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Abstract: Continuous-time linear systems with uncertain parameters are widely used for modeling
real-life processes. The uncertain parameters, contained in the system and input matrices, can be
constant or time-varying. In the latter case, they may represent state dependencies of these matrices.
Assuming bounded uncertainties, interval methods become applicable for a verified reachability
analysis, for feasibility analysis of feedback controllers, or for the design of robust set-valued state
estimators. The evaluation of these system models becomes computationally efficient after a transfor-
mation into a cooperative state-space representation, where the dynamics satisfy certain monotonicity
properties with respect to the initial conditions. To obtain such representations, similarity trans-
formations are required which are not trivial to find for sufficiently wide a-priori bounds of the
uncertain parameters. This paper deals with the derivation and algorithmic comparison of two
different transformation techniques for which their applicability to processes with constant and
time-varying parameters has to be distinguished. An interval-based reachability analysis of the states
of a simple electric step-down converter concludes this paper.

Keywords: interval analysis; cooperative system models; reachability analysis; wrapping effect

1. Introduction

In previous work, Raïssi et al. [1,2] and Mazenc et al. [3] derived various techniques for
a transformation of uncertain linear systems into cooperative state-space representations.
An autonomous set of ordinary differential equations (ODEs)

ẋ(t) = f(x(t)) , x ∈ Rn (1)

is cooperative [4–6] if the property

x〈1〉i (t) ≥ x〈2〉i (t) for all i ∈ {1, . . . , n} (2)

holds for two vectors x〈1〉(0) and x〈2〉(0) of initial conditions which satisfy the inequalities

x〈1〉i (0) ≥ x〈2〉i (0) for all i ∈ {1, . . . , n} . (3)

Cooperativity can be checked by the sufficient sign conditions

Ji,j(x) ≥ 0 , i, j ∈ {1, . . . , n} , i 6= j (4)

for all off-diagonal elements of the Jacobian

J(x) =
∂f
∂x

(x) (5)
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of the right-hand side of the state equations evaluated for all reachable states x = x(t).
Matrices satisfying this non-negativity property for the off-diagonal elements are also
denoted as Metzler matrices in the literature [1,5,7,8].

For such systems, general-purpose, interval-based or other set-valued solvers [9]
(AWA [10,11], CAPD [12], COSY-VI [13,14], DYNIBEX [15,16], VALENCIA-IVP [17–21],
VNODE-LP [22,23], VSPODE [24]) for initial value problems (IVPs) can be replaced by
point-valued simulations of a finite number of extremal realizations that can be extracted
from the interval box

x(0) ∈ [x0] = [x](0) := [x(0) ; x(0)] (6)

of initial conditions. These point-valued extremal system realizations are denoted as
bounding systems throughout this paper.

A special case of these cooperative systems are so-called positive systems [25]. For
initial conditions starting in the positive orthant

Rn
+ = {x ∈ Rn | xi ≥ 0 ∀i ∈ {1, . . . , n}} , (7)

their trajectories will remain in the positive orthant for all t ≥ 0 due to

ẋi(t) = f(x1, . . . , xi−1, 0, xi+1, . . . xn) ≥ 0 for all i ∈ {1, . . . , n} . (8)

Then, worst-case enclosures in the form vi(t) ≤ xi(t) ≤ wi(t) are obtained from the
decoupled IVPs [26,27]

v̇(t) = f(v(t)) (9)

and
ẇ(t) = f(w(t)) (10)

with the initial conditions

v(0) = x(0) as well as w(0) = x(0) . (11)

Transformations of linear state equations which enforce cooperativity can be classified
into either point-valued approaches or into techniques that employ an interval-valued
change of coordinates [28]. In general, point-valued transformations are applicable for
parameter-dependent linear systems with purely real eigenvalues. However, finding such
transformations becomes more complex for an increasing degree of uncertainty in the
system matrix. A failure of the similarity transformation approach by Raïssi et al. [1,2] can be
recognized by the alternative formulation proposed by the authors in [29]. There, the trans-
formation was cast into an optimization problem constrained by linear matrix inequalities
(LMIs). Those LMIs may become infeasible (as a verification that the solution procedure
is not successful) or the step size of the iteration in [29] reduces below a certain threshold
leading to an excessively slow progress (a non-strict indicator that a point-valued similarity
transformation may not exist). Even if interval-valued Metzler matrices can be found for
the transformation of a provable asymptotically stable state equation, the transformed
dynamics matrix may consist of an unstable upper bound. This commonly results from the
wrapping effect in interval computations [30–32]. Using the aforementioned approaches,
it is impossible to systematically avoid this phenomenon. However, it can be countered by
the subdivision procedure introduced in this paper.

In contrast to point-valued transformations, also interval-valued approaches exist in
the literature. They were originally developed by Mazenc et al. [3] for systems with complex
eigenvalues and can be used as a fallback procedure if the point-valued transformation
approach is not successful [28]. As shown in Section 2.4 of this paper, they have to be
treated with care if uncertain parameters are time-varying. Time-varying parameters
occur typically if nonlinear state equations are cast into sets of quasi-linear models. Then,
the dynamics’ matrices themselves become functions of the system states [33]. A drawback
of these interval-valued similarity transformations is an inevitable introduction of the



Algorithms 2021, 14, 85 3 of 18

wrapping effect [10,30]. As demonstrated in this paper, this is often counterproductive
with respect to the tightness of the obtained state enclosures.

In Section 2, fundamentals of cooperative dynamic systems and existing similarity
transformation procedures are summarized. Section 3 deals with the novel subdivision-
based approach before a simulation-based comparison is given in Section 4. This compari-
son does not only investigate point- and interval-valued similarity transformations but also
performs a comparison with the Taylor model-based verified ODE solver verifyode [34].
The application scenario considered in Section 4 is an electric step-down converter with
a predefined duty cycle. Finally, conclusions and an outlook on future work are given in
Section 5.

2. Cooperativity-Enforcing Similarity Transformations
2.1. Special Case: Linear and Quasi-Linear Systems with Bounded Parameters

As a special case of the general system model introduced in (1), assume the parameter-
dependent linear ODEs

ẋ(t) = A(p) · x(t) . (12)

Here, the parameter vector p can either be uncertain but constant or time-varying within
its interval bounds. For a scenario where the latter case was accounted for during a robust
control synthesis, the reader is referred to [33].

For a compact notation of the system model (12), which contains all possible parameter-
dependent realizations of A(p), we introduce an interval matrix [A] that is formed of the
bounds

[
Ai,j
]

for each entry i, j ∈ {1, . . . , n}. Those bounds are obtained according to the
generally not minimal interval extension [30,31]{

p ∈ [p]
Ai,j = Ai,j(p)

=⇒ Ai,j ∈
[
Ai,j
]
=
[

Ai,j ; Ai,j

]
=
[
Ai,j
]
([p]) . (13)

In this paper, it is foremost desired to find a time-invariant change of coordinates for
the case that the inequalities

Ai,j ≥ 0 (14)

are not satisfied for at least one i, j ∈ {1, . . . , n}, i 6= j, i.e., that the uncertain linear system
model is not proven to be cooperative. The change of coordinates should then lead to a set
of state equations

ż(t) = Â · z(t) with z(t) := Θ−1 · x(t) (15)

with an interval-valued system matrix Â ∈ [Â] with non-negative off-diagonal elements
Âi,j ≥ 0 for each i 6= j ∈ {1, . . . , n}. Unfortunately, this change of coordinates may lead
to the case that—despite the original system model (12) was asymptotically stable for all
possible p ∈ [p]—the transformed matrix

[
Â
]

contains unstable realizations due to the
wrapping effect.

Especially in the area of control engineering, dynamic system models are often not
purely autonomous as stated in (12). They typically contain additive input terms B · u(t).
Due to the fact that these terms can be included additively in Equation (12), they can also
be included additively in the transformed model (15) by the term

Θ−1 · B · u(t) , (16)

where uncertainty needs to be taken into account by the same inf(·) and sup(·) operators
that are included subsequently in Equation (17).

As described in the introduction, cooperativity (together with stability) allows for
simplifying the simulation of the transformed system model (15). Guaranteed bounds
z(t) ∈ [z](t) = [v(t) ; w(t)] of all reachable states in the new coordinate frame z are
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obtained by an evaluation of the following coupled set of state equations (which are a
direct consequence of [35])

v̇i(t) = inf
(
[Âi,i] · vi(t)

)
+ inf

 n

∑
j=1
j 6=i

[Âi,j] ·
[
zj
]
(t)


ẇi(t) = sup

(
[Âi,i] · wi(t)

)
+ sup

 n

∑
j=1
j 6=i

[Âi,j] ·
[
zj
]
(t)


(17)

with the resulting state bounds

[zi](t) = [vi(t) ; wi(t)] , (18)

where couplings between the vectors v(t) and w(t) can be ignored if the system is positive,
i.e., vi(t) ≥ 0 holds for all t ≥ 0 as discussed in (9)–(11).

Then, the bounding systems given in (17) simplify to

v̇i(t) =
n

∑
j=1

inf
(
[Âi,j]

)
· vj(t) and ẇi(t) =

n

∑
j=1

sup
(
[Âi,j]

)
· wj(t) . (19)

The expressions for the bounding systems (17) and (19) are also a direct consequence of the
results given in [8] (Lemma 1) and [36] (Equation (15)).

2.2. Illustrating Example

As an illustrating example for the evaluation of uncertain system models according to
Equations (17), consider a set of ODEs with the uncertain parameters and initial conditions

Â ∈
[
[−2 ; 1] [0.5 ; 1]
[0.5 ; 1] [−4 ; −2]

]
and z(0) ∈

[
[−1 ; 2]
[−1 ; 2]

]
. (20)

An equidistant gridding of all six independently uncertain intervals for the initial conditions
and matrix entries into eight points for the initial states and four points for each entry in
the matrix Â (resulting in 16,384 simulations of systems of order n = 2) yields the gray
trajectories in Figure 1, while the black enclosures are obtained by a single simulation of
the bounding system (17) of order 2n = 4.

(a) State variable z1(t). (b) State variable z2(t).

Figure 1. State enclosures by means of exploiting cooperativity for the simple benchmark system
in (20).

The following two subsections make a distinction between changes of coordinates that
are applicable if the original system (12) has only purely real eigenvalues or if it may also



Algorithms 2021, 14, 85 5 of 18

contain conjugate-complex ones. The respective two methods are only briefly presented in
the following because they are a result of the previous publications [2,28,29].

2.3. Purely Real Eigenvalues

In this case, the transformation is based on the work of Raïssi et al. in [2]. There,
a general method to transform uncertain systems with purely real eigenvalues into a
cooperative form (15) was presented. To extend its applicability towards larger uncertainty
bounds, an extension was derived in [29], where the original approach was redesigned
into an LMI-constrained optimization task [37] to make it more generally applicable and to
simplify its practical use.

We assume that the uncertain system matrix [A] can be enclosed by the element-wise
defined inequality

Za − ∆ ≤ Z := V−1 ·A ·V ≤ Za + ∆ (21)

for all A ∈ [A] defined in (13), where Za = ZT
a in (21) is a point matrix. Typical choices

for Za are the midpoint of [A] if this matrix is diagonally dominant (with V = I) or the
midpoint of a matrix obtained after a principal axis transformation using the invertible
real-valued eigenvector matrix V.

Next, a Metzler matrix R = µEn − Γ is searched for, which has the same eigenvalues
as Za. For that, µ ∈ R is a constant, En ∈ Rn×n is a matrix with all elements equal
to 1, and Γ ∈ Rn×n is a diagonal matrix. Following the procedure detailed in [2], there
exists an orthogonal matrix S ∈ Rn×n such that STZS is Metzler with eig(R) = eig(Za)
and µ > n||∆||max, where ||∆||max is the maximum absolute value of ∆. The overall
transformation according to (15) becomes Θ := V · S, which is point-valued and time-
invariant. The LMI-based optimization in [29] automatizes the search for the matrix S.
It terminates successfully, if all realizations of the interval matrix [Â] := Θ−1 · [A] · Θ
are Metzler.

Remark 1. The LMI-based optimization may fail to find a solution because of two reasons. Either
the LMI solver (e.g., SEDUMI in combination with YALMIP [38,39]) may produce the output of
being infeasible. Then, it is ensured that the problem formulation does not have a suitable solution.
However, previous work has shown that this is typically not the case. Mostly, the step size control
procedure, which increases the parameter µ defined above up to the point where µ > n||∆||max is
satisfied, progresses too slowly to find a solution in acceptable time. This is an indicator that the
intervals are too wide to find a common point-valued transformation for the uncertain system model.

Instabilities and the failure of the LMI-based solution are countered by the subdivision
in Section 3.

2.4. Mixed and Conjugate-Complex Eigenvalues

If the original system (12) contains conjugate-complex eigenvalues or if a solution with
the help of the previous approach cannot be found for the complete uncertainty domain,
the following procedure can be applied. The most important differences in comparison
with the previous approach are:

1. the transformation is usually time-varying [1,3];
2. mapping the uncertainty directly into the location of the eigenvalues turns the trans-

formation into an interval-valued expression.

Hence, evaluating the system matrix A(p) in (12) for the whole range of parameters
leads to a variability of the real and imaginary parts σi and ωi of the eigenvalues, where

[σi] = [σi ; σi] and [ωi] = [ωi ; ωi] (22)

are their respective interval bounds. Typically, it is necessary to determine these bounds
with the help of interval techniques. Possible solution procedures (verifyeig) are included
in the MATLAB toolbox INTLAB [40].
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Assume that the system under investigation contains ñ mutually disjoint conjugate-
complex eigenvalue pairs with n∗ = n− 2ñ ≥ 0 as the number of remaining real eigen-
values. To simplify the notation, assume further that all eigenvalues are sorted so that all
complex pairs are listed first, cf. [28].

Now, an equivalent system representation in block diagonal structure with

Ã = blkdiag
(
Ã1, . . . , Ãñ+n∗

)
(23)

can be obtained, where pairs of conjugate-complex eigenvalues with

ωi = −ωi+1 , i ∈ {1, 3, . . . , 2ñ− 1} , (24)

lead to the blocks

Ãj ∈
[

[σj] [ωj]
−[ωj] [σj]

]
(25)

with j ∈ {1, 2, . . . , ñ}, while an uncertain real eigenvalue is reflected by

Ãj ∈ [σi] , j = i− ñ , i ∈ {2ñ + 1, 2ñ + 2, . . . , n} . (26)

The respective transformation between the original system matrix A(p) and the represen-
tation in (23) is given by the column-wise partitioned matrix

T̃ ∈
[
T̃
]
=
[[

T̃1
]
, . . . ,

[
T̃ñ+n∗

]]
(27)

with [
T̃j
]
=
[
<{
[
vj
]
} ={

[
vj
]
}
]
, j ∈ {1, . . . , ñ} , (28)

consisting of interval enclosures for the real and imaginary parts of the eigenvectors of the
interval matrix [A] and the eigenvectors[

T̃j
]
=
[
vj
]

, j = i− ñ , (29)

for each of the real eigenvalues with i ∈ {2ñ + 1, 2ñ + 2, . . . , n}.
In a second stage, a (generally) time-varying transformation is performed according to

z = S−1(t) · z̃ , (30)

where
S(t) =

(
S−1(t)

)T
= blkdiag(S1(t), . . . , Sñ+n∗(t)) (31)

consists of the orthogonal blocks

Sj(t) =
[

cos(ωjt) sin(ωjt)
− sin(ωjt) cos(ωjt)

]
, j ∈ {1, 2, . . . , ñ} , (32)

and
Sñ+1 = . . . = Sñ+n∗ = 1 . (33)

A symbolic simplification of the transformed state-space representation according to

ż = ṠT(t) · z̃ + ST(t) · ˙̃z

=

[[
dST(t)

dt
+ ST(t)Ã

]
S(t)

]
z

= N · z

(34)
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yields a purely diagonal system matrix

N = blkdiag(σ1 · I, . . . , σñ · I, σñ+1, . . . , σñ+n∗) with I =
[

1 0
0 1

]
(35)

in the new coordinates. For simulation purposes, the system model (34) with (35) is
evaluated for the interval matrix

[N] = blkdiag([σ1] · I, . . . , [σñ] · I, [σñ+1], . . . , [σñ+n∗ ]) , (36)

where the change of coordinates (15) is based on the overall interval-valued transformation

[Θ](t) = [T̃] · [S](t) . (37)

As shown before, the advantage of this transformation procedure is that it is equally
applicable to systems with real and complex eigenvalues. Moreover, for the purely real case,
it breaks again down to a time-invariant transformation because all matrices in (32) then
become equal to the identity matrix. However, although the system dynamics according
to (36) are fully decoupled in the new frame of coordinates, overestimation occurs due to
the fact that an interval-valued transformation needs to be employed even if the initial
conditions x(0) according to (6) were given by point-valued data.

Remark 2. Because the approaches in Sections 2.3 and 2.4 lead to time-invariant coordinate
transformations with a single resulting set of bounding systems and because the time derivative
in the square brackets of (34) cancels out for purely real eigenvalues, both procedures are equally
applicable if the matrix A(p) is influenced by either constant or time-varying bounded parameters
p ∈ [p]. For complex eigenvalues, the transformation in Section 2.4 and its simplification according
to (34) are only valid if all ωj are constant for known time intervals on which the simulation is
carried out. For fast, arbitrary variation rates of p, implying fast changes of ωj(t), this equation
needs to be treated with special care.

3. Novel Subdivision-Based State-Space Transformation

As the bridging element between both transformations summarized in the previous
Sections 2.3 and 2.4, a novel subdivision-based procedure is introduced. Its basic com-
ponents are summarized in the following Algorithms 1–4. In a first stage, the procedure
given in Section 2.3 for systems with real eigenvalues is employed (line 1 in Algorithm 1).
The novel components of this algorithm are activated in the case that—after a prede-
fined wall-clock time—no suitable transformation of the uncertain system model into an
interval-valued Metzler matrix has been found, or if the resulting transformed model
contains unstable realizations despite provable asymptotic stability of the original state
Equation (12).

To reduce the wrapping effect during the transformation of the state equations, this
novel algorithm does not only try to find transformations for the complete parameter do-
main L〈∗〉.p̃ (which denotes a storage element of the currently investigated interval box for
the system parameter) as a whole. In addition, the list elements of yet undecided parameter
subintervals (i.e., those intervals for which a solution of the desired transformation has
not yet been found) also carry several L〈∗〉.N subintervals, which are all stored in L〈∗〉.p1.
In such a way, it becomes possible to individually investigate each of the corresponding
subboxes, whether at least for some of them the algorithm of Section 2.3 produces stable
realizations of the transformed system model.

According to Remark 1, a stopping criterion needs to be implemented which avoids
an endless search for point-valued transformations. Currently, this is done by checking
whether a timeout occurred (line 1 in Algorithm 1). Suitable alternatives would be progres-
sion rates for the parameter µ which fall below a certain threshold or a maximum number
of non-successful trials. If this stopping criterion becomes active, the stable intervals—
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transformed into interval-valued Metzler matrices—are appended to the list Ls (starting in
line 1 of Algorithm 1, as well as Algorithm 2).

Algorithm 1: Splitting-based transformation

input : Initial parameter domain [p] and symbolic expression for the
parameter-dependent system matrix A(p)

output :List Ls of stable interval-valued Metzler matrices [Â]〈i〉 and
corresponding transformation matrices Θi = Vi · Si

initialize the list Lu of undecided intervals with the element L〈1〉 according to
L〈1〉.N := 1, L〈1〉.p1 := [p], L〈1〉.p̃ := [p], L〈1〉.A1 := A([p]), L〈1〉.Ã := A([p]),
L〈1〉.v := vol

(
L〈1〉.p̃

)
;

initialize the empty list Ls of stable transformations;
set i∗ := 1;

while Lu 6= ∅ do
search for a transformation Θi∗ = Vi∗ · Si∗ of L〈i∗〉 into a cooperative
state-space representation acc. to Section 2.3;

if transformation found before timeout then
if at least one Θ−1

i∗ ·
(
L〈i∗〉.Aj

)
·Θi∗ is stable for j ∈ {1, . . . ,L〈i∗〉.N} then

generate two empty lists L1 and L2;
perform stability analysis in Algorithm 2 to update Ls and Lu;
if Lu 6= ∅ then

set L to the length of the list Lu;
determine i∗ := arg max

i∈{1,...,L}
L〈i〉.v;

end
else if N .N == 1 then

set N := L〈i∗〉;
remove the element L〈i∗〉 from the list Lu;
execute Algorithm 4 to update Lu and i∗;

else
set N := L〈i∗〉;
remove the element L〈i∗〉 from the list Lu;
execute Algorithm 3 to update Lu and i∗;

end
else

set N := L〈i∗〉;
remove the element L〈i∗〉 from the list Lu;
execute Algorithm 4 to update Lu and i∗;

end
end

For all undecided intervals (either without existing cooperativity-enforcing transfor-
mation or lacking the property of asymptotic stability), two different subdivision pro-
cedures are used in lines 1, 1, and 1 of Algorithm 1. Details about their distinction are
summarized in Algorithms 3 and 4. Basically, they either break up the collection of N .N
subintervals N .p̃ into N .N yet undecided individual boxes in Algorithm 3, or split the
largest parameter box into smaller subintervals after appending theN .N individual entries
to the undecided list in Algorithm 4.
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Algorithm 2: Stability analysis

for j to L〈i∗〉.N do
compute [Â] := Θ−1

i∗ ·
(
L〈i∗〉.Aj

)
·Θi∗ ;

set [q] := L〈i∗〉.pj;
setM.N := 1,M.p1 := [q],M.p̃ := [q],M.A1 := A([q]),M.Ã := A([q]),
M.v := vol([q]);

if [Â] stable then
setM.Â := [Â],M.V := Vi∗ ,M.S := Si∗ ;
appendM to the list L1;

else
appendM to the list L2;

end
end
remove the element L〈i∗〉 from the list Lu;
append L1 to Ls and L2 to Lu;

Algorithm 3: Subdivision procedure A
input :List element N and list Lu
output :Updated list Lu, index i∗

generate empty list L1;
for j to N .N do

set [q] := N .pj;
setM.N := 1,M.p1 := [q],M.p̃ := [q],M.A1 := A([q]),M.Ã := A([q]),
M.v := vol([q]);

appendM to the list L1;
end
append L1 to Lu;
set L to the length of the list Lu;
determine i∗ := arg max

i∈{1,...,L}
L〈i〉.v;

In such a way, the list Ls, obtained after completion of the while-loop in Algorithm 1,
contains individual state-space transformations into asymptotically stable subsystem mod-
els. The resulting transformed subsystems are always valid for uncertain but constant
parameters. Temporal variations, however, are now no longer admissible within the com-
plete initial parameter box. Instead, due to the subdivision into a collection of mutually
independent subsystem models (corresponding to the length of Ls), temporal variations of
parameters are only allowed within each individual box Ls.p̃. Finally, in cases in which it is
not a-priori known that the original system model has purely real eigenvalues and that the
while-loop in line 1 of Algorithm 1—based on the procedure from Section 2.3—will, hence,
terminate after a sufficiently large number of subdivisions, a fallback to the interval-based
transformation of Section 2.4 should be included.
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Algorithm 4: Subdivision procedure B
input :List element N and list Lu
output :Updated list Lu, index i∗

if N .N > 1 then
generate empty list L1;
for j to N .N do

set [q] := N .pj;
setM.N := 1,M.p1 := [q],M.p̃ := [q],M.A1 := A([q]),
M.Ã := A([q]),M.v := vol([q]);

appendM to the list L1;
end
append L1 to Lu;

else
append N to Lu;

end
set L to the length of the list Lu;
determine i∗ := arg max

i∈{1,...,L}
L〈i〉.v;

set [q] := L〈i∗〉.p̃;
split [q] along its longest edge into N equally wide intervals [p]1, . . . , [p]N ;

set L〈i∗〉.N := N, L〈i∗〉.pj := [q]j, L〈i
∗〉.p̃ := [q], L〈i∗〉.Aj := A

(
[p]j
)

,

L〈i∗〉.Ã :=
⋃

j∈{1,...,N}
A
(
[p]j
)

, L〈i∗〉.v := vol([q]) for all j = {1, . . . , N};

4. Application Scenario: Step-Down Converter

The algorithms for a transformation of dynamic system models into a cooperative state-
space representation are now compared by means of numerical simulations for the state
equations of a linear step-down converter circuit. All interval evaluations are performed in
INTLAB V. 12 [40]. For the numerical simulation of point-valued bounding systems, the
floating-point solver ode23 with standard tolerance setting and the maximum step size
10−5 was used. This solver is sufficiently accurate and more effective than, for example,
ode45 for the moderately stiff system model under consideration. For this application,
the resulting approximation errors are also several orders of magnitude smaller than the
absolute values of the corresponding states. This was checked by a computation of the
corresponding solutions with the help of symbolic formula manipulation in MATLAB. In
addition to the presentation of the transformation approaches introduced in this paper,
a comparison with the verified ODE solver verifyode is illustrated. This solver is also
included in INTLAB.

4.1. Modeling

According to Figure 2, a step-down converter is combined with a fuse for excessive
current protection, a variable load RS = R̃S + ∆RS, and the variably connectable additional
resistor R̃C. For simplicity of the following state equations, the diode forward bias is
assumed to be zero. In future work, it can be included in a straightforward manner by
means of an additional system parameter in the corresponding voltage loop equation.
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Figure 2. Step-down converter.

Here, the equations (denoted for brevity without explicitly mentioning time arguments)

uE = uRL + uL + uRC + uC and uC + uRC = uRS , (38)

with
uRS = uR̃S

+ ∆uRS , (39)

describe the two voltage loops, while

iRS + iC = iL (40)

results from Kirchhoff’s node equation. The component equations of all Ohmic resistances
are given by

uRi = Ri · iRi (41)

with i ∈ {L, S, C}. Furthermore, the inductivity and capacity are represented by

uL = L · d
dt

iL and iC = C · d
dt

uC . (42)

Here, the physical energy storage is expressed by the current iL and the voltage uC, which
results in the ODE

d
dt

iL =
1
L

(
−
(

ŘL +
RSRC

RS + RC

)
· iL −

(
1− RC

RS + RC

)
· uC + uE

)
(43)

to describe variations of the magnetic field energy and in

d
dt

uC =
RS

C(RS + RC)
· iL −

1
C(RS + RC)

· uC (44)

for changes of the electric field energy. The corresponding state-space representation with

x =

[
x1
x2

]
=

[
iL
uC

]
(45)

results in

ẋ =

−
1
L

(
ŘL +

RSRC

RS + RC

)
1
L

(
RC

RS + RC
− 1
)

RS

C(RS + RC)
− 1

C(RS + RC)

 · x +
 1

L

0

 · uE

= A · x + b · uE .

(46)

For the simulations in the following subsection with x(0) = 0, the parameters in
Equation (46) are set to L = 1 H, ŘL = 100 Ω (together mimicking a real inductor with non-
zero internal resistance; which can be implemented for a test rig with the help of an opera-
tional amplifier-based gyrator circuit), C = 2 mF, RC ∈ [0.1 ; 0.6]Ω, and RS ∈ [0.1 ; 3]Ω.
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In addition, the input voltage of the system is defined as a piecewise constant, periodic
signal of duration T = 5 ms according to

uE =

{
5 V for (i− 1) · T ≤ t < (i− 1) · T + η · T
0 V for (i− 1) · T + η · T ≤ t ≤ i · T , i ∈ N ,

(47)

where the constant parameter η = 0.6 specifies the length of the duty cycle.

4.2. Simulation-Based Comparison of Two Cooperativity-Enforcing Similarity Transformations

Considering the parameters listed in the previous subsection, it can be shown that there
does not exist a common, point-valued transformation matrix Θ according to Section 2.3
that simultaneously leads to a Metzler matrix representation for the transformed system
dynamics stated in Equation (15) and at the same time preserves the asymptotic stability of
the original system (46).

Hence, a transformation of the system model into an interval-valued diagonal struc-
ture according to (34) and (36) has been performed first. After a subdivision of the parame-
ter box

[p] =
[
[RC] [RS]

]
(48)

in a regular grid with 500 × 200 subintervals, the following eigenvalue bounds were
obtained by using INTLAB’s verifyeig routine:

[σ1] = [−115.15 ; −100.1] and [σ2] = [−2500 ; −124.2] . (49)

Due to the fact that these eigenvalues are purely real, the transformation matrix
from (37) becomes time-invariant according to

Θ ∈
[
[0.0568 ; 0.9948] [0.0002 ; 0.0352]
[0.1020 ; 0.9984] [0.9993 ; 1.0000]

]
. (50)

Here, the entries are displayed after outward rounding to four decimals. The simulation
routine makes use of Θ to convert the results [z](t) back into the original state variables
x(t). The inverse

Θ−1 ∈
[

[1.0052 ; 45.9135] [−1.6126 ; −0.0002]
[−45.8675 ; −0.1025] [1.0000 ; 2.6116]

]
(51)

of this matrix is required to express the influence of the control action according to (16).
The interval enclosures for the temporal evolution of the state variables are depicted in
Figure 3. These bounds are valid both, see Remark 2, for time-invariant uncertain param-
eters and for parameters that are changing their values arbitrarily within the complete
uncertainty intervals.

In contrast, the novel solution procedure, with N = 10 and N = 50 in Algorithm 1
yields significantly tighter state enclosures as shown in Figure 4. Here, the solution is
represented by the interval hull over all individual state enclosures, restricting the validity
of the computed bounds to variations of the parameters within each of the boxes displayed
in Figure 5. Please note that increasing the parameter N in the multi-sectioning strategy
does not necessarily lead to tighter interval bounds. Hence, its systematic optimization
in combination with a sensitivity-based selection of the splitting direction [41,42] will be
especially helpful to make the procedure applicable to systems with a larger number of
uncertain parameters in future work.
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(a) State variable x1(t). (b) State variable x2(t).

Figure 3. State enclosures in terms of their lower and upper bounds for the step-down converter
after backward transformation into the original state-space using the procedure in Section 2.4.

(a) State variable x1(t). (b) State variable x2(t).

Figure 4. State enclosures for the step-down converter using the novel procedure according to
Section 3 in combination with the real-valued transformation approach of Section 2.3.

(a) Splitting with N = 10. (b) Splitting with N = 50.

Figure 5. Partitioning of the parameter domain according to Section 3 for two different parameteriza-
tions of the multi-sectioning strategy.

4.3. Comparison with a Taylor Model-Based Solution Approach

In general, there exist two different options to account for the uncertain parameter
vector p ∈ [p] defined in Equation (48) when using a general-purpose verified ODE
solver. In this section, the solver verifyode [34,43] is employed to obtain a representative
comparison.

When appending the uncertain parameters to the state vector x(t), introduced in (45),
and accounting for the time invariance of these parameters by the so-called integrator
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disturbance model ṗ = 0 in the state equations, the solver verifyode does not at all
succeed in computing guaranteed state bounds. This results from a division by zero when
substituting the Taylor model representations of both uncertain parameters into the system
model (46). This problem is independent whether identical Taylor model orders are chosen
for all four state variables or if the Taylor model order for the interval parameters is reduced
to its minimum value 1 as described in [43].

A simulation of this augmented state-space representation becomes possible—even
with the default setting of identical Taylor model orders for all state variables—if the
uncertainty in both parameters p is reduced significantly. This, however, changes the
system dynamics and can therefore not be used for a fair comparison with the proposed
cooperativity-enforcing simulation approaches.

Successful simulations with this ODE solver become possible if the uncertain pa-
rameters are not appended to the state vector but if they are specified instead within the
state equations as interval variables (datatype intval). Then, manually specifying the
initial step size of the solver as h0 = 10−4, the minimum step size as hmin = 10−6, the
Taylor model orders as either 10, 12 (the default setting), or 30, performing either a QR
preconditioning or a curvilinear preconditioning with or without blunting (a strategy of
widening the angles between the column vectors of an ill-conditioned preconditioning
matrix to reduce overestimation [44]) and/or shrink wrapping (aiming at an elimination of
additive error intervals and incorporating them in the Taylor model coefficients [45]), it is
possible to simulate the system model.

For the comparison with the proposed solution approach described in Section 3, the
outcome of verifyode is investigated for the following solver settings:

case 1 with default settings (order 12) for all options [43] except for the step size parameters and the choice of a QR
preconditioning

verifyodeset(’h0’, 1e-4, ’h_min’, 1e-6, ’precondition’, 1);

case 2 with order 10, manually specified small tolerances, and QR preconditioning

verifyodeset(’order’, 10, ’shrinkwrap’, 0, ’precondition’, 1, ’blunting’, 0, ...
’h0’, 1e-4, ’h_min’, 1e-6, ’loc_err_tol’, 1e-11, ’sparsity_tol’, 1e-20);

case 3 with order 30, manually specified small tolerances, and QR preconditioning

verifyodeset(’order’, 30, ’shrinkwrap’, 0, ’precondition’, 1, ’blunting’, 0, ...
’h0’, 1e-4, ’h_min’, 1e-6, ’loc_err_tol’, 1e-11, ’sparsity_tol’, 1e-20);

case 4 with order 10, manually specified small tolerances, and curvilinear preconditioning

verifyodeset(’order’, 10, ’shrinkwrap’, 0, ’precondition’, 3, ’blunting’, 0, ...
’h0’, 1e-4, ’h_min’, 1e-6, ’loc_err_tol’, 1e-11, ’sparsity_tol’, 1e-20);

case 5 with order 30, manually specified small tolerances, and curvilinear preconditioning

verifyodeset(’order’, 30, ’shrinkwrap’, 0, ’precondition’, 3, ’blunting’, 0, ...
’h0’, 1e-4, ’h_min’, 1e-6, ’loc_err_tol’, 1e-11, ’sparsity_tol’, 1e-20);

The simulations have shown that the cases 1–3 complete successfully up to the point
t = 75 ms (the same final time instant as in Figures 3 and 4, comprising 15 full duty
cycles), while the state enclosures in the cases 4–5, in which the QR preconditioning was
replaced by the curvilinear one blow up and break down shortly after t = 25 ms because
the integration step size falls below the specified threshold. Setting the step size parameters
to the default values as described in [43] does not resolve this issue. Activating the options
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for blunting and/or shrink wrapping did not influence the solutions for the considered
application. Hence, they are not investigated further in this paper. Therefore, the following
graphical comparison in Figures 6–8 will be restricted to the cases 1–3.

(a) State variable x1(t). (b) State variable x2(t).

Figure 6. Comparison of the proposed approach with L = 10 with the results of verifyode for the
case 1.

(a) State variable x1(t). (b) State variable x2(t).

Figure 7. Comparison of the proposed approach with L = 10 with the results of verifyode for the
case 2.

(a) State variable x1(t). (b) State variable x2(t).

Figure 8. Comparison of the proposed approach with L = 10 with the results of verifyode for the
case 3.

When comparing Figures 6–8, it can be seen clearly that the computed bounds for
the electric current iL obtained with the help of verifyode are tighter than those of the
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proposed approach but that the interval bounds for the capacitor’s voltage uC are much
wider if the Taylor model solver is employed. Especially the fact that this simulation
is practically not able to predict the correct sign of the voltage uC is counterproductive
for practical applications where the simulation results may be employed to forecast the
magnitude and direction of power flows towards a consumer (represented by the resistance
RS in the considered scenario). The new solution approach (without counting the offline
parameter splitting) is faster by a factor of at least 100 than the alternative solver despite
the use of multiple parameter intervals in the simulation if both are executed on the same
computer using MATLAB 2019B.

Remark 3. Due to the linearity of the point-valued bounding systems produced by the new
Algorithms 1–4, it is even possible (in the case when the dimension n is sufficiently small) to
compute the worst-case state enclosures efficiently in closed form by using techniques for symbolic
formula manipulation. The existence of such symbolic expressions can be exploited in future work
to design fast model-predictive control strategies for uncertain dynamic systems.

Remark 4. Due to cooperativity of the transformed system models—which are obtained with
the approach presented in this paper—they are less affected by overestimation resulting from the
wrapping effect, even if simulations were carried out for the corresponding interval boxes of the
uncertain parameter and not for the decoupled bounding systems as suggested. Therefore, the
obtained changes of coordinates could be employed also by general-purpose verified ODE solvers.
This represents a further means to reduce overestimation in addition to the typically employed
options such as QR preconditioning [11,34].

5. Conclusions and Future Work

In this paper, a novel subdivision-based transformation approach was presented that
allows for computing the domains of reachable states of an uncertain dynamic system
in terms of point-valued bounding models. This transformation significantly reduces
computing times and overestimation in the computed results and outperforms general-
purpose solvers such as verifyeig, as long as the assumption on limited parameter
variabilities, detailed in this paper, are satisfied.

Methods, allowing the extension of the procedure further to mixed real and com-
plex eigenvalues, resulting, for example from larger uncertainty in the resistances in the
application considered in this paper will be investigated in future work. In addition,
further research should be directed towards extensions for arbitrarily fast changes of pa-
rameters occurring in a time- or event-triggered framework as well as to interfacing the
proposed methodology with techniques for gain scheduling control of uncertain dynamic
systems [33]. Moreover, possible generalizations towards the simulation of uncertain
fractional-order differential equations will be investigated [46–48].
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