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Abstract: We consider the problem of determinizing and minimizing automata for nested words in
practice. For this we compile the nested regular expressions (NREs) from the usual XPath benchmark
to nested word automata (NWAs). The determinization of these NWAs, however, fails to produce
reasonably small automata. In the best case, huge deterministic NWAs are produced after few
hours, even for relatively small NREs of the benchmark. We propose a different approach to the
determinization of automata for nested words. For this, we introduce stepwise hedge automata (SHAs)
that generalize naturally on both (stepwise) tree automata and on finite word automata. We then
show how to determinize SHAs, yielding reasonably small deterministic automata for the NREs
from the XPath benchmark. The size of deterministic SHAs automata can be reduced further by a
novel minimization algorithm for a subclass of SHAs. In order to understand why the new approach
to determinization and minimization works so nicely, we investigate the relationship between
NWAs and SHAs further. Clearly, deterministic SHAs can be compiled to deterministic NWAs in
linear time, and conversely NWAs can be compiled to nondeterministic SHAs in polynomial time.
Therefore, we can use SHAs as intermediates for determinizing NWAs, while avoiding the huge size
increase with the usual determinization algorithm for NWAs. Notably, the NWAs obtained from the
SHAs perform bottom-up and left-to-right computations only, but no top-down computations. This
NWA behavior can be distinguished syntactically by the (weak) single-entry property, suggesting a
close relationship between SHAs and single-entry NWAs. In particular, it turns out that the usual
determinization algorithm for NWAs behaves well for single-entry NWAs, while it quickly explodes
without the single-entry property. Furthermore, it is known that the class of deterministic multi-
module single-entry NWAs enjoys unique minimization. The subclass of deterministic SHAs to which
our novel minimization algorithm applies is different though, in that we do not impose multiple
modules. As further optimizations for reducing the sizes of the constructed SHAs, we propose
schema-based cleaning and symbolic representations based on apply-else rules that can be maintained
by determinization. We implemented the optimizations and report the experimental results for the
automata constructed for the XPathMark benchmark.

Keywords: regular expressions; tree automata; nested words; hedges; logical queries; XPath

1. Introduction

Nested words are hierarchical structures that are omnipresent in computer science.
They were used to represent sequences of data trees, like XML or JSON documents, and to
analyze the call structure of recursive programs. The idea of nested words is to generalize
on both words and trees, resulting in sequences of unranked trees that are also known as
hedges. Otherwise, nested words can be obtained by enriching Dyck words with internal
letters, besides opening and closing parentheses. Furthermore, nested words are the
elements of the least set containing internal letters from a given alphabet, triples consisting
of an opening parenthesis, a nested word, and a closing parenthesis, and all sequences of
nested words. Last but not least, nested words can be seen as words over an alphabet with
internal letters, opening parentheses, and closing parentheses, under the conditions that
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the parenthesis are well nested, so that every opening parenthesis is properly closed and
every closing parenthesis properly opened.

From the viewpoint of formal language theory, a natural question is how to lift
the notions of finite automata and regular expressions, from words and trees to nested
words, while preserving their well-known relationships. Nested word automata (NWAs)
were heavily studied since the 1980s [1–4], under the name input-driven automata. They are
the same as visibly pushdown automata [5], pushdown forest automata [6], and streaming
tree automata [7]. NWAs can recognize the same languages of unranked trees as hedge
automata [8], a generalization of tree automata for ranked trees [9]. NWAs are often
defined as pushdown automata with visible stacks, meaning that exactly one symbol is
pushed when reading an opening parenthesis, and exactly one symbol is popped when
reading a closing parenthesis, while the stack is not used otherwise. Their main advantage
is a powerful notion of determinism, generalizing both over bottom-up and top-down
determinism of tree automata for ranked trees [2,3]. We note that general pushdown
automata do not permit determinization in contrast.

Regular expressions for nested words were proposed more recently by Hosoya and
Pierce [10] under the name of regular expression types. In the present article, we will call them
nested regular expressions (NREs) instead. Independently, more complex notions of nested
regular expressions were introduced [11,12] in order to deal with generalizations of nested
words with dangling opening and closing parentheses, which are not of interest to us.
It was already claimed in [10], that our simpler notion of NREs has the same expressiveness
as hedge automata [8,9], which in turn have the same expressiveness as NWAs [3]. However,
the question under which conditions NREs can be compiled to small deterministic NWAs
has not been studied. For classes of NREs for which deterministic NWAs can be computed
in polynomial time, we can decide language inclusion or equivalence in polynomial time
too. For other classes, these problems may not be feasible since language inclusion for
nondeterministic NWAs is EXP-complete.

Our concrete interest in the universality of deterministic NWAs is motivated by XML
stream processing: we want to compute the certain answers of a navigational XPath query
on an XML stream [13,14], i.e., those elements that are selected in all possible futures of
the stream. Whether an answer is certain is computationally hard, even for tiny syntactic
fragments of navigational XPath [14,15], but can be done in polynomial time for queries
defined by deterministic NWAs [16]. A natural question is, therefore, whether it is possible
to compile navigational XPath queries as in the usual benchmark [17] to deterministic
NWAs of reasonable size. Unfortunately, the existing compilers fail to do so [18], as they are
based on NWA determinization for dealing with disjunction, negation, and recursive steps.
Thereby, they produce huge deterministic automata even for very simple navigational
XPath queries from the benchmark, or do not terminate after some hours.

In this article, we consider NREs for defining queries on nested words. For benchmark-
ing with realistic example, we consider the navigational XPATH queries in the XPathMark
benchmark with only forwards axis, that we compiled to NREs of the same size up to a
constant factor. The question is then whether these NREs can be compiled to reasonably
small deterministic NWAs.

As a first approach, we distinguish a subclass of “deterministic” NREs that can be
compiled in polynomial time to deterministic NWAs by generalizing on Glushkov’s con-
struction of deterministic finite-state automata (DFAs) from “deterministic” regular ex-
pressions [19,20]. However, the NREs obtained by compilation from navigational XPath
queries are rarely deterministic, so neither are the NWAs compiled from them. Moreover,
as we cannot apply NWA determinization to them in practice as argued above, this first
approach has a much too low coverage to reach the objective. Therefore, we will report it
only at the end in Section 9.

For our second approach, we propose a novel variant of automata for nested words
that we call stepwise hedge automata (SHAs). Even though motivated by the wish to cre-
ate deterministic automata for the NREs of our benchmark, they are of general interest:
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they generalize naturally on both (stepwise) tree automata [21] and on finite word au-
tomata. In contrast to stepwise tree automata, SHAs can not only recognize unranked
trees, but also sequences thereof, i.e., hedges or nested words. Furthermore, SHAs can be
determinized in a bottom-up and left-to-right manner by combining in a natural manner
the determinization procedures for tree and word automata.

By adapting existing compilers for stepwise tree automata [21], SHAs can be compiled
to NWAs with the same language in linear time while preserving determinism. Conversely,
NWAs can be compiled to SHAs in polynomial time, but at the cost of introducing non-
determinism. By compiling NWAs to SHAs, determinizing the SHA, and compiling the
obtained deterministic SHA back to a deterministic NWA, we can determinize NWAs by
determinizing the corresponding SHAs. This alternative determinization algorithm for
NWAs is different from the usual determinization algorithm for NWAs [2,3,18]. Indeed,
it yields reasonably small deterministic NWAs for the NREs from the XPath benchmark.

Yet another alternative algorithm for determinizing NWAs can be obtained by compil-
ing NWAs to SHAs and back, and then determinizing the NWAs obtained in this manner.
When applied to back-and-forth converted NWAs, the usual NWA determinization algo-
rithm turns out to be well behaved: it produces deterministic NWAs of reasonable size for
all our benchmark NREs. This might be surprising, given that the same determinization
algorithm behaved so poorly for the non-converted NWAs that were obtained from the
benchmark NREs directly.

We contribute two further solutions for producing deterministic NWAs for our bench-
mark NREs. These are both based on a direct compiler from NREs to SHAs. We can then
determinize these SHAs, followed by compilation to deterministic NWAs. Otherwise, we
can first compile the SHAs to NWAs and then determinize these NWAs.

The next question is why the new determinization algorithms for NWAs that use
SHAs as intermediates work so nicely. In order to understand this, we need to investigate
the relationship between NWAs and SHAs more deeply. Clearly, the NWAs obtained
via SHAs do all their work in a bottom-up and left-to-right manner, and nothing when
moving top-down. We can characterize the subclass of NWAs with this restricted behavior
syntactically by the (weak) single-entry property: it requires that all opening rules of the
NWA go into into the same target state while popping the sources state onto the stack.
Note that our single-entry property is weaker than the (multi-module) single-entry property
studied previously [22–24], which in addition requires that the automaton can be split into
at least 2 modules, one for the top level and one for the nested level. The NWAs obtained
by compilation from SHAs all have the (weak) single-entry property (but not necessarily
multiple modules). Therefore, when compiling NWAs to SHAs and back, the resulting
NWAs also have the (weak) single-entry property. It seems that the usual determinization
algorithm from NWAs is well-behaved when applied to NWAs with the (weak) single-
entry property. The relationship between SHAs and (weak) single-entry NWAs seems
sufficiently close, so that their determinization algorithms seem to operate in somehow
similar manners.

It is known that the subclass of deterministic multi-module single-entry NWAs (also
called call-driven automata) enjoys unique minimization [22,23]. The separation of the
module for the top level from the module for the nested level can be obtained w.l.o.g.,
by building a product with the NWA with two hedge states that distinguishes the two
levels. In our application, minimization could thus be used to reduce the size of the
deterministic NWAs produced by our four algorithms for converting NREs, with the hope
to eventually obtain a unique outcome after minimization. However, as we will use
some symbolic representations for sets of rules, the uniqueness will hold only for the
non-symbolic counterpart. In any case, the number of states of the deterministic minimal
NWAs obtained for the same NRE could be expected to become unique.

Motivated by our application, we found it more relevant to minimize deterministic
SHAs rather than deterministic (weak) single-entry NWAs (despite of their close correspon-
dence). As for the class of deterministic (weak) single-entry NWAs, a restriction is needed
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for the class of deterministic SHAs to obtain unique minimization. We could have required
the existence of multiple modules as for multi-module single-entry NWAs. Instead, we
restrict ourselves to deterministic SHAs for which the initial states for trees and hedges co-
incide. We then show that minimization for such SHAs can be reduced to the minimization
of tree automata up to a novel encoding of hedges to binary trees.

We implemented all four algorithms for compiling our benchmark NREs to deter-
ministic NWAs and report the experimental results. We have also implemented the novel
minimization algorithm for SHAs with equal tree and hedge initial states, and used it in
our experiments. We propose two further optimization methods for reducing the sizes of
the constructed automata.

First, we introduce schema-based cleaning both for SHAs and NWAs. In our applica-
tion, the schema expresses the XML data model, stating that hedges must encode valid XML

documents. More generally, an automaton A can be cleaned relative to an automaton S
for the schema, if the language of interest is the intersection L(A) ∩ L(S) rather than L(A)
itself. The idea of schema-based cleaning is to keep only those transition rules of A that
are used to recognize some hedge of L(S). These transition rules can be computed from
the product of A and S. Note that schema-based cleaning may change the language of the
automaton. Only the intersection L(A) ∩ L(S) is preserved, not necessarily L(A).

Second, we propose a symbolic representations for SHAs based on apply-else rules.
They help to represent more compactly a large number of apply rules produced by the
determinization of SHAs. Before compiling SHAs to NWAs, however, we need to elim-
inate the apply-else rules. This is because we have not developed analogous symbolic
representations for NWAs so far. A second limitation is that we have not implemented any
minimization algorithm for NWAs at the time being.

The main improvement of this journal article compared with the conference ver-
sion [25] is the addition of the minimization algorithm for the subclass of SHAs with equal
tree and hedge initial states. Furthermore, we added the idea of schema-based cleaning and
the symbolic representations for SHAs by apply-else rules. The experimental results were
enhanced with minimization, symbolic representations of rules, and schema-based cleaning.
All the nested regular expressions generated for the XPathMark benchmark queries that
we consider, as well as their corresponding automata—when we could produce them—can
be found at http://researchers.lille.inria.fr/niehren/complementary-material (accessed on
1 February 2021).

Related Work. In the present article, we restrict ourselves to nested words over signatures
with a single opening parenthesis, a single closing parenthesis, and possibly many internal
letters a, b. This permits us to simplify the presentation of nested regular expressions,
the notions of NWAs and SHAs, their forth and back compilers, as well as the determiniza-
tion algorithms. Note that any multi-module NWA for such signatures must have exactly
2 modules. From an application perspective, multiple parentheses can be encoded by using
internal letters, that is a named opening parenthesis 〈a by the word a · 〈 and a named
closing parenthesis 〉b by the word b · 〉. When encoding XML documents as nested words,
such some encoding is needed anyway in order to deal with the complex information in
XML tags, and also to provide symbolic representations with else rules that are able to deal
with infinite signatures.

For the minimization of deterministic NWAs, general signatures with multiple paren-
theses raise additional problems. Chervet and Walukiewicz [23] solved such problems
by reducing the minimization for expanded CDAs to the minimization of CDAs. Gauwin,
Muscholl, and Raskin [24] showed that the minimization for deterministic NWAs is NP-
hard in the case with general signatures. Their approach is based on a reduction from the
problem of minimal immersion for sequences of DFAs, for which they construct NWAs
with an unbounded number of opening parenthesis and an unbounded number of entry
states. Weak single-entry NWAs in our setting do not permit this. Neither do NWAs over
fixed general signatures with a finite number of opening parenthesis.

http://researchers.lille.inria.fr/niehren/complementary-material
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Navigational XPath queries on XML documents can be formalized in the language Cor-
eXPath [26], or more generally by nested regular path queries [27] on data trees. Nested reg-
ular path queries were introduced earlier under the name of the propositional dynamic
logic (PDL) in the 1970s [28], where they are applied to labeled graphs that generalize on
data trees.

As certain query answering for XPath was considered difficult, the currently existing
approaches to XPath query evaluation on XML streams [13,18] either approximate certain
query answers based on nondeterministic machines or restrict the queries so that answer
certainty can be decided without latency [15,29]. This also holds for recent streaming
algorithms on words without nesting in the context of complex event processing [30].

2. Nested Words

Nested words are words with parentheses that are well nested. They can be identified
with hedges, that is, sequences of internal symbols and unranked trees.

Nested words are constructed with opening and closing parentheses, respectively, 〈
and 〉. An unranked alphabet Σ is a possibly infinite set of so-called “internal” symbols,
that does not contain the two parentheses. The set of nested words over Σ is denoted NΣ
and is defined by the following abstract syntax:

h, h′ ∈ NΣ ::= ε | a | 〈h〉 | h · h′ where a ∈ Σ

The empty nested word is denoted by ε and assumed to be the neutral element of the
composition operator ε · h = h = h · ε, which furthermore is assumed to be associative, i.e.,
h1 · (h2 · h3) = (h1 · h2) · h3.

Nested words can be identified with hedges, i.e., words of trees and internal symbols.
Seen as a graph, the inner nodes are labeled by the tree constructor 〈〉 and the leaves by
symbols in Σ or the tree constructor. For instance, 〈a · 〈b〉 · ε〉 · c · 〈d · 〈ε〉〉 corresponds to
the hedge in Figure 1. A nested word of type tree has the form 〈h〉.

〈〉

a 〈〉

b

c 〈〉

d 〈〉

Figure 1. Nested word〈a · 〈b〉 · ε〉 · c · 〈d · 〈ε〉〉 seen as a graph.

Variants. Our notion of nested words accepts only well-nested words without dangling
opening or closing parentheses in contrast to others [3,5]. This will lead to simpler notion
of regular expressions, avoiding the more complex operators as with visibly rational expres-
sions [12,31]. A less important difference is that we do not support labeled parentheses.

Labeled unranked trees. Labeled parentheses can be simulated by using internal letters.
For instance, the labeled tree a(b(), c()) can be represented by the nested word of type
tree 〈a · 〈b〉 · 〈c〉〉. In this way, the labeled tree a() is represented by the nested word
〈a〉, which is of type tree (while the internal letter a alone is not). Unranked sequences
of subtrees, often called hedges and sometimes forests, can be composed by using the
sequence operator.

XML Documents. Our notion of nested words is sufficiently powerful to express gen-
eral XML documents. An example of an XML document is given in Figure 2 and the
representing nested word in Figure 3.
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〈〉

a 〈〉

b

c 〈〉

d 〈〉

Figure 1. Nested word〈a · 〈b〉 · ε〉 · c · 〈d · 〈ε〉〉 seen as a graph.

〈site〉
〈closed_auctions〉
〈closed_auction〉
〈date〉01/01/2000〈/date〉
〈keyword〉wine〈keyword〉

〈/closed_auction〉
〈/closed_auctions〉

〈/site〉
Figure 2. An XML document.

〈doc·
〈elem · site·
〈elem · closed_auctions·
〈elem · closed_auction·
〈elem · date · 0 · 1 · / · 0 · 1 · / · 2 · 0 · 0 · 0〉
〈elem · keyword · w · i · n · e · 〉

〉
〉

〉
〉

Figure 3. The corresponding nested word.
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We use the names of XML elements as labels of the nested word, as well as the letters
of UTF8 for the string data values. Further labels such as doc and elem are added to express
the types of the XML data model document and element, respectively.

When it comes to querying for nodes in XML documents, we will be interested in
nested words encoding XML documents, in which a unique node is marked. We will use
the label x to mark the selected node and the label ¬x for all others. When marking the
date in the XML document of Figure 2, we obtain the nested word in Figure 4.
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3. Nested Regular Expressions

We present nested regular expressions (NREs), which were introduced under the name
regular expression types in the context of XDuce [10] up to minor details. Note that similar
nested regular expressions for ranked trees are folklore in the context of tree automata [32].

3.1. Syntax and Semantics

Let the alphabet Σ be a set. An NRE over Σ is a term describing a language of nested
words. It has the following abstract syntax where a ∈ Σ:

E, E′ ::= ε | a | _ | ∅ | E · E′ | E + E′ | E&E′ | E∗ | E | 〈E〉 | µa.E

The µa.E expressions are the same as in µ-calculus [33], except that we restrict them
such that all occurrences of a in E are nested below parentheses. Otherwise, nonregular
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languages could be defined such as with µa. (b · a · c + ε) whose language would be
{bn · cn | n ∈ N}. We also forbid intersections and complements in expression µa.E on all
paths between the µa-operator and the occurrences of a in E that are bound by this operator.
The expressions µa.E allow for vertical recursion, while the expressions with the Kleene
star E∗ support horizontal recursion.

Our syntax allows for conjunctions E&E′ and negations E, which are well known
to not add expressiveness if Σ is finite. They are still relevant from the viewpoints of
modeling, and for the treatment of infinite signatures. This comes at the price of increasing
the complexity, as for the well-known case of words [34].

For infinite signatures, we can define for any finite subset Σ′ of labels the language
of single-letter words Σ \ Σ′ by some NRE. This can be seen as follows. If Σ′ = ∅, then
the expression _ does the job: it matches exactly the set of all labels in Σ. Moreover, if Σ′

is nonempty then we can use negation. For instance, if Σ′ = {a, b} then the expression
a + b&_ describes the language Σ \ Σ′.

The sets of free and bound letters fn(E) and bn(E) are defined as usual. The only
binder µa.E binds the symbol a with scope E. Note that f n(_) = ∅.

There are three differences with respect to the regular expression types from [10].
First, our NREs treat labels as internal symbols instead of labels of parentheses. Second,
they provide recursion through the µ-operator instead of using recursive equation systems.
Third, conjunctions and general negations are not considered there.

Any NRE E describes a language L(E) of nested words that we define by induction on
the structure of E as follows: NΣ is the set of nested words over Σ, as defined in Section 2.

L(ε) = {ε} L(a) = {a} L(_) = Σ
L(E · E′) = L(E) · L(E′) L(E) = NΣ \ L(E)
L(E + E′) = L(E) ∪ L(E′) L(E&E′) = L(E) ∩ L(E′)
L(〈E〉) = {〈h〉 | h ∈ L(E)} L(µa.E) = ∪n≥0L(µna.E)
L(E∗) = L(E)∗ L(∅) = ∅

For all expressions—E, E1, and E2, the notation E[E1/E2] stands for the expression E
where all the occurrences of E1 have been replaced by E2. The semantics of a µ-operator is
then defined using the shortcuts µ0a.E = E[a/∅] and µna.E = E[a/µn−1a.E] for all n ≥ 1.
In particular L(µa._) = L(_) = Σ, so that a ∈ L(µa._). The semantics of the complement
expression L(E) is the complement of L(E) in the set of all nested words, that is NΣ \ L(E).

3.2. XPATH Example

We now show how to express navigational XPATH queries by NREs that are restricted
to forward axis. The idea is to adapt the spirit of a generate-and-test algorithm for query
answering. The generation produces a nested word from XML documents by guessing a
single node and marking it by x. This node is a candidate for a query answer that is to be
tested. The test is done by a NRE.

For expressing XPATH queries with child and descendant-or-self axes we will use
the following NREs where a 6∈ fn(E):

T =df µa. (〈a〉+ _)∗

ch(E) =df T · 〈E〉 · T
ch∗(E) =df µa. (E + ch(a))
ch+(E) =df µa. (ch(E) + ch(a))

For instance, consider the XPATH query A5 from the XPathMark benchmark [17]:

/site/closed_auctions/closed_auction[descendant::keyword]/date
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Applied to the above XML document, it selects all date children of closed_auctions
nodes that contain at least one keyword descendant. Query A5 can be compiled to the
following NRE, which will accept the nested word in Figure 4 in particular:

〈doc · _ · 〈elem · site · _ · ch(elem · closed_auctions · _ · ch(
elem · closed_auction · _ · (ch+(elem · keyword · _ · T) & ch(elem · date · x · T))))〉〉

The only label that the expression _ may match on a document that is properly
annotated with the variable x will be the letter ¬x ∈ Σ. The label x is annotated to the
marked node, which is tested for being selected by the query. The label ¬x is annotated to
all nodes except a unique x-marked node.

Note also that the µ-operator of the ch+(. . .)-expression expresses the recursion of the
descendant axis. Furthermore, the conjunction permits us to connect the main path of A5
with its only filter.

3.3. XPath Benchmark

For testing NREs, we rely on the usual XPathMark benchmark [17]. We restrict our-
selves to navigational path queries with forward axis: child, descendant, and following-
sibling. We notice that the following axis is excluded in contrast to following-sibling,
as following is not strictly forwards. We can also admit path composition and filters with
conjunction, disjunction, and negation.

The XPATH queries of the benchmark satisfying these restrictions are the queries A1,
. . ., A8 and B3 given in Figure 5. We developed a more general compiler from navigational
forward XPATH queries to NREs, which yields the NREs in Figure A1 of the Appendix B
for the benchmark XPATH queries. The NREs for A1–A3 do have neither conjunctions nor
negations, while the queries A4–A8 contain filters, which are mapped to conjunctions in
NREs. The compiler uses the µ-operator to capture the recursion of descendant axis as in
A2, A3, and A5. Furthermore, nondeterminism is introduced by disjunctions in filters as in
A7 and A8. Conjunction in filters appears in A6 which is mapped to conjunctions in NREs
too. A detailed description of this compiler is not in the scope of the present article though.
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A1: /site/closed_auctions/closed_auction/annotation/description/text
/keyword

A2: //closed_auction//keyword
A3: /site/closed_auctions/closed_auction//keyword
A4: /site/closed_auctions/closed_auction

[annotation/description/text/keyword]/date
A5: /site/closed_auctions/closed_auction[descendant::keyword]/date
A6: /site/people/person[profile/gender and profile/age]/name
A7: /site/people/person[phone or homepage]/name
A8: /site/people/person

[address and (phone or homepage) and (creditcard or profile)]
/name

B3: /site/open_auctions/open_auction/bidder[following-sibling::bidder]

Figure 5. XPath benchmark queries.
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symbol when reading a closing parenthesis, and do not alter or inspect the stack otherwise.
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Our NWAs are symbolic, in that they come with else rules, i.e elements of (q, q′) ∈ _∆ that we will
denote by q _−→ q′, for dealing with large or infinite alphabets.

An example for an NWA is given in a graphical syntax in Figure 6. Tree states are drawn in circles
that are filled in light gray q , while hedge states are in unfilled circles q . Initial states are drawn285

Figure 5. XPath benchmark queries.

4. Nested Word Automata

Nested word automata (NWAs) are pushdown automata reading nested words, whose
stacks are visible: they push a single stack symbol when reading an opening parenthesis,
pop a single stack symbol when reading a closing parenthesis, and do not alter or inspect
the stack otherwise.

Definition 1. An NWA is a tuple A = (Qh, Qt, Σ, Γ, ∆, I, F) consisting of a possibly infinite set
Σ of internal symbols; finite sets Qh and Qt of states of type hedge and tree, respectively; sets of
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initial and final states I, F ⊆ Qh; a finite set Γ of stack symbols; and a finite set ∆ of transition rules
of the forms:

hedge rules a∆, _∆, ε∆ ⊆ Qh ×Qh where a ∈ Σ
opening rules 〈∆

γ ⊆ Qh ×Qh where γ ∈ Γ
tree rules T∆ ⊆ Qh ×Qt

closing rules 〉∆
γ ⊆ Qt ×Qh

Our NWAs are symbolic, in that they come with else rules, i.e., elements of (q, q′) ∈ _∆

that we will denote by q _−→ q′, for dealing with large or infinite alphabets.
An example for an NWA is given in a graphical syntax in Figure 6. Tree states are

drawn in circles that are filled in light gray q , while hedge states are in unfilled circles
q . Initial states are drawn as→ q and final states as q . Hedge rules that have the form

(q1, q2) ∈ o∆ where o ∈ Σ ∪ {_, ε} are denoted by q1
o−→ q2, while any tree rule (q1, q2) ∈ T∆

is denoted q1 −→ q2. Opening rules (q1, q2) ∈ 〈∆
γ are represented as q1

↓γ
−−−� q2 and closing

rules (q1, q2) ∈ 〉∆
γ as q1

↑γ
−−−� q2.

Figure 6. Nested word automaton nwa(ch∗(a + b)).

Our notion of NWAs supports factorization in the spirit of the work in [35]. It is
obtained by distinguishing two types of states, q ∈ Qh and p ∈ Qt, and adding explicit
type coercion rules q −→ p. Semantically, both kinds of states could be merged when
replacing the type coercion rules by the epsilon rule q ε−→ p, but at the cost of introducing
additional nondeterminism. This may lead to quadratically larger deterministic automata,
as we will illustrate at the NWA in Figure 20.

The language of nested words between two states q1, q2 ∈ Qh is defined as the least
language such that

Lq1,q2(∆) = {ε | if q1 = q2 or q1
ε−→ q2 ∈ ∆} ∪ ⋃

q3∈Qh

Lq1,q3(∆) · Lq3,q2(∆)

∪ {a | if q1
a−→ q2 ∈ ∆ or (q1

_−→ q2 ∈ ∆ and ¬∃q′2. q1
a−→ q′2 ∈ ∆)}

∪ {〈h〉 | ∃q′1, q′2 ∈ Qh.∃q3 ∈ Qt.∃γ ∈ Γ. q1
↓γ
−−−� q′1, h ∈ Lq′1,q′2

(∆),

q′2 −→ q3 ∈ ∆ and q3
↑γ
−−−� q2 ∈ ∆}.

The language of the NWA is then L(A) =
⋃

q1∈I,q2∈F
Lq1,q2(∆).

4.1. Determinization of NWAs

Determinization for NWAs was first studied by von Braunmühl and Verbeek [2] in
the 1980s, where NWAs are named input-driven pushdown automata. We notice that the
determinization algorithm was published only in the journal version of this paper, but not
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in the conference version. Later on, the same algorithm was rediscovered in the context of
visibly pushdown automata and republished for nested word automata.

Definition 2. An NWA A is called deterministic or equivalently a dNWA if

• I contains at most one element;
• there is no epsilon rule, i.e., ε∆ = ∅,
• a∆ and _∆ are partial functions from Qh to Qh for all a ∈ Σ, and T∆ is a partial function from

Qh to Qt;
• for all q ∈ Qh and γ ∈ Γ there exists a most one q′ ∈ Qh such that q′ ∈ 〈∆

γ ; and

• 〉∆
γ is a partial function from Qt to Qh for all γ ∈ Γ.

Proposition 1 (von Braunmühl and Verbeek [2]). A NWA with n states can be determinized in
time O(2n2

).

Many of our results are based on the determinization algorithm going back to von
Braunmühl and Verbeek. For self-containedness, we recall the version of this algorithm that
we will use in the Appendix A. For illustrations, the determinization of the NWA in Figure 6
is also presented here too, see Figure A2. It has size 271 while the nondeterministic NWA
has size 39 (12 states + 2 letters + 3 stack symbols + 22 rules). The blow-up is even worse in
general as our experimental results will show and as noticed earlier by [18].

4.2. Multi-Module NWAs

Multi-module NWAs will play a prominent role for our NWA constructions and are
relevant for minimization [23]. For signatures with a single opening parenthesis, each multi-
module NWAs has exactly two modules, one for the top level and one for the nested level.

We can define multi-module NWAs based on the natural notion of homomorphisms
for NWAs. A homomorphism from an NWA A to an NWA A′ with the same signature is
a triple of functions (αh : Qh → Q′h, αt : Qt → Q′t, β : Γ → Γ′) that maps all concepts of A
to the corresponding concepts of A′. These concepts are hedge initial states, final states,
opening, closing, internal, and tree transitions. We do not enforce the preservation of
epsilon rules by homomorphisms.

Definition 3. A multi-module NWA A is an NWA for which there exists a homomorphism from
A to the NWA T in Figure 7.

0 1

1′

↓ γ0
_

↓ γ1
↑ γ1
_

↑ γ0

Figure 7. The NWA T maps top level positions to state 0 and nested positions to 1 or 1′.

The NWA T evaluates all top level positions of a nested word to state 0: all those
positions that are not between parentheses. All nested positions are evaluated to state 1.
The homomorphism of a multi-module NWA A to T thus partitions the states of A between
those that can be assigned to top level positions, and the others that can be assigned to
nested positions.

4.3. Compilation of NREs to NWAs

We next discuss a compiler from NREs E to NWAs nwa(E). This compiler extends
on the McNaughton–Yamada–Thompson algorithm [36] for regular expressions, which
introduces epsilon edges for constructing the automata of composition E · E′.



Algorithms 2021, 14, 68 11 of 32

Theorem 1. For any NRE E, we can construct an NWA A such that L(A) = L(E). If E contains
neither conjunctions nor negations, then the construction is in time O(|E|).

Proof sketch. Conjunctions E&E′ are compiled to products of automata, so repeated con-
junctions may lead to an exponential blow up. Negations E are computed by complement-
ing automata based on determinization. Each complementation may lead to an exponential
blow-up, so when this is repeated, the construction may become non-elementary.

For expressions without conjunction and negation, no such blow-up may arise.
As stated by the theorem, we have to show that expressions can be compiled in linear time.

Case E = E′ · E′′: We use the McNaughton–Yamada–Thompson algorithm for composing
the NWAs of nwa(E′) and nwa(E′′).

Case E = 〈E′〉: Let Q′h, Q′t, and Γ′ be, respectively, the set of hedge states, tree states, and
stack symbols of nwa(E′). We consider new hedge states qi and q f that are not in
Q′h, a new tree state p not in Q′t and a new stack symbol γ not in Γ′. Then, nwa(E) is

constructed by adding to nwa(E′) opening rules qi
↓γ
−−−� q for all the initial states q

of nwa(E′), tree rules q′ −→ p for all the final states q′ of nwa(E′) and a closing rule

p
↑γ
−−−� q f . Furthermore, we set qi as the only initial state of nwa(E), and q f as its sole

final state.

Case E = µa.E′: Special care has to be given to repeat expression µa.E. First of all, the naive
compilation approach for these expression turns out to be wrong. Second, fixing the
problem in the simplest possible manner does not lead to a linear time algorithm.

Note that we can assume w.l.o.g. that a occurs at most once in E by using the
golden lemma of the µ calculus [37], stating for all names a1, . . . , an and expressions
E′′ in which a1, . . . , an can appear free that µa1. . . . .µan. E′′ ≡ µa.E′′[a1/a, . . . , an/a].
Our construction guarantees that all transitions of the form q a−→ q′ in nwa(E) will
start with the same state q. The wrong naive construction would remove the tran-
sitions q a−→ q′ from nwa(E) and add ε-rules from q to all the initial states of nwa(E),
and from all final states of nwa(E) to q′. Unfortunately, the construction is not correct.
For illustration, we consider the NRE E = µa.〈a∗〉. The reader should be warned
that constructing an NWA for E is less trivial than it might seem at first sight. One has
to start from the NWA for 〈a∗〉 which is given in Figure 8. Simply adding epsilon
edges to capture the operator µa will not work though. It will lead to the wrong
automaton in Figure 9. This automaton will wrongly accept the hedge 〈〉〈〉, as this
hedge does not belong to L(E).

If the NWA for E is multi-module, then the naive construction of compiling µa.E can
be made correct. Therefore, the simplest fix is to make the NWA multi-moduled,
before applying the naive construction. This can be achieved by typing the states
of the automaton, by states of the NWA T in Figure 7. The added types yield the
homomorphism of the constructed automaton to T .

The naive algorithm is then adapted as follows. Let P be the multi-module NWA
obtained from the product of nwa(E) and T . Note that we keep only the accessible
top level states (type 0), but all nested states (type 1). In our example, this yields the
NWA in Figure 10. We then remove transition (q, 1) a−→ (q′, 1) and add ε-rules from
state (q, 1) to all states in I × {1}, and from all states in F× {1} to (q′, 2), where I and
F are, respectively, the set of initial and final states of nwa(E). Then, P recognizes
L(µa.E). The result obtained in the example is shown in Figure 11.

The algorithm described so far makes the NWA multi-moduled before compiling a
µ-operator. For this, two copies of all states are introduced. This, however, could lead
to an exponential construction if multiple µ-operators are nested. This problem can
be avoided by preserving multi-moduledness as an invariant. Whenever a new state
is created, it is created twice: once for the top level and once for the nested level.
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This information is maintained by typing the states, so that no further copies of the
same state are produced later on.

q0 q1 q2 q3
↓ γ

a
↑ γ

Figure 8. Automaton for the 〈a∗〉 expression.

q0 q1 q2 q3
↓ γ ↑ γ

ε
ε

Figure 9. Wrong naive construction for µa.〈a∗〉.

(q0, 1) (q1, 1) (q2, 1′ ) (q3, 1)

(q0, 0) (q3, 0)

↓ (γ, γ1) ↑ (γ, γ1)

a

↓ (γ, γ0) ↑ (γ, γ0)

Figure 10. The multi-module NWA for 〈a∗〉.

(q0, 1) (q1, 1) (q2, 1′ ) (q3, 1)

(q0, 0) (q3, 0)

↓ (γ, γ1) ↑ (γ, γ1)

ε

ε

↓ (γ, γ0) ↑ (γ, γ0)

Figure 11. The correctly adapted naive construction for µa.〈a∗〉.

We omit the correctness proof of this construction.

4.4. Experimental Results Starting with the NWA Compiler

In the first two column of Figure 12, we report the sizes of the NWAs obtained from
NREs by our compiler, and the size of the deterministic NWAs produced thereof. For each
automaton, we give its total size and in parentheses the number of states.
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nwa(.) det(nwa(.)) step(nwa(.)) det(nwa(step(nwa(.)))) nwa(det(step(nwa(.))))

A1 221 (68) — 231 (88) 398 (37) 409 (37)

A2 185 (49) 362,600 (6782) 224 (81) 4105 (148) 1659 (127)

A3 189 (54) 318,704 (8216) 213 (79) 907 (62) 635 (56)

A4 625 (193) — 414 (159) 487 (42) 499 (42

A5 486 (135) — 516 (190) 1192 (73) 868 (67)

A6 2170 (653) — 1005 (391) 548 (45) 561 (45)

A7 434 (135) — 378 (146) 468 (41) 480 (41)

A8 10,597 (3127) — 21,848 (7022) — —

B3 253 (77) — 239 (91) 423 (38) 407 (37)

Figure 12. The size (#states) of the NWAs for the benchmark NREs and the automata derived thereof.

4.4. Experimental Results Starting with the NWA Compiler

In the first two column of Figure 12, we report the sizes of the NWAs obtained from NREs by our
compiler, and the size of the deterministic NWAs produced thereof. For each automaton we give its
total size and in parentheses the number of states.385

The sizes of the nondeterministic NWAs produced by the compiler for the NREs for A1-A8 and
B3 are given in column nwa(.) of Figure 12. Note that the NWAs are cleaned so that only accessible
and co-accessible states remain. The sizes of the nondeterministic NWAs are acceptable for all NREs,
except for A8 for which the NWA has more than 3000 states and an overall size greater than 10000.
This can be partially explained by the fact that the NRE for A8 contains 3 conjunctions (1 for the filter390

and 2 for the conjunctions in the filter). But still, the number of states remains surprising.
The determinized NWAs are given in column det(nwa(.)). It turns out that only A2 and A3 could

be determinized successfully with some few hours of computation time on a standard laptop. But
even in the successful cases, the resulting deterministic NWAs are simply huge. This confirms similar
problems first noticed in [18] and not solved since then.395

The remaining columns of Figure 12 based on the back-and-forth compiler from SHAs to NWAs
from the following Section 6. They show that better determinization algorithms can indeed be
obtained, yielding NWAs of acceptable size for all benchmark queries, with the exception of A8. The
idea of det(nwa(step(nwa(.))) is to compile the NWAs obtained from the NREs to stepwise hedge
automata and back before applying the above algorithm for NWAs. This might be surprising, since400

this determinization algorithm failed for the original NWAs, while it now proves successful on the
forth-and-back transformed NWAs.

5. Stepwise Hedge Automata

We propose SHAs as an extension of stepwise tree automata [21] that allows to recognize not only
unranked trees but also hedges. We avoid more classical hedge automata from [9] that were already405

introduced in 1967 by Thatcher [8], since their notion of determinism is problematic. For instance it
makes unique minimization fail [38] and universality hard.

Our notion of SHAs will be symbolic in using else rules, and factorized in the sense of [35]: there
are two types of states for hedges and trees and an operator for explicit type coercion. We also propose
a novel treatment of internal letters inspired by nested word automata, so that SHAs generalize both410

on stepwise tree automata and on NFAs.

Definition 4. A SHA is a tuple A = (Qh, Qt, Σ, ∆, I, F) such that Qt and Qh are finite sets of states of two
types t for tree and respectively h for hedge, Σ an alphabet of internal letters (that may be infinite), I, F ⊆ Qh

Figure 12. The size (#states) of the nested word automata (NWAs) for the benchmark nested regular
expressions (NREs) and the automata derived thereof.

The sizes of the nondeterministic NWAs produced by the compiler for the NREs for A1–
A8 and B3 are given in column nwa(.) of Figure 12. Note that the NWAs are cleaned so that
only accessible and co-accessible states remain. The sizes of the nondeterministic NWAs
are acceptable for all NREs, except for A8, for which the NWA has more than 3000 states
and an overall size greater than 10, 000. This can be partially explained by the fact that the
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NRE for A8 contains three conjunctions (one for the filter and two for the conjunctions in
the filter). Still, the number of states remains surprising.

The determinized NWAs are given in column det(nwa(.)). It turns out that only A2
and A3 could be determinized successfully with some few hours of computation time
on a standard laptop. However, even in the successful cases, the resulting deterministic
NWAs are simply huge. This confirms similar problems first noticed in [18] and not solved
since then.

The remaining columns of Figure 12 based on the back-and-forth compiler from
SHAs to NWAs from the following Section 6. They show that better determinization al-
gorithms can indeed be obtained, yielding NWAs of acceptable size for all benchmark
queries, with the exception of A8. The idea of det(nwa(step(nwa(.))) is to compile the
NWAs obtained from the NREs to stepwise hedge automata and back before applying
the above algorithm for NWAs. This might be surprising, as this determinization algo-
rithm failed for the original NWAs, while it now proves successful on the forth-and-back
transformed NWAs.

5. Stepwise Hedge Automata

We propose SHAs as an extension of stepwise tree automata [21] that allows to
recognize not only unranked trees but also hedges. We avoid more classical hedge au-
tomata from [9] that were already introduced in 1967 by Thatcher [8], as their notion
of determinism is problematic. For instance, it makes unique minimization fail [38] and
universality hard.

Our notion of SHAs will be symbolic in using else rules, and factorized as in [35]:
there are two types of states for hedges and trees and an operator for explicit type coercion.
We also propose a novel treatment of internal letters inspired by nested word automata, so
that SHAs generalize both on stepwise tree automata and on NFAs.

Definition 4. A SHA is a tuple A = (Qh, Qt, Σ, ∆, I, F) such that Qt and Qh are finite sets of
states of two types: t for tree and h for hedge, respectively; Σ an alphabet of internal letters (that
may be infinite); I, F ⊆ Qh are subsets of hedge initial and final states, respectively; and ∆ is a finite
set of transition rules such that for all q ∈ Qt and a ∈ Σ:

hedge rules q∆, a∆, _∆, ε∆ ⊆ Qh ×Qh
tree final rules T∆ ⊆ Qh ×Qt

tree initial states 〈〉∆ ⊆ Qh

An example for a SHA is given in graphical syntax in Figure 13. It recognizes all
hedges that are either just a or b or contain some tree node that contains either just a or b.
In the graphical syntax, the states of type tree q ∈ Qt are drawn in circles filled in light gray
q , while the states of type hedge q′ ∈ Qh are drawn in unfilled circles q′ . The right part

of the graph is an NFA which uses tree states as additional edge labels, while the left part is
a stepwise tree automaton that defines the tree languages of these tree states.

Figure 13. Stepwise hedge automaton step(ch∗(a + b)): the part with the stepwise tree automaton is
on the left and middle, and the NFA part on the right.

Let ∆h be the restriction of ∆ to the hedge rules. Then, (Qh, Σ ] Qt, ∆h, I, F) is a
standard NFA with ε-rules, which is symbolic [39] in providing else rules for dealing with
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large or infinite alphabets in addition. Therefore, we denote the hedge initial states q ∈ I

by h−→ q and the final states q ∈ F by q . A rule with an internal letter (q1, q2) ∈ a∆ is

denoted by q1
a−→ q2 ∈ ∆ stating that a hedge in state q1 can be extended by the internal

letter a leading to a hedge in state q2. Similarly, an epsilon rule (q1, q2) ∈ ε∆ is denoted by
q1

ε−→ q2, and an else rule (q1, q2) ∈ _∆ is denoted by q1
_−→ q2. In the same spirit, a hedge

rule (q1, q2) ∈ q∆—also called apply rule—is denoted by q1
q
−−−� q2 ∈ ∆, stating that a

hedge in state q1 can be extended by a tree in state q leading to a hedge in state q2.

A tree initial state q ∈ 〈〉∆ is graphically denoted by t−→ q and a tree final rule

(q1, q2) ∈ T∆ by q1 −→ q2. Intuitively, a tree 〈h〉 can be evaluated to state q if h can
be evaluated starting with some tree initial state q1 ∈ 〈〉∆ to some state q2 such that
q2 −→ q ∈ ∆. More formally, the hedge languages Lq1,q2(A) between any two hedge
states q1, q2 ∈ Qh are defined as

Lq1,q2(A) = {ε | if q1 = q2 or q1
ε−→ q2 ∈ ∆} ∪ ⋃

q3∈Qh

Lq1,q3(A) · Lq3,q2(A)

∪ {a | if q1
a−→ q2 ∈ ∆ or (q1

_−→ q2 ∈ ∆ and ¬∃q′2. q1
a−→ q′2 ∈ ∆)}

∪ ⋃
q1

q−−−�q2∈∆

Lq(A)

This definition is mutually recursive with the definition of the tree languages Lq(A) of all
tree states q ∈ Qt:

Lq(A) = {〈h〉 | t−→q1 ∈ ∆, h ∈ Lq1,q2(A), q2 −→ q ∈ ∆}

The hedge language L(A) that is recognized by the automaton is
⋃

q1∈I,q2∈F
Lq1,q2(S). The

rules of standard bottom-up tree automata have the form a(q1, . . . , qn) → q where a is a

symbol of arity n. With SHAs, this rule can be encoded by the sequence t−→p0
a−→ p1

q1−−−�
. . .

qn−−−� pn −→ q where the states q1, . . . , qn, q are all tree states, and p0, . . . , pn new
hedge states.

5.1. Determinization of SHAs

We formalize the notion of determinism for stepwise hedge automata and show how
determinization works.

Definition 5. A SHA (Qh, Qt, Σ, ∆, I, F) is deterministic or equivalently a dSHA, if it satisfies
the following conditions:

• I contains at most one element;
• 〈〉∆ contains at most one element;
• there is no epsilon transition, i.e., ε∆ = ∅;
• a∆, q∆, _∆ are partial functions from Qh to Qh for all a ∈ Σ and q ∈ Qt; and
• T∆ is a partial function from Qh to Qt.

Proposition 2. A SHA of size n can be made deterministic in time O(2n) while preserving the
hedge language.

Proof. The determinization procedure for SHAs combines the determinization algorithms
of word and tree automata in the natural manner, while eliminating epsilon transitions.
Let ε∆∗ be the reflexive and transitive closure of ε∆, and for any subset Q ⊆ Qh ∪ Qt
let ε∆∗(Q) =

⋃
q∈Q

ε∆∗(q). Given a SHA A = (Qh, Qt, Σ, ∆, I, F), we define an equivalent

deterministic SHA det(A) = (Qdet
h , Qdet

t , Σ, ∆det, Idet, Fdet) such that Qdet
h = 2Qh , Qdet

t = 2Qt ,
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Idet = {ε∆∗(I)} and Fdet = {Q′ ⊆ Qh | Q′ ∩ F 6= ∅}. There is a unique tree initial state in

〈〉∆det
= {ε∆∗(〈〉∆)} and no ε-rule, that is, ε∆det

= ∅. The inference rules in Figure 14 define
the missing part of ∆det.

Q1 ⊆ Qh P ⊆ Qt Q2 = {q2 | ∃q1 ∈ Q1, p ∈ P. q1
p
−−−� q2 ∈ ∆}

Q1
P−−−� ε∆∗(Q2) ∈ ∆det

Q1 ⊆ Qh a ∈ lab(Q1) Q2 = {q2 | ∃q1 ∈ Q1, q1
a−→ q2 ∈ ∆}

Q′2 = {q2 | ∃q1 ∈ Q1. q1
_−→ q2 ∈ ∆ and 6 ∃q3 ∈ Q.q1

a−→ q3 ∈ ∆}
Q1

a−→ ε∆∗(Q2 ∪Q′2) ∈ ∆det

Q1 ⊆ Qh Q2 = {q2 | ∃q1 ∈ Q1, q1 −→ q2 ∈ ∆}
Q1 −→ ε∆∗(Q2) ∈ ∆det

Q2 = {q2 | ∃q1 ∈ Q1, q1
_−→ q2 ∈ ∆}

Q1
_−→ ε∆∗(Q2) ∈ ∆det

Figure 14. Determinization of SHAs.

We can show for all Q1, Q2 ⊆ Qh and P ⊆ Qt that

LQ1,Q2(det(S)) =
⋃

q1∈Q1,q2∈Q2

Lq1,q2(S)

so that LP(det(S)) =
⋃

q′∈Q′
Lq′(S). Therefore, L(det(S)) =

⋃
Q′∈Fdet

LI,Q′(det(S)) and thus

L(det(S)) =
⋃

q1∈I,q2∈F
Lq1,q2(S) = L(S).

For illustration, the deterministic SHA in Figure 15 is obtained by determinization of
the SHA in Figure 13.

0 = {1, 3, 5, 6}
1 = {8, 10, 14, 16, 18, 19}
2 = {2, 5, 6}
3 = {4, 5, 6}
4 = {5, 6}
5 = {9, 10, 15, 18, 19}
6 = {9, 10, 17, 18, 19}
7 = {10, 18, 19}
8 = {〈T〉}
9 = {〈T〉, 〈x〉}
10 = {9, 10, 18, 19, 20}
11 = {5, 6, 12}

Figure 15. The determinized SHA det(step(ch∗(a + b))).

5.2. Compilation of NREs to SHAs

As for NWAs, we introduce the notion of multi-module SHAs for which the sets of
hedge states are partitioned between those that can evaluate top level positions and those
to which nested positions are assigned. Therefore, multi-module SHAs will have exactly
two modules too.

Definition 6. A SHA A = (Qh, Qt, Σ, ∆, I, F) is a multi-module SHA if there is a subset of
states Q0

h ⊆ Qh, that we call top level states, such that

• I ⊆ Q0
h and

• the states in Q0
h can reach only other states in Q0

h via ∆.

For instance, consider the multi-module SHA in Figure 13. The states of module for the
top level are Q0 = {1, 2, 3, 4, 5, 6, 12}. The others belong to the module for the nested level.
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Any NRE E can be compiled to a multi-module SHA step(E) = (Qh, Qt, Σ, ∆, I, F)
such that Qt = {E′ | E′ = 〈E′′〉 subexpression of E} and Lt(E′) = L(E′) for all tree states
E′ ∈ Qt. The SHA step(E) can be partitioned into disjoint SHAs step(E) = Atop ∪ ⋃

E′∈Qt

AE′

such that Atop = (Qtop
h , Qt, Σ, ∆top, I, F) and AE′ = (QE′

h , Qt, Σ, ∆E′ , ∅, ∅) for all E′ ∈ Qt and

〈〉∆top
= ∅. Note that the transitions relation ∆ is decomposed thereby into independent

connected components. The automaton Atop can be identified with an NFA with signature
Σ ∪Qt given that it has no tree initial states. The automata AE′ are stepwise tree automata
that recognize the tree language L(E′) when taking E′ as final state. For this, they may have
tree initial states, but will not have any initial nor final states.

Theorem 2. For any NRE E, we can construct a SHA A such that L(A) = L(E). If E contains
neither conjunctions nor negations, then the construction is in time O(|E|).

Proof sketch. For the case of expressions with conjunctions or negations, the construction
is analogous to the way it is done for NWAs. We next sketch the construction of SHAs for
expressions without conjunction and negation.

Case E = E′ · E′′: We use McNaughton–Yamada–Thompson algorithm [36] for composing
the multi-module NFAs of step(E′) and step(E′′). The stepwise tree automata A〈E′′′〉
of the subexpressions of type tree are preserved. For succinctness, if some subexpres-
sion 〈E′′′〉 occurs more than once, then only a single copy of A〈E′′′〉 is kept. References
to states of the removed copy should be renamed to their equivalent counterparts.

Case E = 〈E′〉: We construct step(E) from step(E′). The initial states of step(E′) are turned
into tree initial states. We then add a new tree state 〈E′〉 and connect it to all final
states of step(E′) by a tree final rule q −→ 〈E′〉. Furthermore, the previously final
state q becomes non final. Finally we add a new initial state qi, a new final state q f

and a transition rule h−→qi
〈E′〉
−−−� q f .

Case E = µa.E′: The main idea of the construction is similar to the case of NWAs. The cor-
rectness argument relies on the invariant that only multi-module SHAs are built.

Again by the golden lemma of the µ-calculus, we can assume w.l.o.g. that a occurs
at most once in E′. By using ε-rules, we can preserve the invariant that there will be
at most one pair (q, q′) such that q a−→ q′ in step(E′). Furthermore, these transitions
cannot be on top level, given that the occurrence of a in E′ must be nested below
parentheses. The automaton step(E) is obtained from step(E′) by first copying the
top level NFA of step(E′), as in Figure 16. We thus obtain two versions for each state
of the top level NFA of step(E′): one referred to as the top level copy—q0,0 and q3,0
in Figure 16, and another one as the nested level – q0,1 and q3,1 in Figure 16. Only
top level states may be initial or final. Then, we add ε-rules from q to the nested
states that correspond to the initial states of step(E′), and from the nested states
corresponding to the final states of step(E′) to q′. Finally we remove the rule q a−→ q′.
The resulting automaton is shown in Figure 17.

Note that every transition added for a state–top level or nested—in a subsequent step
of the construction—except the ε-rules added for µ-expressions—must also be added
for its copy.

The construction is correct as the µ-bound name a is nested below parenthesis in E′.
Therefore, it can be shown that the ε-edges introduced cannot be used to produce
unwanted order in successful runs. Maintaining this invariant in polynomial time
requires an additional argument. Instead of copying the top level parts of subexpres-
sions, each state is introduced twice during the construction: one version for nesting,
and another one for being part of top level parts. This way the size of the automaton
is not doubled at each step, but only once.
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q0,0 q3,0

q0,1 q3,1

q1,1 q2,1

h

t

q2,1

q2,1

a

Figure 16. SHA for 〈a∗〉.

q0,0 q3,0

q0,1 q3,1

q1,1 q2,1

h

t

q2,1

q2,1

ε
ε

Figure 17. SHA for µa.〈a∗〉.

We omit the correctness proof of this construction.

Unlike NWAs, one cannot preserve the determinism of the expressions of nregexp(ch, T)
in SHAs, even with Glushkov-like constructions. For instance, for the deterministic NRE
〈a1 · 〈a2 · . . . · 〈an〉 . . . 〉〉, one would have an SHA having a tree initial state for each of the
〈ai . . . 〉 subtree, implying nondeterminism.

5.3. Experimental Results Starting with the SHA Compiler

In the first two columns of Figure 18, we report the size of the SHAs obtained from
NREs by our compiler, and the size of the deterministic SHAs produced thereof.

step(.) det(step(.)) nwa(det(step(.))) nwa(step(.)) det(nwa(step(.)))

A1 154 (56) 145 (36) 417 (37) 210 (57) 398 (37)
A2 120 (41) 427 (56) 899 (57) 177 (42) 4105 (148)
A3 128 (45) 305 (43) 622 (44) 181 (46) 907 (62)
A4 187 (66) 167 (41) 510 (42) 256 (67) 487 (42)
A5 211 (70) 411 (54) 897 (55) 298 (71) 1192 (73)
A6 284 (90) 189 (44) 587 (45) 394 (91) 548 (45)
A7 188 (64) 170 (40) 502 (41) 260 (65) 468 (41)
A8 1106 (267) 749 (123) 2831 (124) 1549 (268) 2520 (124)
B3 156 (58) 157 (35) 419 (36) 214 (59) 423 (38)

Figure 18. The SHAs for the benchmark NREs and the automata derived thereof.

The SHA compiler yields automata of acceptable size from the NREs of all benchmark
queries. These sizes are given in the first column step(.) of Figure 18. This even holds for
A8, in contrast to the case where the produced SHA has overall size 1106 and 267 states.

The determinization of the SHAs in the second column det(step(.)) even yields smaller
automata in all cases. For A8, we obtain a deterministic stepwise automaton of overall size
749 and with 123 states. This might be surprising, in that the determinization algorithm may
lead to an exponential blow-up in the worst case. However, it may also clean the automaton,
keeping only accessible sets of states. This is what seems to happen systematically on the
benchmark with the exception of A2, where the size goes up by a factor of four and A5
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where the size doubles. For A2 the number of states grows by one third, while for A5 it
decreases by one third.

Based on the back-and-forth compiler from SHAs to NWAs from following Section 6,
we can obtain deterministic NWAs of acceptable size for all benchmark queries. The method
nwa(det(step(.))) yield for A a dNWA of size 2831 and with 124 states. The alternative
method det(nwa(step(.))) yields a dNWA of size 2520, which is even smaller, and the same
number of states.

6. NWAs versus SHAs

We next show how to compile SHAs to NWAs such that determinism is preserved,
and back while introducing nondeterminism. Thereby, we can obtain small NWAs for NREs
such as E = ch∗(a + b) for which det(nwa(E)) blew up in size in a surprising manner (see
Figure 12).

6.1. SHAs to NWAs

As a first step, we introduce a transformation on SHAs, so that for any SHA A:

• if A is deterministic, the transformation returns A, and
• if A is nondeterministic with set of hedge states Qh and transition relation ∆, the trans-

formation returns a new SHA A′ with set of hedge states Q′h = Qh ] {qt-init} where
qt-init is a new hedge state, and set of transitions ∆′ which equals ∆ except that
〈〉∆′ = {qt-init} and ε∆′ = ε∆ ∪ {(qt-init, q) | q ∈ 〈〉∆}.
Then, we compile any SHA A = (Qh, Qt, Σ, ∆, I, F) obtained after the above transfor-

mation to an NWA nwa(A) = (Qh, Qt, Σ, Γ, ∆′, I, F) such that L(A) = L(nwa(A)). We set
Γ = Qh, _∆′ = _∆, a∆′ = a∆ for all a ∈ Σ, ε∆′ = ε∆, T∆′ = T∆:

q1
↓q2−−−�∈ ∆ p ∈ 〈〉∆

q1
↓q1−−−� p ∈ ∆′ and q

↑q1−−−� q2 ∈ ∆′

Clearly, if S is deterministic then so is nwa(S), as p is unique in this case in particular. One
might be tempted to skip the first-step transformation and restrict the above construction
rule to states p such that Lq(S[〈〉∆/{p}]) 6= ∅. However, this would lead to a huge blow-up
when determinizing these NWAs, basically as this change spoils the single-entry property
discussed in Definition 7.

The conversion of step(ch∗(a+ b)) in Figure 13 yields the NWA in Figure 19. Note that
the opening rules are deterministic (but not the whole NWA), as for all tree states q there
is at most one hedge state p with 〈〉 → p such that q is accessible from p. The NWA has
size 64, while its determinization has size 159 (see Figure A4 of the Appendix C). The size
increase raised by determinization is thus 95 = 159− 64 for this NWA.

The size increase for determinization is considerably smaller for the NWA obtained
from the regular expressions by indirection via a SHA than for NWAs obtained by direct
compilation. Indeed, the determinization of nwa(ch∗(a + b)) blows the size from 39 to 271.
The size increase for the determinization of nwa(ch∗(a + b)) is thus 242 = 271− 39 while
for nwa(step(ch∗(a + b))) it is only 95 = 159− 64.

The experiments will show that this is not an exception but the general rule. Intuitively,
the reason is that NWAs obtained from SHAs do all the work bottom-up, where NWAs
obtained directly from the regular expression do a considerable amount of work top-down.
In terms of the work in [22], this restriction can be characterized syntactically by the
single-entry property:
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Definition 7. A (weak) single-entry NWA A = (Qh, Qt, Σ, Γ, ∆, I, F) is a NWA for which there

exists a single state qentry ∈ Qh such that all opening rules in ∆ have the form q
↓q
−−−� qentry.

Figure 19. The single-entry NWA nwa(step(ch∗(a + b))) obtained from the SHA.

Note that call-driven automata (CDAs) discussed in [23] coincide with multi-module
single-entry dNWAs and also with (multi-module) single-entry visibly pushdown automata [22,24].

It can be shown that nwa(S) has the (weak) single-entry property for all SHAs S for
which the p’s are unique in the above construction rule, i.e., such that 〈〉∆ = {p}. Note that
this was not the case for step(ch∗(a + b)) in Figure 13 but could have been imposed w.l.o.g.
leading to a slightly different NWA than in Figure 19.

The conversion of the determinization det(step(ch∗(a + b))) in Figure 15 yields the
deterministic NWA in Figure 20. The size goes up slightly from 53 to 73. It should be noticed
that factorization avoids a quadratic blow up in this case. This can be observed at state
14, which has 3 incoming tree edges and 10 outgoing closing edges. Without factorization,
the 3 tree edges could be replaced by 3 ε-edges whose elimination would produce 30 closing
edges. This would increase the number 3 + 10 edges to 3 ∗ 10 edges.

Figure 20. Deterministic NWA: nwa(det(step(ch∗(a + b)))).
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6.2. NWAs to SHAs

Conversely, NWAs can be compiled to stepwise hedge automata, but at the cost of
introducing nondeterminism, as an NWA may traverse the branches of a tree top-down,
while a stepwise must traverse them bottom-up. For this, the stepwise guesses the state
in which the NWA will arrive from above and then evaluates the subtree starting with
this state, while verifying the correctness of the guess later on. Let A = (Qh, Qt, Σ, ∆′, I, F)
be an NWA. We build a SHA step(A) = (Qs

h, Qs
t , Σ, ∆s, Is, Fs) where Qs

h = Qh × Qh,
Qs

t = Qh × Qt, Is = {(q, q) | q ∈ I}, Fs = I × F and ∆s is the smallest satisfying the
following rules:

o ∈ Σ ∪ {_, ε} q1
o−→ q2 ∈ ∆ q ∈ Qh

(q, q1)
o−→ (q, q2) ∈ ∆s

q1 −→ q2 ∈ ∆ q ∈ Qh

(q, q1) −→ (q, q2) ∈ ∆s

q1
↓γ
−−−� q2 ∈ ∆

(q2, q2) ∈ 〈〉∆s

q1
↓γ
−−−� q2 ∈ ∆ q3 ∈ Qt q3

↑γ
−−−� q4 ∈ ∆ q ∈ Qh

(q, q1)
(q2,q3)−−−→ (q, q4) ∈ ∆s

The construction is such that L(A) = L(step(A)).
For the NWA nwa(ch∗(a+ b)) in Figure 6, we obtain the stepwise in Figure A3 up-to re-

moving useless states and separating the top level. Determinization yields
det(step(nwa(ch∗(a + b)) = det(step(ch∗(a + b))) in Figure 15.

7. Optimizations

We will use three optimization methods for constructing smaller dSHAs and thus
smaller dNWAs: minimization, symbolic representations of sets of transition rules,
and schema-based cleaning.

7.1. Minimization

Our next objective is to reduce the size of deterministic SHAs by developing a mini-
mization algorithm for a subclass of dSHAs. Even though our implementation can deal
with them, we consider SHAs without symbolic rules q −−→ q′ for simplicity in this section.

We start with an example that motivates the choice of our subclass. In Figures 21 and 22,
two dSHAs are given that both recognize the language of all hedges with signature
Σ = {x, y} containing exactly one occurrence of the letter x. The dSHA in Figure 22
is the dSHA recognizing this language which has the minimal number of states. The dSHA
in Figure 21 is the minimal multi-module dSHA for this language. The question is how a
minimization algorithm for dSHAs could convert the dSHA in Figure 21 to this minimal
one in Figure 22. In particular, why would it merge the tree initial state and the hedge
initial state? We do not see how this could be done based on some Myhill–Nerode-like
equivalence relation. This motivates an a priori restriction to dSHAs imposing that the tree
initial state and hedge initial state must be equal.

Figure 21. A dSHA for hedges over Σ = {x, y} with single occurrence of x. It is minimal in the class
of multi-module dSHAs.
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Figure 22. An equivalent dSHA to that in Figure 21 that is minimal in the class of dSHAs with equal
tree and hedge initial states.

Note that any SHA can be converted into a dSHA with equal tree and hedge initial
states. For this, it is sufficient to “fuse” these states and then to determinize the SHA
obtained. When doing so for the dSHA in Figure 21, we indeed obtain the minimal dSHA
from Figure 23, so no further minimization is needed in this case.

Figure 23. A single x-marked position.

Given the close relationship between SHAs and weak single-entry NWAs, it is instruc-
tive to consider the existing results on minimization for dNWAs. It is known that the class
of general dNWAs does not allow for unique minimization [22] and that the minimization
becomes NP-hard when admitting general signatures with multiple parenthesis [24].

On the positive side, the best existing minimization algorithm is due to Chervet and
Walukiewicz [23]. It applies to the subclass of multi-module single-entry dNWAs, called there
call-driven automata (CDA) (Chervet and Walukiewicz [23] permit signatures with multiple
opening parenthesis. In the case of a single opening parenthesis, the class of CDAs is equal
to their subclass of expanded CDAs for which they develop their minimization algorithm
in the first place.). They showed that the subclass of multi-module single-entry dNWAs
enjoys unique minimization in polynomial time.

In the case of dSHAs, we believe that unique minimization holds for the following
two subclasses, and will show it for the second:

• the subclass of multi-module dSHAs, and
• the subclass of dSHAs where the hedge and tree initial state are the same, i.e., 〈〉∆ = I.

The first subclass of multi-module dSHAs is motivated by the subclass of multi-module
single-entry dNWAs. Note, however, that the SHAs that are obtained by compilation from
single-entry dNWAs need not be deterministic, so the analogy between both automata
classes is not perfect. The dSHA in Figure 21 is minimal for the class of multi-module
dSHAs.

The second subclass of dSHAs corresponds to the subclass of single-entry dNWAs in
which the single-entry state is equal to the initial state. The dSHA in Figure 22 is minimal for
the second subclass. In the remainder of this section, we present a minimization algorithm
for the second subclass. For this, we identify dSHAs in which tree and hedge initial state
coincide with two-sorted deterministic tree automata, so that we can use a minimization
algorithm for the latter. Our automaton translation is based on a novel encoding of hedges
into ranked well-sorted trees with monadic and binary function symbols, which is inspired
by the previous binary encoding of unranked trees known from stepwise tree automata [21].
For any unranked signature Σ, as for the construction of hedges, we consider two sorts:
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h for hedges and t for trees. We then consider the following ranked signature with these
two sorts:

Σ@ = {a(h) | a ∈ Σ} ∪ {@(h×t→h), ε(h), T(h→t)}
The well-sorted trees over Σ@ of both sorts then have the following abstract syntax:

well-sorted trees of sort h: τ ::= a(τ) | @(τ, τ′) | ε
well-sorted trees of sort t: τ′ ::= T(τ)

Any hedge over Σ can be encoded into a ranked well-sorted tree of sort h with signature
Σ@. For instance, the hedge

h = 〈a · 〈b · 〈c · d · e〉〉 · f 〉

is encoded into the following ranked well-sorted tree of sort h over Σ@:

[[h]] = ε@T( f (a(ε)@τ′)) where τ′ = T(b(ε)@τ′′) and τ′′ = T(e(d(c(ε))))

Any SHA A = (Qh, Qt, Σ, ∆, I, F) with equal tree and hedge initial states, that is, 〈〉∆ = I,
can then be encoded into a two sorted tree automaton [[A]] = (Qh, Qt, Σ@, ∆′, I, F) by
mapping the transition rules in ∆ to those in ∆′ as follows:

∆ ∆′

q a−→ q′ a(q)→ q′

q −→ p T(q)→ p

q
p
−−−� q′ q@p→ q′

qi ∈ 〈〉∆ = I ε→ qi

We can first note that [[L(A)]] = L([[A]]). Second, the translation function is a bijection
between SHAs over Σ and two-sorted tree automata over Σ@. Furthermore, this translation
preserves determinism. It follows that if A is a dSHA with a minimal number of states
recognizing L(A) then [[A]] is a deterministic two-sorted tree automaton with a minimal
number of states recognizing [[L(A)]]. Furthermore, the unique minimization of determin-
istic two-sorted tree automata implies the unique minimization of the class of dSHAs with
equal tree and hedge initial states.

Using this translation back and forth, we can thus lift the minimization algorithm
of deterministic two-sorted tree automata to a minimization algorithm for the subclass
of dSHAs with equal tree and hedge initial states. This is the minimization algorithm for
dSHAs that we have implemented. We then used it in our constructions to reduce the size
of the dSHAs obtained by determinization.

7.2. Symbolic SHAs with Apply-Else Rules

The sizes of the dSHAs constructed so far are dominated by the number of transitions.
We now propose a class of symbolic dSHAs by adding apply-else rules, in order to represent
large numbers of apply rules in a more compact and symbolic manner.

An apply-else rule has the form q
_−−−� q′ where q, q′ ∈ Qh. It represents the set of

apply rules q
p
−−−� q′, where p ∈ Qt can be chosen arbitrarily from a subset of tree states

distinguished by the automaton.
We have also adapted our determinization for dSHAs so that it preserves apply-else

rules. What is missing so far is a concept for NWAs that corresponds to the apply-else
rules of dSHAs. Therefore, we have to eliminate apply-else rules before translating SHAs
to NWAs.
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7.3. Schema-Based Cleaning

Automata for XPATH queries recognize nested words that can be obtained by encoding
XML documents with a single x-marked position. The class of such nested words is
characterized by a schema that we can define as the intersection of the two dSHAs in
Figures 23 and 24. The first SHA tests whether there is exactly one occurrence of the
internal letter x, and the second one tests that the XML data model is satisfied, and the
node annotations with x and ¬x are put at the right positions.

Figure 24. Nested words of x-marked XML documents.

The automata constructed for the XPATH queries may accept some trees that do not
satisfy the schema (but will never be evaluated on such trees when answering the query).
The idea of schema-based cleaning is to remove all transition rules and states that are not
used for recognizing any nested word satisfying the schema. Schema-based cleaning of
an automaton can be performed by constructing the product of the automaton with the
schema, which is in our case an intersection of two dSHAs. We then only keep those states
of the original SHA that are used in accessible and co-accessible states of the product with
the schema.

Note that schema-based cleaning typically changes the language of the automaton.
Different languages may be obtained when cleaning different automata for the same query
with respect to the schema. If one is interested in a unique language, then one can choose
the intersection of the automaton with the schema. This intersection, however, is usually
larger than the automaton obtained by schema-based cleaning.

7.4. Experimental Results for Optimizations

The sizes of optimized automata for the benchmark queries are reported in Figure 25.Version February 19, 2021 submitted to Algorithms 21 of 32

step@_ D(.)=det(step@_(.)) S(.)=schema-clean(D(.)) M(.)=mini(S(.)) elim@_(M(.)) nwa(M(.))

A1 133 (56) 145 (36) 106 (36) 106 (36) 234 (36) 268 (37)

A2 104 (41) 157 (30) 101 (30) 55 (16) 73 (16) 87 (17)

A3 111 (45) 193 (32) 123 (32) 95 (24) 145 (24) 167 (25)

A4 160 (66) 167 (41) 123 (41) 123 (41) 294 (41) 334 (42)

A5 179 (70) 387 (53) 274 (53) 274 (53) 580 (53) 650 (54)

A6 237 (90) 189 (44) 144 (44) 144 (44) 364 (44) 410 (45)

A7 159 (64) 166 (40) 125 (40) 115 (36) 241 (36) 279 (37)

A8 894 (267) 639 (117) 527 (117) 487 (101) 1257 (101) 1413 (102)

B3 139 (58) 135 (33) 102 (33) 96 (32) 200 (32) 228 (33)

Figure 23. Optimized automata for derived stepwise automata compiled from NREs.

is encoded into the following ranked well-sorted tree of sort h over Σ@:

[[h]] = ε@T( f (a(ε)@τ′)) where τ′ = T(b(ε)@τ′′) and τ′′ = T(e(d(c(ε))))

Any SHA A = (Qh, Qt, Σ, ∆, I, F) with equal tree and hedge initial states, that is 〈〉∆ = I, can then be
encoded into a two sorted tree automaton [[A]] = (Qh, Qt, Σ@, ∆′, I, F) by mapping the transition rules
in ∆ to those in ∆′ as follows:

∆ ∆′

q a−→ q′ a(q)→ q′

q −→ p T(q)→ p

q
p
−−−� q′ q@p→ q′

qi ∈ 〈〉∆ = I ε→ qi

We can first note that [[L(A)]] = L([[A]]). Second, the translation function is a bijection between SHAs
over Σ and two-sorted tree automata over Σ@. Furthermore, this translation preserves determinism.
It follows that if A is a dSHA with a minimal number of states recognizing L(A) then [[A]] is615

a deterministic two-sorted tree automaton with a minimal number of states recognizing [[L(A)]].
Furthermore, the unique minimization of deterministic two-sorted tree automata implies the unique
minimization of the class of dSHAs with equal tree and hedge initial states.

Using this translation back and forth, we can thus lift the minimization algorithm of deterministic
two-sorted tree automata to a minimization algorithm for the subclass of dSHAs with equal tree and620

hedge initial states. This is the minimization algorithm for dSHAs that we have implemented. We then
used it in our constructions to reduce the size of the dSHAs obtained by determinization.

7.2. Symbolic SHAs with Apply-Else Rules

The sizes of the dSHAs constructed so far are dominated by the number of transitions. We now
propose a class of symbolic dSHAs by adding apply-else rules, in order to represent large numbers of625

apply rules in a more compact and symbolic manner.
An apply-else rule has the form q

_−−−� q′ where q, q′ ∈ Qh. It represents the set of apply rules

q
p
−−−� q′, where p ∈ Qt can be chosen arbitrarily from a subset of tree states distinguished by the

automaton.
We have also adapted our determinization for dSHAs so that it preserves apply-else rules. What630

is missing so far is a concept for NWAs that corresponds to the apply-else rules of dSHAs. Therefore,
we have to eliminate apply-else rules before translating SHAs to NWAs.

7.3. Schema-Based Cleaning

Automata for XPATH queries recognize nested words that can be obtained by encoding XML

documents with a single x-marked position. The class of such nested words is characterized by a635

Figure 25. Optimized automata for derived stepwise automata compiled from NREs.
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The function step@_ used in the first column compiles NREs to SHAs with apply-else
rules. This does not change the number of states, but reduces the number of automata
transitions. In the case of A8, the size of the stepwise automaton is reduced from 1106
to 894.

An optimized determinizer is applied by the function D(.) = det(step@_(.)) in the
second column. It preserves apply-else rules in particular. For A8, the size is reduced from
749 to 639 while the number of states is preserved.

Schema-based cleaning is applied by the function S(.) = schema− clean(D(.)) in the
third column. For A8, the number of rules is reduced further from 639 to 527.

Minimization is applied by the function M(.) = mini(S(.)) in the fourth column.
In the case of A8, it reduces the number of states from 117 to 101 and the size from 527
to 487.

In order to come back to dNWAs, we have to eliminate the apply-else rules in column
six. For A8 this increases the number of rules back from 527 to 1257.

In the final column, we apply the compiler from SHAs to NWAs which preserves
determinism. For A8, this results in a dNWA of size 1413 and 102 states. This is better than
the previous results, in particular with respect to the number of states.

8. Summary of Experimental Results

We now plug the different compilers and optimization methods all together and
compare the sizes of deterministic NWAs that we can obtain thereby.

The overall sizes (#states) of the resulting dNWAs are given in Figure 26. We see that the
two methods starting with SHAs nwa(det(step(.))) and det(nwa(step(.))) yield reasonably
small deterministic NWAs for the NREs of all benchmark queries. The methods starting
with NWAs nwa(det(step(nwa(.)))) and det(nwa(step(nwa(.)))) provide reasonably small
deterministic NWAs for queries except for A8.
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det(nwa(.)) nwa(det( det(nwa( nwa(det( det(nwa(
step(.))) step(.))) step(nwa(.)))) step(nwa(.))))

A1 — 268 (37) 363 (37) 204 (37) 363 (37)

A2 362,600 (6782) 87 (17) 3781 (142) 67 (17) 540 (51)

A3 318,704 (8216) 167 (25) 837 (61) 113 (25) 417 (43)

A4 — 334 (42) 447 (42) 298 (42) 447 (42)

A5 — 650 (54) 1110 (72) 194 (34) 612 (54)

A6 — 410 (45) 507 (45) 349 (45) 507 (45)

A7 — 279 (37) 431 (41) 162 (30) 431(41)

A8 — 1413 (102) 2406 (124) — —

B3 — 228 (33) 392 (38) 189 (33) 392 (38)

Figure 26. Deterministic NWAs computed with optimizations for the XPath benchmark queries. Note
that different dNWAs for the same query may recognize different languages, due to schema-based
cleaning with respect to the XML data model. Furthermore, our implementation of the minimization
algorithm for the subclass of dSHAs worked successfully only for dSHAs with at most 200 states.

8. Summary of Experimental Results

We now plug the different compilers and optimization methods all together and compare the
sizes of deterministic NWAs that we can obtain thereby.670

The overall sizes (#states) of the resulting dNWAs are given in Figure 26. We see that the
two methods starting with SHAs nwa(det(step(.))) and det(nwa(step(.))) yield reasonably small
deterministic NWAs for the NREs of all benchmark queries. The methods starting with NWAs
nwa(det(step(nwa(.)))) and det(nwa(step(nwa(.)))) provide reasonably small deterministic NWAs
for queries except for A8.675

We also tested our algorithms on collections of XPath queries with a scalable parameter, such as
the queries chn(a) for increasing n. This series is known to require automaton with a number of states
exponential in n for deterministic bottom-up evaluation. The best methods to produce deterministic
NWAs in this case is nwa(det(step)). It works until n = 9, leading to an dNWA of size 134929 with 772
states. The number of states close to doubles when increasing n by 1. The second best method for680

producing dNWAs for the series chn(a) works only until n = 6.
For explaining the different size of the dNWAs for the series chn(a), we first note that no

schema-based cleaning was applied in this experiment. As a consequence unique minimal single-entry
dNWAs in which the single-entry state is the initial state should exist. The reason for the larger number
of states with the three other methods is that we have not implemented any minimization algorithm for685

this subclass of single-entry dNWAs. Furthermore, our implementation of the minimization algorithm
for our subclass of dSHAs failed for too big dSHAs. In this case, the number of states reported in
Figure 27 could not be reduced to the minimum. In addition, the number of rules seems to be increased
further by the lack of any symbolic representation for rules of NWAs that could mimic the apply-else
rules for SHAs.690

9. Deterministic Nested Regular Expressions

We finally show how to distinguish NREs that can be evaluated deterministically in polynomial
time, for instance by compilation to deterministic NWAs. For this, we consider the language of NREs
nregexp(ch, T) that extends the abstract syntax of NREs by a new constant T and a new unary operator
ch.695

Definition 8. An expression of nregexp(ch, T) is deterministic if it does not contain a subexpression of any of
the forms: E1 + E2, E∗, T · E, µa.E.

Figure 26. Deterministic NWAs computed with optimizations for the XPath benchmark queries.
Note that different dNWAs for the same query may recognize different languages, due to schema-
based cleaning with respect to the XML data model. Furthermore, our implementation of the
minimization algorithm for the subclass of dSHAs worked successfully only for dSHAs with at most
200 states.

We also tested our algorithms on collections of XPath queries with a scalable parameter,
such as the queries chn(a) for increasing n. This series is known to require automaton
with a number of states exponential in n for deterministic bottom-up evaluation. The best
methods to produce deterministic NWAs in this case is nwa(det(step)). It works until n = 9,
leading to an dNWA of size 134, 929 with 772 states. The number of states close to doubles
when increasing n by 1. The second best method for producing dNWAs for the series chn(a)
works only until n = 6.

For explaining the different size of the dNWAs for the series chn(a), we first note that
no schema-based cleaning was applied in this experiment. As a consequence, unique
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minimal single-entry dNWAs in which the single-entry state is the initial state should exist.
The reason for the larger number of states with the three other methods is that we have
not implemented any minimization algorithm for this subclass of single-entry dNWAs.
Furthermore, our implementation of the minimization algorithm for our subclass of dSHAs
failed for too big dSHAs. In this case, the number of states reported in Figure 27 could
not be reduced to the minimum. In addition, the number of rules seems to be increased
further by the lack of any symbolic representation for rules of NWAs that could mimic the
apply-else rules for SHAs.

Version February 19, 2021 submitted to Algorithms 24 of 32

det(nwa(.)) nwa(det( det(nwa( nwa(det( det(nwa(
step(.))) step(.))) step(nwa(.))) step(nwa(.))))

ch0(a) 4 (2) 4 (2) 4 (2) 4 (2) 4 (2)

ch1(a) 165 (33) 34 (7) 55 (10) 34 (7) 55 (10)

ch2(a) 1530 (199) 55 (10) 112 (16) 55 (10) 112 (16)

ch3(a) 198.28 (1281) 109 (16) 352 (32) 109 (16) 352 (32)

ch4(a) 265 (28) 2200 (88) 265 (28) 2200 (88)

ch5(a) 769 (52) 22,792 (296) 769 (52) 22,792 (296)

ch6(a) 2545 (100) 303,592 (1096) 80,369 (2148)

ch7(a) 9169 (196)

ch8(a) 34,705 (388)

ch9(a) 134,929 (772)

Figure 27. Deterministic NWAs for the queries chn(a) where n = 0, . . . , 9: size (#states). There is no
schema-based cleaning. Our implementation of the minimization algorithm was applied to all dSHA
with at most 200 states, since it failed for larger dSHAs. No minimization algorithm for subclasses of
single-entry dNWAs was implemented.

Note in particular that ch(a) is a deterministic expression of nregexp(ch, T), since the child operator
is added as a primitive there. In contrast, the semantically equivalent expression T.〈a〉.T is not
deterministic. Similarly, T is deterministic since it is a primitive expression of nregexp(ch, T), while700

the equivalent expression µx.(〈x〉+ _)∗ is nondeterministic for 3 different reasons: the µ-operator, the
star ∗ and the disjunction +. The recursive expression ch∗(E) is nondeterministic: it is not primitive in
nregexp(ch, T), and its definition is based on the µ-operator and disjunction.

The only query of the benchmark for which we can provide a deterministic NRE is the query
A1. The NRE for query A1 in Figure A1 is nondeterministic nevertheless, since we replaced ch(E)705

with T · 〈E〉 · T. This is not problematic, given that we can use a decent method for determinization
of NWAs. For this reason, it does no more seem worth the effort to maintain specialized compilation
methods for deterministic NREs. For the same reason, we will not present any experimental results for
our specialized compiler from deterministic NREs to deterministic NWAs. Instead we use the more
general compiler for general nondeterministic NREs.710

The compiler from Theorem 1 introduces epsilon rules and thus, it does not preserve determinism:
some deterministic NREs will be compiled to nondeterministic NWAs. This introduction of
nondeterminism can be avoided by eliminating epsilon rules on the fly, that is by using Glushkov’s
approach rather than that of Thompson.

Theorem 3. For any deterministic regular expression E of nregexp(ch, T) without conjunction and negation,715

we can construct in time O(|E|2) a dNWA recognizing the same language.

Proof sketch. Theorem 3 uses Glushkov’s construction and thus eliminates ε-edges on the fly
compared to the McNaughton-Yamada-Thompson algorithm. The Glushkov construction is
well-known to preserve determinism when compiling regular expressions without nesting to finite
state automata [20]. For the additional deterministic expressions ch(E), we adapt the deterministic720

compilation from [18]. This quadratic time result generalizes a previous result for the Glushkov
construction [19] from regular expressions without conjunctions and negations to NREs without
conjunctions and negations.

Small deterministic NREs without conjunction and negation can thus be compiled to small dNWAs.
On the benchmark, however, this construction can be applied to the query A1 only, so only a few725

queries can be covered in this manner.

Figure 27. Deterministic NWAs for the queries chn(a) where n = 0, . . . , 9: size (#states). There is no
schema-based cleaning. Our implementation of the minimization algorithm was applied to all dSHA
with at most 200 states, as it failed for larger dSHAs. No minimization algorithm for subclasses of
single-entry dNWAs was implemented.

9. Deterministic Nested Regular Expressions

We finally show how to distinguish NREs that can be evaluated deterministically in
polynomial time, for instance, by compilation to deterministic NWAs. For this, we consider
the language of NREs nregexp(ch, T) that extends the abstract syntax of NREs by a new
constant T and a new unary operator ch.

Definition 8. An expression of nregexp(ch, T) is deterministic if it does not contain a subexpres-
sion of any of the forms: E1 + E2, E∗, T · E, µa.E.

Note in particular that ch(a) is a deterministic expression of nregexp(ch, T), as the child
operator is added as a primitive there. In contrast, the semantically equivalent expression
T.〈a〉.T is not deterministic. Similarly, T is deterministic since it is a primitive expression
of nregexp(ch, T), while the equivalent expression µx.(〈x〉+ _)∗ is nondeterministic for
three different reasons: the µ-operator, star ∗, and disjunction +. The recursive expression
ch∗(E) is nondeterministic: it is not primitive in nregexp(ch, T), and its definition is based
on the µ-operator and disjunction.

The only query of the benchmark for which we can provide a deterministic NRE is
the query A1. The NRE for query A1 in Figure A1 is nondeterministic nevertheless, as we
replaced ch(E) with T · 〈E〉 · T. This is not problematic, given that we can use a decent
method for determinization of NWAs. For this reason, it does no more seem worth the
effort to maintain specialized compilation methods for deterministic NREs. For the same
reason, we will not present any experimental results for our specialized compiler from
deterministic NREs to deterministic NWAs. Instead we use the more general compiler for
general nondeterministic NREs.

The compiler from Theorem 1 introduces epsilon rules, and thus it does not pre-
serve determinism: some deterministic NREs will be compiled to nondeterministic NWAs.
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This introduction of nondeterminism can be avoided by eliminating epsilon rules on the
fly, that is by using Glushkov’s approach rather than that of Thompson.

Theorem 3. For any deterministic regular expression E of nregexp(ch, T) without conjunction
and negation, we can construct in time O(|E|2) a dNWA recognizing the same language.

Proof sketch. Theorem 3 uses Glushkov’s construction and thus eliminates ε-edges on the
fly compared to the McNaughton–Yamada–Thompson algorithm. The Glushkov construc-
tion is well-known to preserve determinism when compiling regular expressions without
nesting to finite state automata [20]. For the additional deterministic expressions ch(E),
we adapt the deterministic compilation from the work in [18]. This quadratic time result
generalizes a previous result for the Glushkov construction [19] from regular expressions
without conjunctions and negations to NREs without conjunctions and negations.

Small deterministic NREs without conjunction and negation can thus be compiled to
small dNWAs. On the benchmark, however, this construction can be applied to the query
A1 only, so only a few queries can be covered in this manner.

10. Conclusions and Future Work

We presented SHAs and showed how they can be used to compile NREs to determinis-
tic NWAs. When applied to NREs for navigational XPATH queries in the usual XPathMark
benchmark, we obtained reasonably small deterministic NWAs, in contrast to all previ-
ous approaches.

The dNWAs that we obtain by compilation from SHAs all have the weak single-entry
property. This property means that the computation of the NWA is done in a purely bottom-
up and left-to-right manner, so in the same way as by an SHA. Our experiments show
that the usual determinization algorithm for NWAs is well-behaved when applied to weak
single-entry NWAs, while it quickly fails without the weak single-entry property.

We have also stated a unique minimization algorithm for dSHAs with the same tree
and hedge initial state. It is open whether unique minimization holds for general dSHAs.
Neither do we know whether dSHA minimization is NP-hard. The analogous questions
remain open for the class of weak single-entry dNWAs.

In future work, one needs to tackle the open questions on the minimization of dSHAs,
weak single-entry dNWAs, and dNWAs with fixed general signatures. One has to under-
stand, whether and why unique minimization holds or not, and whether and why mini-
mization is hard or not. Independently, it is interesting to use SHAs in various questions in
theory and practice. In particular, we want to develop new algorithms for earliest query
answering for dSHAs that are more efficient than the existing algorithms for dNWAs [16]
and to see how they behave in practice.
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Appendix A. Determinization of NWAs

Let us first introduce some notations. For a transition τ ∈ Qh ×Qh, we write lab(τ) =
{a ∈ Σ | ∃(q, q′) ∈ τ, q′′ ∈ Q.q′ a−→ q′′ ∈ ∆}. Furthermore, we write ε∆∗ to denote the
reflexive and transitive closure of ε∆. Finally, for any set Q, we write idQ to denote the
binary relation that relates every element of Q to itself, that is, idQ = {(q, q) ∈ Q2}.

We adapt the usual determinization procedure for NWAs [3,18] so that they can
account for hedge ending and else rules. Given an NWA A = (Qh, Qt, Σ, Γ, ∆, I, F), the dif-

ficulty is to deal with concurrent opening rules q
↓γ1−−−� q1 and q

↓γ2−−−� q2 in ∆ during
determinization without mixing up the stack symbols γ1 and γ2. Therefore, we use transi-
tion relations as states of the determinized automaton det(A) = (Qdet

h , Qdet
t , Σ, Γdet, ∆det, Idet,

Fdet), that is, Qdet
h = 2Qh×Qh , Qdet

t = 2Qh×Qt . The only initial state is the composition of idI

with ε∆∗ , i.e., Idet = {idI ◦ ε∆∗}. The set of final states is Fdet = {τ ∈ Qdet
h | τ ∩ (I× F) 6= ∅}.

Schemas generating the transition rules in ∆det are given below.

τ ∈ Qdet
h

τ
_−→ τ ◦ _∆ ◦ ε∆∗ ∈ ∆det

τ ∈ Qdet
h Q′ = {q′ | ∃(_, q) ∈ τ. q

↓γ
−−−� q′ ∈ ∆}

τ
↓τ
−−−� idQ′ ◦ ε∆∗ ∈ ∆det

τ ∈ Qdet
h

τ
tree−−→ τ ◦ tree∆ ◦ ε∆∗ ∈ ∆det

τ ∈ Qdet
t τ′ ∈ Qdet

h τ′′ =
⋃

γ∈Γ
〈∆

γ ◦ ε∆∗ ◦ τ ◦ 〉∆
γ

τ
↑τ′
−−−� τ′ ◦ τ′′ ◦ ε∆∗ ∈ ∆det

τ ∈ Qdet
h a ∈ lab(τ) τ′ = {(q, q′) ∈ _∆ |6 ∃q′′.q a−→ q′′ wrt∆}

τ
a−→ τ ◦ (a∆ ∪ τ′) ◦ ε∆∗ ∈ ∆det

Appendix B. NREs for the XPathMark Benchmark

We compiled navigational XPath queries of the XPathMark benchmark to the NREs
given in Figure A1.
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Appendix B NREs for the XPathMark Benchmark

We compiled navigational XPath queries of the XPathMark benchmark to the NREs given in860

Figure A1.

A1 〈doc · _ · 〈elem · site · _ · T · 〈elem · closed_auctions · _ · T·
〈elem · closed_auction · _ · T · 〈elem · annotation · _ · T·
〈elem · description · _ · T · 〈elem · text · _ · T·
〈elem · keyword · x · T〉 · T〉 · T〉 · T〉 · T〉 · T〉 · T〉 · T〉

A2 〈doc · _ · (µd1.(〈elem · closed_auction · _ · T · (µd2.(
〈elem · keyword · x · T〉 · T + 〈T · d1 · T〉 · T))〉 · T + 〈T · d1 · T〉 · T))〉

A3 〈doc · _ · 〈elem · site · _ · T · 〈elem · closed_auctions · _ · T · 〈elem · closed_auction · _ · T · (
µd.(〈elem · keyword · x · T〉 · T + 〈T · d · T〉 · T))〉 · T〉 · T〉 · T〉

A4 〈doc · _ · 〈elem · site · _ · T·
〈elem · closed_auctions · _ · T · 〈elem · closed_auction · _·
(T · 〈elem · annotation · _ · T · 〈elem · description · _ · T·

〈elem · text · _ · T · 〈elem · keyword · _ · T〉 · T〉 · T〉 · T〉 · T〉 · T)
& (T · 〈elem · date · x · T〉 · T〉 · T)〉 · T〉 · T〉

A5 〈doc · _ · 〈elem · site · _ · T · 〈elem · closed_auctions · _ · T · (
〈elem · closed_auction · _ · T · (

µd.(〈elem · keyword · _ · T〉 · T + 〈T · d · T〉 · T))〉 · T)
&(〈elem · closed_auction · _ · T · 〈elem · date · x · T〉 · T〉 · T)〉 · T〉 · T〉

A6 〈doc · _ · 〈elem · site · _ · T · 〈elem · people · _ · T · ((〈elem · person · _ · T·
〈elem · pro f ile · _ · T · 〈elem · gender · _ · T〉 · T〉 · T〉 · T)
&(〈elem · person · _ · T · 〈elem · pro f ile · _ · T · 〈elem · age · _ · T〉 · T〉 · T〉 · T))
&(〈elem · person · _ · T · 〈elem · name · x · T〉 · T〉 · T)〉 · T〉 · T〉

A7 〈doc · _ · 〈elem · site · _ · T · 〈elem · people · _ · T · ((〈elem · person · _ · T·
〈elem · phone · _ · T〉 · T〉 · T+
〈elem · person · _ · T · 〈elem · homepage · _ · T〉 · T〉 · T))

&(〈elem · person · _ · T · 〈elem · name · x · T〉 · T〉 · T)〉 · T〉 · T〉
A8 〈doc · _ · 〈elem · site · _ · T · 〈elem · people · _ · T·

(((〈elem · person · _ · T · 〈elem · address · _ · T〉 · T〉 · T)
& (〈elem · person · _ · T · 〈elem · phone · _ · T〉 · T〉 · T +

〈elem · person · _ · T · 〈elem · homepage · _ · T〉 · T〉 · T))
& ((〈elem · person · _ · T · 〈elem · creditcard · _ · T〉 · T〉 · T +

〈elem · person · _ · T · 〈elem · pro f ile · _ · T〉 · T〉 · T)))
& (〈elem · person · _ · T · 〈elem · name · x · T〉 · T〉 · T)〉 · T〉 · T〉

Figure A1. The NREs of the XPath benchmark queries.
Figure A1. The NREs of the XPath benchmark queries.
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Appendix C. Some More Automata

Figure A2. Deterministic NWA: det(nwa(ch∗(a + b)).
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Figure A3. Stepwise hedge automaton from NWA for step(nwa(ch∗(a + b))).



Algorithms 2021, 14, 68 30 of 32

Figure A4. Determinization of NWA from stepwise hedge automaton: det(nwa(step(ch∗(a + b)))).
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