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Abstract: A novel design method for time series modeling and prediction with fuzzy cognitive maps
(FCM) is proposed in this paper. The developed model exploits the least square method to learn the
weight matrix of FCM derived from the given historical data of time series. A fuzzy c-means clustering
algorithm is used to construct the concepts of the FCM. Compared with the traditional FCM, the least
square fuzzy cognitive map (LSFCM) is a direct solution procedure without iterative calculations.
LSFCM model is a straightforward, robust and rapid learning method, owing to its reliable and
efficient. In addition, the structure of the LSFCM can be further optimized with refinements the
position of the concepts for the higher prediction precision, in which the evolutionary optimization
algorithm is used to find the optimal concepts. Withal, we discussed in detail the number of concepts
and the parameters of activation function on the impact of FCM models. The publicly available time
series data sets with different statistical characteristics coming from different areas are applied to
evaluate the proposed modeling approach. The obtained results clearly show the effectiveness of
the approach.

Keywords: time series; least square method; fuzzy cognitive map; refinements of concepts

1. Introduction

The modeling and prediction of time series have been classic issues. Over the past
few decades, researchers have developed many classical numeric models of time series
such as standard exponential smoothing, Holt–Winters, autoregressive integrated moving
average model (ARIMA) etc. These models of time series have made great progress in
dealing with numerical forecasting problems. These models are difficult to use to solve
the prediction problems with uncertain circumstances and lack of interpretability, which
is difficult for people to intuitively understand. Fuzzy set theory can tolerate uncertainty
and approximation [1], which has also been involved into the modeling of time series.
Consequently, the fuzzy time series models have high interpretability, which gives the
detailed numerical data some semantic meaning. Song and Chissom [2] presented the
concept of fuzzy time series based on the fuzzy set theory. In recent years, some methods
based on fuzzy time series have been presented to make predictions in many areas, such as
stock price, university enrollments, economic growth, etc. [3,4].

As a soft computing tool, fuzzy cognitive maps (FCM) proposed by Kosko [5], can
be used to capture the dynamic behaviors of a given system and implements the reason-
ing process based on knowledge representation [6]. A fuzzy cognitive map is a directed
weighted graph and consists of concept nodes and directed weights between nodes, which
demonstrate knowledge-based representation and inference process. Since each concept
and weight of the FCM have semantic meaning [7–9], the FCM model is easy to compre-
hend for humans, due to their high interpretability for the complex system. The concepts
of the FCM play a key factor when we want to construct an FCM for time series fore-
casting. The concepts of an FCM are either achieved by mechanism or clustering of the
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given time series data set [10–12]. The interrelationships between all concepts correspond-
ing to weights are confirmed during the learning process. Hebbian-based [13–15] and
population-based [16–19] methods are the mainstream for small-scale FCM learning prob-
lems. Moreover, the population-based methods outperform Hebbian-based methods in
terms of time series prediction [20]. For large-scale FCM learning problems, Wu et al. [21]
introduced Lasso regularization as the sparsity penalty term into the objective function
to ensure the sparse structure of the resulting FCM. Lu et al. [22,23] transformed FCM
learning into a convex optimization problem with constraints, and the maximum entropy
terms were invoked to solve the optimization problem. The obvious problem in the above-
mentioned FCM learning methods of time series is the need for iterative calculation and
intensive computing to perform inference. These methods are time consuming.

Time series modeling with a fuzzy cognitive map has been applied in a range of quite
diverse fields. Stach [24] proposed a method that combines FCM with granular to time
series prediction realized both at the linguistic and numerical level. They take advantage
of real-coded genetic algorithms to learn FCM. Papageorgiou and Froelich [25,26] used
evolutionary-based and multi-step enhancement of the evolutionary algorithm to learn
the FCM to cope with the forecasting of patient states in the case of pulmonary infections.
Yang [27] resorted to wavelet transform to decompose original non-stationary time series
into multivariate time series, then the high-order FCMs were applied to model and predict
multivariate time series. Lu [28] proposed a high-order fuzzy cognitive map (HFCM)
to model and predict time series. The structure of the HFCM generated works in an
automatic fashion. Lu [29] proposed a hybrid algorithm based on an FCM for fuzzy time
series prediction, in which a fuzzy C-means clustering algorithm was used to construct the
framework of the FCM and a genetic algorithm was applied to learn the weights of the FCM.
Homenda [30] adopted simplified fuzzy cognitive maps to construct the framework of
time series modeling and introduced the selection criteria of concepts. In order to achieve
a reasonable balance between complexity and accuracy, some simplification strategies
which a posteriori remove nodes and weights were presented. Salmeron [31] proposed a
dynamic optimization of the fuzzy cognitive maps for univariate time series forecasting.
In this model, the concept of a sliding window was applied to train the predictive model.
In order to improve the effectiveness of long-term prediction, an improved evolutionary
approach for learning of the FCM model was proposed [32]. Froelich [7] proposed fuzzy
grey cognitive maps (FGCMs) as a nonlinear predictive model to predict the multivariate
interval-valued time series, in which evolutionary algorithm was also applied for learning
FGCMs. Homenda [33] developed a methodology that joins a fuzzy cognitive map and
moving window approach for time series prediction, in which the FCMs were optimized
using a particle swarm optimization technique.

In this paper we investigate the FCM model and propose a novel method to construct
the time series model based on FCM. The aim of this research is to improve the efficiency
and accuracy of the time series model with FCM. Following are the major steps of the
proposed model processing flow. First, fuzzy c-means clustering is applied to fuzzify the
time series and form concepts from the given time series, i.e., each clustering center serves
as a concept. Then, the weights of the FCM are learned based on historical data with the
least square method. After that, in order to improve the model accuracy, the concepts are
further refinement. The concepts obtained by fuzzy c-means clustering may not be the best
representatives; therefore, we use a population-based optimization algorithm to further
adjust the concepts. Finally, the developed FCM model makes the numerical prediction.

The exposure of the material is structured as follows. Section 2 gives a brief overview
of the fuzzy c-means clustering and fuzzy cognitive map. Section 3 presents a learning
of LSFCM. Subsequently, in Section 4, the outline of the proposed method along with
its essential functional modules is thoroughly explained, in particular the refinement of
concepts. Modeling and forecasting of time series are presented in detail in this section.
In Section 5, we exploit six publicly available datasets to verify the validity and feasibility
of the proposed method and the effect of parameters in the proposed model is discussed,



Algorithms 2021, 14, 69 3 of 14

based on accuracy of the constructed FCM prediction model. Finally, Section 6 provides
some conclusions.

2. Preliminaries
2.1. Fuzzy c-Means Clustering

Fuzzy c-means [34], a fuzzy clustering method, allows one piece of data to belong to
two or more clusters. The objective function of fuzzy c-means is as follows:

argminJ =
N

∑
i=1

n

∑
j=1

um
ij ‖xi − cj

2‖ (1)

where N is the number of data points. n is the number of clusters. m is a fuzzification
coefficient, which is commonly set to 2. xi is the ith data point. cj is the center of the jth
cluster. uij is the degree of membership of xi in the jth cluster, uij ∈ [0, 1], ∑n

j=1 uij = 1.
Fuzzy c-means performs through an iterative optimization of the objective function

with the update of membership uij and the cluster centers cj.

uij =
1

∑n
k=1

( ‖xi−cj‖
‖xi−ck‖

) 2
m−1

(2)

cj =
∑N

i=1 um
ij xi

∑N
i=1 um

ij
(3)

This iteration will stop when it reaches a termination criterion, or until after a specified
maximum number of iterations.

2.2. Fuzzy Cognitive Map

FCM can be understood as a graphical representation of the knowledge. One FCM
consists of concepts (nodes) and directed weights. An example of an FCM with three
concepts is illustrated in Figure 1. Concepts, also called nodes, C1, C2, · · · , Cc represent
the main features of the mapped system. The directed weights wij labeled with fuzzy
values show the strength of the causal conditions between the concepts. The square matrix
W =

[
wij
]

is the weight matrix and i, j = 1, 2, . . . n, where wij ∈ [−1, 1]. If wij > 0, it means
that the increase in value of concept Cj leads to an increase in concept Ci, and vice versa. If
wij < 0, it means that the increase in value of concept Cj leads to a decrease in concept Ci
and vice versa. If wij = 0, it means that there is no relationship between Cj and Ci.

Figure 1. The framework of a fuzzy cognitive map including three concepts.

Given an FCM including c concepts. The activation state values A and the weight
matrix W are expressed as
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A =


A11 A12 · · · A1c
A21 A22 · · · A2c
...

...
...

An1 An2 · · · Anc

, W =


w11 w12 · · · w1c
w21 w22 · · · w2c
...

...
...

wc1 wc2 · · · wcc


with c being the number of concepts and n being the number of samples. The elements in
each row of the matrix A are the state values of concepts at the corresponding time. The
primary mission for constructing an FCM focuses on learning the weight matrix.

The reasoning process of the FCM is generally described as following,

A(t+1)i = f

(
c

∑
j=1

Atjwji

)
(4)

where Atj is the state value of jth concept at time t, A(t+1)i is the state value of ith concept at
time t + 1. In this equation, wji is the fuzzy weight which shows the value of the influential
intensity from concept Cj to Ci. The activation function f (·) is a nonlinear monotonically
increasing function which squashes the weighted sum of the concepts’ states into a certain
interval. One of the most widely used activation functions is the unipolar sigmoid function
as given in following,

f (x) =
1

1 + e−λx (5)

where λ > 0 is the shape parameter of the function. The state value of the sigmoid function
is affected depending on these parameters.

3. The Learning of Least Square Fuzzy Cognitive Map

Different from traditional learning approaches for FCMs, the fuzzy weight matrix
is obtained with the least square method in this study. Compared with the traditional
method, learning the FCM with least square method is a one-time solution of the matrix
equation rather than multi-iteration stochastic searching. The learning of the FCM least
square method is abbreviated to LSFCM.

The activation function f (x) = 1
1+e−λx is a sigmoid function, let us consider the function,

A(t+1)i =
1

1 + e−λ ∑c
j=1 Atjwji

(6)

⇒ e
−λ

c
∑

j=1
Atjwji

= (A(t+1)i)
−1 − 1

⇒ −λ
c

∑
j=1

Atjwji = ln
(
(A(t+1)i)

−1 − 1
)

(7)

where t is the discrete time, t = 1, 2, 3, . . . n− 1, and c is the number of concepts. We have,

c

∑
j=1

Atjwji = −λ−1 ln
(
(A(t+1)i)

−1 − 1
)

(8)

0 < Ai(t+1) <. Let Y(t+1)i , −λ−1 ln
(
(A(t+1)i)

−1 − 1
)

, then,

c

∑
j=1

Atjwji = Y(t+1)i (9)

The primitive function is
(

At, A(t+1)i

)
→ Ai(t+1) = f

(
A(t)

)
and now we have(

At, Y(t+1)i

)
→ Y(t+1)i = φ(At); the least square method is used to estimate wji. The sum

of squares to be minimized, the fitness function, is described as follows,
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J = argmin
w

1
2

c

∑
i=1

n−1

∑
t=1

(Y(t+1)i −
c

∑
j=1

Atjwji)
2

(10)

The state values of concepts at the current time moment are described by X,
X = [A1 A2 · · · An−1]

T ; it results in a set of concepts’ state values at the next time moment
Y = [A2 A3 · · · An]

T , and Yi = −λ−1 ln
(
1./Yi − 1

)
. Then, the fitness function can be

written in matrix form,

min :
1
2

c

∑
i=1

(Yi − XWi)
2 (11)

where Y is a (n− 1)× c matrix, Yi is the ith column of Y, Wi is the ith column of W. Then
we can solve the estimated Wi as

W∗i = arg min
Wi

1
2
‖Yi − XWi‖2 + β‖Wi‖2 (12)

The term ‖Wi‖2 is the L2-norm of Wi which reduces the collinearity of data, β ≥ 0.
Let ∂Ji

∂Wi
= 0, then −XT(Yi − XWi) = 0, we obtain the solution,

W∗i = (XTX + βI)
−1

XTYi (13)

The vector Wi is one column of weight matrix W. We the estimated W as,

W∗ = (XTX + βI)
−1

XTY (14)

We can obtain the estimated values of W by solving (14); there is no iteration and
result obtainable at one stroke.

Note that the values of the W∗ may not be all in the interval [−1, 1], when the least
square method is used to learn the FCM. Owing to Y = −λ−1 ln

(
1./Y− 1

)
, (14) can be

rewritten as follows,

W∗ = λ−1(XTX + βI)
−1

XT(− ln
(
1./Y− 1

))
(15)

It is shown from the formulas that the values of W∗ are linearly proportional to the shape
parameter λ, viz., W∗ ∝ λ−1. Suppose λ = 1, then W1 = (XTX + βI)−1XT(− ln

(
1./Y− 1

))
;

it is not sure that the values of elements of the matrix are all in the interval [−1, 1]. In order
to obtain the suitable estimated weight matrix, let λ1 = max

{∣∣∣w1
ij

∣∣∣}, i, j = 1, 2, · · · c and
λ ≥ λ1, then W∗ can be calculated by (15) and the values of elements of the matrix are all
in the interval [−1, 1]. Algorithm 1 explains the procedure of the LSFCM.

Algorithm 1: LSFCM

Input: Concepts C and its state values matrix A.
1 X = [A1 A2 · · · An−1]

T ;
2 Y = [A2 A3 · · · An]

T ;
3 If rank

(
XTX

)
≥ c Then

4 β = 0;
5 Else If rank

(
XTX

)
< c Then

6 β > 0;
7 End If
8 W1 = (XTX + βI)−1XT(− ln

(
1./Y− 1

))
;

9 λ1 = max
{∣∣∣w1

ij

∣∣∣}, i, j = 1, 2, · · · c;

10 W∗ = λ−1(XTX + βI)−1XT(− ln
(
1./Y− 1

))
, where λ ≥ λ1;

Return the estimated weight matrix W∗.

4. Modeling Time Series Using LSFCM

This section covers how to use the LSFCM to model time series. The entire process of
the modeling is outlined in Figure 2. First, the data are normalized and divided into the
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training set and test set in chronological order. Second, fuzzy time series are constructed
from numerical data based on a fuzzy c-means clustering algorithm. Third, the FCM is
learned using the least square method to efficiently obtain the weight matrix of the FCM
according to the historical data. After the FCM model is established, we can compute the
forecasted values using the LSFCM model.

Figure 2. The outline of proposed method for the time series model.

In order to improve the prediction accuracy of the developed LSFCM model, the
model is further optimized by refinement of the concepts. The evolutionary optimization
algorithm serves as the optimization vehicle to refine the concepts which have been de-
veloped by the fuzzy c-means clustering. The degree of fuzzy membership of each datum
to the clusters will be altered and the ensuing LSFCM process is carried out again. The
optimization process is driven by the minimization of the reconstruction error. Through
these measures, the quality of the FCM model improves. The optimization procedure which
is called LSFCM-ref is an iterative process and is repeated until the desired number of
iterations is reached. In what follows, the proposed model of forecasting time series will be
presented in detail.

4.1. Constructing the LSFCM Model

In this section, the scheme of the proposed time series modeling and prediction
approach based on LSFCM and fuzzy c-means clustering is detailed.

When we attempt to model time series with FCMs, the numeric time series should be
mapped to a fuzzy time series first. Suppose that the FCM has c concepts and X = {x(t)},
t = 1, 2, ..n is a numeric time series, then one numerical datum x(t) is mapped to a fuzzy
set which has c elements in the domain, i.e., fc : x→< v, u > , where v = [v1, v2, · · · , vc] is
the matrix of the concepts and u = [u1, u2, · · · , uc] is the fuzzy membership degree of the x
corresponding to c concepts. Then the numeric datum can be present in the fuzzy set form,
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Ui =
ui1
v1

+
ui2
v2

+ . . . +
uic
vc

(16)

Let the given time series X = {x(t)}, t = 1, 2, ..n normalize to [0,1]. The normalized
time series is redefined as X = {x(t)|x(t) ∈ [0, 1]}, t = 1, 2, ..n. The time series X is divided
into the training set and test set. The training set containing the L datum is used to establish
the FCM model; the test set containing the n− L datum is used to estimate the models.

In order to fuzzify the time series, a fuzzy c-means clustering algorithm is used
to obtain clustering centers and the fuzzy memberships, the number of the cluster cen-
ter c is predefined, and the clustering centers are taken as the concepts. We have the
concepts’ vectors V = [v1, v2, · · · , vc]

T and the corresponding fuzzy membership matrix
U = [u1i, u2i, · · · , uci], i = 1, 2, . . . n. Then the fuzzy membership matrix is used to construct
the FCM. There is an internal fuzzy logical relationship between the neighbors of the
partition matrix U, viz. U(t)→ U(t + 1) . Accordingly, we have n − 1 input–output data
pairs, as shown,

u11
u21

...
uc1


T

→


u12
u22

...
uc2


T

;


u12
u22

...
uc2


T

→


u13
u23

...
uc3


T

; · · · ;


u1(n−1)
u2(n−1)

...
uc(n−1)


T

→


u1n
u2n

...
ucn


T

(17)

Referring to (4), the fuzzy logical relationship between U(t + 1) and U(t) can be
described as follows,

U(t+1)i = f

 c

∑
j=1

Utjwji

; t = 1, 2, · · · n− 1 , i = 1, 2, · · · c (18)

The formula can be expressed in vector form,

Ut+1 = f (UtW) (19)

According to the LSFCM construction process, the concepts V and the fuzzy member-
ship matrix U are used as raw material to construct FCM and the least square method is
used to learn the FCM. According to Algorithm 1, the weight matrix W can be calculated
by the following equation,

W = (UTU)
−1

UTY, (20)

where U = [U1, U2, · · ·Un−1]
T and Yi = −λ−1 ln

(
Ui(t+1)

−1 − 1
)

, t = 1, 2, · · · n− 1. The
elements of the weight matrix can be restricted to the given interval by adjusting the values
of λ. After the processes above, we can obtain a fuzzy cognitive map model of the given
time series.

Any datum x(t)(t = 1, 2, ..n) belonging to the time series can be transformed into the
form of fuzzy membership values uit( i = 1, 2, · · · c; t = 1, 2, · · · n) by the fuzzy c-means
algorithm. When the structure of the LSFCM is formed, the dynamic characteristics of the
given time series can be interpreted or predicted by the LSFCM. We can predict future
fuzzy membership values based on the LSFCM model. According to (19), the forecast
membership value Ût = f (Ut−1W), then the forecast datum, can be reconstructed as
the following,

x̂t =
∑c

i=1 ûm
ti vi

∑c
i=1 ûm

ti
, (21)

where vi is the concept of FCM, which is calculated by the fuzzy c-means clustering algorithm.
For the quantitative evaluation of LSFCM model quality, the performance index root

mean squared error (RMSE) is defined by the following,

RMSE =

√
1
n

n

∑
t=1
‖xt − x̂t‖2 , (22)
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where n is the number of time series data, xt is the actual value and x̂t is the predictive
value of time series at the time t. Obviously, the smaller the RMSE is, the higher the quality
of the model is.

4.2. Refinements of LSFCM Model

The concepts of the LSFCM are obtained by the fuzzy c-means algorithm; however
the performance index is prediction error. The initial concepts do not necessarily lead to
the minimum prediction error. Thus, the idea is to optimize the LSFCM model by adjusting
the position of the concepts (cluster centers) for a better performance index. The partition
matrix U includes the fuzzy membership of each sample to the concepts. Supposing that
the position of the concepts is relocated in the domain of definition, on this basis, there
will be acting in response to cause a new partition matrix. The structure of the LSFCM will
be relearned based on the new partition matrix and concepts, then that impacts directly
on the prediction error. The procedure of migration of concepts is depicted in Figure 3.
The initial/updated population of concepts is used to construct the LSFCM model. Then,
the reconstruction errors are calculated and the optimal concept whose LSFCM model
has minimum errors is selected. The best concept is output after the iteration, which is
used to construct the optimal LSFCM model. The refinements of concepts will be detailed
discussed in the following.

Figure 3. Migration of concepts.

How to change the position of concepts plays a pivotal role in the process. In this study,
the stochastic seeking strategy is considered to adjust the coordinate of all the concepts.
It can be believed that the clustering centers of the fuzzy c-means algorithm are already
close to the best concepts of the FCM but still make further progress. The position of
the clustering center is in the neighborhood of the optimum position which makes the
LSFCM model show a better performance index. To refine the FCM model, the initial
concepts obtained by fuzzy c-means are used as the starting point. To modify the concepts,
a sub-defined interval is introduced for the coordinates of the concepts. The radius of the
sub-defined interval is described as follows,

r =
max(data)−min(data)

2c
(23)

Each concept moves to a new position from its current position in a particular range
rather than the entire domain and the new position v′i ∈ [vi − r, vi + r]. Hence, the
efficiency of adjustment is higher. The probability of a new concept position in the domain
is a normal distribution. In other words, the closer the position to the initial concept, the
higher the probability selected. The strategy of concept adjustment is illustrated in Figure 4.
The initial population of concepts is a normal distribution. ϕi(vi) (i = 1, 2 · · · c) is the
probability density function that the position in the domain selects as the new concept.
Each concept can move to the best position around the initial position. Although the
movement of each concept in each coordinate is random, the movement of all concepts has
a preference or tendency. The final result is to minimize the performance index RMSE, viz.

1
N ∑N

t=1 ‖xt − x̂t‖2 → min.
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Figure 4. The strategy of concept adjustment.

The positions of the concepts are adjusted by the evolutionary algorithm Particle
swarm optimization (PSO). The fuzzy membership matrix U is refreshed corresponding
to the new concepts. Once the optimal concepts are obtained, the final LSFCM model
(LSFCM-ref) is formed.

5. Results

In this section, publicly available real-world time series are used to demonstrate the
effectiveness of the proposed method. All FCM learning methods used for comparative
purposes were tested under the same conditions. As previously described, the FCM model
is governed mainly by the number of concepts. The shape parameter λ of the sigmoid
function also has effect on the performance of the FCM model. In order to evaluate the
quality of the proposed methods, there were two purposes of these experiments involving
the time series. The first one was that the quantitative evaluation of the impact on the
prediction accuracy of the proposed approach being brought by the number of concepts c
and the parameter of the sigmoid function. The second one was comparison with other
FCM learning methods and the classical forecasting models.

For all the time series, the normalized time series data were split into two samples:
training set and test set. The fuzzification coefficient m was set to two. There eight time
series data sets are applied to evaluate and analyze the developed LSFCM and LSFCM-ref
model of time series. The eight time series are given in Table 1 and plotted in Figure 5. In
each time series, the first 80% of data were used for model training, the last 20% of data
were left for testing purposes.

Table 1. Experimental data.

NO. Time Series Size

(a) Mean daily flow, Oldman River near Brocket, Jan 01, 1988 to Dec 31, 1991 1461
(b) Monthly Boston armed robberies Jan.1966-Oct.1975 118
(c) Nigeria power consumption 123
(d) Annual water use in New York city, liters per capita per day, 1898–1968 71
(e) Annual sheep population (1000s) in England and Wales 1867–1939 73
(f) Births per 10,000 of 23-year-old women, U.S., 1917–1975 59
(g) Daily open prices of the S&P 500 stock index, May 16, 2017 to May 15, 2020 756
(h) Daily close prices of the Dow Jones industrial index, May 1, 2019 to April 29, 2020 252

5.1. The Influence of the Parameters of the Proposed Model

The number of the concepts is highly sensitive to the performance of FCM models [35].
The parameters c and λ are particular discussed in the experiments. Optimal values of the
parameters are established by inspecting the predictive error (RMSE) of the training set.
The values of c range from 2, 3,..., 20, while several representative values of λ are selected.
Figure 6 plots line chart groups of RMSE of corresponding different parameter values.
Examination of the data shown in Figure 6 leads us to the conclusion that the value of
RMSE becomes substantially lower when increasing the number of concepts; however, the
value becomes slightly higher or even higher still when the number of concepts exceeds a
certain number. In other words, the predictive accuracy does not continuous increase with
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the increasing number of c. For example, regarding the Oldman time series, the optimal
value of c is 10. Whereas for the Annual water time series, once the number of c moves
past eight, there will be no substantial improvement of the reconstruction error, or it will
become even worse. The topology of the FCM is more complex with the growth of the
number of concepts. Therefore, the optimal value of c is selected under comprehensive
consideration of the topological complexity of the FCM and the predictive accuracy.

Figure 5. The experimental data. Different from the number of c which directly affects the precision
of the least square fuzzy cognitive map (LSFCM) model, the values of λ do not have an apparent
effect for the precision of the LSFCM model, but a large one for the weight matrix. The weight
matrix varies linearly inversely with the shape parameter of sigmoid function λ. The results of the
numerical experiments illustrate that various values of λ represent different W∗, but models with
same performance are obtained. For the numerical example of the Births time series (f), the changes
W with λ are as follows.

Figure 6. Cont.
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Figure 6. The performance of the fuzzy cognitive map (FCM) model with different parameters.

Letting λ = 1, we can calculate the weight matrix,

W1 =



5.0174 −8.6692 −7.2166 −5.1458 −8.3879 −7.8711
−9.1504 4.0895 −7.9115 −8.6434 −4.0537 −7.1306
−5.7369 −6.1585 3.5081 −3.8613 −5.6261 −4.4168
−3.3991 −6.2223 −2.6043 1.4834 −5.8400 −5.0940
−7.1786 −3.1379 −5.1858 −6.4852 −0.3340 −2.2041
−6.1414 −4.5083 −4.1489 −5.3633 −2.6671 2.4939

.

Then, letting λ = max
∣∣W1

∣∣= 9.1504, we have the weight matrix conforming to the definition

W9.1504 =



0.5483 −0.9474 −0.7887 −0.5624 −0.9167 −0.8602
−1.0000 0.4469 −0.8646 −0.9446 −0.4430 −0.7793
−0.6270 −0.6730 0.3834 −0.4220 −0.6148 −0.4827
−0.3715 −0.6800 −0.2846 0.1621 −0.6382 −0.5567
−0.7845 −0.3429 −0.5667 −0.7087 −0.0365 −0.2409
−0.6712 −0.4927 −0.4534 −0.5861 −0.2915 0.2725

.

If setting λ = 10, we can also calculate the weight matrix

W10 =



0.5017 −0.8669 −0.7217 −0.5146 −0.8388 −0.7871
−0.9150 0.4090 −0.7912 −0.8643 −0.4054 −0.7131
−0.5737 −0.6158 0.3508 −0.3861 −0.5626 −0.4417
−0.3399 −0.6222 −0.2604 0.1483 −0.5840 −0.5094
−0.7179 −0.3138 −0.5186 −0.6485 −0.0334 −0.2204
−0.6141 −0.4508 −0.4149 −0.5363 −0.2667 0.2494

.

5.2. Comparison with Other Methods

For comparison, a subset of classical forecasting models was selected for comparison
included the Naive, Standard Exponential Smoothing (SES), Holt–Winters and ARIMA
models. The details are described in the following sections. The prediction accuracy of the
conventional FCMs models was calculated. The prediction accuracy was calculated and
listed in Table 2. As can be seen from Table 2, the prediction precision of the time series
with FCM learning by the Particle swarm optimization (PSO) or Genetic algorithm (GA)
methods is slightly higher than the developed LSFCM prediction model, but less than
the LSFCM-ref model. There are no significant differences for all the time series in these
models: PSO-FCM, GA-FCM and LSFCM. However, the results with LSFCM-ref model are
more accurate than others.
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Table 2. Comparison with other FCM models.

Data PSO-FCM GA-FCM LSFCM LSFCM-Ref

(a) (c = 10) 11.66 12.4 11.48 10.47
(b) (c = 10) 38.5 38.4 41.6 37.46
(c) (c = 7) 8328 8386 8999 7753
(d) (c = 7) 23.5 23.6 26.1 22.8
(e) (c = 7) 79.28 80.39 80.55 73.23
(f)(c = 6) 11.8 13.1 12.89 10.51
(g)(c = 9) 34.14 35.02 34.58 33.21

(h)(c = 10) 543.82 545.83 542.79 518.88

With refinement of concepts, we can further improve the accuracy of the LSFCM
model. The comparison shows that the developed FCM prediction model can produce
satisfactory quality for the time series. It can be seen in Figure 7 that the location of the
concepts changes with refinements. In the coordinates, the black star points are the initial
position of the concepts, and the red circles are the final position of optimized concepts.

Figure 7. Adjustment concepts. Black star points: the initial position, red circles: the final position.

Furthermore, the comparison between the proposed approach and the classical pre-
diction approach (Naive, SES, Holt–Winters and ARIMA) is presented in Table 3. As can be
noted, the LSFCM approach outperformed the classical prediction models and the LSFCM
has the minimum RMSE compared with the other prediction methods.

Table 3. Comparison with the classic prediction models.

Data Naive ARIMA SES Holt–Winters LSFCM LSFCM-Ref

(a) 13.12 10.51 22.13 13.14 11.48 10.47
(b) 61.92 60.67 62.79 64.02 41.6 37.46
(c) 11,435 10945 14320 10605 8999 7753
(d) 27.31 28.50 28.33 28.78 26.1 22.8
(e) 82.34 82.65 82.34 105.27 80.55 73.23
(f) 13.14 12.63 13.15 13.65 12.89 10.51
(g) 46.13 46.49 96.55 46.75 34.58 33.21
(h) 949.61 939.64 1464.15 1042.99 542.79 518.88
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6. Conclusions

A novel FCM learning approach for time series was proposed in this study. The
model contains two stages. The first one is to construct an FCM model with the least
square method, viz. LSFCM. The second one is to optimize the LSFCM with refinement
of concepts to improve the prediction accuracy. Fuzzy c-means clustering is applied to
fuzzify the given time series data set to automatically extract the FCM’s concepts and fuzzy
membership matrix. Two important contributions of the proposed method are learning
the FCM with the least square method and refinement of concepts. The former can help
the FCM learning eliminate the strenuous iterative computation. The latter can help the
FCM obtain the optimal concepts by relocating the position of concepts. In addition, the
stochastic strategy is applied to refine the concepts of the LSFCM. The influence of the
parameters of the FCM on the prediction accuracy is analyzed. The number of concepts
significantly impacts the prediction accuracy of the LSFCM prediction model. When the
number of clusters is assigned to the optimal value, the ideal numerical prediction accuracy
can be obtained. The parameters of activation function have no great effect on the prediction
accuracy of the LSFCM model but have a big impact on the weight matrix. From the
results of experimentation, LSFCM is a very competitive model for time series modeling
and forecasting.
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