction. □





Unlike  NWAs , one cannot preserve the determinism of the expressions of   nregexp ( c h , T )   in  SHA s, even with Glushkov-like constructions. For instance, for the deterministic  NRE    〈  a 1  ·  〈  a 2  · … ·  〈  a n  〉  … 〉  〉  , one would have an  SHA  having a tree initial state for each of the   〈  a i  … 〉   subtree, implying nondeterminism.




5.3. Experimental Results Starting with the  SHA   Compiler


In the first two columns of Figure 18, we report the size of the  SHA s obtained from  NREs  by our compiler, and the size of the deterministic  SHA s produced thereof.



The  SHA  compiler yields automata of acceptable size from the  NREs  of all benchmark queries. These sizes are given in the first column   s t e p ( . )   of Figure 18. This even holds for A8, in contrast to the case where the produced  SHA  has overall size 1106 and 267 states.



The determinization of the  SHA s in the second column   d e t ( s t e p ( . ) )   even yields smaller automata in all cases. For A8, we obtain a deterministic stepwise automaton of overall size 749 and with 123 states. This might be surprising, in that the determinization algorithm may lead to an exponential blow-up in the worst case. However, it may also clean the automaton, keeping only accessible sets of states. This is what seems to happen systematically on the benchmark with the exception of A2, where the size goes up by a factor of four and A5 where the size doubles. For A2 the number of states grows by one third, while for A5 it decreases by one third.



Based on the back-and-forth compiler from  SHA s to  NWAs  from following Section 6, we can obtain deterministic  NWAs  of acceptable size for all benchmark queries. The method   n w a ( d e t ( s t e p ( . ) ) )   yield for A a  dNWA  of size 2831 and with 124 states. The alternative method   d e t ( n w a ( s t e p ( . ) ) )   yields a  dNWA  of size 2520, which is even smaller, and the same number of states.





6. NWAs versus SHAs


We next show how to compile  SHA s to  NWAs  such that determinism is preserved, and back while introducing nondeterminism. Thereby, we can obtain small  NWAs  for  NREs  such as   E = c  h *   ( a + b )    for which   d e t ( n w a ( E ) )   blew up in size in a surprising manner (see Figure 12).



6.1. SHAs to NWAs


As a first step, we introduce a transformation on  SHA s, so that for any  SHA  A:




	
if A is deterministic, the transformation returns A, and



	
if A is nondeterministic with set of hedge states   Q h   and transition relation  Δ , the transformation returns a new  SHA    A ′   with set of hedge states    Q h ′  =  Q h  ⊎  {  q  t − init   }    where   q  t − init    is a new hedge state, and set of transitions   Δ ′   which equals  Δ  except that     〈 〉   Δ ′   =  {  q  t − init   }    and    ε  Δ ′   =  ε Δ  ∪  {  (  q  t − init   , q )  ∣ q ∈   〈 〉  Δ  }   .








Then, we compile any  SHA    A = (  Q h  ,  Q t  , Σ , Δ , I , F )   obtained after the above transformation to an  NWA    n w a  ( A )  = (  Q h  ,  Q t  , Σ , Γ ,  Δ ′  , I ,     F )   such that   L ( A ) = L ( n w a ( A ) )  . We set   Γ =  Q h   ,    _  Δ ′   =  _ Δ   ,    a  Δ ′   =  a Δ    for all   a ∈ Σ  ,    ε  Δ ′   =  ε Δ   ,    T  Δ ′   =  T Δ   :


     q 1    −  🠆    ↓   q 1     ∈ Δ    p ∈   〈 〉  Δ        q 1    −  🠆    ↓   q 2      p ∈  Δ ′   and  q   −  🠆    ↑   q 1      q 2  ∈  Δ ′     








Clearly, if S is deterministic then so is   n w a ( S )  , as p is unique in this case in particular. One might be tempted to skip the first-step transformation and restrict the above construction rule to states p such that    L q   ( S  [   〈 〉  Δ  /  { p }  ]  )  ≠ ∅  . However, this would lead to a huge blow-up when determinizing these  NWAs , basically as this change spoils the single-entry property discussed in Definition 7.



The conversion of   step ( c  h *   ( a + b )  )   in Figure 13 yields the  NWA  in Figure 19. Note that the opening rules are deterministic (but not the whole  NWA ), as for all tree states q there is at most one hedge state p with   〈 〉 → p   such that q is accessible from p. The NWA has size 64, while its determinization has size 159 (see Figure A3 of the Appendix C). The size increase raised by determinization is thus   95 = 159 − 64   for this  NWA .



The size increase for determinization is considerably smaller for the  NWA  obtained from the regular expressions by indirection via a  SHA  than for  NWAs  obtained by direct compilation. Indeed, the determinization of   nwa ( c  h *   ( a + b )  )   blows the size from 39 to 271. The size increase for the determinization of   nwa ( c  h *   ( a + b )  )   is thus   242 = 271 − 39   while for   nwa ( step  ( c  h *   ( a + b )  )  )   it is only   95 = 159 − 64  .



The experiments will show that this is not an exception but the general rule. Intuitively, the reason is that  NWAs  obtained from  SHA s do all the work bottom-up, where  NWAs  obtained directly from the regular expression do a considerable amount of work top-down. In terms of the work in [22], this restriction can be characterized syntactically by the single-entry property:



Definition 7.

A (weak) single-entry  NWA    A = (  Q h  ,  Q t  , Σ , Γ , Δ , I , F )   is a  NWA  for which there exists a single state    q  e n t r y   ∈  Q h    such that all opening rules in Δ have the form   q   −  🠆   ↓ q     q  e n t r y    .





Note that call-driven automata (CDAs) discussed in [23] coincide with multi-module single-entry  dNWAs  and also with (multi-module) single-entry visibly pushdown automata [22,24].



It can be shown that   nwa ( S )   has the (weak) single-entry property for all  SHA s S for which the p’s are unique in the above construction rule, i.e., such that     〈 〉  Δ  =  { p }   . Note that this was not the case for   step ( c  h *   ( a + b )  )   in Figure 13 but could have been imposed w.l.o.g. leading to a slightly different  NWA  than in Figure 19.



The conversion of the determinization   d e t ( step  ( c  h *   ( a + b )  )  )   in Figure 15 yields the deterministic  NWA  in Figure 20. The size goes up slightly from 53 to 73. It should be noticed that factorization avoids a quadratic blow up in this case. This can be observed at state 14, which has 3 incoming tree edges and 10 outgoing closing edges. Without factorization, the 3 tree edges could be replaced by 3  ε -edges whose elimination would produce 30 closing edges. This would increase the number   3 + 10   edges to   3 ∗ 10   edges.




6.2. NWAs to SHAs


Conversely,  NWAs  can be compiled to stepwise hedge automata, but at the cost of introducing nondeterminism, as an  NWA  may traverse the branches of a tree top-down, while a stepwise must traverse them bottom-up. For this, the stepwise guesses the state in which the  NWA  will arrive from above and then evaluates the subtree starting with this state, while verifying the correctness of the guess later on. Let   A = (  Q h  ,  Q t  , Σ ,  Δ ′  , I , F )   be an  NWA . We build a  SHA    step  ( A )  =  (  Q h s  ,  Q t s  , Σ ,  Δ s  ,  I s  ,  F s  )    where    Q h s  =  Q h  ×  Q h   ,    Q t s  =  Q h  ×  Q t   ,    I s  =  {  ( q , q )  ∣ q ∈ I }   ,    F s  = I × F   and   Δ s   is the smallest satisfying the following rules:
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The construction is such that   L ( A ) = L ( step ( A ) )  .



For the  NWA    nwa ( c  h *   ( a + b )  )   in Figure 6, we obtain the stepwise in Figure A2 up-to removing useless states and separating the top level. Determinization yields    d e t ( step ( n w a   ( c  h *   ( a + b )  )  = d e t  ( step  ( c  h *   ( a + b )  )  )    in Figure 15.





7. Optimizations


We will use three optimization methods for constructing smaller  dSHA s and thus smaller  dNWAs : minimization, symbolic representations of sets of transition rules, and schema-based cleaning.



7.1. Minimization


Our next objective is to reduce the size of deterministic  SHA s by developing a minimization algorithm for a subclass of  dSHA s. Even though our implementation can deal with them, we consider  SHA s without symbolic rules   q  → −   q ′    for simplicity in this section.



We start with an example that motivates the choice of our subclass. In Figure 21 and Figure 22, two  dSHA s are given that both recognize the language of all hedges with signature   Σ = { x , y }   containing exactly one occurrence of the letter x. The  dSHA  in Figure 22 is the  dSHA  recognizing this language which has the minimal number of states. The  dSHA  in Figure 21 is the minimal multi-module  dSHA  for this language. The question is how a minimization algorithm for  dSHA s could convert the  dSHA  in Figure 21 to this minimal one in Figure 22. In particular, why would it merge the tree initial state and the hedge initial state? We do not see how this could be done based on some Myhill–Nerode-like equivalence relation. This motivates an a priori restriction to  dSHA s imposing that the tree initial state and hedge initial state must be equal.



Note that any  SHA  can be converted into a  dSHA  with equal tree and hedge initial states. For this, it is sufficient to “fuse” these states and then to determinize the  SHA  obtained. When doing so for the  dSHA  in Figure 21, we indeed obtain the minimal  dSHA  from Figure 23, so no further minimization is needed in this case.



Given the close relationship between  SHA s and weak single-entry  NWAs , it is instructive to consider the existing results on minimization for  dNWAs . It is known that the class of general  dNWAs  does not allow for unique minimization [22] and that the minimization becomes NP-hard when admitting general signatures with multiple parenthesis [24].



On the positive side, the best existing minimization algorithm is due to Chervet and Walukiewicz [23]. It applies to the subclass of multi-module single-entry  dNWAs , called there call-driven automata (CDA) (Chervet and Walukiewicz [23] permit signatures with multiple opening parenthesis. In the case of a single opening parenthesis, the class of CDAs is equal to their subclass of expanded CDAs for which they develop their minimization algorithm in the first place.). They showed that the subclass of multi-module single-entry  dNWAs  enjoys unique minimization in polynomial time.



In the case of  dSHA s, we believe that unique minimization holds for the following two subclasses, and will show it for the second:




	
the subclass of multi-module  dSHA s, and



	
the subclass of  dSHA s where the hedge and tree initial state are the same, i.e.,     〈 〉  Δ  = I  .








The first subclass of multi-module  dSHA s is motivated by the subclass of multi-module single-entry  dNWAs . Note, however, that the  SHA s that are obtained by compilation from single-entry  dNWAs  need not be deterministic, so the analogy between both automata classes is not perfect. The  dSHA  in Figure 21 is minimal for the class of multi-module  dSHA s.



The second subclass of  dSHA s corresponds to the subclass of single-entry  dNWAs  in which the single-entry state is equal to the initial state. The  dSHA  in Figure 22 is minimal for the second subclass. In the remainder of this section, we present a minimization algorithm for the second subclass. For this, we identify  dSHA s in which tree and hedge initial state coincide with two-sorted deterministic tree automata, so that we can use a minimization algorithm for the latter. Our automaton translation is based on a novel encoding of hedges into ranked well-sorted trees with monadic and binary function symbols, which is inspired by the previous binary encoding of unranked trees known from stepwise tree automata [21]. For any unranked signature  Σ , as for the construction of hedges, we consider two sorts:  h  for hedges and  t  for trees. We then consider the following ranked signature with these two sorts:


   Σ @  =  {  a  ( h )   ∣ a ∈ Σ }  ∪  {  @  ( h × t → h )   ,  ε  ( h )   ,  T  ( h → t )   }   








The well-sorted trees over   Σ @   of both sorts then have the following abstract syntax:


      well-sorted   trees  of  sort  h :    τ    : : =     a  ( τ )  ∣ @  ( τ ,  τ ′  )  ∣ ε        well-sorted   trees  of  sort  t :     τ ′     : : =     T ( τ )     








Any hedge over  Σ  can be encoded into a ranked well-sorted tree of sort  h  with signature   Σ @  . For instance, the hedge


  h = 〈 a · 〈 b · 〈 c · d · e 〉 〉 · f 〉  








is encoded into the following ranked well-sorted tree of sort  h  over   Σ @  :


   [  [ h ]  ]  =  ( f  ( a  ( ε )  @  τ ′  )  )   where   τ ′  = T  ( b  ( ε )  @  τ  ″   )   and   τ  ″   = T  ( e  ( d  ( c  ( ε )  )  )  )   








Any  SHA    A = (  Q h  ,  Q t  , Σ , Δ , I , F )   with equal tree and hedge initial states, that is,     〈 〉  Δ  = I  , can then be encoded into a two sorted tree automaton    [  [ A ]  ]  =  (  Q h  ,  Q t  ,  Σ @  ,  Δ ′  , I , F )    by mapping the transition rules in  Δ  to those in   Δ ′   as follows:


    Δ    Δ ′       q  → a   q ′      a  ( q )  →   q ′        q −  → p     T ( q ) →  p       q   −  🠆  p    q ′      q @ p →   q ′         q i  ∈   〈 〉  Δ  = I     ε →   q i      








We can first note that   [ [ L ( A ) ] ] = L ( [ [ A ] ] )  . Second, the translation function is a bijection between  SHA s over  Σ  and two-sorted tree automata over   Σ @  . Furthermore, this translation preserves determinism. It follows that if A is a  dSHA  with a minimal number of states recognizing   L ( A )   then   [ [ A ] ]   is a deterministic two-sorted tree automaton with a minimal number of states recognizing   [ [ L ( A ) ] ]  . Furthermore, the unique minimization of deterministic two-sorted tree automata implies the unique minimization of the class of  dSHA s with equal tree and hedge initial states.



Using this translation back and forth, we can thus lift the minimization algorithm of deterministic two-sorted tree automata to a minimization algorithm for the subclass of  dSHA s with equal tree and hedge initial states. This is the minimization algorithm for  dSHA s that we have implemented. We then used it in our constructions to reduce the size of the  dSHA s obtained by determinization.




7.2. Symbolic SHAs with Apply-Else Rules


The sizes of the  dSHA s constructed so far are dominated by the number of transitions. We now propose a class of symbolic  dSHA s by adding apply-else rules, in order to represent large numbers of apply rules in a more compact and symbolic manner.



An apply-else rule has the form   q   −  🠆  _    q ′    where   q ,  q ′  ∈  Q h   . It represents the set of apply rules   q   −  🠆  p    q ′   , where   p ∈  Q t    can be chosen arbitrarily from a subset of tree states distinguished by the automaton.



We have also adapted our determinization for  dSHA s so that it preserves apply-else rules. What is missing so far is a concept for  NWAs  that corresponds to the apply-else rules of  dSHA s. Therefore, we have to eliminate apply-else rules before translating  SHA s to  NWAs .




7.3. Schema-Based Cleaning


Automata for XPath queries recognize nested words that can be obtained by encoding Xml documents with a single x-marked position. The class of such nested words is characterized by a schema that we can define as the intersection of the two  dSHA s in Figure 23 and Figure 24. The first  SHA  tests whether there is exactly one occurrence of the internal letter x, and the second one tests that the Xml data model is satisfied, and the node annotations with x and   ¬ x   are put at the right positions.



The automata constructed for the XPath queries may accept some trees that do not satisfy the schema (but will never be evaluated on such trees when answering the query). The idea of schema-based cleaning is to remove all transition rules and states that are not used for recognizing any nested word satisfying the schema. Schema-based cleaning of an automaton can be performed by constructing the product of the automaton with the schema, which is in our case an intersection of two  dSHA s. We then only keep those states of the original  SHA  that are used in accessible and co-accessible states of the product with the schema.



Note that schema-based cleaning typically changes the language of the automaton. Different languages may be obtained when cleaning different automata for the same query with respect to the schema. If one is interested in a unique language, then one can choose the intersection of the automaton with the schema. This intersection, however, is usually larger than the automaton obtained by schema-based cleaning.




7.4. Experimental Results for Optimizations


The sizes of optimized automata for the benchmark queries are reported in Figure 25.



The function   s t e  p @  _   used in the first column compiles  NREs  to  SHA s with apply-else rules. This does not change the number of states, but reduces the number of automata transitions. In the case of A8, the size of the stepwise automaton is reduced from 1106 to 894.



An optimized determinizer is applied by the function   D  ( . )  = d e t ( s t e  p @  _  ( . )  )   in the second column. It preserves apply-else rules in particular. For A8, the size is reduced from 749 to 639 while the number of states is preserved.



Schema-based cleaning is applied by the function   S ( . ) = s c h e m a − c l e a n ( D ( . ) )   in the third column. For A8, the number of rules is reduced further from 639 to 527.



Minimization is applied by the function   M ( . ) = m i n i ( S ( . ) )   in the fourth column. In the case of A8, it reduces the number of states from 117 to 101 and the size from 527 to 487.



In order to come back to  dNWAs , we have to eliminate the apply-else rules in column six. For A8 this increases the number of rules back from 527 to 1257.



In the final column, we apply the compiler from  SHA s to  NWAs  which preserves determinism. For   A 8  , this results in a  dNWA  of size 1413 and 102 states. This is better than the previous results, in particular with respect to the number of states.





8. Summary of Experimental Results


We now plug the different compilers and optimization methods all together and compare the sizes of deterministic  NWAs  that we can obtain thereby.



The overall sizes (#states) of the resulting  dNWAs  are given in Figure 26. We see that the two methods starting with  SHA s   n w a ( d e t ( s t e p ( . ) ) )   and   d e t ( n w a ( s t e p ( . ) ) )   yield reasonably small deterministic  NWAs  for the  NREs  of all benchmark queries. The methods starting with  NWAs    n w a ( d e t ( s t e p ( n w a ( . ) ) ) )   and   d e t ( n w a ( s t e p ( n w a ( . ) ) ) )   provide reasonably small deterministic  NWAs  for queries except for A8.



We also tested our algorithms on collections of XPath queries with a scalable parameter, such as the queries   c  h n   ( a )    for increasing n. This series is known to require automaton with a number of states exponential in n for deterministic bottom-up evaluation. The best methods to produce deterministic  NWAs  in this case is   nwa ( det ( step ) )  . It works until   n = 9  , leading to an  dNWA  of size   134 , 929   with 772 states. The number of states close to doubles when increasing n by 1. The second best method for producing  dNWAs  for the series   c  h n   ( a )    works only until   n = 6  .



For explaining the different size of the  dNWAs  for the series   c  h n   ( a )   , we first note that no schema-based cleaning was applied in this experiment. As a consequence, unique minimal single-entry  dNWAs  in which the single-entry state is the initial state should exist. The reason for the larger number of states with the three other methods is that we have not implemented any minimization algorithm for this subclass of single-entry  dNWAs . Furthermore, our implementation of the minimization algorithm for our subclass of  dSHA s failed for too big  dSHA s. In this case, the number of states reported in Figure 27 could not be reduced to the minimum. In addition, the number of rules seems to be increased further by the lack of any symbolic representation for rules of  NWAs  that could mimic the apply-else rules for  SHA s.




9. Deterministic Nested Regular Expressions


We finally show how to distinguish  NREs  that can be evaluated deterministically in polynomial time, for instance, by compilation to deterministic  NWAs . For this, we consider the language of  NREs    nregexp ( c h , T )   that extends the abstract syntax of  NREs  by a new constant T and a new unary operator   c h  .



Definition 8.

An expression of   nregexp ( c h , T )   is deterministic if it does not contain a subexpression of any of the forms:    E 1  +  E 2   ,   E *  ,   T · E  ,   μ a . E  .





Note in particular that   c h ( a )   is a deterministic expression of   nregexp ( c h , T )  , as the child operator is added as a primitive there. In contrast, the semantically equivalent expression   T . 〈 a 〉 . T   is not deterministic. Similarly, T is deterministic since it is a primitive expression of   nregexp ( c h , T )  , while the equivalent expression   μ x .   (  〈 x 〉  + _ )  *    is nondeterministic for three different reasons: the  μ -operator, star *, and disjunction +. The recursive expression   c  h *   ( E )    is nondeterministic: it is not primitive in   nregexp ( c h , T )  , and its definition is based on the  μ -operator and disjunction.



The only query of the benchmark for which we can provide a deterministic  NRE  is the query A1. The  NRE  for query A1 in Figure A1 is nondeterministic nevertheless, as we replaced   c h ( E )   with   T · 〈 E 〉 · T  . This is not problematic, given that we can use a decent method for determinization of  NWAs . For this reason, it does no more seem worth the effort to maintain specialized compilation methods for deterministic  NREs . For the same reason, we will not present any experimental results for our specialized compiler from deterministic  NREs  to deterministic  NWAs . Instead we use the more general compiler for general nondeterministic  NREs .



The compiler from Theorem 1 introduces epsilon rules, and thus it does not preserve determinism: some deterministic  NREs  will be compiled to nondeterministic  NWAs . This introduction of nondeterminism can be avoided by eliminating epsilon rules on the fly, that is by using Glushkov’s approach rather than that of Thompson.



Theorem 3.

For any deterministic regular expression E of   nregexp ( c h , T )   without conjunction and negation, we can construct in time   O ( | E  | 2  )   a  dNWA  recognizing the same language.





Proof sketch.

Theorem 3 uses Glushkov’s construction and thus eliminates  ε -edges on the fly compared to the McNaughton–Yamada–Thompson algorithm. The Glushkov construction is well-known to preserve determinism when compiling regular expressions without nesting to finite state automata [20]. For the additional deterministic expressions   c h ( E )  , we adapt the deterministic compilation from the work in [18]. This quadratic time result generalizes a previous result for the Glushkov construction [19] from regular expressions without conjunctions and negations to  NREs  without conjunctions and negations. □





Small deterministic  NREs  without conjunction and negation can thus be compiled to small  dNWAs . On the benchmark, however, this construction can be applied to the query   A 1   only, so only a few queries can be covered in this manner.




10. Conclusions and Future Work


We presented  SHA s and showed how they can be used to compile  NREs  to deterministic  NWAs . When applied to  NREs  for navigational XPath queries in the usual XPathMark benchmark, we obtained reasonably small deterministic  NWAs , in contrast to all previous approaches.



The  dNWAs  that we obtain by compilation from  SHA s all have the weak single-entry property. This property means that the computation of the  NWA  is done in a purely bottom-up and left-to-right manner, so in the same way as by an  SHA . Our experiments show that the usual determinization algorithm for  NWAs  is well-behaved when applied to weak single-entry  NWAs , while it quickly fails without the weak single-entry property.



We have also stated a unique minimization algorithm for  dSHA s with the same tree and hedge initial state. It is open whether unique minimization holds for general  dSHA s. Neither do we know whether  dSHA  minimization is NP-hard. The analogous questions remain open for the class of weak single-entry  dNWAs .



In future work, one needs to tackle the open questions on the minimization of  dSHA s, weak single-entry  dNWAs , and  dNWAs  with fixed general signatures. One has to understand, whether and why unique minimization holds or not, and whether and why minimization is hard or not. Independently, it is interesting to use  SHA s in various questions in theory and practice. In particular, we want to develop new algorithms for earliest query answering for  dSHA s that are more efficient than the existing algorithms for  dNWAs  [16] and to see how they behave in practice.
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Appendix A. Determinization of NWAs


Let us first introduce some notations. For a transition   τ ∈  Q h  ×  Q h   , we write   lab  ( τ )  = { a ∈ Σ ∣ ∃  ( q ,  q ′  )  ∈ τ ,  q  ″   ∈ Q .  q ′   → a   q  ″   ∈ Δ }  . Furthermore, we write   ε  Δ *    to denote the reflexive and transitive closure of   ε Δ  . Finally, for any set Q, we write   i  d Q    to denote the binary relation that relates every element of Q to itself, that is,   i  d Q  =  {  ( q , q )  ∈  Q 2  }   .



We adapt the usual determinization procedure for  NWAs  [3,18] so that they can account for hedge ending and else rules. Given an  NWA    A = (  Q h  ,  Q t  , Σ , Γ , Δ , I , F )  , the difficulty is to deal with concurrent opening rules   q   −  🠆    ↓   γ 1      q 1    and   q   −  🠆    ↓   γ 2      q 2    in  Δ  during determinization without mixing up the stack symbols   γ 1   and   γ 2  . Therefore, we use transition relations as states of the determinized automaton   det  ( A )  = (  Q h det  ,  Q t det  , Σ ,  Γ det  ,  Δ det   ,   I det  ,    F det   )   , that is,    Q h det  =  2   Q h  ×  Q h     ,    Q t det  =  2   Q h  ×  Q t     . The only initial state is the composition of   i  d I    with   ε  Δ *   , i.e.,    I det  =  { i  d I  ∘  ε  Δ *   }   . The set of final states is    F det  =  { τ ∈  Q h det  ∣ τ ∩  ( I × F )  ≠ ∅ }   . Schemas generating the transition rules in   Δ det   are given below.
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Appendix B. NREs for the XPathMark Benchmark


We compiled navigational XPath queries of the XPathMark benchmark to the  NREs  given in Figure A1.
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Figure A1. The  NREs  of the XPath benchmark queries. 






Figure A1. The  NREs  of the XPath benchmark queries.
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Appendix C. Some More Automata
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Figure A2. Deterministic  NWA :   det ( nwa  ( c  h *   ( a + b )  )   . 






Figure A2. Deterministic  NWA :   det ( nwa  ( c  h *   ( a + b )  )   .
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Figure A3. Stepwise hedge automaton from  NWA  for   step ( nwa  ( c  h *   ( a + b )  )  )  . 






Figure A3. Stepwise hedge automaton from  NWA  for   step ( nwa  ( c  h *   ( a + b )  )  )  .
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Figure A4. Determinization of  NWA  from stepwise hedge automaton:   det ( nwa  ( step  ( c  h *   ( a + b )  )  )  )  . 
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[image: Algorithms 14 00068 g0a4]







References


	



Mehlhorn, K. Pebbling Moutain Ranges and its Application of DCFL-Recognition. In Automata, Languages and Programming, Proceedings of the 7th Colloquium, Noordweijkerhout, The Netherlands, 14–18 July 1980; Lecture Notes in Computer Science; de Bakker, J.W., van Leeuwen, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1980; Volume 85, pp. 422–435. [Google Scholar] [CrossRef]

	



Von Braunmühl, B.; Verbeek, R. Input Driven Languages are Recognized in log n Space. North Holl. Math. Stud. 1985, 102, 1–19. [Google Scholar] [CrossRef]

	



Alur, R. Marrying Words and Trees. In Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Paris, France, 14–16 June 2004; ACM-Press: New York, NY, USA, 2007; pp. 233–242. [Google Scholar]

	



Okhotin, A.; Salomaa, K. Complexity of input-driven pushdown automata. SIGACT News 2014, 45, 47–67. [Google Scholar] [CrossRef]

	



Alur, R.; Madhusudan, P. Visibly pushdown languages. In Proceedings of the 36th ACM Symposium on Theory of Computing, Chicago, IL, USA, 13–16 June 2004; ACM-Press: New York, NY, USA, 2004; pp. 202–211. [Google Scholar]

	



Neumann, A.; Seidl, H. Locating Matches of Tree Patterns in Forests. In Proceedings of the Foundations of Software Technology and Theoretical Computer Science, Chennai, India, 17–19 December 1998; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1530, pp. 134–145. [Google Scholar]

	



Gauwin, O.; Niehren, J.; Roos, Y. Streaming Tree Automata. Inf. Process. Lett. 2008, 109, 13–17. [Google Scholar] [CrossRef]

	



Thatcher, J.W. Characterizing derivation trees of context-free grammars through a generalization of automata theory. J. Comput. Syst. Sci. 1967, 1, 317–322. [Google Scholar] [CrossRef]

	



Comon, H.; Dauchet, M.; Gilleron, R.; Löding, C.; Jacquemard, F.; Lugiez, D.; Tison, S.; Tommasi, M. Tree Automata Techniques and Applications. 2007. Available online: http://tata.gforge.inria.fr (accessed on 1 February 2021).

	



Hosoya, H.; Pierce, B.C. XDuce: A statically typed XML processing language. ACM Trans. Internet Technol. 2003, 3, 117–148. [Google Scholar] [CrossRef]

	



Mozafari, B.; Zeng, K.; Zaniolo, C. From Regular Expressions to Nested Words: Unifying Languages and Query Execution for Relational and XML Sequences. PVLDB 2010, 3, 150–161. [Google Scholar] [CrossRef]

	



Pitcher, C. Visibly Pushdown Expression Effects for XML Stream Processing. Program. Lang. Technol. XML 2005, 1060, 1–14. [Google Scholar]

	



Olteanu, D. SPEX: Streamed and Progressive Evaluation of XPath. IEEE Trans. Know. Data Eng. 2007, 19, 934–949. [Google Scholar] [CrossRef]

	



Gauwin, O.; Niehren, J. Streamable Fragments of Forward XPath. In Proceedings of the International Conference on Implementation and Application of Automata, Blois, France, 13–16 July 2011; Lecture Notes in Computer Science; Markhoff, B.B., Caron, P., Champarnaud, J.M., Maurel, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6807, pp. 3–15. [Google Scholar] [CrossRef]

	



Benedikt, M.; Jeffrey, A.; Ley-Wild, R. Stream Firewalling of XML Constraints. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 10–12 June 2008; ACM-Press: New York, NY, USA, 2008; pp. 487–498. [Google Scholar]

	



Gauwin, O.; Niehren, J.; Tison, S. Earliest Query Answering for Deterministic Nested Word Automata. In Proceedings of the 17th International Symposium on Fundamentals of Computer Theory, Wroclaw, Poland, 2–4 September 2009; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5699, pp. 121–132. [Google Scholar]

	



Franceschet, M. XPathMark Performance Test. Available online: https://users.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html (accessed on 25 October 2020).

	



Debarbieux, D.; Gauwin, O.; Niehren, J.; Sebastian, T.; Zergaoui, M. Early nested word automata for XPath query answering on XML streams. Theor. Comput. Sci. 2015, 578, 100–125. [Google Scholar] [CrossRef]

	



Brüggemann-Klein, A. Regular Expressions into Finite Automata. Theor. Comput. Sci. 1993, 120, 197–213. [Google Scholar] [CrossRef]

	



Brüggemann-Klein, A.; Wood, D. One-Unambiguous Regular Languages. Inf. Comput. 1998, 142, 182–206. [Google Scholar] [CrossRef]

	



Carme, J.; Niehren, J.; Tommasi, M. Querying Unranked Trees with Stepwise Tree Automata. In Proceedings of the 19th International Conference on Rewriting Techniques and Applications, Paris, France, 26–28 June 2004; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3091, pp. 105–118. [Google Scholar]

	



Alur, R.; Kumar, V.; Madhusudan, P.; Viswanathan, M. Congruences for Visibly Pushdown Languages. In Automata, Languages and Programming, Proceedings of the 32nd International Colloquium, Lisbon, Portugal, 11–15 July 2005; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3580, pp. 1102–1114. [Google Scholar] [CrossRef]

	



Chervet, P.; Walukiewicz, I. Minimizing Variants of Visibly Pushdown Automata. In Mathematical Foundations of Computer Science 2007; Kučera, L., Kučera, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 135–146. [Google Scholar]

	



Gauwin, O.; Muscholl, A.; Raskin, M. Minimization of visibly pushdown automata is NP-complete. Log. Methods Comput. Sci. 2020, 16. [Google Scholar] [CrossRef]

	



Boneva, I.; Niehren, J.; Sakho, M. Nested Regular Expressions Can Be Compiled to Small Deterministic Nested Word Automata. In Computer Science—Theory and Applications, Proceedings of the 15th International Computer Science Symposium in Russia (CSR 2020), Yekaterinburg, Russia, 29 June–3 July 2020; Lecture Notes in Computer Science; Fernau, H., Ed.; Springer: Cham, Switzerland, 2020; Volume 12159, pp. 169–183. [Google Scholar] [CrossRef]

	



Gottlob, G.; Koch, C.; Pichler, R. The complexity of XPath query evaluation. In Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, San Diego, CA, USA, 9–12 June 2003; pp. 179–190. [Google Scholar]

	



Libkin, L.; Martens, W.; Vrgoč, D. Querying Graph Databases with XPath. In Proceedings of the 16th International Conference on Database Theory (ICDT’13), Genoa, Italy, 18–22 March 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 129–140. [Google Scholar] [CrossRef]

	



Fischer, M.J.; Ladner, R.E. Propositional Dynamic Logic of Regular Programs. J. Comput. Syst. Sci. 1979, 18, 194–211. [Google Scholar] [CrossRef]

	



Mozafari, B.; Zeng, K.; Zaniolo, C. High-performance complex event processing over XML streams. In Proceedings of the SIGMOD Conference, Scottsdale, AZ, USA, 20–24 May 2012; Candan, K.S., Chen, Y., Snodgrass, R.T., Gravano, L., Fuxman, A., Eds.; ACM: New York, NY, USA, 2012; pp. 253–264. [Google Scholar] [CrossRef]

	



Grez, A.; Riveros, C.; Ugarte, M. A Formal Framework for Complex Event Processing. In Proceedings of the 22nd International Conference on Database Theory (ICDT 2019), Lisbon, Portugal, 26–28 March 2019; Volume 127, pp. 5:1–5:18. [Google Scholar] [CrossRef]

	



Bozzelli, L.; Sánchez, C. Visibly Rational Expressions. Acta Inf. 2014, 51, 25–49. [Google Scholar] [CrossRef]

	



Gécseg, F.; Steinby, M. Tree Automata; Akadémiai Kiadó: Budapest, Hungary, 1984. [Google Scholar]

	



Scott, D.; de Bakker, J.W. A Theory of Programs; IBM: Vienna, Austria, 1969; Unpublished Manuscript. [Google Scholar]

	



Stockmeyer, L.J.; Meyer, A.R. Word Problems Requiring Exponential Time. In Proceedings of the 5th ACM Symposium on Theory of Computing, Austin, TX, USA, 30 April–2 May 1973; pp. 1–9. [Google Scholar]

	



Champavère, J.; Gilleron, R.; Lemay, A.; Niehren, J. Efficient Inclusion Checking for Deterministic Tree Automata and XML Schemas. Inf. Comput. 2009, 207, 1181–1208. [Google Scholar] [CrossRef]

	



Aho, A.V.; Lam, M.S.; Sethi, R.; Ullman, J.D. Compilers: Principles, Techniques, and Tools, 2nd ed.; Addison Wesley: Reading, MA, USA, 2006. [Google Scholar]

	



Arnold, A.; Niwiński, D. Complete lattices and fixed-point theorems. In Rudiments of μ-Calculus; Studies in Logic and the Foundations of Mathematics; Elsevier: Amsterdam, The Netherlands, 2001; Volume 146. [Google Scholar]

	



Martens, W.; Niehren, J. On the Minimization of XML-Schemas and Tree Automata for Unranked Trees. J. Comput. Syst. Sci. 2007, 73, 550–583. [Google Scholar] [CrossRef]

	



D’Antoni, L.; Alur, R. Symbolic Visibly Pushdown Automata. In Computer Aided Verification, Proceedings of the 26th International Conference (CAV, VSL 2014), Vienna, Austria, 18–22 July 2014; Lecture Notes in Computer Science; Biere, A., Bloem, R., Eds.; Springer: Cham, Switzerland, 2014; Volume 8559, pp. 209–225. [Google Scholar] [CrossRef]








[image: Algorithms 14 00068 g001 550] 





Figure 1. Nested word   〈 a · 〈 b 〉 · ε 〉 · c · 〈 d · 〈 ε 〉 〉   seen as a graph. 
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Figure 2. An Xml document. 
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Figure 3. The corresponding nested word. 
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Figure 4. The nested word of the x-marked Xml document from Figure 2. 






Figure 4. The nested word of the x-marked Xml document from Figure 2.



[image: Algorithms 14 00068 g004]







[image: Algorithms 14 00068 g005 550] 





Figure 5. XPath benchmark queries. 
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Figure 6. Nested word automaton   n w a ( c  h *   ( a + b )  )  . 
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Figure 7. The  NWA   T  maps top level positions to state 0 and nested positions to 1 or   1 ′  . 
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Figure 8. Automaton for the   〈  a *  〉   expression. 
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Figure 9. Wrong naive construction for   μ a . 〈  a *  〉  . 
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Figure 10. The multi-module  NWA  for   〈  a *  〉  . 
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Figure 11. The correctly adapted naive construction for   μ a . 〈  a *  〉  . 
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Figure 12. The size (#states) of the nested word automata ( NWAs ) for the benchmark nested regular expressions ( NREs ) and the automata derived thereof. 
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Figure 13. Stepwise hedge automaton   step ( c  h *   ( a + b )  )  : the part with the stepwise tree automaton is on the left and middle, and the Nfa part on the right. 
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Figure 14. Determinization of  SHA s. 
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Figure 15. The determinized  SHA    d e t ( step  ( c  h *   ( a + b )  )  )  . 
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Figure 16.  SHA  for   〈  a *  〉  . 
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Figure 17.  SHA  for   μ a . 〈  a *  〉  . 
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Figure 18. The  SHA s for the benchmark  NREs  and the automata derived thereof. 
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Figure 19. The single-entry  NWA    n w a ( step  ( c  h *   ( a + b )  )  )   obtained from the  SHA . 
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Figure 20. Deterministic  NWA :   n w a ( d e t  ( step  ( c  h *   ( a + b )  )  )  )  . 
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Figure 21. A  dSHA  for hedges over   Σ = { x , y }   with single occurrence of x. It is minimal in the class of multi-module  dSHA s. 
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Figure 22. An equivalent  dSHA  to that in Figure 21 that is minimal in the class of  dSHA s with equal tree and hedge initial states. 
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Figure 23. A single x-marked position. 
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Figure 24. Nested words of x-marked XML documents. 
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Figure 25. Optimized automata for derived stepwise automata compiled from  NREs . 
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Figure 26. Deterministic  NWAs  computed with optimizations for the XPath benchmark queries. Note that different  dNWAs  for the same query may recognize different languages, due to schema-based cleaning with respect to the Xml data model. Furthermore, our implementation of the minimization algorithm for the subclass of  dSHA s worked successfully only for  dSHA s with at most 200 states. 
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Figure 27. Deterministic  NWAs  for the queries   c  h n   ( a )    where   n = 0 , … , 9  : size (#states). There is no schema-based cleaning. Our implementation of the minimization algorithm was applied to all  dSHA  with at most 200 states, as it failed for larger  dSHA s. No minimization algorithm for subclasses of single-entry  dNWAs  was implemented. 
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