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Abstract: The choice of which objective functions, or benchmark problems, should be used to
test an optimization algorithm is a crucial part of the algorithm selection framework. Benchmark
suites that are often used in the literature have been shown to exhibit poor coverage of the problem
space. Exploratory landscape analysis can be used to quantify characteristics of objective functions.
However, exploratory landscape analysis measures are based on samples of the objective function,
and there is a lack of work on the appropriate choice of sample size needed to produce reliable
measures. This study presents an approach to determine the minimum sample size needed to obtain
robust exploratory landscape analysis measures. Based on reliable exploratory landscape analysis
measures, a self-organizing feature map is used to cluster a comprehensive set of benchmark functions.
From this, a benchmark suite that has better coverage of the single-objective, boundary-constrained
problem space is proposed.

Keywords: exploratory landscape analysis; benchmarking; algorithm selection problem; sample size;
single-objective boundary-constrained continuous optimization problems; black-box optimization

1. Introduction

The field of computational intelligence is inordinately powered by empirical analysis.
Without theoretical derivations for the performance of optimization algorithms, one must
compare said algorithms against one another by analyzing their performance on a collection
of benchmark problems. The problem of selecting which algorithm to use is non-trivial
and is not only limited to computational intelligence. The algorithm selection problem
was formalized by Rice in 1976 [1]. Rice’s framework defines four components, namely
the problem space, the feature space, the algorithm space, and the performance measure
space. The problem space contains all the possible problems that can exist for a particular
problem type. The feature space consists of all possible measures that can describe the
characteristics of problems found in the problem space. The algorithm space consists of
all possible algorithms that can be used to solve the problems found in the problem space.
Lastly, there is the performance space, which describes how well a particular algorithm
solves the problems found in the problem space.

This study focuses on the case of single-objective, continuous-valued, boundary-
constrained optimization problems.

The choice of benchmark problems to sample from the problem space has a direct
impact on the relative performance of algorithms when they are compared with one
another. To have a fair comparison of algorithm performance, the algorithms should
be run on either (a) the same benchmark problems, or (b) benchmark problems that
have similar characteristics. In the literature, it is common to make use of predefined
benchmark suites to compare algorithm performance. The IEEE Congress on Evolutionary
Computation (CEC) Special Sessions and Competitions on Real-Parameter Single-Objective
Optimization [2–5] and the Genetic and Evolutionary Computation Conference (GECCO)
Black-Box Optimization workshops [6] provide such benchmark suites. Furthermore, there
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are several other benchmark problems defined in the literature [7–10] that do not appear in
the commonly used benchmark suites. Recent work has shown that the CEC and BBOB
benchmark suites provide poor coverage of the problem space, from both the perspective
of the performance space as well as the feature space. Garden and Engelbrecht [11] showed
that the CEC 2005 and the BBOB benchmark suites have similar distributions for some
fitness landscape analysis measures. Muñoz et al. [12] showed that the BBOB benchmark
suite provides poor coverage of the problem space. Škvorc et al. [13] further showed
that many of the CEC benchmark suites, as well as the BBOB benchmark suite, provide
poor coverage of the problem space. Zhang and Halgamuge [14] and Christie et al. [15]
both showed that benchmark functions in the literature are highly correlated from the
perspective of algorithm performance. The optimal choice of benchmark functions to
include in a benchmark suite is therefore still an open question.

Landscape analysis encompasses mathematical and statistical techniques used to
quantify characteristics of an optimization problem, and therefore landscape analysis
can be used to describe the feature space. Both fitness landscape analysis (FLA) [16]
and exploratory landscape analysis (ELA) [17] can be used for this purpose. However,
the subtle difference between the two techniques is that ELA measures are generally used
in sets to relate to problem characteristics, whereas individual FLA measures can describe
a problem characteristic independently. In the case of continuous-valued optimization
problems, landscape analysis measures are calculated on a sample of values of the objective
function. This is done since it is not computationally feasible to calculate all possible values
of an objective function, since there are infinitely many such values in a continuous space.
Furthermore, the algorithms used to generate the samples used in landscape analysis are
stochastic. Consequently, landscape analysis measures can fluctuate due to the sampling
method. It is, therefore, imperative that the landscape analysis measures produce results
that do not fluctuate significantly, since this can affect decisions on which algorithm to
select to solve a problem. If a landscape analysis measure does not have a large variance,
it is deemed to be robust [18]. Landscape analysis measures must be robust, because if
these measures are intended to be used as input to machine learning models for automated
algorithm selection, reproducibility of the models is desirable. There is little focus in
the literature on how to adequately choose the sample size for ELA. Kerschke et al. [19]
noted that a sample size of 50× D, where D is the dimensionality of the decision space,
is sufficient to train a classifier on the BBOB benchmark suite to differentiate problem
instances based on the number of funnels in the fitness landscape. However, this may not
necessarily generalize to other problem characteristics.

The main contributions of this paper are (1) an approach to determine the sample size
needed to produce robust measures from exploratory landscape analysis (ELA), and (2) a
proposal of a single-objective boundary-constrained benchmark suite, using commonly
found benchmark functions in the literature, that has better coverage of the single-objective,
continuous-valued optimization problem space than benchmark suites that are currently
used in the literature.

The remainder of this study is organized as follows: Section 2 contains an introduction
to the concepts used within the study, Section 3 investigates the robustness of ELA measures
and provides the sample size used for the remainder of the study, Section 4 contains the
benchmark suite proposal. Finally, Section 5 concludes the study and discusses avenues
for future work.

2. Background

This section contains an introduction to the concepts used in the remainder of this
paper. First, benchmark problems and benchmark suites in single-objective, continuous-
valued, boundary-constrained optimization are discussed. Then landscape analysis, in par-
ticular exploratory landscape analysis, and its relation to problem characterization is
discussed. The suitability of the coverage of the problem space of currently used bench-
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mark suites is discussed. Finally, a brief introduction to self-organizing feature maps
is given.

2.1. Benchmark Functions

There are many commonly used single-objective boundary-constrained benchmark
functions that have been defined in the literature. Jamil and Yang [7] provide a compre-
hensive overview of commonly used benchmark functions, and along with the Al-Roomi
repository [9], the smoof R package [20], and the CIlib benchmark repository [21], these re-
sources provide the benchmark function definitions that the majority of researchers use
to test their algorithms. Although the basic benchmark functions are described in the
literature, it is common for researchers to make use of benchmark suites, which contain a
collection of these benchmark functions, to compare the performances of their algorithms.
Both the GECCO and CEC conferences hold annual competitions in which such benchmark
suites are defined.

The CEC benchmark suites are composed of three problem types: standard functions,
hybrid functions, and composition functions. The standard functions make use of the
standard function definitions of benchmark functions as they are described in the literature
(called basic functions by the CEC organizers). However, input vectors are first rotated and
shifted by predefined matrices and vectors. The hybrid functions are linear combinations of
basic functions, where the input vector is divided up and each sub-vector becomes an input
to a separate basic function. The composition functions are a weighted linear combination
of both the basic, standard, and hybrid functions. Each year the benchmark suite used in
the CEC competition changes. Despite this, there is an overlap in the functions used across
the different benchmark suites. Nevertheless, the predefined rotation matrices and shift
vectors differ for each competition and therefore the properties of the benchmarks can differ,
despite having the same function definition. The study focuses on the CEC benchmark
functions defined for the 2013, 2014, 2015, and 2017 competitions [2–5]. The CEC’13
functions are defined in 10, 30, and 50 dimensions. The CEC’14, CEC’15 and CEC’17
functions are defined in 10, 30, 50, and 100 dimensions. For all the CEC benchmark suites,
the functions are defined within the hypercube [−100, 100]D, where D is the dimensionality
of the decision variable space. That is, the search space has a range of [−100, 100] in
each dimension.

The GECCO conference holds the Black-box Optimization Benchmarking (BBOB)
workshop, in which several benchmarking suites are provided for different problem types.
This study focuses on the BBOB benchmark suite [6] which contains 24 noiseless single-
objective, boundary-constrained optimization problems. The BBOB benchmark suite
has remained the same since its inception in 2009. In the BBOB benchmark suite, the
optimization functions are categorized into five categories:

• Separable functions
• Functions with low or moderate conditioning
• Functions with high conditioning and unimodal
• Multi-modal functions with an adequate global structure
• Multi-modal functions with a weak global structure

The BBOB functions are defined in 2, 3, 5, 10, 20, and 40 dimensions. Furthermore, the
functions are defined within the hypercube [−5, 5]D, where D is the dimensionality of the
decision variable space.

2.2. Landscape Analysis

In the context of the algorithm selection framework defined by Rice, the characteristics
space can be defined using landscape analysis measures. Landscape analysis encompasses
both fitness landscape analysis (FLA) [16] and exploratory landscape analysis (ELA) [17].
An individual FLA measure generally defines a single high-level characteristic of an
optimization problem, whereas an individual ELA measure is generally associated with
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several high-level properties [17]. Mersmann et al. [22] defined eight high-level properties
for optimization problems, namely

• Multi-modality, which refers to the number of local optima in the fitness landscape.
• Global structure, which refers to the underlying structure of a fitness landscape when

removing local optima.
• Separability, which describes if an objective function can be decomposed into subprob-

lems in which all the variables in each subproblem are independent of the variables in
the other subproblems.

• Variable scaling, which describes the effect that scale has on the behavior of algorithms
in different dimensions.

• Search space homogeneity, which describes the phase transitions between different
areas of the fitness landscape, i.e., how the properties of the fitness landscape vary in
different areas of the search space.

• Basin size homogeneity, which describes the differences in the sizes of the basins
of attractions.

• Global to local optima contrast, which describes the difference in fitness values be-
tween local and global optima.

• Plateaus, which refers to areas of a fitness landscape in which the fitness values do
not fluctuate significantly.

An individual FLA measure is interpretable in the sense that it can, on its own, describe
a high-level property of a fitness landscape, as listed above. Individual ELA measures
generally have less interpretability, and are designed to be used collectively and used as
input for machine learning models. The distinction between ELA and FLA is not clear-cut,
and often measures that were originally described as FLA measures are used in ELA.

Mersmann et al. [17] refer to groups of related ELA measures as feature sets. The flacco
R package [23] provides an interface for calculating many landscape analysis measures in
the literature. In this study, the following ELA feature sets from flacco are investigated:

• Dispersion (disp): Defined by Lunacek and Whitley [24], these measures describe the
global structure of the objective function.

• Information content (ic): Defined by Muñoz et al. [25], these measures calculate the
differences between points in the sampled fitness values to determine the ruggedness
of the fitness landscape.

• Level-set (ela_level): Defined by Mersmann et al. [17], these measures split the initial
sample into two groups, and then the performance of multiple classification algorithms
is measured.

• Meta-model (ela_meta): Defined by Mersmann et al. [17], these measures determine
how well the sampled fitness values fit linear and quadratic models.

• Nearest better clustering (nbc): Defined by Kerschke et al. [26], these measures calcu-
late various statistics based on the comparison of the distances between the sample
points’ nearest neighbor and their nearest neighbor that has a better fitness value.

• Principal component analysis measures (pca): Defined by Kerschke and Trautmann [23],
these measures perform principal component analysis on the sampled values in both
the decision variable and fitness spaces.

• y-distribution features (ela_distr): Defined by Mersmann et al. [17], these measures
describe the distribution of the fitness values obtained by the sampling algorithm.

These feature sets are chosen since they do not require any further objective function
evaluations other than that of the initial sample. This simplifies the procedure needed to
determine the point of robustness for the measures since the only variable with regards to
the sampling is the size of the sample. In contrast, several FLA measures are calculated
from samples generated by random walk algorithms. With random walk algorithms,
there are two parameters, the number of points in the walk (sample) and the bound on the
step size of the walk.
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In addition, ELA measures that do not require further function evaluations are more
likely to be feasible in practical usage of ELA for automated algorithm selection. This is be-
cause the computational costs associated with calculating function evaluations are generally
significantly higher than the computational costs of calculating the ELA measures. Lastly,
the ELA measures used in this study do not require knowledge of the objective function
definition, which allows this study to generalize to black-box optimization problems.

In recent years, there has been work towards finding analyzing the effects of sample
size on landscape analysis measures. Lang and Engelbrecht [18] studied the robustness of
FLA measures, based on samples generated by random walks. Renau et al. [27] studied
the effect robustness of ELA measures on the BBOB benchmark suite. However, both of
these works do not specify at what sample size landscape analysis measures provide
robust results.

Renau et al. [28] analyzed the effects of differing sampling strategies on the location
and variance, or robustness, of ELA measures.

2.3. Coverage of the Problem Space

As noted by Bartz-Beielstein et al. [29] the quality of a benchmark suite can be eval-
uated using both the feature space and the performance space from the algorithm selec-
tion framework.

When analyzing the quality of a benchmark suite through the lens of the feature space,
the characteristics of the benchmark problems are calculated, for example using landscape
analysis. Then benchmark problems can be compared with one another through differences
in the characteristics. Garden and Engelbrecht [11] calculated nine FLA measures on the
CEC 2005 and BBOB benchmark suites and used a self-organizing feature map to project the
problem space into a two-dimensional grid of 9-dimensional weight vectors. An analysis
of the distributions of the FLA measures showed that those benchmark suites had poor
representation for the measured characteristics. It was also shown that the functions
within the benchmark suites are extremely similar. Muñoz et al. [12] calculated several
ELA measures on the BBOB benchmark suite. It was shown that when using principal
component analysis to project the space into two dimensions, the benchmark problems are
highly similar and exhibit poor coverage of the problem space. Škvorc et al. [13] calculated
ELA measures on several CEC benchmark suites, as well as the BBOB benchmark suite.
Then, the t-SNE [30] dimensionality reduction algorithm is used to project the problem
space into two dimensions. Even when using a more advanced dimensionality reduction
technique compared to Muñoz et al., the benchmark functions were shown to have poor
coverage of the problem space.

Analyzing the quality of a benchmark suite through the lens of the performance
space entails running a collection of algorithm problems on a benchmark suite, and then
comparing the performance metrics of algorithms against one another. Using various
differential evolution algorithms, Christie et al. [15] , using fixed-budget performance
measures showed that the BBOB benchmark suite has many highly correlated benchmark
functions. Zhang and Halgamuge [14] analyzed many performance measures on a large
collection of benchmark problems and showed that the CEC 2017 and BBOB benchmark
suites have poor coverage of the problem space. Zhang and Halgamuge showed that the
coverage of a collection of benchmark problems that commonly appear in the literature
provides the largest coverage of the problem space.

2.4. Self-Organizing Feature Map

The self-organizing feature map (SOM) [31] is an artificial neural network-based non-
linear dimensionality reduction technique. The SOM can be used to map an m-dimensional
continuous space onto an n-dimensional discrete grid, where typically n = 2. The SOM
maintains the topological structure of vectors from the higher-dimensional space in the
projected lower-dimensional space. Therefore, if two vectors are close in m-dimensional
space, then they will be located close on the 2-dimensional grid.
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A SOM grid consists of several codebook vectors, which represent where in the 2-
dimensional grid space a particular node in the grid lies. The number of nodes in the grid
is chosen by the practitioner and can have any rectangular shape. Engelbrecht [32] notes
that the size of the grid should be at least equal to the number of independent patterns in
the training set. Kohonen [33] notes that if one would like to find fine structures within the
data, a large grid is needed. However, the computational costs of training a SOM increases
with the number of nodes in the map.

With the unified distance matrix (U-matrix) [34], the SOM allows for visualization of
high-dimensional space, and it can thus be used for the visualization of the distribution
of benchmark functions in the problem space. Clustering algorithms can then be used on
the U-matrix to determine which benchmark functions are similar. Additionally, the SOM
can be used for exploratory data analysis. The distribution of the values for an individual
dimension from the input space can be visualized by used component planes. The com-
ponent planes are constructed by using a color scale range for the input parameter, or
component, of interest. In this application of the SOM, this will indicate if a collection of
benchmark functions is representative of a wide range of values for an ELA measure.

For a detailed discussion on the training of a SOM, the reader is directed to the
literature [31–33].

3. Robustness of Exploratory Landscape Analysis Measures

This section discusses the need for robust exploratory landscape analysis measures
and presents an approach to determine the sample size that results in robust exploratory
landscape analysis measures. This approach is then applied to a large collection of bench-
mark functions, and the results are presented and analyzed. Finally, the choice of a sample
size to use for ELA measures for the remainder of the study is determined.

3.1. Determining Robustness

The choice of the sample size for calculating ELA measures presents a trade-off
between accuracy and computational costs. For smaller sample sizes, the computational
cost will be low, but the accuracy of the resulting ELA measures is poor. For larger sample
sizes, the computational costs will be high, and the accuracy of the resulting ELA measure
will increase.

As noted by Muñoz et al. [35], an ELA measure c( f , n) which is calculated on an
objective function f from a sample size n is a random variable. Therefore, c( f , n) has
a probability distribution whose variance, σ2, should converge to zero when n tends to
infinity, otherwise σ2 is dependent on f and n. Several independent runs of a measure
c( f , n) can be conducted to approximate the probability distribution. When the variance,
σ2, is small then c( f , n) is said to be robust. Defining when the variance is small results in
extra hyperparameters when using ELA, as a threshold needs to be defined for each ELA
measure. Rather than defining an absolute threshold, this study makes use of a procedure
that determines when the variance becomes small enough, relative to increasing sample
sizes. This, coupled with the fact that the variance tends to zero as the sample size increases,
allows one to determine the sample size needed to provide robust ELA measures.

To determine the sample size needed to produce a robust measure, non-parametric
statistical tests are needed, since the c( f , n) distributions are unknown and are unlikely
to follow the normal distribution. In the literature, there are many hypothesis tests for
equality of variance, also called homogeneity of variance, the most common being the
F-test, which tests the hypothesis that two normal distributions have the same variance.
The Levene test [36] is used to determine whether k samples have equal variances, and can
be used as an alternative to the F-test when the population data does not follow the
normal distribution. Consider k random samples, where the i-th sample has observations
xi1, xi2, . . . , xini . Levene considers the absolute differences between each observation and
its corresponding group mean, i.e., dij = |xij − x̄i.|, i = 1, 2, . . . , k, j = 1, 2, . . . , ni, where
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ni is the number of observations in the i-th group, and x̄i. is the sample mean for the i-th
group. Then, the Levene test is defined as:

H0 : σ2
1 = σ2

2 = . . . = σ2
k (1)

H1 : σ2
i 6= σ2

j for at least one pair(i, j) (2)

The Levene test statistic is then defined as:

L =
N − k
k− 1

∑k
i=1 ni(d̄i. − d̄..)2

∑k
i=1 ∑ni

j=1(dij − d̄i.)2
(3)

where

d̄i. =

nj

∑
j=1

dij

nj
d̄.. =

k

∑
i=1

ni

∑
j=1

dij

N
N =

k

∑
i=1

ni (4)

Levene transforms the population data by considering the absolute differences be-
tween each observation and its corresponding group mean, and therefore dij = |xij − x̄i.|,
i = 1, 2, . . . , k, j = 1, 2, . . . , ni, and x̄i. is the sample mean for the i-th group in the above
equations. Brown and Forsythe [37] proposed a modification to the Levene test which
provides more robust results, in which the absolute differences between each observation
and its corresponding group median is calculated. That is, dij = |xij − x̃i.|, where x̃i. is the
median of the i-th group.

However, it is only of interest whether the variance of the measures decreases as the
sample size increases, and not if variances between sample sizes are equal or not. This is
because a two-sided hypothesis test for the variance does not indicate if the variance of
two samples is larger or smaller than the other. For this purpose, Levene trend tests [38]
can be used to determine if there is a monotonic increasing or decreasing trend in a group
of variances. As described in [39], such a hypothesis test can be set up as follows:

H0 : σ2
1 = σ2

2 = . . . = σ2
k (5)

H1 : σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
k (6)

Then, all observations in a group i are assigned a score wi, for each group i = 1, . . . , k.
Now, regress the transformed data, dij, on wi and consider the regression slope

β̂ =
∑k

i=1 ni(wi − w̄)(d̄i. − d̄..)

∑k
i=1 ni(wi − w̄)2

(7)

where

w̄ =
k

∑
i=1

wi (8)

Under the null hypothesis, β̂ = 0 and the test statistic follows a t-distribution with
(N − 1) degrees of freedom, where N is the total number of observations from all groups.
Scores can be assigned as either linear or non-linear functions, which respectively allows
testing for linear or non-linear trends in the variances. In this study, linear scores are
investigated. That is, wi = 1∀i.

The lawstat package [39] in R is used to perform the Levene trend test.
Now, to determine at what sample size a measure c( f , n), for a particular objective

function f , becomes robust, the following procedure is performed:

1. Choose the sample sizes s = s1, ..., sM to be investigated.
2. For each sample size si, calculate the measure c( f , si) for r independent runs.
3. Perform the Levene trend test on the above samples, for each pair of sample sizes,

si and si+1. In this case, there k = 2 groups. Obtain the test statistic and p-value.
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4. For each pair of sample sizes, if the resulting p-value is less than or equal to the
predefined significance level, α, then the null hypothesis is rejected. This implies that
it is likely that there is a monotonic decrease in the variance between the sample sizes.
If the p-value is greater than α, then the null hypothesis cannot be rejected. It is then
said that there is strong evidence that the variance between tequivalencyhe different
sample sizes is equal.

When using the procedure described above, for a particular ELA measure, there are
several possibilities with regards to the number of occurrences of p-values < α:

1. Zero occurrences: This implies that there is no evidence that the variance is lower for
any sample size. The smallest sample size is chosen as the point of robustness since
there is no decrease in variance from increasing sample size.

2. One occurrence: The first sample size after the occurrence is chosen to be the point
of robustness.

3. Two or more consecutive occurrences: The first sample size after the chain of consecu-
tive occurrences is chosen as the point of robustness.

4. Two or more non-consecutive occurrences: The first sample size after the first chain
of consecutive occurrences is chosen as the point of robustness.

Please note that when the null hypothesis is rejected for a pair of sample sizes, it im-
plies that the variance of the larger sample size is statistically likely to be lower than the
variance of the smaller sample size. Therefore, the larger sample size is chosen as the point
of robustness.

Based on the observation of Muñoz et al. [35], the variance of a particular ELA measure
tends to zero as the sample size increases. For the case of two or more non-consecutive
occurrences of statistically significant pairs, Muñoz et al.’s observation implies that the
first chain of statistically significant pairs is more likely to provide practically significant
differences in variance than the second, or later, chain of statistically significant pairs.
Therefore, the first sample size after the first chain of statistically significant pairs is chosen
as the point of robustness.

3.2. Empirical Procedure

As noted in Section 2, there are several benchmark functions defined in the literature.
In this study, the following benchmark functions are investigated:

• the BBOB benchmark suite, which contains 24 benchmark functions. This study
focuses on only the first five instances of these functions, for a total of 120 bench-
mark functions;

• the CEC 2013 benchmark suite, which contains 28 benchmark functions [2];
• the CEC 2014 benchmark suite, which contains 30 benchmark functions [3];
• the CEC 2015 benchmark suite, which contains 15 benchmark functions [4];
• the CEC 2017 benchmark suite, which contains 29 benchmark functions [5]; and
• 118 miscellaneous benchmark functions obtained from various sources listed in

Section 2.

Then, the ELA measures described in Section 2 are calculated for varying sample sizes
for the 340 benchmark functions listed above. To calculate the ELA measures, the flacco
library [23] is used. In particular, the following sample sizes are investigated: 50× D,
100× D, 200× D, . . ., 1000× D, where D is the dimensionality of the decision variable
space. The improved Latin hypercube sampling [19] algorithm is used to sample the
points for the ELA measures. This study focuses on the case when D = 10 since it is
the only dimensionality for which both the CEC and BBOB benchmark suites have been
defined. Each of the investigated feature sets is calculated from the same generated sample,
and therefore all features are calculated from the same sample. The ELA measures that are
investigated are described in Section 2. The breakdown for the ELA measures is as follows:
16 dispersion measures, three y-distribution measures, 18 level-set measures, nine meta-
model measures, five information content measures, five nearest better clustering measures,
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and eight principal component analysis measures, for a total of 64 measures. Each measure
for all combinations of functions and sample sizes are calculated over 30 independent runs.

For this hypothesis test, the level of significance, α, is chosen as 5% a priori. Please note
that the choice of the level of significance has a strong impact on the procedure for deter-
mining the point of robustness. If α is large, then it is likely that the Levene trend test will
find statistically significant differences in the variance between the pairs of smaller sample
sizes, and therefore the point of robustness will be a relatively small sample size. If α is
small, then it is likely that the Levene trend test will either (i) find statistically significant
differences in the variance between pairs of larger sample sizes, and the point of robustness
will occur at larger sample sizes, or (ii) find no pairs of statistically significant differences
in variances. To estimate the sampling distribution more accurately, bootstrapping is
performed on the samples used as input to the Levene trend test, as described by Lim
and Loh [40]. In the experiments, bootstrapping is performed with replacement, and the
number of bootstrap samples is set to 10,000.

3.3. Results and Discussion

Figure 1 provides the distribution of the point of robustness for each of the investigated
ELA measures on all the investigated benchmark functions.

Figure 1 indicates that most of the ELA measures have two dominating points of ro-
bustness, with peaks at sample sizes 50×D and 200×D. The features that provide the low-
est point of robustness are pca.expl_var.cov_x, pca.expl_var.cov_init, pca.expl_var.cov_x,
pca.expl_var.cor_init, ela_meta.lin_simple.coef.max_by_min, and ela_distr.number_of_
peaks, with large peaks at sample size 50× D. The measures which have platykurtic
distributions, i.e., wide and flat distributions, are the dispersion and level-set feature sets.
These platykurtic distributions indicate that the number of sample sizes needed to produce
robust ELA measures often differs for different benchmark functions.

Figure 1 also shows that measures in a particular feature set tend to have the same dis-
tribution for the point of robustness. This observation is most prominent for the dispersion
feature set. These similar distributions may indicate that measures within a feature set are
highly correlated.

Figure 2 contains the plots of the distribution of the point of robustness for all inves-
tigated benchmark suites. Figure 3 contains the plots of the distribution of the point of
robustness for the combination of all investigated benchmark functions. These two figures
combine the point of robustness across all investigated ELA measures for a particular
benchmark suite. Thus, in Figure 1 the cynosure is the different ELA measures, and in
Figures 2 and 3 the cynosure are the different benchmark suites.

Figure 2 indicates that the distribution of the point of robustness is roughly the same
for the BBOB and CEC benchmark suites. These distributions appear to follow a negative
binomial distribution, and this is validated with a goodness-of-fit test. Figure 2f contrasts
the robustness results of the BBOB and CEC benchmark suites, and indicates that the
miscellaneous functions generally have a point of robustness at 50× D. It is hypothesized
that the oscillation functions used in the BBOB and CEC benchmark suites induces more
phase transitions in the fitness landscapes, whereas the collection of miscellaneous functions
are not oscillated. However, further research is required to determine the true cause.

As seen in Figure 3, most benchmark functions provide robust ELA measures at sample
sizes of 50× D, 100× D and 200× D. Since the different benchmark suites are defined for
various search space dimensionalities, it is interesting to note that the distributions of the
point of robustness do not change significantly between the benchmark suites. This implies
that the improved Latin hypercube sampling algorithm is a good choice to generate samples
for ELA, and is likely to provide good coverage of the function space, regardless of the size
of the search space.
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Figure 1. Distribution of the point of robustness for each of the investigated ELA measures across all benchmark functions
in D = 10 dimensions.
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Figure 2. Plots of the distribution of the point of robustness for each of the investigated benchmark suites in D = 10 dimensions.
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Figure 3. Plot of the combined distribution of the point of robustness of all investigate benchmark
functions in D = 10 dimensions.

As noted above, an ELA measure c( f , n) depends on both the function f and the
sample size n. Since the procedure to determine the point of robustness for an ELA
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measure holds the function constant and varies the sample size, a summary statistic is
needed to generalize the robustness for a particular ELA measure across a collection of
functions. For this purpose, percentiles may be used. A percentile describes the percentage
of observations that fall below a particular value. For example, the median is the 50th
percentile. It implies that 50% of the observations in a data set lie above the median.

Table 1 contains the percentiles for the point of robustness over all the investigated
benchmark functions.

Table 1. Percentiles for the point of robustness for all the investigated benchmark functions. The entries in the table
represent sample sizes multiplied by D, where D = 10.

ELA Measure 10% 25% 50% 75% 90% 95% 99% 100%

disp.diff_mean_02 50 50 100 200 300 300 700 1000
disp.diff_mean_05 50 50 100 200 300 400 800 1000
disp.diff_mean_10 50 50 100 200 400 700 1000 1000
disp.diff_mean_25 50 50 100 200 300 500 700 1000
disp.diff_median_02 50 50 100 200 200 300 500 600
disp.diff_median_05 50 50 100 200 200 400 800 1000
disp.diff_median_10 50 50 100 200 300 600 900 1000
disp.diff_median_25 50 50 100 200 300 400 900 1000
disp.ratio_mean_02 50 50 100 200 300 300 700 1000
disp.ratio_mean_05 50 50 100 200 300 400 700 1000
disp.ratio_mean_10 50 50 100 200 400 700 1000 1000
disp.ratio_mean_25 50 50 100 200 400 400 600 900
disp.ratio_median_02 50 50 100 200 200 300 500 900
disp.ratio_median_05 50 50 100 200 200 400 800 1000
disp.ratio_median_10 50 50 100 200 300 500 900 1000
disp.ratio_median_25 50 50 100 200 300 400 900 1000
ela_distr.kurtosis 50 50 100 200 500 700 1000 1000
ela_distr.number_of_peaks 50 50 50 50 500 700 900 1000
ela_distr.skewness 50 50 100 200 500 800 1000 1000
ela_level.lda_mda_10 50 50 100 200 200 300 400 700
ela_level.lda_mda_25 50 50 100 200 400 600 1000 1000
ela_level.lda_mda_50 50 50 100 200 300 500 700 1000
ela_level.lda_qda_10 50 50 100 200 400 600 800 1000
ela_level.lda_qda_25 50 50 100 300 500 700 900 1000
ela_level.lda_qda_50 50 50 100 200 500 700 900 1000
ela_level.mmce_lda_10 50 50 100 200 200 400 700 1000
ela_level.mmce_lda_25 50 50 100 200 300 400 800 800
ela_level.mmce_lda_50 50 50 100 200 300 400 700 900
ela_level.mmce_mda_10 50 50 100 200 300 300 600 1000
ela_level.mmce_mda_25 50 50 100 200 300 400 900 1000
ela_level.mmce_mda_50 50 50 100 200 200 300 600 800
ela_level.mmce_qda_10 50 50 100 200 300 300 700 1000
ela_level.mmce_qda_25 50 50 100 200 400 500 800 1000
ela_level.mmce_qda_50 50 50 100 200 200 300 400 600
ela_level.qda_mda_10 50 50 100 200 300 400 700 900
ela_level.qda_mda_25 50 50 100 200 400 500 900 1000
ela_level.qda_mda_50 50 50 100 200 400 700 900 1000
ela_meta.lin_simple.adj_r2 50 50 100 200 300 500 900 1000
ela_meta.lin_simple.coef.max 50 50 100 200 300 400 900 1000
ela_meta.lin_simple.coef.max_by_min 50 50 50 50 600 700 900 1000
ela_meta.lin_simple.coef.min 50 50 50 300 600 700 1000 1000
ela_meta.lin_simple.intercept 50 50 100 200 400 500 800 900
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Table 1. Cont.

ELA Measure 10% 25% 50% 75% 90% 95% 99% 100%

ela_meta.lin_w_interact.adj_r2 50 50 100 200 300 500 900 900
ela_meta.quad_simple.adj_r2 50 50 100 200 300 500 900 1000
ela_meta.quad_simple.cond 50 50 50 200 400 600 800 900
ela_meta.quad_w_interact.adj_r2 50 50 100 200 300 300 400 800
ic.eps.max 50 50 100 200 400 700 900 1000
ic.eps.ratio 50 50 100 200 300 300 700 1000
ic.eps.s 50 50 100 200 300 500 900 1000
ic.h.max 50 50 100 200 300 400 700 900
ic.m0 50 50 200 200 200 300 500 600
nbc.dist_ratio.coeff_var 50 50 100 200 200 300 500 800
nbc.nb_fitness.cor 50 50 100 200 300 400 600 1000
nbc.nn_nb.cor 50 50 100 200 400 600 1000 1000
nbc.nn_nb.mean_ratio 50 50 200 200 200 300 600 800
nbc.nn_nb.sd_ratio 50 50 100 200 300 600 800 1000
pca.expl_var_PC1.cor_init 50 50 100 200 400 700 900 1000
pca.expl_var_PC1.cor_x 50 50 100 200 400 600 800 900
pca.expl_var_PC1.cov_init 50 50 50 100 200 400 900 1000
pca.expl_var_PC1.cov_x 50 50 100 200 400 600 800 900
pca.expl_var.cor_init 50 50 50 50 200 300 900 1000
pca.expl_var.cor_x 50 50 50 50 50 50 50 50
pca.expl_var.cov_init 50 50 50 50 50 100 300 900
pca.expl_var.cov_x 50 50 50 50 50 50 50 50

To select the appropriate percentile, the practitioner should consider the sensitivity
and consequences that the choice of the sample size will have on the later stages of the
application of landscape analysis. As noted earlier, there is a trade-off between accuracy and
computational costs when calculating ELA measures. For example, if ELA measures are
used in automated algorithm selection, a practitioner may be satisfied with lower accuracy
to keep computational costs down. The selection of a benchmark suite which is used to
compare algorithms is a task that has significant effects on the algorithm selection problem.
Therefore, in this case large computational costs from landscape analysis is acceptable so
that a comprehensive, representative benchmark suite may be found. The larger the chosen
percentile, the larger the sample size and the higher the computational costs and accuracy
will be. For this purpose, the 95th percentile is chosen to determine which sample size will
be used for the remainder of the study.

All ELA measures that belong to a particular feature set are calculated from the same
sample. Additionally, several feature sets can be calculated from the same sample, as is the
case with the feature sets used in this study. Using such a group of measures is advanta-
geous since multiple measures can be calculated from the same sample, which consequently
allows for more accurate characterization of a benchmark problem. However, as shown
in Table 1, different measures provide robust results at different sample sizes. Since these
measures are calculated from the same sample, the point of robustness of the group of
measures should be defined as the largest sample size needed for any single measure
within the collection of ELA measures.

When using the 95th percentile, Table 1 indicates that a sample size of 800× D is the
largest point of robustness for the whole collection of ELA measures. Therefore, for the
remainder of the study, the ELA measures are calculated from a sample size of 800× D.

4. Benchmark Suite Proposal

Now that the sample size that produces robust exploratory landscape analysis mea-
sures has been determined, the measures can be used reliably to characterize the single-
objective, boundary-constrained problem space. A self-organizing feature map is used
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to project the problem space into two-dimensional grid representation, which allows for
visualization of the distribution of the exploratory landscape analysis measures and clus-
tering of the benchmark functions. First, the preprocessing of the data is discussed. Then
the results of applying the self-organizing feature map to the benchmark function data are
presented and analyzed. Finally, a benchmark suite that is representative of the problem
space is proposed.

4.1. Preprocessing

To ensure the quality of the SOM, some preprocessing steps are needed:

1. Determine the sample size used to sample ELA measures. This was determined in
the previous section as 800× D.

2. Identify ELA measures that do not provide useful information, in other words,
measures that are not expressive [27].

3. Identify ELA measures that are highly correlated to prevent multicollinearity.

As defined in [27], an ELA measure is defined as expressive if it can distinguish
different benchmark problems. If the variance of an ELA measure is low, it implies that
the measure is not expressive. When analyzing the distribution of the ELA measures, it
is noted that pca.expl_var.cov_x and pca.expl_var.cor_x generate the same value across
all investigated benchmark functions. All investigated benchmark functions generated
only two different values for pca.expl_var.cor_init. Furthermore, the variance of both
pca.expl_var_PC1.cov_x and pca.expl_var_PC1.cor_x are both 0.000012. Therefore, the
above ELA measures are removed from all further analysis in this study, as they are
unlikely to provide useful information to the SOM. It is noted that these non-expressive
measures all have peaks, in their distribution of point of robustness, at a sample size of
50× D, as illustrated in Figure 1.

Pearson’s correlation coefficient can determine if a linear correlation between two
ELA measures exists. However, a non-linear correlation relationship may exist between
measures. In this case, Pearson’s correlation will not be able to detect the dependency.
The maximal information coefficient (MIC) [41] is a measure that captures the strength of
the association between two random variables.

MIC has several useful properties:

• It produces values in between 0 and 1, with 0 indicating that there is no association
between the two variables, and 1 indicating that the variables have a perfect noiseless
relationship. This allows for easy interpretation of the MIC score.

• It captures a wide range of relationships, both functional and non-functional.
• It is symmetric, which implies that MIC(X, Y) = MIC(Y, X).

There is no rule of thumb, as with Pearson’s correlation, to determine thresholds of
when associations are deemed to be strong. To be conservative in removing ELA measures,
a threshold of 0.9 is selected. With a MIC score of larger than 0.9, an ELA measure can
be said to explain a second ELA measure well, and therefore the second ELA measure
is redundant.

The minerva R package [42] is used to calculate the MIC. To calculate the MIC, the me-
dian value for each ELA measure of all the functions used in Section 3 is taken. Then, the
MIC is calculated for each pair of ELA measures.

To reduce the number of redundant ELA measures, groups of highly associated
measures are found. This is done by creating a graph based on the MIC scores. Each ELA
measure is represented as a node in this graph. If the MIC score is larger than 0.9, then an
edge is added between the two ELA measures. Each group of correlated measures will
then form an independent set. A representative ELA measure can be chosen from each
group, and the remaining measures are not used as input for the SOM.

The above procedure resulted in six groups of highly associated ELA measures.
The graph generated by the above procedure is shown in Figure 4. Figure A1 in Appendix A
indicates the MIC scores between all investigated ELA measures.
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Figure 4. Plot of the graph based on the MIC scores. Nodes represent ELA measures. Edges represent
a strong association between two ELA measures.

From each group, the representative ELA measure is chosen as the measure which
has the smallest point of robustness. As noted earlier, in this study, the 95th percentile
is chosen to summarize the point of robustness across functions. If there are ties in the
smallest point of robustness, then the tie is broken arbitrarily. This ensures that the final
set of ELA measures used as input to the SOM provides characteristics that are as reliable
as possible.

Therefore, from the highly associated groups, the following ELA measures are kept:
disp.ratio_mean_02, disp.diff_mean_02, pca.expl_var_PC1.cor_init, pca.expl_var_
PC1.cov_init, ela_level.lda_qda_10 and nbc.dist_ratio.coeff_var.

Thus, the final set of ELA measures that are used as input for the SOM are the following:

• disp.ratio_mean_02
• disp.diff_mean_02
• ela_meta.lin_simple.coef.min
• ela_meta.lin_simple.coef.max_by_min
• ela_meta.lin_w_interact.adj_r2
• ela_meta.quad_simple.adj_r2
• ela_meta.quad_simple.cond
• ela_meta.quad_w_interact.adj_r2
• ela_level.mmce_lda_10
• ela_level.mmce_mda_10
• ela_level.lda_qda_10
• ela_level.lda_mda_10
• ela_level.mmce_lda_25
• ela_level.lda_qda_25
• ela_level.qda_mda_25
• ela_level.mmce_lda_50

• ela_level.mmce_qda_50
• ela_level.lda_qda_50
• ela_level.lda_mda_50
• ela_level.qda_mda_50
• ela_distr.skewness
• ela_distr.kurtosis
• ela_distr.number_of_peaks
• ic.h.max
• ic.m0
• nbc.nn_nb.sd_ratio
• nbc.nn_nb.cor
• nbc.dist_ratio.coeff_var
• nbc.nb_fitness.cor
• pca.expl_var.cov_init
• pca.expl_var_PC1.cov_init
• pca.expl_var_PC1.cor_init
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4.2. Self-Organizing Feature Map

The Kohonen R package [43] was used to generate the SOM models in this study.
The set of measures listed in the previous section are used as input for the SOM. These mea-
sures are calculated for 30 independent runs on the 340 benchmark functions described in
Section 3. This results in a dataset of 10,200 training patterns. As mentioned in Section 3,
this study focuses on 10-dimensional benchmark functions. To prevent any of the ELA mea-
sures from dominating the training of the SOM, the input is normalized to the range [0, 1].

The stochastic training rule [32] was used to train the SOM. For the stochastic training
rule, the learning rate decreases linearly from 0.1 to 0.01 as a function of the training epoch.
The SOM was trained for 100,000 epochs. The positions of the codebook vectors in the grid
are updated using a Gaussian neighborhood function. Euclidean distances are used when
determining the winning codebook vector for the SOM.

Several SOM models with differing grid sizes and dimensions were trained on the
data. The U-matrix of the 75 by 75 grid provided the best visualization of the clustering
structures [33]. Therefore, this map was chosen for the analysis.

Figure 5a contains the U-matrix for the trained SOM. From this figure, it can be seen
that the grid size is sufficiently large to see the fine grain clustering structures. This figure
suggests that there are many natural clusterings. However, there are also several codebook
vectors which are topologically similar. This is highlighted by the large grouping of nodes
in the bottom left and right corners of the U-matrix.

The benchmark suites from both the BBOB and CEC competitions typically have
between 20 and 30 benchmark functions included. This is a reasonable number of bench-
mark problems, as this many functions are likely to provide a good representation of the
problem space, provided that the functions are not similar. This number of functions is also
not large enough for the computational costs to be excessive for the design and analysis
of algorithms.

The NbClust R package [44] was used to cluster the benchmark functions, as well
as to validate the number of clusters. To cluster the codebook vectors in the SOM, the
Ward hierarchical clustering algorithm [45] was used. Ward’s method works by minimiz-
ing the total within-cluster variance. The dissimilarity between the codebook vectors is
calculated using Euclidean distance. Once the codebook vectors of the SOM were clus-
tered, the validity of the clustering is quantified based on the Davies–Bouldin index [46].
The Davies–Bouldin index measures the cohesion of a cluster. A lower Davies–Bouldin
score implies that the clusters are compact and well separated. Table 2 contains the corre-
sponding Davies–Bouldin scores. From this table, it is observed that the optimal number
of clusters is 24.

Table 2. Davies–Bouldin scores for differing number of clusters of the codebook vectors of the SOM,
based on Ward’s clustering method.

Number of Clusters Davies–Bouldin Score

20 1.3568
21 1.3758
22 1.3566
23 1.3481
24 1.3228
25 1.3593
26 1.3350
27 1.3412
28 1.3726
29 1.3594
30 1.3498

Since all 30 independent runs of the ELA measures are used as input to the SOM,
the quality of the clustering can be asserted by examining to which cluster each of the
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independent runs are assigned. Ideally, all independent runs for a particular function
should appear in the same cluster. For the clustering in Figure 5b, six of the 340 benchmark
functions have independent runs assigned to three different clusters. However, upon in-
spection, these functions that have not been uniquely assigned to the clusters have been
assigned to clusters that are topological neighbors in the SOM grid. This is likely since
there are a different benchmark functions that have similar ELA measures, which affects
the clustering of the codebook vectors.

0.2

0.4

0.6

0.8

1

(a)
(b)

Figure 5. The U-Matrix and the clustering of the codebook vectors of the SOM, trained on all 30 independent runs of 243 bench-
mark functions. (a) U-Matrix; (b) Clustering of the codebook vectors.

To illustrate the coverage of the problem space, Figure 6 illustrates for each benchmark
suite which clusters contain functions from that benchmark suite. That is, if the cluster is
gray then the benchmark suite does not contain a function in that cluster. If the cluster is
red, then the benchmark suite contains a function in that cluster.

Figure 6a–e show that the commonly used benchmark suites in the literature do not
cover large parts of the problem space. These figures validate the findings in [12,13] that
the CEC and BBOB benchmark suites do not provide sufficient coverage of the problem
space with respect to ELA characteristics.

Figure 6b–e show that the CEC benchmark suites have similar coverage of the problem
space over the years. Please note that the BBOB benchmark suite and miscellaneous
benchmark suite contain more than 100 functions each, and therefore it is inequitable
to compare their coverage of the problem space with the coverage provided by the CEC
benchmark suites. It is noted that the CEC 2014 benchmark suite provides the best coverage
of the problem space out of the set of commonly used benchmark suites.

As seen in Figure 6a–f there are portions of the problem space that each collection
of functions do not cover. Thus, the proposed benchmark suite will require benchmark
problems from the multiple benchmark suites.

The SOM maintains the topological structure of the input space in the two-dimensional
grid. This means that if the benchmark functions that are investigated in this study
collectively have poor coverage of the problem space, then this will not be represented
by the SOM’s grid. In other words, the SOM does not indicate the positioning of the
benchmark functions relative to the boundaries of the problem space. It is, therefore,
possible that the investigated benchmark functions are tightly clustered in the greater,
infinite problem space. However, to the best knowledge of the authors, all the benchmark
functions that are found in the literature are included in this study. Consequently, the
proposed benchmark suite will be the best representation of the presently understood
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problem space. If increasingly better coverage of the problem space is required, then new
benchmark functions need to be created. This can be done either by an expert or through a
benchmark problem generator.

(a) BBOB (b) CEC 2013 (c) CEC 2014

(d) CEC 2015 (e) CEC 2017 (f) Misc. functions

Figure 6. Coverage of the problem space for each of the benchmark suites. Illustrated by highlighting in red which clusters
contain functions from the particular benchmark suite.

Investigations into where new benchmark functions are required can be based on the
component maps of the SOM, as can be seen in Figures A2–A4. It is remarked that the dis-
tribution of some ELA measures are highly skewed, which indicates that the collective set
of benchmark functions has poor coverage of the problem space and that new benchmark
problems are required to have better coverage of the problem space.

4.3. Selecting a Benchmark Suite

As mentioned above, a SOM can be clustered based on the distances between the
codebook vectors. The U-matrix of a SOM represents how similar the codebook vectors
are to one another and thus can be used to visualize the clustering structures of the SOM.
To find a minimal set of functions to be representative of the landscape characteristics,
one representative benchmark function is selected from each cluster. Some suggestions are
presented on how to select a suitable representative. However, note that many combinations
of benchmark functions can be chosen - resulting in many possible benchmark suites.
This is congruous since the training patterns presented to the SOM are the vectors of ELA
measures for the benchmark functions and hence functions that have similar landscape
characteristics will be clustered together.

The results of the clustering allow for the benchmark suite to be used in situations
such as competitions at conferences, or in creation of automated algorithm selection oracles,
such as hyper-heuristics. Two sets of benchmark functions can be chosen as the training
suite and the test suite, and the generalization abilities of algorithms can be observed.
This will prevent overfitting algorithms on common benchmark functions and allow for
better applicability for both unseen and real-world problems.
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To select a benchmark function from a cluster, the following criteria are used:

• Functions from the miscellaneous group are preferable, as they do not require addi-
tional information such as rotation matrices and shift vectors, which is the case with
the CEC and BBOB benchmark suites.

• Functions from the BBOB benchmark suite are preferred over functions from CEC
benchmark suites, as there is a large amount of information, such as algorithm perfor-
mance, for the BBOB benchmark suite.

Using the above criteria, the proposed benchmark suite is composed of the follow-
ing functions:

• Schwefel 1 [7]
• Ripple 25 [7]
• Exponential [7]
• Needle Eye [9]
• Step Function N. 3 [7]
• Generalized Giunta [7]
• Generalized Paviani [7]
• Brown [7]
• Cosine Mixture [7]
• Mishra 7 [7]
• Mishra 1 [7]
• Generalized Price 2 [7]

• Generalized Egg Crate [7]
• Rosenbrock [7]
• Pinter 2 [7]
• Qing [7]
• BBOB FID 2 IID 1 [6]
• BBOB FID 6 IID 1 [6]
• BBOB FID 16 IID 1 [6]
• BBOB FID 17 IID 2 [6]
• Generalized Drop-Wave [21]
• Bonyadi-Michalewicz [21]
• Discus [21]
• Elliptic [21]

This benchmark suite, along with the miscellaneous benchmark functions analyzed in
this study is available online at [47].

Please note that since a benchmark function is chosen from every cluster in the SOM,
this benchmark suite provides the best coverage over all landscape characteristics currently
available in the literature. This claim is validated by analyzing the distributions of the
ELA measures, as seen in Figures 7–10. These plots illustrate the differences between the
distributions of the proposed benchmark suite’s ELA measures and the first instances of
the BBOB benchmark suite functions’ ELA measures. In most of the plots, the distribution
for the proposed benchmark suite has a wider spread than the distribution for the BBOB
benchmark suite. This wider spread indicates that the proposed benchmark suite provides
better coverage of individual ELA measures and collectively provides better coverage of the
problem space. This is validated by calculating the standard deviation, which is a measure
of spread, of the values for each of the ELA measures. The proposed benchmark suite has
a larger standard deviation for 26 of the 32 ELA measures used as input to the SOM.

Please note that the distributions of several the ELA measures have extreme peaks.
This corresponds to the equivalent component planes for the ELA measures in Figures A2–A4,
which illustrate small portions of the SOM grid that have extreme values. These plots may
indicate that the available benchmark problems in the literature have poor coverage for a
particular ELA measure, or that the aforementioned ELA measures are not expressive.
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Figure 7. Comparison of the distributions of the BBOB benchmark suite and the proposed benchmark suite for all of the
ELA measures used as input to the SOM.
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Figure 8. Comparison of the distributions of the BBOB benchmark suite and the proposed benchmark suite for all of the
ELA measures used as input to the SOM (continued).
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Figure 9. Comparison of the distributions of the BBOB benchmark suite and the proposed benchmark suite for all of the
ELA measures used as input to the SOM (continued).
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Figure 10. Comparison of the distributions of the BBOB benchmark suite and the proposed benchmark suite for all of the
ELA measures used as input to the SOM (continued).

5. Conclusions and Future Work

The larger the sample size used in exploratory landscape analysis, the more accurate
the characterization of the objective function. However, evaluation of an objective function
is typically the most computationally expensive task in optimization. Thus, to minimize
computational costs, the sample size should be chosen as small as possible, while providing
accurate results. This study proposes an approach to determine the sample size needed to
obtain robust exploratory landscape analysis measures.

For the purposes of creating a benchmark suite, a larger computational budget can be
afforded than say, using exploratory landscape analysis for automated algorithm selection.
The sample sized need for generating robust exploratory landscape analysis measures is
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generalized over benchmark functions that are commonly used in the literature. It was
shown that a sample size of 800 × D, where D = 10, is sufficient to provide robust
exploratory landscape analysis measures for 95% of benchmark problems.

This study focused on the case of 10-dimensional benchmark functions. A future step
is to perform the analysis for different dimensions. This analysis will indicate the effect of
dimensionality on the robustness of exploratory landscape analysis measures.

The case of 10-dimensional problems was chosen since it is the only dimensionality
for which both the CEC and BBOB benchmark suites are defined. This is indicative of
the issue that the benchmark suites found in the literature are not generalizable. Ideally
a benchmark suite should provide benchmark functions which can be evaluated for any
dimensionality of the decision variable space.

To propose a benchmark suite that provides better coverage of the problem space,
a self-organizing feature map was trained on the robust exploratory landscape analysis
measures of many benchmark functions. A benchmark suite is proposed by clustering the
codebook vectors of the self-organizing feature map, and then selecting a single represen-
tative benchmark function from each cluster. The proposed benchmark suite contains 24
benchmark functions. This study showed that the coverage of the proposed benchmark
suite is significantly better than the CEC and BBOB benchmark suites.

In this study, the exploratory landscape analysis measures that are used as input to
the self-organizing feature map was calculated using a feature selection approach using
the maximal information coefficient metric. Using maximal information coefficient allows
one to find associations between the exploratory landscape analysis measures. Based on
the maximal information coefficient scores, redundant exploratory landscape analysis
measures were removed from further analysis. Future work could include a comparing the
effects on the benchmark clustering of different feature selection techniques.

From the viewpoint of the algorithm selection problem, these findings are significant,
since the generalizability of an algorithm’s performance to unseen problems is greatly
affected by the performance of the algorithm on test problems. Therefore, using the
proposed benchmark suite is an important step in the algorithm selection problem and
consequently automated algorithm selection.

As this study focused on the selection of a benchmark suite from the perspective of the
problem characteristics space, an important future step is to investigate how this benchmark
suite selection affects the performance space. It is hypothesized that the relative rankings
of a collection of algorithms on, say the BBOB benchmark suite, versus the proposed
benchmark suite will be notably different.

The link between artificial benchmark functions, which are analyzed in this study,
and real-world optimization problems is unclear. However, if a benchmark suite provides
better coverage of the artificial problem space, it is likely that the coverage of the real-world
problem space will improve. Consequently, the proposed benchmark suite will aid in
generalizability of algorithm performance to real-world problems.

This study focused on the case of single-objective, boundary-constrained optimization
problems. As the exploratory landscape analysis measures used in this study do not require
additional function evaluations, the presented procedures are generalizable to black-box
optimization problems. The procedures described in this paper can be extended to propose
benchmark suites for different problem categories, such as multi-objective or constrained
optimization problems. To extend these procedures to other problem spaces, exploratory
landscape analysis measures are needed to characterize such benchmark problems.
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Figure A1. Plot of the maximal information coefficient scores between each of the investigated ELA measures.
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Appendix B. Component Maps for the Self-Organizing Map
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Figure A2. Normalized component maps from the clustered SOM.
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Figure A3. Normalized component maps from the clustered SOM (continued).
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Figure A4. Normalized component maps from the clustered SOM (continued).
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