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Abstract: A choice to use a seat belt is largely dependent on the psychology of the vehicles’ occupants,
and thus those decisions are expected to be characterized by preference heterogeneity. Despite the
importance of seat belt use on the safety of the roadways, the majority of existing studies ignored
the heterogeneity in the data and used a very standard statistical or descriptive method to identify
the factors of using a seatbelt. Application of the right statistical method is of crucial importance
to unlock the underlying factors of the choice being made by vehicles’ occupants. Thus, this study
was conducted to identify the contributory factors to the front-seat passengers’ choice of seat belt
usage, while accounting for the choice preference heterogeneity. The latent class model has been
offered to replace the mixed logit model by replacing a continuous distribution with a discrete one.
However, one of the shortcomings of the latent class model is that the homogeneity is assumed
across a same class. A further extension is to relax the assumption of homogeneity by allowing
some parameters to vary across the same group. The model could still be extended to overlay some
attributes by considering attributes non-attendance (ANA), and aggregation of common-metric
attributes (ACMA). Thus, this study was conducted to make a comparison across goodness of fit
of the discussed models. Beside a comparison based on goodness of fit, the share of individuals in
each class was used to see how it changes based on various model specifications. In summary, the
results indicated that adding another layer to account for the heterogeneity within the same class of
the latent class (LC) model, and accounting for ANA and ACMA would improve the model fit. It has
been discussed in the content of the manuscript that accounting for ANA, ACMA and an extra layer
of heterogeneity does not just improve the model goodness of fit, but largely impacts the share of
class allocation of the models.

Keywords: attributes non-attendance; common metric attributes aggregation; latent class; mixed-
mixed model; seat belt; traffic safety

1. Introduction

Motor vehicles are a leading cause of death among individual aged 1–54 in the U.S. [1].
Despite the progress in terms of education and laws to motivate individuals to buckle
up, the U.S. still has one of the highest traffic death rates per 100,000 population among
20 high-income country members [2]. A lack of protection for vehicle occupants is one of
the main causes of the high number of deaths on the roadway. In the U.S., more than half
of teens (13–19 years), and adults aged 20–44 who die annually were not buckled up at
the time of crashes [3]. That is especially important as the likelihood of passengers being
buckled up is significantly lower than drivers. For instance, in Wyoming, while more than
80% of drivers are buckled up, only less than 50% of the front-seat passengers are buckled.

A project was funded in the state to identify underlying factors that persuade the
vehicles’ occupant to wear or not to wear a seat belt. The first step in reaching this goal
was to find most accurate statistical method to identify the underlying factors of the
choice to buckle up. The right statistical method is important to account for the preference
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heterogeneity of the dataset. That is especially important when dealing with a choice of
individuals in making a decision as their choices would be impacted based on various
socio-demographic, and environmental characteristics. In our other study, we accounted
for taste and scale heterogeneity with a similar dataset. We found that the generalized
multinomial logit model is not required at the cost of added parameters [4].

The majority of past studies have been focused on accounting for the preference
heterogeneity through the mixed logit model by considering continuous distributions.
An extension of mixed logit model has been considered by accounting for taste and scale
heterogeneities [5,6]. The latent class model could be considered as an alternative to the
mixed logit model by replacing the continuous distribution with a discrete one. For the
latent class model, membership in a distinct classes would be used to account for preference
heterogeneity [7]. The latent class model assumes homogeneous observations within the
same class. However, the assumption of homogeneity has been debated in the literature
review and discussed that adding another layer could improve the model fit. That could
be implemented by adding another layer of continuous distribution to account for possible
preference heterogeneity within a same class [8]. This model has been often called the
mixed-mixed logit model in the literature review [9].

The mixed-mixed logit model could be further extended to fix attribute processing
rules (APR): by allowing attribute non-attendance (ANA), or aggregation of common-
metric attributes (ACMA) [10]. The reason for ANA is that some individuals might ignore
some attributes while choosing a specific choice [11]. It should be noted that ANA would
not only capture the respondents with a zero sensitivity but also respondents with a
low sensitivity [12].

On the other hand, some individuals might exhibit common metrics in making deci-
sions which would be referred as ACMA. Accounting for ACMA and ANA are especially
important as it is expected some of the front-seat passengers within the same class might
ignore some of the attributes due to some personal characteristics or preferences, or some
observations assign similar importance to some other attributes within the same class, and
ignoring those characteristics might result in degradation of the model fit.

Thus, this study adds another layer (mixed model) with continuous distribution on top
of LC model. It then extends the model by considering ANA and ACMA across front-seat
passengers to check if accounting for heterogeneity within a class or considering ANA or
ACMA could add values, in terms of goodness of fit, to the models. The findings of this
study provide evidence whether accounting for another layer of heterogeneity, along with
considering ANA or ACMA, are needed to account for the whole story. That is especially
important as we used only individual-specific observations in our dataset. This paper
is organized as follows. Section 2, the method section, presents the latent class model
along with the considered model specification, then the paper concludes with a summary
of the findings.

2. Case Study and Data

The data were drawn from a survey conducted in a western state of the U.S. The
data collection was done across 17 counties, and 289 locations in Wyoming in 2019.
The data collection process conformed to the criteria highlighted for the state obser-
vational seatbelt coalition, which was issued in 2011 by the national highway traffic
administration (NHTSA) [13].

The data include various environmental, and demographic characteristics, and seat
belt status of vehicles’ occupants to see how those factors motivate the occupants to buckle
up. Originally there was information related to 18,286 vehicles. However, as the objective
of this study was to evaluate the choice of front-seat passengers, and not all the drivers had
a front-seat passenger on board, the data were filtered to include only the vehicles that had
a single passenger on board. That reduced the number of observations to 6533. Recall, the
data also include only individual-specific characteristics, and no information was collected
regarding the alternative-specific preferences.
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In addition to front-seat passengers, there was information regarding the drivers’ char-
acteristics which were incorporated in the analysis. That is because a multitude of reasons
could be linked to this choice of a seat belt use for front-seat passengers, and those are not
necessarily related to passenger-specific characteristics but also drivers’ characteristics.

The individual-specific preference of front-seat passengers, and some of the driver-
specific characteristics that were found to impact a choice of passengers in buckling up,
were included and highlighted in Table 1. An initial analysis of the dataset indicates that
while more than 80% of drivers buckle up, the number is reduced to less than 50% for
front-seat passengers.

Table 1. Descriptive summary of important predictors.

Attributes Mean Variance Min Max

Front-seat passenger belt status, belted versus not belted * 0.32 0.217 0 1

Driver belt condition, not belted versus belted * 0.140 0.120 0 1

Sunny weather condition, sunny as 1, versus others * 0.682 0.216 0 1

Number of lanes, 2 lane as versus a single lane * 1.415 0.243 1 2

Vehicle license, Non-Wyoming residence versus others * 1.552 0.247 1 2

Time of observation: 11:30–1:30 versus others * 0.229 0.176 0 1

Time of observation: 1:30–3:30 versus others * 0.176 0.145 0 1
* Reference category as the Min values.

3. Method

Latent class model could be used as an alternative to the mixed logit model by replac-
ing the continuous distribution with a discreet one. The LC model assumes homogeneous
preference across the same class. However, it has been argued that homogenous preference
might not hold true, as there might still exist heterogeneity within the same class. Thus,
another layer on top of the LC model might be needed to account for the heterogeneity. As
the implemented model is an extension of the Mixed-Mixed (MM) model, and the latent
class method, the following sections would detail first the standard LC model and then it
would discuss its extension.

In the latent class model, it is assumed that the population can be grouped into Q
finite number of classes. For the LC model, there are various βis across various latent class
where the individuals are allocated to classes based on some discrete distribution. While
the groups or classes are assumed to be homogenous across the individuals in a same class
with specific coefficients, they are heterogeneous across the other considered groups.

The probability of a class q could be written as [14]:

Prob(class = q) = πq(θ), q = 1, . . . , Q (1)

where θ is a parameter, which would be used for class allocation. θ might be considered as
a constant of 1 or other parameters. Where πq is the probability of an individual belonging
to a class q, where

Q

∑
q = 1

πq = 1 and 0 ≤ πq ≤ 1 (2)

Based on various β, and based on g, we would have:

f (yi
∣∣xi, class = q) = g(yi

∣∣xi, βq) (3)

The above equation considers that observations within a same class are homogenous.
However, more flexibility could be given to the parameters by varying them based on some
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continuous distribution. That could be implemented by adding a mixed layer on top of the
latent class model. Therefore, the above model could be modified as [14]:

f (yi

∣∣∣xi, class = q) = g(yi

∣∣∣xi, βi|q) (4)

where βi|q would vary based on some continuous distribution, and it can be written based
on some random sampling as:

βi|q = βq + ωi|q (5)

The simulated maximum likelihood would be used for model parameters, βi|q, estimation.
Now the log likelihood of the resultant would be written as:

LL =
N

∑
i = 1

log

 Q

∑
q = 1

πq(θ)
1
R

R

∑
r = 1

exp[∑J
j = 1 yi,j

(
βq + ωir

)
xij]

∑J
j = 1 exp[(βq + ωir)xij]

 (6)

As can be seen from Equation (6), the process of creating a log likelihood (LL), could
be divided into two parts. First, the class allocation part of πq(θ), and second, the random
sampling of the other parts of the model. Now the process could be summarized as follows:

1. The first process would be related to a mixed part of the model:

a. ω estimation: assume R = 10 for 3 variables and 100 observations: there would
be a matrix with 10 columns and 3 rows, and 100 values: the values would be

filled by
n = 3

∑
i = 1

(betai + σi ×ωi), where ω would be estimated based on pseudo-

random numbers or Halton sequences, and σi, or the SD of random parameters
are values that would be estimated by maximum likelihood, and their initial
values would be set by the investigator. Additionally, the initial value of beta
would be set by investigator →

(
βq + ωi

)
b. The multiplication of the above value by the vectors of observed coefficients

would be saved as XR →
(

βq + ωi
)
xij

c. The resultant would be multiplied by response →
J

∑
j = 1

yi,j
(

βq + ωi
)

xij]

d. The exponential of the above values in c would be calculated and would be

summed up across the number of J or classes → exp[
J

∑
j = 1

yi,j
(

βq + ωi
)

xij]

e. To have a probability based on the Multinomial logit model, the value in d

would be divided by value in c. →
exp[∑J

j = 1 yi,j(βq + ωi)xij ]

∑J
j = 1 exp[(βq + ωi)xij ]

f. There are 10 observations (draws), along with Q columns, related to classes.
Thus, the means of each class would be estimated by reducing the dimension of
the random draws (R): the average of all the draws over each observation.

g. Up to the above steps are related to → 1
R

R
∑

r = 1

exp[∑J
j = 1 yi,j(βq + ωi)xij ]

∑J
j = 1 exp[(βq + ωi)xij ]

.

2. For latent class parts, the steps would be taken as follows:

a. Create a vector of γ: this constitutes the initial value of a constant or the
heterogeneity point related to a covariate T, which the class allocation is based
on. For the first class the value would be set as 0 based on the literature review
for model identification.

b. Getting the exponential of T, times γ, which discussed in the above,
c. The above would be transformed into a probability by dividing the values by

the sum of all the components or classes.
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d. The above are related to the πn,s which is equal to e
βn|s xnj|

∑k e
βn|s xnj|

part of the above

equation. It should be noted that πn,s acts as a constraint with ∑
s

πn,s = 1, so

the sum of the probability of each observation across classes would be added
up to 1.

3. Now the resultants of item 1 and 2 would be multiplied. This would be the resultant
of Equation (6).

4. In order to transform the probability of Equation (6) into a likelihood, the sum of the
probability of the individuals would be calculated and set as the likelihood.

5. The log of 4 would be set as log likelihood and would be estimated by maximum likelihood.
6. Now to come up with ANA and ACMA, we put constraints on the means and the

SDs of the parameters. For coming up with ANA, we impose restrictions on some
attributes’ means and for ACMA, we constrain two or more parameter means to
be equal.

7. Maximum likelihood would be estimated by the finite-difference method and with
the help of Hessian and Gradient.

The standard practice in the use of the LC model is that they assume that all available
information related to a choice, which is used by the respondent in making a decision.
Additionally, they assume that the factors were assigned to be high importance by the
respondents. Those mostly have been assumed in the modeling approach while some
studies asked their respondents about whether they considered those characteristics or
not [14]. It has been argued that their responses would not be reliable [15]. Additionally, the
majority of the past studies assume that all the variables have been used by the respondents.
However, there is growing evidence that the respondents (choice makers) might use only
a subset of the attributed for making a decision. Those scenarios have been referred to
as ANA [16]. On the other hand, the respondents might assign similar values to some
attributes due to their similarities and the respondent perception about those characteristics.
Those features can be referred to the ACMA.

4. Results

The findings are presented in five models (A to E) in Table 2. The first and second mod-
els (standard LC and standard MM model) consider the full attributes attendance (FAA).

It should be noted that normal distributions were assumed for all the considered
random parameters. The number of classes was selected based on goodness of fit of Akaike
information criterion (AIC). For model C, for instance, although fixed parameters are
assumed for all the variables, they were allowed for ANA and ACMA. AIC value was
used for determining the number of Q, and as a comparison across various models [10].
As can be seen from Table 2, the AIC is lowest for model E (log-likelihood of −3962). The
following paragraphs elaborate on the considered models.

While the first and second models, LC and MM, assume the full attributes attendance
(FAA), the other model incorporates a combination of FAA, ANA, and ACMA. For instance,
the third model sets constraints on variables such as sunny and day of a week for the first
class and driver seat belt status vehicle registration for the second class.

A choice of variables to be incorporated in ANA and ACMA were identified by
evaluation attributes one at a time for ANA or ACMA. After identifying variables for both
attribute processing rules, they were aggregated and considered in the included models.
One of the challenges being observed was for the MM model, especially while considering
for more than two classes, due to lack of convergence.

Another point worthy of investigation is which variables to include for ACMA. In the
literature review, most variables that belong to the similar category were considered to
be incorporated in ACMA. Those include variables, for instance, related to cost or time.
These variables mainly have consistent impacts (signs) on the response. Although various
predictors were considered to be included for ACMA, they did not result in a model
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enhancement and were not justifiable to be used due to lack of interpretation, e.g., driver
belt status and vehicle license registration.

Two variables related to time (11:30–1:30 and 1:30–3:30) were found to be a better
fit in models. However, as can be seen from all the included models in Table 2, these
two variables have opposite signs/directions. Solutions could be proposed including
changing the category coding of the variables, ignoring the differences across the signs, or
constraining based on their opposite signs. Just to highlight the importance of constraining
the variables with various signs, model D (for MM) and model E were proposed.

First, it can be observed that a worst fit model could be observed for the LC model,
with no extra layer of heterogeneity, and no ANA and ACMA. An improvement could
be observed by including another layer with continuous distribution in the MM model
(model B), 7959 for LC versus 7954. Moving to the models with attribute processing
rules, ANA and ACMA consideration, although a small amount of improvement could
be observed for standard latent class versus the latent class with ANA and ACMA (7959
for a standard latent class versus 7958 for the mixed-mixed model), a model is deterio-
rated moving from a standard MM to MM model with ANA and ACMA (with a wrong
ACMA specification). However, as discussed, for the MM model in D, the parameters
were assumed to have similar signs. Model E is presented in which the reverse signs were
considered while constraining the parameters. That is a best fit model compared with the
other considered models. Although the same approach for the latent class model is not
presented in Table 2, it was observed that the AIC was improved for the latent class with
reverse signs for ACMA (AIC = 7952), compared with the included model (AIC = 7958).

It is also worth looking at the class membership across the considered models. Class
memberships are only significant for ACMA with a wrong approach (models C and D).
Additionally, it is worth discussing that while the improvement in model fit for models with
ACMA and ANA compared with no attributes processing rules was minor, the differences
across the class membership share are hugely different. Consider the standard latent class
and the MM models. For those models there is almost equal spread of membership across
the two classes. However, moving to the models with wrong specification of ACMA, it
can be observed that spread is hugely imbalanced. Finally, the difference between a best fit
model considering ANA and ACMA, and all other models is very large.

In summary, the results indicated that the right application of ANA and ACMA
attribute processing rules result in an overall improvement in the models’ fits. Additionally,
it was found that although incorporation of an extra layer of random parameters would not
result in a significant enhancement of the model, significant changes could be observed for
class shares. This result to some extent was confirmed with the previous studies (see [14]).
The results highlight that even in light of ANA and ACMA while using the LC model, an
extra layer for taste heterogeneity for improving the performance is still required. It is also
worth discussing that the MM models, especially considering ANA and ACMA estimation,
took hours, and they faced convergence issue many times.

In summary it is worth discussion the results of a best fit model, model E. First of all,
although some uncertainties could be observed in the significance of some t-ratios, those
were incorporated for few reasons: first although they were not significant in some models
they were significant in others so we kept them despite the uncertainty in the models’
parameters estimates. Due to considering two classes, it was possible also that they were
not significant in one class and they were in another class. Due to the nature of the dataset,
it was challenging to consider only variables in the models that mostly being significant
across all the models and across all classes.
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Table 2. Summary of the models, t-ratio in parentheses.

Latent class, no ANA, no ACMA (A)

Attributes FAA 1 FAA 1

Weather: Sunny −0.22 (−0.703) 0.19 (0.846)

Day of a week 0.21 (0.679) 0.63 (2.14)

Number of lanes 0.47 (1.033) 0.85 (1.43)

Driver belt status −0.51 (−1.501) 0.13 (0.49)

Vehicle license plate registration −0.75 (−2.826) −0.46 (−2.54)

Time of a day (11:30–1:30) 1.60 (1.408) −2.66 (−0.88)

Time of a day (1:30–3:30) −1.41 (−0.658) 0.28 (0.526)

Class probability, γ −0.16 (−0.134)

Classes share 54% 46%

Log-likelihood −3964

AIC 7959

Mixed-mixed, no ANA, no ACMA (B)

Attributes FAA 1 FAA 2

Weather: Sunny 84.79 (1.422) 0.06 (0.301)

Day of a week −67.71 (−1.33) −0.85 (−8.168)

Number of lanes −106.19 (−1.36) 0.44 (2.844)

Driver belt status −27.23 (−1.33) 0.33 (2.542)

Vehicle license plate registration 42.60 (1.43) 0.51 (3.534)

Time of a day (11:30–1:30) −31.37 (1.35) 0.29 (2.587)

Time of a day (1:30–3:30) 133.77 (0.301) −15.46 (−0.0089)

SD. Driver belt status 91.60 (1.30) -

SD. Vehicle license plate registration 105.1 (1.37) -

SD. Time of a day (1:30–3:30) 32.2 (1.39) -

Class probability, γ −0.089 (−1.050)

Classes share 52% 48%

Log-likelihood −3958.7

AIC 7954

Latent class, ANA, ACMA (C)

Attributes ANA + ACMA ANA

Weather: Sunny — 0.033 (4.666)

Day of a week — 0.366 (4.666)

Number of lanes −5.483 (−0.429) −0.103 (−2.238)

Driver belt status −4.181 (−0.112) —

Vehicle license plate registration −1.239 (−0.461) —

Time of a day (11:30–1:30) 5.202 (0.414) −0.298 (−7.104)

Time of a day (1:30–3:30) 5.202 (0.408) —

Class probability, γ 2.186 (3.871)

Classes share 10% 90%

Log-likelihood −3969

AIC 7958
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Table 2. Cont.

Mixed-mixed, ANA, ACMA (with similar signs) (D)

Attributes ANA ANA + ACMA

Weather: Sunny — 9.549 (0.140)

Day of a week — 46.419 (0.033)

Number of lanes −0.133 (−2.789) −22.760 (−0.032)

Driver belt status 0.479 (4.516) —

Vehicle license plate registration −0.566 (−9.547) —

Time of a day (11:30–1:30) −0.271 (−3.647) −23.192 (−0.033)

Time of a day (1:30–3:30) −0.271 (−2.85) —

SD. Driver belt status 0.655 (0.817)

SD. Vehicle license plate registration 0.130 (0.620)

SD. Time of a day (1:30–3:30) 0.933 (2.058)

Class probability, γ −3.542 (−6.791)

Classes share 3% 97%

Log-likelihood −3966

AIC 7958

Mixed-mixed, ANA, ACMA (with reverse signs) (E)

Attributes ANA + ACMA ANA

Weather: Sunny — 0.101 (0.58)

Day of a week — 0.705 (2.57)

Number of lanes −0.494 (−2.44) 0.345 (1.24)

Driver belt status 0.703 (2.35) —

Vehicle license plate registration −0.889 (−3.11) —

Time of a day (11:30–1:30) 1.442 (1.40) −6.742 (−0.42)

Time of a day (1:30–3:30) −1.442 (−1.42) —

SD. Driver belt status 1.079 (1.42)

SD. Vehicle license plate registration 0.518 (1.37)

SD. Time of a day (1:30–3:30) 2.586 (2.04)

Class probability, γ −0.598 (−0.83)

Classes share 65% 35%

Log-likelihood −3962

AIC 7950

5. Conclusions

Although the benefits of seatbelt use in reduction in road fatalities has been proven, a
large number of car occupants do not use their seat belts. Additionally, very few studies
have been conducted to study the factors of choosing to wear a seat belt. Previous efforts
only focused on traditional statistical analysis for identification of factors to seat belt usage.
That is despite the fact that human beings vary in their responses to various stimulus, and
thus they respond differently to various attributes.

This paper introduces the latent class model, which is an extension of the MNL
model, by dividing the dataset into a few homogenous classes. The analysis is further
expanded to the MM model by adding another layer on top of the LC model to account
for extra heterogeneity that the standard LC model could not account for. We further
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expand the MM model to incorporate ACMA and ANA effects. The process helps to know
whether an individual ignores or add attributes. This could be done without asking the
respondent about what attributes they did or did not consider while making a decision.
On the other hand, the ACMA effect is due to the fact that the differences between some
attributes are negligible, and an individual aggregates those characteristics and treats them
as identical attributes.

In this paper we implement the discussed model specification in the context of a seat
belt dataset, where front-seat passengers choose between wearing a seat belt or not buckling
up. The results highlight that adding an extra layer of heterogeneity and considering ANA
and ACMA result in an improvement in model fit, and it significantly changes the class
allocation shares.

The results highlight that setting the wrong attribute processing rule might just seem
like a minor deterioration in a model fit, but it would result in severely imbalanced class
allocation shares. This is despite the fact that the class probability and parameters seem to
be significant for the wrongly defined model, compared with other models. This highlights
the importance of the right consideration for ACMA.

Based on the identified results, some of the front-seat passengers, when choosing to
wear a seat belt, assigned similar importance to some attributes while ignoring others.
These results were obtained through observation instead of questioning those front-seat
passengers regarding their perceptions of various attributes. Additionally, it was found
that incorporation of the ANA and ACMA attribute processing rules resulted in an overall
enhancement of model goodness of fit.

The results of goodness of fit highlight the importance of answering the questions of
how the attributes are considered while evaluating alternatives about seat belt use: whether
the individuals across specific class ignore or aggregate some attributes. Accounting for
the aforementioned limitation would result in a better fit of the model. We explore these
questions across two classes while analyzing the choice of seat belt use.

It should be noted that the findings of this study are specific to the dataset being
used. Additionally, it is worth mentioning that all the parameters used in this study
were individual-specific and no alternative-specific attributes were considered in the
current work.

6. Concluding Remarks

While some of the studies implementing latent class assumed a homogenous utility
across the identified classes, others argued that these methods cannot account for the
whole story. Thus, there is a growing interest in enhancement of the latent class model by
accounting for extra heterogeneity by adding another layer with continuous distribution.
The model is named the mixed-mixed method. This model could be further advanced by
considering ANA and ACMA. The results of this study highlighted a better goodness of fit
of the MM model while considering ANA and ACMA.

It might be argued that a decision being dependent on the vehicle license, for instance,
is counterintuitive, as it cannot be said that some would ignore the license information
and others would not. Therefore, the vehicle license is likely informative because it says
something about the driver, his/her familiarity with the road conditions, and the length of
the trip. As a result, these are not attributes of the decision but characteristics of the person
making the decision. As such, these could not be called as attributes that one can attend to
or not. Having said that, due to the nature of the dataset and lack of availability of choices-
specific attributes, that seems the only way of implementation, and here we considered
them as attributes. Also those consideration highlighted that work in improvement of the
model fit. Additionally, it has been discoed in the literature, when one imposes ANA, the
latent class model is a great way of testing for it, but they are no longer classes latent but
become a representation of a probabilistic decision rule.

The findings of this this study offer an important insight into the underlying factors of
the choice to wear a seat belt. In the present work, we highlighted that the respondents
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vary across the same class. An improvement in model fit for the implemented method
emphasizes the importance of accounting for data heterogeneity while doing any anal-
ysis. The results highlight that some of the front-seat passengers consider time of day
as unified variables. On the other hand, while some front-seat passengers do not pay
attention to sunny weather condition, and days of weeks, other passengers might take
them into consideration.
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