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Abstract: Color coding is an algorithmic technique used in parameterized complexity theory to
detect “small” structures inside graphs. The idea is to derandomize algorithms that first randomly
color a graph and then search for an easily-detectable, small color pattern. We transfer color coding
to the world of descriptive complexity theory by characterizing—purely in terms of the syntactic
structure of describing formulas—when the powerful second-order quantifiers representing a random
coloring can be replaced by equivalent, simple first-order formulas. Building on this result, we
identify syntactic properties of first-order quantifiers that can be eliminated from formulas describing
parameterized problems. The result applies to many packing and embedding problems, but also
to the long path problem. Together with a new result on the parameterized complexity of formula
families involving only a fixed number of variables, we get that many problems lie in FPT just
because of the way they are commonly described using logical formulas.

Keywords: color coding; descriptive complexity; fixed-parameter tractability; quantifier elimination;
para-AC0

1. Introduction

Descriptive complexity provides a powerful link between logic and complexity theory:
We use a logical formula to describe a problem and can then infer the computational
complexity of the problem just from the syntactic structure of the formula. As a strik-
ing example, Fagin’s Theorem [1] tells us that 3-colorability lies in NP just because its
describing formula (“there exist three colors such that all adjacent vertex pairs have dif-
ferent colors”) is an existential second-order formula. In the context of fixed-parameter
tractability theory, methods from descriptive complexity are also used a lot—but commonly
to show that problems are difficult. For instance, the A- and W-hierarchies are defined
in logical terms [2], but their hard problems are presumably “beyond” the class FPT of
fixed-parameter tractable problems.

The methods of descriptive complexity are only rarely used to show that problems are
in FPT. More precisely, the syntactic structure of the natural logical descriptions of standard
parameterized problems found in textbooks are not known to imply that the problems
lie in FPT—even though this is known to be the case for many of them. To appreciate
the underlying difficulties, consider the following three parameterized problems (the
prefix “p” stand for “parameterized” and its index names the parameter): pk-MATCHING,
pk-TRIANGLE-PACKING, and pk-CLIQUE. In each case, we are given an undirected graph as
input and a number k and we are then asked whether the graph contains k vertex-disjoint
edges (a size-k matching), k vertex-disjoint triangles, or a clique of size k, respectively.
The problems are known to have widely different complexities (maximal matchings can
actually be found in polynomial time, triangle packing lies at least in FPT, while finding
cliques is W[1]-complete) but very similar logical descriptions:
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αk = ∃x1 · · · ∃x2k
(∧

i 6=j xi 6= xj ∧
∧k

i=1 Ex2i−1x2i
)
, (1)

βk = ∃x1 · · · ∃x3k
(∧

i 6=j xi 6= xj ∧
∧k

i=1(Ex3i−2x3i−1 ∧ Ex3i−2x3i ∧ Ex3i−1x3i)
)
, (2)

γk = ∃x1 · · · ∃xk
(∧

i 6=j xi 6= xj ∧
∧

i 6=j Exixj
)
. (3)

The family (αk)k∈N of formulas is clearly a natural “slicewise” description of the
matching problem: A graph G has a size-k matching if and only if G |= αk. The families
(βk)k∈N and (γk)k∈N are natural parameterized descriptions of the triangle packing and
the clique problems, respectively. Well-known results on the descriptive complexity of
parameterized problems allow us to infer [2] from the above descriptions that all three
problems lie in W[1], but offer no hint why the first two problems actually lie in the class
FPT—syntactically the clique problem arguably “looks like the easiest one” when in fact it
is semantically the most difficult one. The results of this paper will remedy this mismatch
between syntactic and semantic complexity: We will show that the syntactic structures of
the formulas αk and βk imply membership of pk-MATCHING and pk-TRIANGLE-PACKING

in FPT. In particular, we will identify the non-obvious syntactic properties that make αk
and βk “easier” than γk.

The road to deriving the computational complexity of parameterized problems just
from the syntactic properties of slicewise first-order descriptions involves three major
steps: First, a characterization of when the color coding technique is applicable in terms
of syntactic properties of second-order quantifiers. Second, an exploration of how these
results on second-order formulas apply to first-order formulas, leading to the notion of
strong and weak quantifiers and to an elimination theorem for weak quantifiers. Third, we
add a new characterization to the body of known characterizations of how classes like FPT
can be characterized in a slicewise fashion by logical formulas.

Our Contributions I: A Syntactic Characterization of Color Coding.

Consider once more the triangle packing problem, where we are asked whether an
undirected graph G contains k vertex-disjoint triangles. While this problem is known to
be hard, it becomes almost trivial if we change it slightly: Suppose someone colored the
vertices of the graph and our job is just to determine whether there are a red triangle, a
green triangle, a blue triangle, a yellow triangle, and so on for k different colors. Clearly,
this is a now a very easy problem and if we do, indeed, find k triangles having k different
colors, we have found k vertex-disjoint triangles.

The ingenious idea behind the color coding technique of Alon, Yuster, and Zwick [3]
is to reduce the hard triangle packing problem to the much simpler colored version by
simply randomly coloring the graph. Of course, even if there are k disjoint triangles, we
will most likely not color them monochromatically and differently, but the probability of
“getting lucky” is nonzero (at least k−3k) and depends only on the parameter k. Even better,
Alon et al. point out that one can derandomize the coloring easily by using universal hash
functions to color each vertex with its hash value.

Applying this idea in the setting of descriptive complexity was recently pioneered
by Chen et al. [4]. Transferred to the triangle packing problem, their argument would
roughly be: “Testing for each color i, whether there is a monochromatic triangle of color i,
can be done in first-order logic using something like

∧k
i=1 ∃x∃y∃z(Exy∧ Eyz∧ Exz∧Cix ∧

Ciy ∧ Ciz). Next, instead of testing whether x has color i using the formula Cix, we can
test whether x gets hashed to i by a hash function. Finally, since computing appropriate
universal hash functions only involves addition and multiplication, we can express the
derandomized algorithm using an arithmetic first-order formula of low quantifier rank.”
Phrased differently, Chen et al. would argue that

∧k
i=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ Cix ∧

Ciy ∧ Ciz) together with the requirement that the Ci are pairwise disjoint is (ignoring
some details) equivalent to δk = ∃p∃q

∧k
i=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ HASHk(x, p, q) =

i ∧ HASHk(y, p, q) = i ∧ HASHk(z, p, q) = i), where HASHk(x, p, q) = i is a formula that is
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true when “x is hashed to i by a member of a universal family of hash functions indexed
by q and p.”

The family (δk)k∈N may seem rather technical and, indeed, its importance becomes
visible only in conjunction with another result by Chen et al. [4]: They show that a parame-
terized problem lies in para-AC0, one of the smallest “sensible” subclasses of FPT, if it can
be described by a family (φk)k∈N of FO[+,×] formulas of bounded quantifier rank such
that the finite models of φk are exactly the elements of the kth slice of the problem. Since the
triangle packing problem can be described in this way via the family (δk)k∈N of formulas,
all of which have a quantifier rank 5 plus the constant number of quantifiers used to express
the arithmetics in the formulas HASHk(x, p, q) = i, we get pk-TRIANGLE-PACKING ∈ FPT.

Clearly, this beautiful idea cannot work in all situations: If it also worked for the
formula mentioned earlier expressing 3-colorability, 3-colorability would be first-order
expressible, which is known to be impossible. Our first main contribution is a syntactic
characterization of when the color coding technique is applicable, that is, of why color
coding works for triangle packing but not for 3-colorability: For triangle packing, the
colors Ci are applied to variables only inside existential scopes (“∃x∃y∃z”) while for 3-
colorability the colors R, G, and B are also applied to variables inside universal scopes (“for
all adjacent vertices”). In general, see Theorem 2 for the details, we show that a second-
order quantification over an arbitrary number of disjoint colors Ci can be replaced by a
fixed number of first-order quantifiers whenever none of the Ci is used in a universal scope.

Our Contributions II: New First-Order Quantifier Elimination Rules.

The “purpose” of the colors Ci in the formulas
∧k

i=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ Cix ∧
Ciy ∧ Ciz) is not that the three vertices of a triangle get a particular color, but just that they
get a color different from the color of all other triangles. Indeed, our “real” objective in
these formulas is to ensure that the vertices of a triangle are distinct from the vertices in the
other triangles—and giving vertices different colors is “just a means” of ensuring this.

In our second main contribution we explore this idea further: If the main (indeed,
the only) use of colors in the context of color coding is to ensure that certain vertices are
different, let us do away with colors and instead focus on the notion of distinctness. To
better explain this idea, consider the following family, also describing triangle packing,
where the only change is that we now require (a bit superfluously) that even the vertices
inside a triangle get different colors:

∧k
j=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ C3j−2x ∧ C3j−1y ∧

C3jz). Observe that each Ci is now applied to exactly one variable (x, y, or z in one of the many
literals) and the only “effect” that all these applications have is to ensure that the vertices to
which these variables get bound are different. In particular, the formula is equivalent to

∃x1 · · · ∃x3k
∧

i 6=j xi 6= xj ∧
∧k

j=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧
x3j−2 = x ∧ x3j−1 = y ∧ x3j = z) (4)

and these formulas are clearly equivalent to the almost identical formulas from (2).
In a sense, in (4) the many existential quantifiers ∃xi and the many xi 6= xj literals come

“for free” from the color coding technique, while ∃x, ∃y, and ∃z have nothing to do with
color coding. Our key observation is a syntactic property that tells us whether a quantifier
comes “for free” in this way (we will call it weak) or not (we will call it strong): Definition 3
states (essentially) that weak quantifiers have the form ∃x(φ) such that x is not free in any
universal scope of φ and x is used in at most one literal that is not of the form x 6= y. To
make weak quantifiers easier to spot, we mark the variables they bind with a dot (note that
this is just a “syntactic hint to the reader” without any semantic meaning). Formulas (4) now
read ∃ẋ1 · · · ∃ẋ3k

∧
i 6=j ẋi 6= ẋj ∧

∧k
j=1 ∃x∃y∃z(Exy ∧ Exz ∧ Eyz ∧ ẋ3j−2 = x ∧ ẋ3j−1 = y ∧

ẋ3j = z). Observe that x, y, and z are not weak since each is used in three literals that are
not inequalities.

We show in Theorem 4 that each φ is equivalent to a φ′ whose quantifier rank depends
only on the strong quantifier rank of φ (meaning that we ignore the weak quantifiers) and
whose number of variables depends only on the number of strong variables in φ′. For
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instance, the formulas from (4) all have strong quantifier rank 3 and, thus, the triangle pack-
ing problem can be described by a family of constant (normal) quantifier rank. Applying
Chen et al.’s characterization yields membership in para-AC0.

As a more complex example, let us sketch a “purely syntactic” proof of the result [5,6]
that the embedding problem for graphs H of tree depth at most d lies in para-AC0 for
each d. Once more, we construct a family (φH) of formulas, one for each to-be-embedded
graph H, of constant strong quantifier rank that describes the problem. For a graph
H =

(
V(H), E(H)

)
to have tree depth d means that there is a rooted tree T of depth d

such that E(H) is contained in the edges of T’s transitive closure. Let c1 be the root of T
and let children(c) be the (possibly empty) set of children of c in T. Then the following
formula of strong quantifier rank d describes that H can be embedded into a graph structure
G = (V, EG) (note that in the formula the E in “Eninj” refers to the edge relation EG of G
while in “(ci, cj) ∈ E(H)” it refers to the edge set E(H) of the fixed parameter H):

∃ẋ1 · · · ∃ẋ|V(H)|
(∧

i 6=j ẋi 6= ẋj ∧ ∃n1(n1 = ẋc1 ∧
∧

c2∈children(c1)
∃n2(n2 = ẋc2 ∧∧

c3∈children(c2)
∃n3(n3 = ẋc3 ∧

∧
c4∈children(c3)

∃n4(n4 = ẋc4 ∧ . . .∧
cd∈children(cd−1)

∃nd(nd = ẋcd ∧
∧

i,j∈{1,...,d}:(ci ,cj)∈E(H) Eninj) . . . ))))
)
.

Our Contributions III: Slicewise Descriptions and Variable Set Sizes.

Our third contribution is a new result in the same vein as the already repeatedly
mentioned result of Chen et al. [4], stated as Fact 1 in our paper: Our new Theorem 1 states
that a parameterized problem can be described slicewise by a family (φk)k∈N of arithmetic
first-order formulas that all use only a bounded number of variables if and only if the prob-
lem lies in para-AC0↑—a class that has been encountered repeatedly in the literature [5,7–9],
but for which no characterization was known. It contains all parameterized problems that
can be decided by AC-circuits whose depth depends only on the parameter and whose size
is of the form f (k) · nc.

As an example, consider the problem of deciding whether a graph contains a path of
length k (no vertex may be visited twice). It can be described by the family (δk) of formulas
with (for odd k) δk equal to

∃s∃t ∃x(Esx ∧ ∃ẋ1(ẋ1 = x ∧
∃y(Exy ∧ ∃ẋ2(ẋ2 = y ∧
∃x(Eyx ∧ ∃ẋ3(ẋ3 = x ∧
∃y(Exy ∧ ∃ẋ4(ẋ4 = y ∧

· · · ∧ ∃x(Eyx ∧ x = t ∧ ∃ẋk(ẋk = x ∧∧i 6=j ẋi 6= ẋj) . . . ))))))))). (5)

Note that the strong quantifier rank of δk is k + 2 and, thus, depends on k. However,
there are only four strong variables, namely s, t, x, and y. By Theorem 3 we see that
the above formulas are equivalent to a family of formulas with a bounded number of
variables and by Theorem 1 we see that pk-LONG-PATH ∈ para-AC0↑ ⊆ FPT. These ideas
also generalize easily and we give a purely syntactic proof of the seminal result from
the original color coding paper [3] that the embedding problem for graphs of bounded
tree width lies in FPT. The core observation—which unifies the results for tree width and
depth—is that for each graph with a given tree decomposition, the embedding problem
can be described by a formula whose strong nesting structure mirrors the tree structure
and whose strong variables mirror the bag contents.

Table 1 summarizes, for the problems discussed in this paper, how they can be
described using formulas in such a way that membership in para-AC0 and para-AC0↑

follows. All memberships were previously known, the contribution of this paper is that
we prove the memberships by presenting families of first-order formulas that describe
them, such that that strong quantifier rank (strong-qr) or the number of strong variables
(strong-vars) is parameter-independent.
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Table 1. Membership of the problems discussed in this paper in the two classes para-AC0 and
para-AC0↑ and the formulas whose syntactic structures prove this. Except for clique problem,
formulas exist where at least the number of strong variables is independent of the parameter—
but it is not always the most “natural” formulas that have this desirable property, see the vertex
cover problem.

pk-MATCHING ∈ para-AC0

Problem: Does a graph have a size-k matching?
Formulas: ∃ẋ1 · · · ∃ẋ2k

(∧
i 6=j ẋi 6= ẋj ∧

∧k
i=1 Eẋ2i−1 ẋ2i

)
, see Equation (1)

Descriptive complexity: strong-qr = 0, strong-vars = 0
pk-TRIANGLE-PACKING ∈ para-AC0

Problem: Does a graph contain k vertex-disjoint triangles?
Formulas: ∃ẋ1 · · · ∃ẋ3k

(∧
i 6=j ẋi 6= ẋj ∧

∧k
j=1 ∃x∃y∃z (

ẋ3j−2 = x ∧ ẋ3j−1 = y ∧ ẋ3j = z ∧ Exy ∧ Exz ∧ Eyz)
)
, see Equation (2)

Descriptive complexity: strong-qr = 3, strong-vars = 3
pk-H-PACKING ∈ para-AC0 for a fixed graph H = (V(H), E(H)) (instead of triangles)
Problem: Does a graph contain k vertex-disjoint induced copies of H?
Formulas: ∃ẋ1 · · · ∃ẋk|V(H)|

(∧
i 6=j ẋi 6= ẋj ∧

∧k
j=1 ∃y1 · · · ∃y|V(H)| (

∧|V(H)|
i=1 yi = ẋ(j−1)k+i ∧

∧
(p,q)∈E(H) Eypyq ∧

∧
(p,q)/∈E(H) ¬Eypyq)

)
Descriptive complexity: strong-qr = |V(H)|, strong-vars = |V(H)|
pk-LONG-PATH ∈ para-AC0↑

Problem: Does a graph contain a path of length k?
Formulas: ∃s∃t∃x(Esx ∧ ∃ẋ1(ẋ1 = x ∧ ∃y(Exy ∧ . . . (ẋk = x ∧∧i 6=j ẋi 6= ẋj) . . . )))
Descriptive complexity: strong-qr = k + 2, strong-vars = 4, see Equation (5)

pk-VERTEX-COVER ∈ para-AC0

Problem: Does a graph have a size-k vertex cover?
Formulas 1: ∃x1 · · · ∃xk∀u∀v

(
Euv→ ∨

i(xi = u ∨ xi = v)
)

Descriptive complexity: strong-qr = k + 2, strong-vars = k + 2
Formulas 2: Describe the Buss kernelization, see Theorem 5
Descriptive complexity: strong-qr = O(1), strong-vars = O(1)

pk,d-HITTING-SET ∈ para-AC0

Problem: Does a hypergraph with maximum edge size d a size-k hitting set?
Formulas: Describe a kernel based on pseudo-sunflowers, see Theorem 6
Descriptive complexity: strong-qr = O(1), strong-vars = O(1)

pψ,δ-MC(FO) ∈ para-AC0↑

Problem: Is ψ a model of a graph with maximum degree δ?
Formulas: Describe the disjointness of balls in the formula resulting from Gaifman’s
Theorem using weak variables, see Theorem 7
Descriptive complexity: strong-qr = O(locality-rank(ψ)), strong-vars = O(1)

pH -EMBtd(H)≤c ∈ para-AC0 and pH -EMBtw(H)≤c ∈ para-AC0↑

Problem: Can H, of tree depth or width c, be embedded into a graph G?
Formulas: Bind the vertices of H’s image to weak variables and use a formula whose
syntactic structure exactly mimics an optimal tree decomposition of H, see Theorem 8
Descriptive complexity: strong-qr = O(td(H)), strong-vars = O(tw(H))

pk-CLIQUE ∈ W[1]
Problem: Does a graph contain a k-clique?
Formulas 1: ∃x1 · · · ∃xk

(∧
i 6=j xi 6= xj ∧

∧
i 6=j Exixj

)
, see Equation (3)

Formulas 2: ∃x1 · · · ∃xk∀u∀v
(∨

i 6=j(xi = u ∧ xj = v)→ Euv
)
, see Equation (19)

Descriptive complexity: strong-qr = k, strong-vars = k in both cases
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1.1. Related Work

Flum and Grohe [10] were the first to give characterizations of FPT and of many
subclasses in terms of the syntactic properties of formulas describing their members.
Unfortunately, these syntactic properties do not hold for the descriptions of parameterized
problems found in the literature. For instance, they show that FPT contains exactly the
problems that can be described by families of FO[LFP]-formulas of bounded quantifier
rank—but actually describing problems like pk-VERTEX-COVER in this way is more or less
hopeless and yields little insights into the structure or complexity of the problem. We
believe that it is no coincidence that no applications of these beautiful characterizations
to concrete problems could be found in the literature—at least prior to very recent work
by Chen and Flum [11], who study slicewise descriptions of problems on structures of
bounded tree depth, and the already cited article of Chen et al. [4], who do present a
family of formulas that describe the vertex cover problem. This family internally uses the
color coding technique and is thus closely related to our results. The crucial difference
is, however, that we identify syntactic properties of logical formulas that imply that the
color coding technique can be applied. It then suffices to find a family describing a given
problem that meets the syntactic properties to establish the complexity of the problem:
there is no need to actually construct the color-coding-based formulas—indeed, there is not
even a need to understand how color coding works in order to decide whether a quantifier
is weak or strong.

A different approach towards proving that a problem lies in FPT purely because
of the syntactic nature of logic-based problem descriptions comes from the context of
optimization problems. Cai and Chen [12] have shown that all problems in the syntactically-
defined classes MAXSNP, due to [13], and MIN F+Π1, due to [14], are fixed-parameter
tractable (but not necessarily in the small classes like para-AC0 and para-AC0↑ studied in
the present paper).

1.2. Organization of this Paper

In Section 2 we first review some of the existing work on the descriptive complexity of
parameterized problems. We add to this work in the form of the mentioned characterization
of the class para-AC0↑ in terms of a bounded number of variables. Our main technical
results are then proved in Section 3, where we establish and prove the syntactic properties
that formulas must have in order for the color coding method to be applicable. In Section 4
we then apply the findings and show how membership of different natural problems in
para-AC0 and para-AC0↑ (and, thus, in FPT) can be derived entirely from the syntactic
structure of the formulas describing them.

2. Describing Parameterized Problems

A happy marriage of parameterized complexity and descriptive complexity was first
presented in [10] by Flum and Grohe. We first review their most important definitions and
then prove a new characterization, namely of the class para-AC0↑ that contains all problems
decidable by AC-circuits of parameter-dependent depth and “FPT-like” size.

2.1. Logical Terminology

We only consider first-order logic and use standard notations following for instance [10],
with the perhaps only deviations being that we write relational atoms briefly as Exy instead
of E(x, y) and that the literal x 6= y is an abbreviation for ¬ x = y (recall that a literal is
an atom or a negated atom). Signatures, typically denoted τ, are always finite and may
only contain relation symbols and constant symbols—with one exception: The special
unary function symbol SUCC may also be present in a signature. Let us write SUCCk for
the k-fold application of SUCC, so SUCC3(x) is short for SUCC(SUCC(SUCC(x))). It allows
us to specify any fixed non-negative integer without having to use additional variables.
An alternative is to dynamically add constant symbols for numbers to signatures as done
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in [4], but we believe that following [10] and adding the successor function gives a leaner
formal framework. Let arity(τ) be the maximum arity of relation symbols in τ.

We denote by STRUC[τ] the class of all τ-structures and by |A| the universe of A. As
is often the case in descriptive complexity theory, we only consider ordered structures in
which the ternary predicates ADD and MULT are available and have their natural meaning.
Formally, we say τ is arithmetic if it contains all of the predicates <, ADD, MULT, the
function symbol SUCC, and the constant symbol 0 (it is included for convenience only).
In this case, STRUC[τ] contains only those A for which <A is a linear ordering of |A| and
the other operations have their natural meaning relative to <A (with the successor of the
maximum element of the universe being itself and with 0 being the minimum with respect
to <A). We write φ ∈ FO[+,×] when φ is a τ-formula for an arithmetic τ.

A τ-problem is a set Q ⊆ STRUC[τ] closed under isomorphisms. A τ-formula φ
describes a τ-problem Q if Q = {A ∈ STRUC[τ] | A |= φ} and it describes Q eventually if
φ describes a set Q′ that differs from Q only on structures of a certain maximum size.

Lemma 1. For each φ ∈ FO[+,×] that describes a τ-problem Q eventually, there are quantifier-free
formulas α and β such that (α ∧ φ) ∨ β describes Q.

Proof. The statement of the lemma would be quite simple if we did not require α and β to
be quantifier-free: Without this requirement, all we need to do is to use α and β to fix φ on
the finitely many (up to isomorphisms) structures on which φ errs by “hard-wiring” which
of these structures are elements of Q and which are not. However, the natural way to do
this “hard-wiring” of size-m structures is to use m quantifiers to bind all elements of the
universe. This is exactly what we do not wish to do. Rather, we use the successor function
to refer to the elements of the universe without using any quantifiers.

In detail, let m be a number such that for all A ∈ STRUC[τ] with ‖A‖ ≥ m (that is, the
size ‖A‖ of the universe |A| is at least m) we have A |= φ if and only if A ∈ Q. We set α to
UNIVERSE≥m, a shorthand for SUCCm−1(0) 6= SUCCm(0), which is true only for universes
of size at least m. We define β so that it is true exactly for all τ-structures A ∈ Q of size at
most m (for simplicity we assume that E2 is the only relation symbol in τ):

β =
∧m

s=1

(
(UNIVERSE≥s ∧¬ UNIVERSE≥s+1)

→ ∨
A∈Q,|A|={0,...,s−1}

(∧
u,v∈|A|:(u,v)∈ES E(SUCCu(0), SUCCv(0)) ∧∧
u,v∈|A|:(u,v)/∈ES ¬E(SUCCu(0), SUCCv(0))

))
.

The first line of β checks whether the universe of the current structure (the structure
for which we would like to know whether it is a model of (α ∧ φ) ∨ β) has size s for some
s ≤ m and, if so, checks that there is some A ∈ Q of size exactly s so that the edges of A
are present in the current structure (second line) and that the edges not in A are also not
present in the current structure (last line). In particular, if the current structure has size at
most m, it will be a model of β if and only if it is isomorphic to some A ∈ Q and, thus, if it
is an element of Q.

We write qr(φ) for the quantifier rank of a formula and bound(φ) for the set of
its bound variables. For instance, for φ =

(
∃x∃y(Exz)

)
∨ ∀y(Px) we have qr(φ) = 2,

since the maximum nesting is caused by the two nested existential quantifiers, and
bound(φ) = {x, y}.

Let us say that φ is in negation normal form if negations are applied only to atomic
formulas.

2.2. Describing Parameterized Problems

When switching from classical complexity theory to descriptive complexity theory,
the basic change is that “words” get replaced by “finite structures.” The same idea works
for parameterized complexity theory and, following Flum and Grohe [10], let us define
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parameterized problems as subsets Q ⊆ STRUC[τ]×N where Q is closed under isomor-
phisms. In a pair (A, k) ∈ STRUC[τ]×N the number k is, of course, the parameter value
of the pair. Flum and Grohe now propose to describe such problems slicewise using
formulas. Since this will be the only way in which we describe problems, we will drop
the “slicewise” in the phrasings and just say that a family (φk)k∈N of formulas describes
a problem Q ⊆ STRUC[τ]×N if for all (A, k) ∈ STRUC[τ]×N we have (A, k) ∈ Q if and
only if A |= φk. (In this paper, we ignore the question of whether the mappings k 7→ φk
should be required to be computable. While this will be the case for all of our examples
and constructions, it is not important for our formalism and results.)

For a class Φ of families (φk)k∈N, let us write XΦ for the class of all parameterized
problems that are described by the members of Φ (we chose “X” to represent a “slicewise”
description, which seems to be in good keeping with the usual use of X in other classes
such as XP or XL). For instance, the mentioned characterization of FPT in logical terms by
Flum and Grohe can be written as

FPT = X
{
(φk)k∈N | φk ∈ FO[LFP], maxk qr(φk) < ∞

}
.

We remark that instead of describing parameterized problems using families, a more
standard and at the same time more flexible way is to use reductions to model check-
ing problems. Clearly, if a family (φk)k∈N of L-formulas describes Q ⊆ STRUC[τ] × N,
then there is a very simple parameterized reduction from Q to the model checking prob-
lem pφ-MC(L), where the input is a pair (A, num(φ)) and the question is whether both
A |= φ and φ ∈ L hold. (The function num encodes mathematical objects like φ or later
tuples like (φ, δ) as unique natural numbers.) The reduction simply maps a pair (A, k) to
(A, num(φk)). Even more interestingly, without going into any of the technical details, it is
also not hard to see that as long as a reduction is sufficiently simple, the reverse implication
holds, that is, we can replace a reduction to the model checking problem by a family of
formulas that describe the problem. We can, thus, use whatever formalism seems more
appropriate for the task at hand and—as we hope that this paper shows—it is sometimes
quite natural to write down a family that describes a problem.

2.3. Parameterized Circuits

For our descriptive setting, we need to slightly adapt the definition of the circuit
classes para-AC0 and para-AC0↑ from [5,7]: Let us say that a problem Q ⊆ STRUC[τ]×N is
in para-AC0, if there is a family (Cn,k)n,k∈N of AC-circuits (Boolean circuits with unbounded
fan-in) such that for all (A, k) ∈ STRUC[τ]×N we have

1. (A, k) ∈ Q if and only if C|x|,k(x) = 1 where x is a binary encoding of A and |x| is the
length of the encoding,

2. the size of each Cn,k is at most f (k) · nc for some function f and some constant c that
is independent of both n and k,

3. the depth of each Cn,k is bounded by some constant that is again independent of both
n and k, and

4. the circuit family satisfies a DLOGTIME-uniformity condition. (Since the complex
questions around circuit uniformity are not of special importance for the present paper,
we keep its discussion short and just remark that DLOGTIME-uniformity roughly
means that arithmetic formulas suffice to describe the circuits.)

The class para-AC0↑ is defined the same way, but the depth may be g(k) for some g
instead of only O(1). The following fact and theorem show how these two circuit classes
are closely related to descriptions of parameterized problems using formulas:

Fact 1 ([4]). para-AC0 = X
{
(φk)k∈N

∣∣ φk ∈ FO[+,×], maxk qr(φk) < ∞
}

.

Theorem 1. para-AC0↑ = X
{
(φk)k∈N

∣∣ φk ∈ FO[+,×], maxk|bound(φk)| < ∞
}

.
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Proof. The basic idea behind the proof is quite “old.” We wish to establish links between
circuit depth and size and the number of variables used in a formula—and such links are
well-known, see for instance [15]: The quantifier rank of a first-order formula naturally
corresponds to the depth of a circuit that solves the model checking problem for the formula.
The number of variables corresponds to the exponent of the polynomial that bounds the
size of the circuit (the paper [16] is actually entitled “DSPACE[nk] = VAR[k + 1]”). One
thing that is usually not of interest (because only one formula is usually considered) is the
fact that the length of the formula is linked multiplicatively to the size of the circuit.

In detail, suppose we are given a problem Q ⊆ STRUC[τ]×N with Q ∈ para-AC0↑

via a circuit family (Cn,k)n,k∈N of depth g(k) and size f (k)nc. For a fixed k, we now need
to construct a formula φk that correctly decides the k-th slice. In other words, we need an
FO[+,×]-formula φk whose finite models are exactly those on which the family (Cn,k)n∈N
(note that k no longer indexes the family) evaluates to 1 (when the models are encoded as
bitstrings). It is well-known how such a formula can be constructed, see for instance [15],
we just need a closer look at how the quantifier rank and number of variables relate to the
circuit depth and size.

The basic idea behind the formula φk is the following: The circuit has f (k)nc gates
and we can “address” these gates using c variables (which gives us nc possibilities) plus
a number i ∈ {1, . . . , f (k)} (which gives us f (k) · nc possibilities). Since for fixed k the
number f (k) is also fixed, it is permissible that the formula φk contains f (k) copies of some
subformula, where each subformula handles another value of i. The basic idea is then
to start with formulas ψ0

i for i ∈ {1, . . . , f (k)}, each of which has c free variables, so that
ψ0

i (x1, . . . , xc) is true exactly if the tuple (x1, . . . , xc, i) represents an input gate set to 1. At
this point, the uniformity condition basically tells us that arithmetic formulas suffice to
express this and that they all have a fixed quantifier rank. Next, we construct formulas
ψ1

i (x1, . . . , xc) that are true if (x1, . . . , xc, i) addresses a gate for which the input values are
all already computed by the ψ0

j and that evaluates to 1. Next, formulas ψ2
i are constructed,

but now, we can reuse the variables used in the ψ0
j . In this way, we finally build formulas

ψ
g(k)
i and apply it to the “address” of the output gate. All told, we get a formula whose

quantifier rank is c · g(k) + O(1) and in which at most 2c + O(1) variables are used (note
that the size of the formula depends on f (k)). Clearly, this means that the family (φk)k∈N
created in this way does, indeed, only use a bounded number of variables (namely O(c)
many) and decides Q.

For the other direction, suppose (φk)k∈N describes Q and that all φk contain at most v
variables (since they contain no free variables, this is same as the number of bound vari-
ables). Clearly, we may assume that the formulas φk are in negation normal form. We
may also assume that they are “flat,” by which we mean that they contain no subfor-
mulas of the form (α ∨ β) ∧ γ or α ∧ (β ∨ γ): Using the distributive laws of proposi-
tional logic, any first-order formula can be turned into an equivalent flat formula with
the same number of variables and the same quantifier rank (one can loosely think of
this as locally transforming the formula into disjunctive normal form, but “not past
quantifiers”). Lastly, we may assume that the SUCC function symbol is only used in
atoms of the form x = SUCCs(0) for some variable x and some number s: We can re-
place for instance E SUCC6(x) SUCC3(y) by the equivalent formula ∃x′∃x′′∃y′∃y′′(x′ =
SUCC6(0)∧ ADD xx′x′′ ∧ y′ = SUCC3(0)∧ ADD yy′y′′ ∧ Ex′′y′′) without raising the number
of variables and the quantifier rank by more than 4 (or, in general, by more than the constant
2 · arity(τ)).

As before, it is now known that for each φk there is a family (Cn,k)n∈N that evaluates
to 1 exactly on the (encoded) models of φk. These circuits are constructed as follows:
While φk has no free variables, a subformula ψ of φk can have up to v free variables. For
each such subformula, the circuits use nv gates to keep track of all assignments to these v
variables that make the subformula true. Clearly, this is relatively easy to achieve for literals
in a constant number of layers, including literals of the form x = SUCCs(0) since s is a
fixed number depending only on k. Next, if a formula is of the form

∧
i αi and for some
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assignment we have one gate for each αi that tells us whether it is true, we can feed all
these wires into one ∧-gate. We can take care of a formula of the form

∨
i αi in the same

way—and note that in a flat formula there will be at most one alternation from
∧

to
∨

before we encounter a quantifier. Now, for subformulas of the form ∃x φ, the correct values
for the nv−1 gates can be obtained by a big ∨-gate attached to the outputs from the gates
for φ. Similarly, ∀x φ can be handled using a big ∧-gate.

Based on these observations, it is now possible to build a circuit of size |φk|nv and
depth O(qr(φk)). In particular, the resulting overall circuit family has a depth that depends
only on the parameter (since the quantifier rank can be at most |φk|, which depends only
on k) and has a size of at most f (k) · nc for f (k) = |φk|. It can also be shown that the
necessary uniformity conditions are satisfied.

We remark that the above proof also implies Fact 1, namely for g(k) = O(1) for the
first direction and for qr(φk) = O(1) for the second direction.

2.4. Bounded Rank Reductions

To complete the formal framework for describing parameterized problems, we need
a notion of parameterized reductions that is very weak to ensure that the smallest class
we study, para-AC0, is closed under them. Such a reduction is used in the literature [5],
boringly named para-AC0-reduction, but both its definition as well as the definition of
other kinds of parameterized reductions found in the literature do not fit well with our
logical framework: The reductions are defined in terms of machines or circuits that get
as input a string that explicitly or implicitly contains the parameter k and output a new
problem instance that once more explicitly or implicitly contains a new parameter value k′.

In contrast, in our setting the inputs and outputs must be logical structures that we
wish to define in terms of formulas. Furthermore, “outputting a parameter value” is
difficult in our formal framework since parameter values are not elements of the universe,
but indices of the formulas. All of these problems can be circumvented, see for instance ([11],
Definition 5.3), but we believe it gives a cleaner formalism to give a new “purely logical”
definition of reductions between parameterized problems. We will not prove this, but
remark that the power of this reduction is the same as that of para-AC0-reductions.

Definition 1. Let τ and τ′ be signatures and let Q ⊆ STRUC[τ]×N and Q′ ⊆ STRUC[τ′]×N
be two problems. A bounded rank reduction from Q to Q′, written Q ≤br Q′, is a pair of families
( fk)k∈N and (ιk,k′)k,k′∈N where

• each fk is a first-order query from τ-structures to τ′-structures and
• each ιk,k′ is a τ-formula

such that

1. for each (A, k) ∈ STRUC[τ] × N there is exactly one k′ ∈ N, denoted by ιk(A) in the
following, such that A |= ιk,k′ ,

2. there is a mapping ι∗ : N→ N such that for all A ∈ STRUC[τ] we have ιk(A) ≤ ι∗(k),
3. (A, k) ∈ Q if and only if

(
fk(A), ιk(A)

)
∈ Q′, and

4. the quantifier rank of all ιk,k′ and of all formulas inside the fk and of the widths of each fk is
bounded by a constant c.

Let us briefly explain the ingredients of this definition: Each fk maps all τ-structures
A to τ′-structures A′. The fact that we have one function for each parameter value allows
us to make our mapping depend on the parameter. The job of the formulas ιk,k′ is solely
to “compute” the new parameter value k′, based not only on the original value k, but also
on A. If, as is the case in many reductions, the new parameter value k′ just depends on k
(typically, it even is k), we can just set ιk,k′ to a trivial tautology > and all other ιk,k′′ to the
contradiction ⊥.

In the definition, we referred to first-order queries, which are a standard way of
defining a logical τ′-structure in terms of a τ-structure in database theory and finite model
theory (we remark that in general model theory “interpretation” is used instead of “query”
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and that “transductions” from FPT-theory are queries with special semantic and syntactic
properties). A detailed account of first-order queries can be found in [17], but here is the
basic idea: Suppose we wish to map graphs ((E2)-structures) to their underlying undirected
graphs ((U2)-structures, where U represent the underlying symmetric edge set). In this
case, there is a simple formula φU(x, y) that tells us when Uxy holds in the new structure:
Exy ∨ Eyx. More importantly, if we have a formula ψ that internally uses Uxy to check
whether there is an undirected edge in the mapped graph, we can easily turn this into a
formula ψ[ f ], where we replace all occurrences of Uxy by φU(x, y), that gives the same
answer as ψ when fed the original graph. In other words, if a first-order query maps A
to A′ and we wish to check whether A′ |= ψ holds, we can just as well check whether
A |= ψ[ f ] holds. The just-described example of a first-order query did not change the
universe, which is something we sometimes wish to do. This is achieved by allowing the
width w of the query to be larger than 1. The effect is that the universe U gets replaced
by Uw and, now, elements of this new universe can be described by tuples of variables of
length w. We can also reduce the size of the universe using a formula φuniverse(x1, . . . , xw)
that is true only for the tuples we wish to keep in the new structure’s universe.

Lemma 2. Let Q ≤br Q′ via a bounded rank reduction given by ( fk)k∈N and (ιk,k′)k,k′∈N. Let
(φ′k)k∈N describe Q′. Then there is a family (φk)k∈N that describes Q with

1. maxk qr(φk) = maxk qr(φ′k) + O(1) and
2. maxk|bound(φk)| = maxk

∣∣bound(φ′k)
∣∣+ O(1).

In particular, para-AC0 and para-AC0↑ are closed under bounded rank reductions.

Proof. Set φk to
∧ι∗(k)

k′=1(ιk,k′ → φ′k′ [ fk]). By definition, we have A |= φk if and only if
fk(A) |= φ′k′ for the unique k′ with A |= ιk,k′ . If we can argue that the substitutions do
not increase the quantifier rank or number of variables by more than a constant, we get
the claim. Unfortunately, there is a case where simple substitutions fail to preserve the
quantifier rank, namely when a formula φ′k′ contains a large number of nested applications
of the successor function. Suppose, for instance, φ′k′ is something like ∃x∃y(SUCC1000 x = y).
While this formula has quantifier rank 2 and uses only two variables, a simple substitution
of each occurrence of the one thousand SUCC operators in φ′k′ by any nontrivial formula
in fk that describes the successor function will yield a quantifier rank of at least 1000.

The trick is to use the results from the next section: We can easily modify any formula
so that all occurrences of the successor function are of the form x = SUCCi 0 for some
number i. This means that we “only” need a way of identifying the ith element of the
new universe using a bounded quantifier rank. However, assuming for simplicity a width
of 1 and assuming that φuniverse(x) and φ<(x, y) describe how fk restricts and reorders
the universe, respectively, the formula φuniverse(x) ∧ ∃=i−1y(φuniverse(y) ∧ φ<(y, x)) is true
exactly for the ith element of the universe. We will see in the next section that we can
express the ∃=i−1y quantifier using a constant quantifier rank that is independent of i.

3. Syntactic Properties Allowing Color Coding

The color coding technique [3] is a powerful method from parameterized complexity
theory for “discovering small objects” in larger structures. Recall the example from the
introduction: While finding k disjoint triangles in a graph is difficult in general, it is easy
when the graph is colored with k colors and the objective is to find for each color one
triangle having this color. The idea behind color coding is to reduce the (hard) uncolored
version to the (easy) colored version by randomly coloring the graph and then “hoping”
that the coloring assigns a different color to each triangle. Since the triangles are “small
objects,” the probability that they do, indeed, get different colors depends only on k. Even
more importantly, Alon et al. noticed that we can derandomize the coloring procedure
simply by coloring each vertex by its hash value with respect to a simple family of universal
hash functions that only use addition and multiplication [3]. This idea is beautiful and
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works surprisingly well in practice [18], but using the method inside proofs can be tricky:
One needs to “keep the set sizes under control” (they must stay roughly logarithmic in size)
and one needs to algorithmically “identify the small set based just on its random coloring,”
which especially for more complex proofs can lead to rather subtle arguments.

In the present section, we identify syntactic properties of formulas that guarantee that
the color coding technique can be applied. The property is that the colors (the predicates Ci
in the formulas) are not in the scope of a universal quantifier (this restriction is necessary,
as the example of the formula describing 3-colorability shows).

As mentioned already in the introduction, the main “job” of the colors in proofs based
on color coding is typically to ensure that vertices of a graph are different from other
vertices. This leads us to the idea of focusing entirely on the notion of distinctness in the
second half of this section. This time, there will be syntactic properties of existentially
bounded first-order variables that will allow us to apply color coding to them.

3.1. Formulas with Color Predicates

In graph theory, a coloring of a graph can either refer to an arbitrary assignment that
maps each vertex to a color or to such an assignment in which vertices connected by an
edge must get different colors (sometimes called proper colorings). For our purposes,
colorings need not be proper and are thus partitions of the vertex set into color classes.
From the logical point of view, each color class can be represented by a unary predicate. A
k-coloring of a τ-structure A is a structure B over the signature τk-colors = τ ∪ {C1

1 , . . . , C1
k},

where the Ci are fresh unary relation symbols, such thatA is the τ-restriction of B and such
that the sets CB1 to CBk form a partition of the universe |A| of A.

Let us now formulate and prove the first syntactic version of color coding. An example
of a possible formula φ in the below theorem is

∧k
i=1 ∃x∃y∃z(Exy∧ Eyz∧ Exz∧Cix∧Ciy∧

Ciz), for which the theorem tells us that there is a formula φ′ of constant quantifier rank
that is true exactly when there are pairwise disjoint sets Ci that make φ true.

Theorem 2. Let τ be an arithmetic signature and let k be a number. For each first-order τk-colors-
sentence φ in negation normal form in which no Ci is inside a universal scope, there is a τ-sentence
φ′ such that:

1. For all A ∈ STRUC[τ] we have A |= φ′ if and only if there is a k-coloring B of A with
B |= φ.

2. qr(φ′) = qr(φ) + O(1).
3. |bound(φ′)| = |bound(φ)|+ O(1).

(Let us clarify that O(1) represents a global constant that is independent of τ and k.)

Proof. Let τ, k, and φ be given as stated in the theorem. If necessary, we modify φ to
ensure that there is no literal of the form ¬Cixj, by replacing each such literal by the
equivalent

∨
l 6=i Cl xj. After this transformation, the Ci in φ are neither in the scope of

universal quantifiers nor of negations—and this is also true for all subformulas α of φ. We
will now show by structural induction that all these subformulas (and, hence, also φ) have
two semantic properties, which we call the monotonicity property and the small witness
property (with respect to the Ci). Afterwards, we will show that these two properties allow
us to apply the color coding technique.

Establishing the monotonicity and small witness properties. Some notations will be
useful: Given a τ-structure A with universe A and given sets Ai ⊆ A for i ∈ {1, . . . , k},
let us write A |= φ(A1, . . . , Ak) to indicate that B is a model of φ where B is the τk-colors-
structure with universe A in which all symbols from τ are interpreted as in A and in
which the symbol Ci is interpreted as Ai, that is, CBi = Ai. Subformulas γ of φ may have
free variables and suppose that x1 to xm are the free variables in γ and let ai ∈ A for
i ∈ {1, . . . , m}. We write A |= γ(A1, . . . , Ak, a1, . . . , am) to indicate that γ holds in the
just-described structure B when each xi is interpreted as ai.
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Definition 2. Let γ be a τk-colors-formula with free variables x1 to xm. We say that γ has the
monotonicity and the small witness properties with respect to the Ci if for all τ-structures A with
universe A = |A| and all values a1, . . . , am ∈ A the following holds:

1. Monotonicity property: Let A1, . . . , Ak ⊆ A and B1, . . . , Bk ⊆ A be sets with Ai ⊆ Bi
for all i ∈ {1, . . . , k}. Then A |= γ(A1, . . . , Ak, a1, . . . , am) implies A |= γ(B1, . . . , Bk,
a1, . . . , am).

2. Small witness property: If there are sets B1, . . . , Bk ⊆ A such that we haveA |= γ(B1, . . . , Bk,
a1, . . . , am), then there are sets Ai ⊆ Bi whose sizes |Ai| depend only on γ for i ∈ {1, . . . , k},
such that A |= γ(A1, . . . , Ak, a1, . . . , am).

We now show that φ has these two properties. For monotonicity, just note that the Ci
are not in the scope of any negation and, thus, if some Ai make φ true, so will all supersets Bi
of the Ai.

To see that the small witness property holds, we argue by structural induction: If φ is
any formula that does not involve any Ci, then φ is true or false independently of the Bi
and, in particular, if it is true at all, it is also true for Ai = ∅ for i ∈ {1, . . . , k}. If φ is the
atomic formula Cixj, then setting Ai = {aj} and Ai′ = ∅ for i′ 6= i makes the formula true.

If φ = α∧ β, then α and β have the small witness property by the induction hypothesis.
Let B1, . . . , Bk ⊆ A make φ hold in A. Then they also make both α and β hold in A. Let
Aα

1 , . . . , Aα
k ⊆ A with Aα

i ⊆ Bi be the witnesses for α and let Aβ
1 , . . . , Aβ

k ⊆ A be the

witnesses for β. Then by the monotonicity property, Aα
1 ∪ Aβ

1 , . . . , Aα
k ∪ Aβ

k makes both α
and β true, that is

A |= α(Aα
1 ∪ Aβ

1 , . . . , Aα
k ∪ Aβ

k , a1, . . . , am)

and the same holds for β. Note that Aα
i ∪ Aβ

i ⊆ Bi still holds and that they have sizes
depending only on α and β and thereby on φ.

For φ = α ∨ β we can argue in exactly the same way as for the logical and.
The last case for the structural induction is φ = ∃xm(α). Consider B1, . . . , Bk ⊆ A

that make φ true. Then there is a value am ∈ A such that A |= α(B1, . . . , Bk, a1, . . . , am).
Now, since α has the small witness property by the induction hypothesis, we get Ai ⊆ Bi
of size depending on α for which we also have A |= α(A1, . . . , Ak, a1, . . . , am). Then,
by the definition of existential quantifiers, these Ai also witness A |= ∃xmφ(A1, . . . , Ak,
a1, . . . , am−1). (Observe that this is the point where the argument would not work for a
universal quantifier: Here, for each possible value of am we might have a different set
of Ai’s as witnesses and their union would then no longer have small size.)

Applying color coding: our next step in the proof is to use color coding to produce the
partition. First, let us recall the basic lemma on universal hash functions formulated below
in a way equivalent to ([2], p. 347):

Lemma 3. There is an n0 ∈ N such that for all n ≥ n0 and all subsets X ⊆ {0, . . . , n − 1}
there exist a prime p < |X|2 log2 n and a number q < p such that the function hp,q(m) =
(q ·m mod p) mod |X|2 is injective on X.

As has already been observed by Chen et al. [4], if we set k = |X|we can easily express
the computation underlying hp,q : {0, . . . , n− 1} → {0, . . . , k2 − 1} using a fixed FO[+,×]-
formula ρ(k, p, q, x, y). That is, if we encode the numbers k, p, q, x, y ∈ {0, . . . , n− 1} as
corresponding elements of the universe with respect to the ordering of the universe, then
ρ(k, p, q, x, y) holds if and only if hp,q(x) = y. Note that the p and q from the lemma could
exceed n for very large X (they can reach up to n2 log2 n ≤ n3), but, first, this situation will
not arise in the following and, second, this could be fixed by using three variables to encode
p and three variables to encode q. Trivially, ρ(k, p, q, x, y) has some constant quantifier rank
(the formula explicitly constructed by Chen et al. has qr(ρ) = 9, assuming k2 < n).
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Next, we will need the basic idea or “trick” of Alon et al.’s [3] color coding technique:
While for appropriate p and q the function hp,q will “just” be injective on {0, . . . , k2 − 1},
we actually want a function that maps each element x ∈ X to a specific element (“the
color of x”) of {1, . . . , k}. Fortunately, this is easy to achieve by concatenating hp,q with an
appropriate function g : {0, . . . , k2 − 1} → {1, . . . , k}.

In detail, to construct φ′ from the claim of the theorem, we construct a family of
formulas φg(p, q) where p and q are new free variables and the formulas are indexed by all
possible functions g : {0, . . . , k2 − 1} → {1, . . . , k}: In φ, replace every occurrence of Cixj

by the following formula π
g
i (p, q, xj):∨

y∈{0,...,k2−1},g(y)=i ∃k̂∃ŷ
(

SUCCk(0) = k̂ ∧ SUCCy(0) = ŷ ∧ ρ(k̂, p, q, xj, ŷ)
)

where k̂ and ŷ are fresh variables that we bind to the numbers k and y (if the universe is large
enough). Note that the formula Cixj has xj as a free variable, while π

g
i (p, q, xj) additionally

has p and q as free variables. As an example, for the formula φ = ∃x(C2x ∨ ∃yC5y)
we would have φg = ∃x(πg

2 (p, q, x) ∨ ∃yπ
g
5 (p, q, y)). Clearly, each φg has the property

qr(φg) = qr(φ) + O(1).
The desired formula φ′ is (almost) simply

∨
g:{0,...,k2−1}→{1,...,k} ∃p∃q(φg(p, q)). The

“almost” is due to the fact that this formula works only for structures with a sufficiently
large universe—but by Lemma 1 it suffices to consider only this case. Let us prove that for
every σ-structure A with universe A = {0, . . . , n− 1} and n ≥ c for some to-be-specified
constant c, the following two statements are equivalent:

1. There is a k-coloring B of A with B |= φ.
2. A |= ∨

g:{0,...,k2−1}→{1,...,k} ∃p∃q(φg(p, q)).

Let us start with the implication of item 2 to 1. Suppose there is a function g : {0, . . . ,
k2 − 1} → {1, . . . , k} and elements p, q ∈ {0, . . . , n− 1} such that A |= φg(p, q). We define
a partition A1 ∪̇ · · · ∪̇ Ak = A by Ai = {x ∈ A | g(hp,q(x)) = i}. In other words, Ai
contains all elements of A that are first hashed to an element of {0, . . . , k2 − 1} that is then
mapped to i by the function g. Trivially, the Ai form a partition of the universe A.

Assuming that the universe size is sufficiently large, namely for k2 log2 n < n, inside
φg all uses of ρ(k̂, p, q, x, ŷ) will have the property that A |= ρ(k̂, p, q, x, ŷ) if and only if
hp,q(x) = ŷ. Clearly, there is a constant c depending only on k such that for all n > c we
have k2 log2 n < n.

With the property established, we now see that π
g
i (p, g, xj) holds inside the formula

φg if and only if the interpretation of xj is an element of Ai. This means that if we interpret
each Ci by Ai, then we get A |= φ(A1, . . . , Ak) and the Ai form a partition of the universe.
In other words, we get item 1.

Now assume that item 1 holds, that is, there is a partition B1 ∪̇ · · · ∪̇ Bk = A with
A |= φ(B1, . . . , Bk). We must show that there are a g : {0, . . . , k2 − 1} → {1, . . . , k} and
p, q ∈ A such that A |= φg(p, q).

At this point, we use the small witness property that we established earlier for the
partition. By this property there are pairwise disjoint sets Ai ⊆ A such that, first, |Ai|
depends only on φ and, second, A |= φ(A1, . . . , Ak). Let X =

⋃k
i=1 Ai. Then |X| depends

only on φ and let sφ be a φ-dependent upper bound on this size. By the universal hashing
lemma (Lemma 3), there are now p and q such that hp,q : {0, . . . , n− 1} → {0, . . . , s2

φ − 1}
is injective on X. Then, we can set g : {0, . . . , s2

φ − 1} → {1, . . . , k} to g(v) = i if there is an
x ∈ Ai with hp,q(x) = v and setting g(v) arbitrarily otherwise. Note that this is, indeed, a
valid definition of g since hp,q is injective on X.

With these definitions, we now define the following sets D1 to Dk: Let Di = {x ∈
A | g(hp,q(x̂)) = i} where x̂ is the index of x in A with respect to the ordering (that is,
x̂ = |{y ∈ A | y <A x}| and for the special case that A = {0, . . . , n − 1} and that <A

is the natural ordering, x̂ = x). Observe that Di ⊇ Ai holds for all Di and that the Di
form a partition of the universe A. By the monotonicity property, A |= φ(A1, . . . , Ak)
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implies A |= φ(D1, . . . , Dk). However, by definition of the Di and of the formulas π
g
i , for a

sufficiently large universe size n (namely s2
φ log2 n < n), we now also have A |= φg(p, q),

which in turn implies A |= ∨
g ∃p∃qφg.

This concludes the proof of Theorem 2.

In the theorem we assumed that φ is a sentence (a formula without free variables)
to keep the notation simple, but both the theorem and later theorems still hold when
φ(x1, . . . , xn) has free variables x1 to xn. Then there is a corresponding φ′(x1, . . . , xn)
such that first item becomes that for all A ∈ STRUC[τ] and all a1, . . . , an ∈ |A| we have
A |= φ′(a1, . . . , an) if and only if there is a k-coloring B of A with B |= φ(a1, . . . , an). Note
that the syntactic transformations in the theorem do not add dependencies of universal
quantifiers on the free variables.

Mostly for simplicity, we have opted to only use first-order logic throughout this
paper and this will be exactly the kind of logic we need in the rest of this paper. However,
it is arguably more natural to formulate the above Theorem 2 in terms of second-order
logic since “guessing a coloring” is clearly a case of a special existential second-order
quantification. The below corollary is a rephrasing of Theorem 2 in terms of second-
order logic. In the corollary, we use the notation ∃(C1 ∪̇ · · · ∪̇ Ck)(φ) as a shorthand for
∃C1 · · · ∃Ck(φ ∧ ∀x

∧
i 6=j(¬Cix ∧ ¬Cjx)), that is, for the “existential guessing of a coloring

where each element of the universe gets at most one color”.

Corollary 1. Let τ be an arithmetic signature and let k be a number. For each first-order τk-colors-
sentence φ in negation normal form in which no Ci is inside a universal scope, there is a first-order
τ-sentence φ′ such that:

1. ∃(C1 ∪̇ · · · ∪̇ Ck)(φ) ≡ φ′ (on finite structures).
2. qr(φ′) = qr(φ) + O(1).
3. |bound(φ′)| = |bound(φ)|+ O(1).

3.2. Formulas with Weak Quantifiers

If one has a closer look at proofs based on color coding, one cannot help but notice
that the colors are almost exclusively used to ensure that certain vertices in a structure are
distinct from certain other vertices: Recall the introductory example

∧k
j=1 ∃x∃y∃z(Exy ∧

Eyz ∧ Exz ∧ C3j−2x ∧ C3j−1y ∧ C3jz), which describes the triangle packing problem when
we require that the Ci form a partition of the universe. Since the Ci are only used to ensure
that the many different x, y, and z are different, we already rewrote the formula in (4) as
∃x1 · · · ∃x3k

∧
i 6=j xi 6= xj ∧

∧k
j=1 ∃x∃y∃z(Exy ∧ Eyz ∧ Exz ∧ x3j−2 = x ∧ x3j−1 = y ∧ x3j =

z). While this rewriting gets rid of the colors and moves us back into the familiar territory
of simple first-order formulas, the quantifier rank and the number of variables in the
formula have now “exploded” (from the constant 3 to the parameter-dependent value
3k + 3)—which is exactly what we need to avoid in order to apply Fact 1 or Theorem 1.

We now define a syntactic property that the xi have that allows us to remove them
from the formula and, thereby, to arrive at a family of formulas of constant quantifier rank.
For a (sub)formula α of the form ∀d(φ) or ∃d(φ), we say that d depends on all free variables
in φ (at the position of α in a larger formula). For instance, in Exy ∧ ∀b(Exb ∧ ∃z(Eyz)) ∧
∃b(Exx), the variable b depends on x and y at its first binding (∀b) and on x at the second
binding (∃b).

Definition 3. Let φ be in negation normal form. We call the leading existential quantifier of ∃x(φ)
strong if

1. some universal binding inside φ depends on x or
2. there is a subformula α ∧ β of φ such that both α and β contain x in literals that are not of the

form x 6= y for some variable y.

Dually, we call the universal leading quantifier of ∀x(φ) strong if

1. some existential binding inside φ depends on x or
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2. there is a subformula α∨ β such that both α and β contain x in literals that are not of the form
x = y for some variable y.

A quantifier leading a (sub)formula that is not strong is weak. The strong quantifier rank
strong-qr(ψ) is the quantifier rank of ψ, where weak quantifiers are ignored; strong-bound(ψ)
contains all variables of ψ that are bound by non-weak quantifiers.

We place a dot on the variables bound by weak quantifiers to make them easier to spot.
For example, in φ = ∃x∃y∃ż(Rxxżż ∧ x 6= y ∧ y 6= ż ∧ Px ∧ ∀ẇ Eẇyy) the quantifier ∃ż is
weak, but neither are ∃x (since x is used in two literals joined by a conjunction, namely
in Rxxżż and Px) nor ∃y (since ẇ depends on y in ∀ẇ Eẇyy). We have qr(φ) = 4, but
strong-qr(φ) = 2, and bound(φ) = {x, y, ż, ẇ}, but strong-bound(φ) = {x, y}.

Admittedly, the definition of weakness is a bit technical, but note that there is a rather
simple sufficient condition for an existentially-bound variable x to be weak: If it is not used
in universal bindings and is used in only one literal that is not an inequality, then x is weak.
This condition almost always suffices for identifying the weak variables, although there
are of course exceptions like ∃ẋ(Pẋ ∨Qẋ).

Our objective is now to simultaneously remove all weak quantifiers from a formula
without increasing the strong quantifier rank by more than a constant factor or the number
of strong variables by more than a constant. We first prove this only for existential weak
quantifiers in the below theorem (by considering only formulas that do not have weak
universal quantifiers). Once we have achieved this, a comparatively simple syntactic
duality argument allows us to extend the claim to all formulas in Theorem 4.

Theorem 3. Let τ be an arithmetic signature. Then for every τ-formula φ in negation normal form
without weak universal quantifiers there is a τ-formula φ′ such that

1. φ′ ≡ φ (on finite structures),
2. qr(φ′) = 3 · strong-qr(φ) + arity(τ) + O(1), and
3. |bound(φ′)| = |strong-bound(φ)|+ arity(τ) + O(1).

Before giving the detailed proof, we briefly sketch the overall idea: Using simple
syntactic transformations, we can ensure that all weak quantifiers follow in blocks after
universal quantifiers (and, by assumption, all universal quantifiers are strong). We can also
ensure that inequality literals directly follow the blocks of weak quantifiers and are joined
by conjunctions. If the inequality literals following a block happen to require that all weak
variables from the block are different (that is, if for all pairs ẋi and ẋj of different weak
variables there is an inequality ẋi 6= ẋj), then we can remove the weak quantifiers ∃ẋi and
at the (typical single) place where ẋi is used, we use a color Ci instead. For instance, if ẋi is
used in the literal ẋi = y, we replace the literal by Ciy. If ẋi is used for instance in ¬Eẋiy, we
replace this by ∃x(Cix ∧¬Exy). In this way, for each block we get an equivalent formula to
which we can apply Theorem 2. A more complicated situation arises when the inequality
literals in a block “do not require complete distinctness,” but this case can also be handled
by considering all possible ways in which the inequalities can be satisfied in parallel.
In result, all weak quantifiers get removed and for each block a constant number of new
quantifiers are introduced. Since each block follows a different universal quantifier, the new
total quantifier rank is at most the strong quantifier rank times a constant factor; and the
new number of variables is only a constant above the number of original strong variables.

Proof of Theorem 3. Let φ be given. We first apply a number of simple syntactic transfor-
mations to move the weak quantifiers directly behind universal quantifiers and to move
inequality literals directly behind blocks of weak quantifiers. Then we show how sets
of inequalities can be “completed” if necessary. Finally, we inductively transform the
formula in such a way that Theorem 2 can be applied repeatedly. As a running example
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of how the different syntactic transformations work, we use the (semantically not very
sensible) formula

φ = ∃a
(
∃ẋ(Eaẋ ∧ ∃ẏ(ẏ 6= ẋ)) ∧ ∀c∃ẋ∃ẏ(Eẋẏ ∨ ∃z(ẋ 6= ẏ ∧ Pz ∧Qcaz))

)
. (6)

In this formula, the (only) universally quantified variable, c, is strong since the existen-
tial binding ∃z depends on it via Qcaz. The variable a is strong since ∀c depends in it, once
more via Qcaz. Finally, z is strong since it is used is two parts of a conjunction: Pz ∧Qcaz.

Preliminaries: It will be useful to require that all weak variables are different. Thus, as
long as necessary, when a variable is bound by a weak quantifier and once more by another
quantifier, replace the variable used by the weak quantifier by a fresh variable. Note that
this may increase the number of distinct (weak) variables in the formula, but we will get
rid of all of them later on anyway. From now on, we may assume that the weak variables
are all distinct from one another and also from all other variables.

It will also be useful to assume that φ starts with a universal quantifier. If this is not the
case, replace φ by the equivalent formula ∀v(φ) where v is a fresh variable. This increases
the quantifier rank by at most 1.

Finally, it will also be useful to assume that the formula has been “flattened” as
in the proof Theorem 1 (one can loosely think of this as bringing the formula “locally
into disjunctive normal form”): We use the distributive laws of propositional logic to
repeatedly replace subformulas of the form (α∨ β)∧ γ by (α∧ γ)∨ (β∧ γ) and α∧ (β∨ γ)
by (α ∧ β) ∨ (α ∧ γ). Note that this transformation does not change which variables
are weak.

For our running example, applying the described preprocessing yields:

φ ≡ ∀v∃a
(
∃ẋ1(Eaẋ1 ∧ ∃ẋ2(ẋ2 6= ẋ1)) ∧ ∀c∃ẋ3∃ẋ4(Eẋ3 ẋ4 ∨ ∃z(ẋ3 6= ẋ4 ∧ Pz ∧Qcaz))

)
.

Syntactic transformations I: blocks of weak quantifiers. The first interesting trans-
formation is the following: We wish to move weak quantifiers “as far up the syntax tree
as possible.” To achieve this, we apply the following equivalences as long as possible by
always replacing the left-hand side (and also commutatively equivalent formulas) by the
right-hand side:

∃ẋ(α) ∧ β ≡ ∃ẋ(α ∧ β),

∃ẋ(α) ∨ β ≡ ∃ẋ(α ∨ β),

∃y∃ẋ(α) ≡ ∃ẋ∃y(α).

Note that β does not contain ẋ since we made all weak variables distinct and, of course,
by ∃y we mean a strong quantifier.

Once the transformations have been applied exhaustively, all weak quantifiers will
be directly preceded in φ by either a universal quantifier or another weak quantifier. This
means that all weak quantifiers are now arranged in blocks inside φ, each block being
preceded by a universal quantifier.

φ ≡ ∀v∃ẋ1∃ẋ2∃a
(
Eaẋ1 ∧ ẋ2 6= ẋ1 ∧ ∀c∃ẋ3∃ẋ4(Eẋ3 ẋ4 ∨ ∃z(ẋ3 6= ẋ4 ∧ Pz ∧Qcaz))

)
Syntactic transformations II: weak and strong literals. In order to apply color coding

later on, it will be useful to have only three kinds of literals in φ:

1. Strong literals are literals that do not contain any weak variables.
2. Weak equalities are literals of the form ẋ = y involving exactly one strong variable

that is existentially bound inside the weak variable’s scope:

∃ẋ(. . . ∃y(. . . ẋ = y . . . ) . . . ).

3. Weak inequalities are literals of the form ẋ 6= ẏ for two weak variables.
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Let us call all other kinds of literals bad. This includes literals like Eẋẋ or Ezẏ that
contain a relation symbol and some weak variables, but also inequalities ẋ 6= y involving a
weak and a strong variable, equalities ẋ = ẏ involving two weak variables, or an equality
literal like the one in ∀y∃ẋ(ẋ = y). Finally, literals involving the successor function and
weak variables are also bad.

In order to get rid of the bad literals, we will replace them by equivalent formulas that
do not contain any bad literals. The idea is that we bind the variable or term that we wish
to get rid of using a new existential quantifier. In order to avoid introducing too many new
variables, for all of the following transformations we use the set of fresh variables v1, v2,
and so on, where we may need more than one of these variables per literal, but will need
no more than O(arity(τ)) (recall that arity(τ) is the maximum arity of relation symbols
in τ).

Let λ be a bad literal, that is, let it contain a weak variable ẋ, but neither be a weak
equality nor a weak inequality. Replace λ by ∃vi(vi = ẋ ∧ λ[ẋ ↪→ vi]). Here, λ[t1 ↪→ t2] is
our notation for the substitution of the term t1 by t2 in λ. The number i is chosen minimally
so that λ does not already contain vi. Since this transformation reduces the number of weak
variables in λ and does not introduce a bad literal (vi = ẋ is a weak equality and hence
“good”), sooner or later we will have gotten rid of all bad literals. For each literal we use at
most arity(τ) new variables from the vi (more precisely, at most max{arity(τ), 2} in case τ
contains only unary or no relation symbols and λ is something like SUCC(ẋ) = SUCC(ẏ),
causing two replacements). Overall, we get that φ is equivalent to a formula without any
bad literals in which we use at most arity(τ) + 2 = arity(τ) + O(1) additional variables
and whose quantifier rank is larger than that of φ by at most arity(τ) +O(1). Note that the
transformation ensures that weak variables stay weak. Applied to our example formula,
we get:

∀v∃ẋ1∃ẋ2∃a
(
∃v1(v1 = ẋ1 ∧ Eav1) ∧ ẋ2 6= ẋ1 ∧

∀c∃ẋ3∃ẋ4(∃v1(v1 = ẋ3 ∧ ∃v2(v2 = ẋ4 ∧ Ev1v2)) ∨ ∃z(ẋ3 6= ẋ4 ∧ Pz ∧Qcaz))
)

Syntactic transformations III: accumulating weak inequalities. We now wish to move
all weak inequalities to the “vicinity” of the corresponding block of weak quantifiers. More
precisely, just as we did earlier, we apply the following equivalences (interpreted once
more as rules that are applied from left to right):

(ẋ 6= ẏ ∨ α) ∧ β ≡ (ẋ 6= ẏ ∧ β) ∨ (α ∧ β), (7)

∃x(α ∨ β) ≡ ∃x(α) ∨ ∃x(β), (8)

∃z(ẋ 6= ẏ ∧ α) ≡ ẋ 6= ẏ ∧ ∃z(α). (9)

Note that these rules do not change which variables are weak. When these rules can
no longer be applied, the weak inequality are “next” to their quantifier block, that is, each
subformula starting with weak quantifiers has the form

∃ẋi1 · · · ∃ẋik
∨

i
((∧

j λ
j
i
)
∧ αi

)
where the αi contain no weak inequalities while all λ

j
i are weak inequalities.

For our example formula, we get:

φ ≡ ∀v∃ẋ1∃ẋ2
(
ẋ2 6= ẋ1 ∧ ∃a∃v1(v1 = ẋ1 ∧ Eav1) ∧
∀c
(
∃ẋ3∃ẋ4(∃v1(v1 = ẋ3 ∧ ∃v2(v2 = ẋ4 ∧ Ev1v2))) ∨

(ẋ3 6= ẋ4 ∧ ∃z(Pz ∧Qcaz))
))

.
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Finally, we now swap each block of weak quantifiers with the following disjunction,
that is, we apply the following equivalence from left to right:

∃ẋi1 · · · ∃ẋik
∨

i ψi ≡
∨

i ∃ẋi1 · · · ∃ẋik ψi.

If necessary, we rename weak variables to ensure once more that they are unique. For
our example, the different transformations yield:

φ ≡ ∀v∃ẋ1∃ẋ2
(
ẋ2 6= ẋ1 ∧ ∃a∃v1(v1 = ẋ1 ∧ Eav1) ∧
∀c
(
∃ẋ3∃ẋ4(∃v1(v1 = ẋ3 ∧ ∃v2(v2 = ẋ4 ∧ Ev1v2))) ∨
∃ẋ5∃ẋ6(ẋ5 6= ẋ6 ∧ ∃z(Pz ∧Qcaz))

))
.

Let us spell out the different ψi, λ
j
i , and αi contained in the above formula: First, there

is one block of weak variables (∃ẋ1∃ẋ2) following ∀v at the beginning. There is only a
single formula ψ1 for this block, which equals (

∧1
j=1 λ

j
1) ∧ α1 with λ1

1 = (ẋ2 6= ẋ1) and
α1 = ∃a∃v1(v1 = ẋ1 ∧ Eav1) ∧ ∀c(. . . ). Second, there are two blocks of weak variables
(∃ẋ3∃ẋ4 and ∃ẋ5∃ẋ6) following ∀c, which are followed by (new) formulas ψ1 and ψ2. The
first is of the form ψ1 = (

∧0
j=1 λ

j
1) ∧ α1 and the second of the form ψ2 = (

∧1
j=1 λ

j
2) ∧ α2.

There are no λ
j
1 and we have α1 = ∃v1(v1 = ẋ3 ∧ ∃v2(v2 = ẋ4 ∧ Ev1v2)). We have

λ1
2 = (ẋ5 6= ẋ6) and we have α2 = ∃z(Pz ∧Qcaz).

We make the following observation at this point: Inside each ψi, each of the variables
ẋi1 to ẋik is used at most once outside of weak inequalities. The reason for this is that
rules (7) and (8) ensure that there are no disjunctions inside the ψi that involve a weak
variable ẋ. Thus, the requirement “in any subformula of ψi of the form α ∧ β only α or
β—but not both—may use ẋ in a literal that is not a weak inequality” from the definition of
weak variables just boils down to “ẋ may only be used once in ψi in a literal that is not a
weak inequality.” Since weak variables cannot be present in strong literals, this means, in
particular, that ẋ is now only used in (at most) a single weak equality ẋ = y and otherwise
only in weak inequalities.

Syntactic transformations IV: completing weak inequalities. The last step before we
can apply the color coding method is to “complete” the conjunctions of weak inequalities.
After all the previous transformations have been applied, each block of weak quantifiers
has now the form ∃ẋ1 · · · ∃ẋk

(∧
i λi ∧ α

)
where the λi are all weak inequalities (between

some or all pairs of ẋ1 to ẋk) and α contains no weak inequalities involving the ẋi (but may
contain one weak equality for each ẋi). Of course, the weak variables need not be ẋ1 to ẋk,
but let us assume this to keep to notation simple.

The formula
∧

i λi expresses that some of the variables ẋi must be different. If the
formula encompasses all possible weak inequalities between distinct ẋi and ẋj, then the
formula would require that all ẋi must be distinct—exactly the situation in which color
coding can be applied. However, some weak inequalities may be “missing” such as in the
formula ẋ1 6= ẋ2 ∧ ẋ2 6= ẋ3 ∧ ẋ1 6= ẋ3 ∧ ẋ3 6= ẋ4: This formula requires that ẋ1 to ẋ3 must
be distinct and that ẋ4 must be different from ẋ3—but it would be allowed that ẋ4 equals
ẋ1 or ẋ2. Indeed, it might be the case that the only way to make α true is to make ẋ1 equal
to ẋ4. This leads to a problem in the context of color coding: We want to color ẋ1, ẋ2, and
ẋ3 differently, using, say, red, green, and blue. In order to ensure ẋ3 6= ẋ4, we must give ẋ4
a color different from blue. However, it would be wrong to color it red or green or using a
new color like yellow since each would rule out ẋ4 being equal or different from either ẋ1
or ẋ2—and each possibility must be considered to ensure that we miss no assignment that
makes α true.

The trick at this point is to reduce the problem of missing weak inequalities to the
situation where all weak inequalities are present by using a large disjunction over all
possible ways to unify weak variables without violating the weak inequalities.

In detail, let us call a partition P1 ∪̇ · · · ∪̇ Pl of the set {ẋ1, . . . , ẋk} allowed by the λi
if the following holds: For each Pj and any two different ẋp, ẋq ∈ Pj none of the λi is the
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inequality ẋp 6= ẋq. In other words, the λi do not forbid that the elements of any Pj are
identical. Clearly, the partition with Pj = {ẋj} is always allowed by any λi, but in the
earlier example, the partition P1 = {ẋ1, ẋ4}, P2 = {ẋ2}, P3 = {ẋ3} would be allowed, while
P1 = {ẋ1}, P2 = {ẋ2}, P3 = {ẋ3, ẋ4} would not be.

We introduce the following notation: For a partition P1 ∪̇ · · · ∪̇ Pl = {ẋ1, . . . , ẋk} we
will write distinct(P1, . . . , Pl) for

∧
1≤i<j≤l,ẋp∈Pi ,ẋq∈Pj

ẋp 6= ẋq. We claim the following:

Claim 1. For any weak inequalities λi we have∧
i λi ≡

∨
P1 ∪̇ · · · ∪̇ Pl is allowed by the λi

distinct(P1, . . . , Pl).

Proof. For the implication from left to right, assume that A |= ∧
i λi(a1, . . . , ak) for some

(not necessarily distinct) a1, . . . , ak ∈ |A|. The elements induce a natural partition P1 ∪̇
· · · ∪̇ Pl = {ẋ1, . . . , ẋk} where two variables ẋp and ẋq are in the same set Pj if and only
if ap = aq. Then, clearly, for all i and j with 1 ≤ i < j ≤ l and any ẋp ∈ Pi and ẋq ∈ Pj
we have ai 6= aj. Thus, all inequalities in distinct(P1, . . . , Pl) are satisfied and, hence, the
right-hand side holds.

For the other direction, suppose that A is a model of the right hand side for some a1
to ak. Then there must be a partition P1 ∪̇ · · · ∪̇ Pl that is allowed by the λi such that A
is also a model of distinct(P1, . . . , Pl). Furthermore, each λi is actually present in this last
formula: If ẋp 6= ẋq is one of the λi, then by the very definition of “P1 ∪̇ · · · ∪̇ Pl is allowed
for the λi” we must have that ẋp and ẋq lie in different Pi and Pj—which, in turn, implies
that ẋp 6= ẋq is present in distinct(P1, . . . , Pl).

Applied to the example ẋ1 6= ẋ2 ∧ ẋ2 6= ẋ3 ∧ ẋ1 6= ẋ3 ∧ ẋ3 6= ẋ4 from above, the
claim states the following: Since there are three partitions that are allowed by these literals
(namely the one in which each variable gets its own equivalence class, the one where ẋ1
and ẋ4 are put into one class, and the one where ẋ2 and ẋ4 are put into one class) we have:

ẋ1 6= ẋ2 ∧ ẋ2 6= ẋ3 ∧ ẋ1 6= ẋ3 ∧ ẋ3 6= ẋ4

≡ distinct({ẋ1}, {ẋ2}, {ẋ3}, {ẋ4})
∨ distinct({ẋ1, ẋ4}, {ẋ2}, {ẋ3})
∨ distinct({ẋ1}, {ẋ2, ẋ4}, {ẋ3}).

The claim has the following corollary:

Corollary 2. For any weak inequalities λi involving only variables from {ẋ1, . . . , ẋk} we have
∃ẋ1 · · · ∃ẋk

(∧
i λi ∧ α) ≡ ∨P1 ∪̇ · · · ∪̇ Pl is allowed by the λi

∃ẋ1 · · · ∃ẋk(distinct(P1, . . . , Pl) ∧ α).

As in the previous transformations we now apply the equivalence from the corollary
from left to right. If we create copies of α during this process, we rename the weak variables
in these copies to ensure, once more, that each weak variable is unique. In our example
formula φ, there is only one place where the transformation changes anything: The middle
weak quantifier block (the ∃ẋ3∃ẋ4 block). For the first and the last block, the literals ẋ1 6= ẋ2
and ẋ5 6= ẋ6, respectively, already rule out all partitions except for the trivial one. For the
middle block, however, there are no weak inequalities at all and, hence, there are now two
allowed partitions: First, P1 = {ẋ3}, P2 = {ẋ4}, but also P1 = {ẋ3, ẋ4}. This means that
we get a copy of the middle block where ẋ3 and ẋ4 are required to be different—and we
renumber them to ẋ7 and ẋ8:

φ ≡ ∀v∃ẋ1∃ẋ2
(
ẋ2 6= ẋ1 ∧ ∃a∃v1(v1 = ẋ1 ∧ Eav1) ∧
∀c
(
∃ẋ3∃ẋ4( ∃v1(v1 = ẋ3 ∧ ∃v2(v2 = ẋ4 ∧ Ev1v2))) ∨
∃ẋ7∃ẋ8(ẋ7 6= ẋ8 ∧ ∃v1(v1 = ẋ7 ∧ ∃v2(v2 = ẋ8 ∧ Ev1v2))) ∨
∃ẋ5∃ẋ6(ẋ5 6= ẋ6 ∧ ∃z(Pz ∧Qcaz))

))
.
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Of course, for our particular example, the introduction of ẋ7 and ẋ8 is superfluous
insofar as it is not necessary to introduce the special case “force ẋ3 and ẋ4 to be different”
in addition to the already present case “do not care whether ẋ3 and ẋ4 are different or not.”
It is only with more complex weak inequalities like ẋ1 6= ẋ2 ∧ ẋ2 6= ẋ3 ∧ ẋ1 6= ẋ3 ∧ ẋ3 6= ẋ4
that the syntactic transformation becomes really necessary.

Applying color coding: we are now ready to apply the color coding technique; more
precisely, to repeatedly apply Theorem 2 to the formula φ. Before we do so, let us summarize
the structure of φ:

1. All weak quantifiers come in blocks, and each such block either directly follows a
universal quantifier or follows a disjunction after a universal quantifier. In particular,
on any root-to-leaf path in the syntax tree of φ between any two blocks of weak
quantifiers there is at least one universal quantifier.

2. All blocks of weak quantifiers have the form

∃ẋi1 · · · ∃ẋik
(
distinct(P1, . . . , Pl) ∧ α

)
(10)

for some partition P1 ∪̇ · · · ∪̇ Pl = {xi1 , . . . , xik} and for some α in which the only
literals that contain any ẋij are of the form ẋij = y for a strong variable y that is bound
by an existential quantifier inside α. Furthermore, none of these weak equality literals
is in the scope of a universal quantifier inside α. (Of course, all variables in φ are in
the scope of a universal quantifier since we added one at the start, but the point is
that none of the ẋi is in the scope of a universal quantifier that is inside α.)

In φ there may be several blocks of weak quantifiers, but at least one of them (let us
call it β) must have the form (10) where α contains no weak variables other than ẋi1 to ẋik .
(For instance, in our example formula, this is the case for the blocks starting with ∃ẋ3∃ẋ4,
for ∃ẋ7∃ẋ8, and for ∃ẋ5∃ẋ6, but not for ∃ẋ1∃ẋ2 since, here, the corresponding α contains all
of the rest of the formula.) In our example, we could choose

β = ∃ẋ7∃ẋ8(ẋ7 6= ẋ8 ∧ ∃v1(v1 = ẋ7 ∧ ∃v2(v2 = ẋ8 ∧ Ev1v2)))

and would then have

α = ∃v1(v1 = ẋ7 ∧ ∃v2(v2 = ẋ8 ∧ Ev1v2)).

We build a new formula α′ from α as follows: We replace each occurrence of a weak
equality ẋi = y in α for some weak variable ẋi ∈ Pj and some strong variable y by the
formula Cjy. In our example, where P1 = {ẋ7} and P2 = {ẋ8} we would get

α′ = ∃v1(C1v1 ∧ ∃v2(C2v2 ∧ Ev1v2)).

An important observation at this point is that α′ contains no weak variables any longer,
while no additional variables have been added. In particular, the quantifier rank of α′

equals the strong quantifier rank of α and the number of variables in α′ equals the number
of strong variables in α.

Note that the literals Cjy and also ẋi = y are positive since the formulas are in negation
normal form. Hence, they have the following monotonicity property: If some structure
together with some assignment to the free variables is a model of α or α′, but a literal ẋi = y
or Cjy is false, the structure will still be a model if we replace the literal by a tautology.

For simplicity, in the following, we assume that ẋi1 to ẋik are just ẋ1 to ẋk. Additionally,
for simplicity we assume that β contains no free variables when, in fact, it can. However,
these variables cannot be any of the variables y for which we make changes and, thus,
it keeps the notation simpler to ignore the additional free variables here. The following
statement simply holds for all assignments to them:

Claim 2. Let P1 ∪̇ · · · ∪̇ Pl = {x1, . . . , xk}. Then for each structureA, the following are equivalent:
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1. A |= ∃ẋ1 · · · ∃ẋk
(
distinct(P1, . . . , Pl) ∧ α

)
.

2. There are elements a1, . . . , ak ∈ |A| withA |= α(a1, . . . , ak) and such that ap 6= aq whenever
ẋp ∈ Pi, ẋq ∈ Pj, and i 6= j.

3. There is an l-coloring B of A such that B |= α′.

Proof. For the proof of the claim, it will be useful to apply some syntactic transformations to
α and α′. Just like the many transformations we encountered earlier, these transformations
yield equivalent formulas and, thus, it suffices to prove the claim for them (since the claim
is about the models of α and α′). However, these transformations are needed only to prove
the claim, they are not part of the “chain of transformations” that is applied to the original
formula (they increase the number of strong variables far too much).

In α there will be some occurrences of literals of the form ẋi = y. For each such
occurrence, there will be exactly one subformula in α of the form ∃y(γ) where γ contains
ẋi = y. We now apply two syntactic transformations: First, we replace y in ∃y(γ) by a fresh
new variable yi (that is, we replace all free occurrences of y inside γ by yi and we replace the
leading ∃y by ∃yi). Second, we “move all ∃yi to the front” by simply deleting all occurrences
of ∃yi from α, resulting in a formula δ, and then adding the block ∃y1 · · · ∃yk before δ. As
an example, if we apply these transformations to α = ∃v1(ẋ7 = v1 ∧∃v2(ẋ8 = v2 ∧ Ev1v2)),
the first transformation yields

∃y7(ẋ7 = y7 ∧ ∃y8(ẋ8 = y8 ∧ Ey7y8))

and the second one yield the new

α = ∃y1 · · · ∃y8(ẋ7 = y7 ∧ ẋ8 = y8 ∧ Ey7y8).

In α′, we apply exactly the same transformations, only now the literals we look for are
not ẋi = y, but Cjy. We still apply the same renaming of y (namely to yi and not to yj) as in
α and apply the same movement of the quantifiers. This results in a new formula α′ of the
form ∃y1 · · · ∃yk(δ

′). For α′ = ∃v1(C1v1 ∧ ∃v2(C2v2 ∧ Ev1v2)) we get the new

α′ = ∃y1 · · · ∃y8(C1y7 ∧ C2y8 ∧ Ey7y8)

and δ′ is now the inner part without the quantifiers.
Let us now prove the claim. The first two items are trivially equivalent by the definition

of distinct(P1, . . . , Pl).
The second statement implies the third: To show this, for j ∈ {1, . . . , l} we first set

CBj = {ai | ẋi ∈ Pj} and then add |A| \ {a1, . . . , ak} to, say, CB1 in order to create a correct
partition. This setting clearly ensures that whenever ẋi = y holds in α, we also have Cjy
holding in α′. Since α′ differs from α only on the literals of the form ẋi = y (which got
replaced by Cjy), since we just saw that when ẋi = y holds in α, the replacements Cjy
holds in α′, and since α has the monotonicity property (by which it does matter when more
literals of the form Ciy hold in α′ than did in α), we get the third statement.

The third statement implies the second: Let an l-coloring B of A be given with
B |= α′. Since α′ = ∃y1 · · · ∃yk(δ

′), there must now be elements b1, . . . , bk ∈ |A| such
that B |= δ′(b1, . . . , bk). We define new elements ai ∈ |A| as follows: If bi ∈ CBi , let
ai = bi. Otherwise, let ai be an arbitrary element of CBi . We show in the following that
the ai constructed in this way can be used in the second statement, that is, we claim that
A |= α(a1, . . . , ak) and the ai have the distinctness property from the claim.

First, recall that α is of the form ∃y1 · · · ∃yk(δ) (because of the syntactic transformations
we applied for the purposes of the proof of this claim) and δ contains literals of the form
ẋi = yi, where the ẋi are the free variables for which the values ai are now plugged in. We
claim that A |= δ(a1, . . . , ak, b1, . . . , bk), that is, we claim that if we plug in a1 to ak for the
free variables ẋ1 to ẋk in δ and we plug in b1 to bk for the (additional) free variables y1 to yk
in δ, then δ holds in A. To see this, recall that B |= δ′(b1, . . . , bk) holds and δ′ is identical to
δ except that ẋi = yi got replaced by Cjyi. In particular, by construction of the ai, whenever
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Cjyi holds in B with yi being set to bi (that is, whenever bi ∈ CBj ), we clearly also have that
ẋi = yi holds inAwith ẋi being set to ai and yi being set to bi (since we let ai = bi whenever
bi ∈ CBj ). Then, by the monotonicity property, we know that A |= δ(a1, . . . , ak, b1, . . . , bk)

will hold.
Second, we argue that the distinctness property holds, that is, ap 6= aq whenever

ẋp ∈ Pi, ẋq ∈ Pj, and i 6= j. However, our construction ensured that we always have
ar ∈ CBs for the s with ẋr ∈ Ps. In particular, ẋp ∈ Pi and ẋq ∈ Pj for i 6= j implies that ap
and aq lie in two different color classes and are, hence, distinct.

By the claim, A |= β is equivalent to there being an l-coloring B of A such that B |= α′

(β was a block in our main formula of the form ∃ẋ1 · · · ∃ẋk
(
distinct(P1, . . . , Pl) ∧ α

)
where

there are no weak variables other than the xi). We now apply Theorem 2 to α′ (as φ), which
yields a new formula α′′ (called φ′ in the theorem) with the property A |= α′′ ⇐⇒ A |= β.
The interesting thing about α′′ is, of course, that it has the same quantifier rank and the
same number of variables as α′ plus some constant. Most importantly, we already pointed
out earlier that α′ does not contain any weak variables and, hence, the quantifier rank of α′′

is the same as the strong quantifier rank of β and the number of variables in α′′ is the same
as the number of strong variables in β—plus some constant.

Applying this transformation to our running example φ and choosing as β once more
the subformula starting with ∃ẋ7∃ẋ8, we would get the following formula (ignoring the
technical issues how, exactly, the hashing is implemented, see the proof of Theorem 2 for
the details):

∀v∃ẋ1∃ẋ2
(

ẋ2 6= ẋ1 ∧ ∃a∃v1(v1 = ẋ1 ∧ Eav1) ∧
∀c
(
∃ẋ3∃ẋ4( ∃v1(v1 = ẋ3 ∧ ∃v2(v2 = ẋ4 ∧ Ev1v2))) ∨∨

g ∃p∃q∃v1(HASHg(v1, p, q) = 1∧ ∃v2(HASHg(v2, p, q) = 2∧ Ev1v2)) ∨
∃ẋ5∃ẋ6(ẋ5 6= ẋ6 ∧ ∃z(Pz ∧Qcaz))

))
.

We can now repeat the transformation to replace each block β in this way. Observe
that in each transformation we can reuse the variables (in particular, p and q) introduced
by the color coding:

∀v
∨

g∃p∃q
(
∃a∃v1(HASHg(v1, p, q) = 1∧ Eav1) ∧

∀c
(∨

g ∃p∃q∃v1(HASHg(v1, p, q) = 1∧ ∃v2(HASHg(v2, p, q) = 1∧ Ev1v2)) ∨∨
g ∃p∃q∃v1(HASHg(v1, p, q) = 1∧ ∃v2(HASHg(v2, p, q) = 2∧ Ev1v2)) ∨∨
g ∃p∃q∃z(Pz ∧Qcaz)

))
.

In conclusion, we see that we can transform the original formula φ to a new formula
φ′ with the following properties:

• We added new variables and quantifiers to φ′ compared to φ during the first transfor-
mation steps, but the number we added depended only on the signature τ (it was the
maximum arity of relations in τ plus possibly 2).

• We then removed all weak variables from φ in φ′.
• We added some variables to φ′ each time we applied Theorem 2 to a block β. The

number of variables we added is constant since Theorem 2 adds only a constant
number of variables and since we can always reuse the same set of variables each time
the theorem is applied.

• We also added some quantifiers to φ′ each time we applied Theorem 2, which increases
the quantifier rank of φ′ compared to φ by more than a constant. However, the
essential quantifiers we add are ∃p∃q and these are always added directly after a
universal quantifier or directly after a disjunction after a universal quantifier. Since
the strong quantifier rank of φ is at least the quantifier rank of φ where we only
consider the universal quantifiers (the “universal quantifier rank”), the two added
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nested quantifiers per universal quantifiers can add to the quantifier rank of φ′ at
most twice the universal quantifier rank.

Putting it all together, we see that φ′ is equivalent to φ, that φ′ has a quantifier rank that
is at most 3 strong-qr(φ) + arity(τ) +O(1), and the φ′ contains at most strong-bound(φ) +
arity(τ) + O(1) variables.

This concludes the proof of Theorem 3.

Since qr(φ) = qr(¬φ), a trivial duality argument shows that the above theorem also
holds for formulas φ without existential weak quantifiers (just apply the theorem to the
negation normal form of ¬φ). The more interesting observation is that we can still remove
all existential and universal weak quantifiers from a formula when both are present in an
arbitrarily complex intertwined form:

Theorem 4. Let τ be an arithmetic signature. Then for every τ-formula φ in negation normal form
there is a τ-formula φ′ such that

1. φ′ ≡ φ (on finite structures),
2. qr(φ′) = 3 · strong-qr(φ) + arity(τ) + O(1), and
3. |bound(φ′)| = |strong-bound(φ)|+ arity(τ) + O(1).

Proof. Given a formula φ that contains both existential and universal weak quantifiers, we
apply a syntactic preprocessing that “separates these quantifiers and moves them before
their dual strong quantifiers.” The key observation that makes these transformations
possible in the mixed case is that weak existential and weak universal quantifiers commute:
For instance, ∃ẋ(α ∧ ∀ẏ(β)) ≡ ∀ẏ(β ∧ ∃ẋ(α)) since ẋ and ẏ cannot depend on one another
by the core property of weak quantifiers (α cannot contain ẏ and β cannot contain ẋ). Once
we have sufficiently separated the quantifiers, we can repeatedly apply Theorem 3 or its
dual to each block individually.

As a running example, let us use the following formula φ:

∃ẋ∃a(Eẋa ∧ ∀b(Eba ∨ Eab) ∧ ∀ẏ(Eaẏ ∧ ∃ż(Eaż)) ∧ ∃ẇ(Eẇa)),

which mixes existential and universal weak variables rather freely.
Similar to the proof of Theorem 3, for technical reasons we first add the superfluous

quantifiers ∃v∀v for a fresh strong variable v at the beginning of the formula.
Our main objective is to get rid of alternations of weak universal and weak existential

quantifiers without a strong quantifier in between. In the example, this is the case, for
instance, for ∃ẋ(. . . ∀ẏ(. . . ∃ż . . . )). We get rid of these situations by pushing all quantifiers
(weak or strong) down as far as possible (later on, when we apply Theorem 3, we will push
them up once more). Let us write x̊ to indicate that x may be a weak or a strong variable.

If β does not contain x̊ as a free variable, we can apply the below four equivalences
from left to right (and, of course, commutatively equivalent ones). Note that since the
definition of weak variables forbids that a universally bound variable depends on an
existential weak variable (and vice versa), the condition “β does not contain x̊” is true, in
particular, whenever x̊ is weak and β starts with a universal quantifier in the first two lines
or with an existential quantifier in the last two lines.

∃x̊(α ∧ β) ≡ ∃x̊(α) ∧ β, (11)

∃x̊(α ∨ β) ≡ ∃x̊(α) ∨ β, (12)

∀x̊(α ∧ β) ≡ ∀x̊(α) ∧ β, (13)

∀x̊(α ∨ β) ≡ ∀x̊(α) ∨ β. (14)
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Furthermore, we also apply the following general equivalences as long as possible:

∃x̊(α ∧ (β ∨ γ)) ≡ ∃x̊((α ∧ β) ∨ (α ∧ γ)), (15)

∃x̊(α ∨ β) ≡ ∃x̊(α) ∨ ∃x̊(β), (16)

∀x̊(α ∨ (β ∧ γ)) ≡ ∀x̊((α ∨ β) ∧ (α ∨ γ)), (17)

∀x̊(α ∧ β) ≡ ∀x̊(α) ∧ ∀x̊(β). (18)

Applied to our example, we would get:

∃v∀v ∃ẋ∃a(Eẋa ∧ ∀b(Eba ∨ Eab) ∧ ∀ẏ(Eaẏ) ∧ ∃ż(Eaż) ∧ ∃ẇ(Eẇa)).

As a final transformation, we “sort” the operands of disjunctions and conjunctions:
We replace a subformula α ∧ β in φ by β ∧ α and we replace α ∨ β by β ∨ α, whenever β
contains no weak universal variables, but α does, and also whenever α contains no weak
existential variables, but β does. For our example, this means that we get the following:

∃v∀v ∃ẋ∃a(∃ż(Eaż) ∧ ∃ẇ(Eẇa) ∧ Eẋa ∧ ∀b(Eba ∨ Eab) ∧ ∀ẏ(Eaẏ)).

The purpose of the transformations was to achieve the situation described in the
next claim:

Claim 3. Assume that the above transformations have been applied exhaustively to φ and assume
φ contains both existential and universal weak variables. Consider the maximal subformulas αi of φ
that contain no weak universal variables and the maximal subformulas βi of φ that contain no weak
existential variables. Then for some i and some γ one of the following formulas is a subformula of φ:
∀x(αi ∨ γ) or ∃x(γ ∧ βi).

In our example, there is only a single maximal α1, namely ∃ż(Eaż)∧ ∃ẇ(Eẇa)∧ Eẋa∧
∀b(Eba∨ Eab), and a single maximal β1, namely ∀b(Eba∨ Eab)∧∀ẏ(Eaẏ). The claim holds
since ∃a(γ ∧ β1) is a subformula for γ = ∃ż(Eaż) ∧ ∃ẇ(Eẇa) ∧ Eẋa.

Proof. Consider any α among the αi. Since α is maximal but α is not all of φ, there must be
a β among the βi such that either α ∨ β or α ∧ β is also a subformula of φ. Let us call it δ
and consider the minimal subformula η of φ that contains δ and starts with a quantifier.

This quantifier cannot be a weak quantifier: Suppose it is ∃ẋ (the case ∀ẋ is perfectly
symmetric). Since we can no longer apply one of the equivalences (11)–(18), the formula
η must have the form ∃ẋ

∧
i ψi (where the ψi are not of the form ρ ∧ σ) such that all ψi

contain ẋ (otherwise (11) would be applicable) and such that none of the ψi is of the form
ρ ∨ σ (otherwise (15) would be applicable). This implies that all ψi start with a quantifier.
Since η was minimal to contain δ, we conclude that one ψi must be α and another one must
be β. Then, β contains a weak existential variable, namely ẋ, which we ruled out.

Since η does not start with a weak quantifier, it must start with a strong quantifier. If it
is ∃x, by the same argument as before we get that η must have the form ∃x

∧
i ψi with some

ψi equal to α and some other ψj equal to β. Then, we have found the desired subformula
of φ if we set γ to

∧
i 6=j ψi. If the strong quantifier is ∀x, a perfectly symmetric argument

shows that η must have the form ∀x
∨

i ψi with some ψj = α, which implies the claim for
γ =

∨
i 6=j ψi.

The importance of the claim for our argument is the following: As long as φ still
contains both existential and universal weak variables, we still find a subformula α or
β that contains only existential or universal weak variables such that if we go up from
this subformula in the syntax tree of φ, the next quantifier we meet is a strong quantifier.
This means that we can now apply Theorem 3 or its dual to this subformula, getting an
equivalent new formula α′ or β′ whose quantifier rank equals the strong quantifier rank of
α or β, respectively, times a constant factor. Furthermore, similar to the argument at the end
of the proof of Theorem 3 where we processed one β after another, each time a replacement
takes place, there is a strong quantifier that contributes to the strong quantifier rank of φ.
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This concludes the proof of Theorem 4.

4. Syntactic Proofs and Natural Problems

The special allure of descriptive complexity theory lies in the possibility of proving
that a problem has a certain complexity just by describing the problem in the right way. The
“right way” is, of course, a logical description that has a certain syntax (such as having a
bounded strong quantifier rank). In the following we present such descriptions for several
natural problems and thereby bound their complexity “in a purely syntactic way.” First,
however, we present “syntactic tools” for describing problems more easily. These tools are
built on top of the notion of strong and weak quantifiers.

4.1. Syntactic Tools: New Operators

It is common in mathematical logic to distinguish between the core syntax and ad-
ditional “shorthands” built on top of the core syntax. For instance, while ¬ and ∨ are
typically considered to be part of the core syntax of propositional logic, the notation a→ b
is often seen as a shorthand for ¬a ∨ b. In a similar way, we now consider the notions
of weak variables and quantifiers introduced in the previous section as our “core syntax”
and build a number of useful shorthands on top of them. Of course, just as a→ b has an
intended semantic meaning that the expansion ¬a ∨ b of the shorthand must reflect, the
shorthands we introduce also have an intended semantic meaning, which we specify.

As a first example, consider the common notation ∃≥kx(φ(x)), whose intended se-
mantics is “there are at least k different elements in the universe that make φ(x) true.”
This notation is often considered as a shorthand for ∃x1 · · · ∃xk

∧
i 6=j xi 6= xj ∧

∧k
i=1 φ(xi),

but we will consider it a shorthand for the equivalent, but slightly more complicated
formula ∃ẋ1 · · · ∃ẋk

∧
i 6=j ẋi 6= ẋj ∧

∧k
i=1∃x(x = ẋi ∧ φ(x)). The difference is, of course, that

the strong quantifier rank is now much lower and, hence, by Theorem 3 we can replace
any occurrence of ∃≥kx(φ(x)) by a formula of quantifier rank qr(φ) + O(1). In all of the
following notations, k and s are arbitrary values. The indicated strong quantifier rank for
the notation is that of its expansion. The semantics describe which structures A are models
of the formula.

Notation (∃≥kx(φ(x))). Strong-qr: 1 + strong-qr(φ)
Semantics There are k distinct a1, . . . , ak ∈ |A| with A |= φ(ai) for all i.
Expansion ∃ẋ1 · · · ∃ẋk

∧
i 6=j ẋi 6= ẋj ∧

∧k
i=1 ∃x(x = ẋi ∧ φ(x))

Notation (∃≤kx(φ(x))). Strong-qr: 1 + strong-qr(φ)
Semantics There are at most k distinct a1, . . . , ak ∈ |A| with A |= φ(ai) for all i.
Expansion ∀ẋ1 · · · ∀ẋk+1

∨
i 6=j ẋi = ẋj ∨

∨k+1
i=1 ∀x(x 6= ẋi ∨ ¬φ(x)) (≡ ¬∃≥k+1x(φ(x)))

Notation (∃=kx(φ(x))). Strong-qr: 1 + strong-qr(φ)
Semantics There are exactly k distinct a1, . . . , ak ∈ |A| with A |= φ(ai) for all i.
Expansion ∃≥kx(φ(x)) ∧ ∃≤kx(φ(x))

The next notation is useful for “binding” a set of vertices to weak or strong vari-
ables. The binding contains the allowed “single use” of the weak variables in the sense of
Definition 3, but they can still be used in inequality literals. Let x̊ indicate that x may be
weak or strong.

Notation ({x̊1, . . . , x̊k} = {x | φ(x)}). Strong-qr: 1 + strong-qr(φ)
Semantics Let a1, . . . , ak ∈ |A| be the assignments to the x̊i (note that they need not be

distinct). Then {a1, . . . , ak} =
{

a ∈ |A|
∣∣ A |= φ(a)

}
must hold.

Expansion
∧k

i=1 ∃x
(
x = x̊i ∧ φ(x)

)
∧ // ensure {x̊1, . . . , x̊k} ⊆ {x | φ(x)}∨k

s=1
(
∃=sx(φ(x)) ∧ // bind s to |{x | φ(x)}|∨

I⊆{1,...,k},|I|=s
∧

i,j∈I,i 6=j x̊i 6= x̊j
)
. // ensure |{x̊1, . . . , x̊k}| ≥ s
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(We remark that in the above notation, the last line does, indeed, by itself only ensure
that |{x̊1, . . . , x̊k}| ≥ s holds. However, in conjunction with the two lines before it, we get
that |{x̊1, . . . , x̊k}| = s must hold for the formula to be true.)

The final notation can be thought of as a “generalization of ∃=k” where we not only
ask whether there are exactly k distinct ai with a property φ, but whether these ai then also
have an arbitrary special additional property. Formally, let Q ⊆ STRUC[τ] be an arbitrary
τ-problem. We write A[I] for the substructure of A induced on a subset I ⊆ |A|.

Notation (INDUCEDsize=k{x | φ(x)} ∈ Q). Strong-qr: 1 + strong-qr(φ) + arity(τ)
Semantics The set I = {a ∈ |A| | A |= φ(a)} has size exactly k and A[I] ∈ Q.
Expansion Assuming for simplicity that τ contains only E2 as non-arithmetic predicate:

∃=kx(φ(x)) ∧∨A∈Q,|A|={1,...,k}
∧
(i,j)∈EA ∃x∃y(πi(x) ∧ πj(y) ∧ Exy) ∧∧
(i,j)/∈EA ∃x∃y(πi(x) ∧ πj(y) ∧ ¬Exy),

where πi(x) is a shorthand for φ(x) ∧ ∃=i−1z(z < x ∧ φ(z)), which binds x to the ith
element of the universe with property φ.

Notation (INDUCEDsize≤k{x | φ(x)} ∈ Q). Strong-qr: 1 + strong-qr(φ) + arity(τ)
Semantics The set I = {a ∈ |A| | A |= φ(a)} has size at most k and A[I] ∈ Q.
Expansion

∨k
s=0 INDUCEDsize=s{x | φ(x)} ∈ Q

4.2. Bounded Strong-Rank Description of Vertex Cover

The first advanced problem for which we now use our framework to “prove syn-
tactically” that it lies in para-AC0, is the vertex cover problem. A vertex cover of an
undirected graph G = (V, E) is a subset X ⊆ V with e ∩ X 6= ∅ for all e ∈ E. The problem
pk-VERTEX-COVER asks whether a graph has a cover X with |X| ≤ k. The most natural
way to describe the problem is in terms of the following family (ψk)k∈N:

ψk = ∃x1 · · · ∃xk∀u∀v
(
Euv→ ∨

i(xi = u ∨ xi = v)
)
.

However, the strong quantifier rank of this family is clearly not bounded since all
quantifiers are strong (all xi depend on the universally bound variables u and v). Thus, we
need a different way of describing the vertex cover problem:

Theorem 5 ([4,7]). pk-VERTEX-COVER ∈ para-AC0.

Proof. We describe the problem using a family (φk)k∈N of constant strong quantifier rank
that expresses the well-known Buss kernelization “using logic”: Let HIGH(x) = ∃≥k+1y
(Exy) expresses that x is a high-degree vertex. Buss observed that all high-degree vertices
must be part of a vertex cover of size at most k. Thus, h ≤ k must hold for the unique h
with ∃=hx(HIGH(x)). A remaining vertex is interesting if it is connected to at least one
non-high-degree vertex: INTERESTING(x) = ¬ HIGH(x) ∧ ∃y(Exy ∧ ¬ HIGH(y)). If there
are more than (k− h)(k + 1) ≤ k2 + k interesting vertices, there cannot be a size-k vertex
cover—and if there are less, the original graph can only have a size-k vertex cover if the
graph induced on the interesting vertices has a vertex cover of size k − h. In symbols:
φk =

∨k
h=0
(
∃=hx(HIGH(x)) ∧ INDUCEDsize≤k2+k{x | INTERESTING(x)} ∈ Qk−h

)
for the

problem Qs = {G | G has a vertex cover of size s} (recall that for the INDUCED notation we
allow arbitrary problems).

While the family (φk) constructed in the above proof is not extremely complex
and much simpler than formulas or circuits found in the literature [4,7] for proving
pk-VERTEX-COVER ∈ para-AC0 without using our framework, the family certainly lacks
the elegance of the earlier “natural” family (ψk). It seems like an interesting goal to find
new syntactic properties that broaden the notion of weak quantifiers so that the existential
quantifiers in ψk become weak. We believe that this is possible, but also point out that
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while any such properties must apply to the quantifiers in the ψk, they may not apply to
the almost identical formulas

ψ′k = ∃x1 · · · ∃xk∀u∀v
(∨

i 6=j

(xi = u ∧ xj = v)→ Euv
)
, (19)

which describe the parameterized clique problem—a problem provably not in para-AC0.

4.3. Bounded Strong-Rank Description of Hitting Set

Hitting sets generalize vertex covers to hypergraphs, which are pairs (V, E) where
the members of E are called hyperedges and we have e ⊆ V for all e ∈ E. Hitting sets are
still sets X ⊆ V with e ∩ X 6= ∅ for all e ∈ E. The problem pk,d-HITTING-SET asks whether
a hypergraph with maxe∈E |e| ≤ d has a hitting set X with |X| ≤ k. Formally, let d(H)
be the maximum size of any hyperedge in H and pk,d-HITTING-SET be the set of all pairs
(H, max(k, d)) such thatH encodes (see below for details) a hypergraph H with d(H) ≤ d
and for which there is a hitting set of size at most k. The problem pk-VERTEX-COVER

is basically this problem restricted to the parameter value d = 2 (if one models size-1
hyperedges e as self-loops and ignores the case of the empty hyperedge, which can never
be hit by any set X).

While by no means trivial, it is not too hard to generalize the arguments used in
Theorem 5 to prove that the parameterized hitting sets problem lies in para-AC0 when d is
fixed and k is the parameter. It is much harder to prove the following result, where both d
and k are parameters:

Theorem 6 ([19]). pk,d-HITTING-SET ∈ para-AC0.

Before we prove the theorem using our framework, we need to fix how we model
hypergraphs (V, E) as logical structures. We use a τhyper-structureH for τhyper = (VERTEX1,
HYPEREDGE1, IN2). Let |H| = V ∪ E, VERTEXH = V, set HYPEREDGEH = E, and INH =
{(v, e) | v ∈ e ∈ E}. The other way round, given a τhyper-structure H, we consider it
as the following hypergraph H(H) = (V, E) with V = VERTEXH and E = {set(e) | e ∈
HYPEREDGEH}, where we write set(e) for {v | (v, e) ∈ INH}.

Note that we allow the universe ofH to contain elements e that are neither vertices
nor hyperedge-representing elements, but their set(e) do not contribute to E. We also allow
that two different elements e, e′ ∈ |H| represent the same set set(e) = set(e′). This can
be problematic in a kernelization: When we identify a kernel set E′ of hyperedges, there
could still be a large (non-parameter-dependent) number of elements in the universe that
represent these hyperedges—meaning that these elements do not form a kernel themselves.
Fortunately, this can be fixed: We can easily check whether two elements represent the
same set using ∀x(IN xe ↔ IN xe′) and then always consider only the first representing
element with respect to the ordering < of the universe. For this reason, we will assume in
the following that for any subset s ⊆ V there is at most one e ∈ |H| with s = set(e).

Proof of Theorem 6. The idea behind the proof is a (very strong) generalization of the
Buss kernel argument from the proof of Theorem 5. As in that proof, we will present a
family (φk,d)k,d∈N of bounded strong quantifier rank that describes pk,d-HITTING-SET. First,
there are two simple preliminaries: Testing whether d(H) ≤ d holds is easy to achieve
using ∀e(HYPEREDGE e → ∃≤dv(IN ve)), so let us assume that this is the case and let us
write H = (V, E) for H(H). Furthermore, let us write SUBSET e f for ∀x(IN xe → IN x f ),
which indicates that set(e) ⊆ set( f ).

Representing subsets of hyperedges: recall that the core idea of the kernelization of
the vertex cover problem is that a “high-degree vertex” must be part of a vertex cover.
Rephrased in the language of hypergraphs, a graph is a hypergraph H with d(H) = 2,
a vertex cover is a hitting set, and making a high-degree vertex v part of a hitting set is
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(in essence) the same as removing all edges containing v and then adding the singleton
hyperedge {v}, which can clearly only be hit by making v part of the hitting set.

In the general case, we will also remove hyperedges from the hypergraph and replace
them by smaller hyperedges (though, no longer, by singletons) and we will do so repeatedly.
The problem is that adding hyperedges is difficult in our encoding since this means that we
would have to add elements to the universe of the logical structure that represent the new
hyperedges. Although these problems can be circumvented by complex syntactic trickery,
we feel it is cleaner to do the following: We reduce the original hitting set problem to a new
version, where the universe already contains all the necessary elements for representing
the hyperedges we might wish to add later on.

In detail, we define a subset pk,d-HITTING-SET′ ⊆ pk,d-HITTING-SET as follows: It
contains only those (H, max(k, d)) such that for every e ∈ HYPEREDGEH and every subset
s ⊆ set(e) there is an e′ ∈ |H| with s = set(e′). In other words, for every subset s of any
hyperedge there must already be an element e “in store” in the universe that represents it.

We can reduce pk,d-HITTING-SET to pk,d-HITTING-SET′ by adding for an input H,
if necessary, elements to the universe that represent all these subsets (note that the set
HYPEREDGEH is not changed in the reduction, we just add elements to the universe for
“potential, future” hyperedges). We are helped by the fact that we have an upper bound d
on the size of the hyperedges, which means that the maximum blowup of the universe in
this reduction is by the parameter-dependent value of 2d. This reduction can be realized
via a bounded rank reduction (recall Definition 1):

Claim 4. pk,d-HITTING-SET ≤br pk,d-HITTING-SET′.

Proof. In the reduction, we do not change the parameter, so we set ιmax(k,d),max(k,d) = >
and ιx,x′ = ⊥ otherwise. For the first-order queries, we wish to map a hypergraphH to a
new version H′ in which for every subset of a hyperedge there is already an element in
the universe representing this subset. This means that the size of the universe can increase
from |H| to at most 2d|H|. (If there is a hyperedge of size larger than d in the input, we can
yield a trivial “no” instance as output.) We use a first-order query of width 2, meaning
that the universe size gets enlarged from |H| to |H|2. This will be larger than 2d|H| for all
sufficiently large universes. Since, with respect to fmax(k,d) the number 2d is a constant, we
can apply Lemma 1 to take care of those inputs whose universes are smaller than 2d and
directly map them to the correct instances. For the large instances, we now have a universe
that is “large enough” to contain an element for each subset of a hyperedge and it is not
difficult (but technical) to use the bit predicate to define the correct predicates HYPEREDGE,
VERTEX, and IN in terms of the original structure.

Thus, in the following, we may assume that for every hyperedge in the input structure
for all subsets of this hyperedge we already have an element in the universe representing
this subset.

Finding sunflowers: we first show a way of kernelizing the hitting set problem, due to
Chen et al. [4], that “almost works.” The core idea is to detect and collapse sunflowers in
the input hypergraph [20]. A sunflower of size k + 1 with core c is a set {p1, . . . , pk+1} ⊆ E
of distinct hyperedges, called petals, such that for all i 6= j we have pi ∩ pj = c. In other
words, all petals contain the core but are otherwise pairwise distinct. For convenience, we
also assume that all petals are proper supersets of the core. The important observation is
that if a sunflower of size k + 1 has a hitting set of size k, then the core must also be hit—and
when the core is hit, all petals are hit. This means that we can just replace a sunflower by
its core when we are looking for size-k hitting sets.

The following formula tests whether set(c) is the core of a sunflower of size k + 1:

CORE c = ∃ ṗ1
1 · · · ∃ ṗd

k+1
∧

i 6=j
∧

r,s∈{1,...,d} ṗr
i 6= ṗs

j ∧ (20)∧k+1
i=1 ∃e

(
HYPEREDGE e ∧ SUBSET ce ∧
{ ṗ1

i , . . . , ṗd
i } = {v | IN ve ∧ ¬ IN vc}

)
. (21)
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Here, (20) guarantees that the petals are pairwise disjoint outside the core and (21)
checks that the petals are supersets of c and when we add p1

i to pd
i (which are not necessarily

distinct) to c, we get a present hyperedge.
The “collapsing” of sunflowers to their cores can now be done as follows: We define a

formula with e as a free variable that is true when set(e) is a core or when set(e) is not a
superset of any core (otherwise, we need not include set(e) since we include the core of a
sunflower that contains it, instead):

CORE e ∨ (HYPEREDGE e ∧ ¬∃c(CORE c ∧ SUBSET ce)). (22)

The importance of the above formula lies in the following fact: The number of hy-
peredges for which the second part of the formula is true (that is, which are not supersets
of a core of a sunflower of size k + 1), is bounded by a function in k and d. This is due to
the famous Sunflower Lemma [20] which states that if a hypergraph has more than kdd!
hyperedges, it contains a sunflower of size k + 1 (which has a core).

This means that if CORE e were to hold for just a few hyperedges, (22) would describe
a kernel for the hitting set problem, meaning that the number of hyperedges remaining
would be bounded by a purely parameter-dependent value. We could then proceed as
in the proof of Theorem 5: In order to determine whether the original hypergraph has
a hitting set of size k, we only need to check whether the hypergraph induced on the
remaining hyperedges has such a hitting set—and since a kernel has a purely parameter-
dependent size, we could use the INDUCED notation to solve the hitting set problem on
the vertices and hyperedges for which (22) holds. Unfortunately, it is possible to construct
hypergraphs such that CORE e still holds for a very large (not only parameter-dependent)
number of hyperedges.

However, we know that a core always has a smaller size than any petal in its sunflower.
In particular, all cores have maximum size d − 1. Thus, if we “view CORE as our new
HYPEREDGE predicate,” we get “cores of cores”:

CORE2 c = ∃ ṗ1
1 · · · ∃ ṗd

k+1
∧

i 6=j
∧

r,s∈{1,...,d} ṗr
i 6= ṗs

j ∧∧k+1
i=1 ∃e′

(
CORE e′ ∧ SUBSET ce′ ∧
{ ṗ1

i , . . . , ṗd
i } = {v | IN ve′ ∧ ¬ IN vc}

)
.

Note that strong-qr(CORE2 c) = strong-qr(CORE c) + 1 = 2 since we had to add a
new strong quantifier (∃e′) whose scope contains CORE e′, which adds its own strong
quantifier (∃e).

By the same argument as earlier, we get that the number of e for which the following
formula holds equals the number of cores of cores plus something that only depends on
the parameters k and d:

CORE2 e ∨ (CORE e ∧ ¬∃c(CORE2 c ∧ SUBSET ce))

∨ (HYPEREDGE e ∧ ¬∃c(CORE c ∧ SUBSET ce)).

Still, the number of cores of cores can be large, but they all have size at most d− 2.
Repeating the argument a further d− 2 times, we finally get the predicate KERNEL e:

COREd e ∨∨d
i=1(COREi−1 e ∧ ¬∃c(COREi c ∧ SUBSET ce)), (23)

where CORE0 is of course HYPEREDGE and COREd e can only be true for the (sole) e repre-
senting the empty set (in which case, there is no hitting set).

Unfortunately, the strong quantifier rank of COREd is d since the definition of COREi in
terms of COREi−1 always adds one strong quantifier nesting (through a new ∃e′...′). Thus,
(23) also has a strong quantifier rank of d while we need O(1).
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Finding pseudo-sunflowers: at this point, we need a way of describing cores of cores
of cores and so on using a bounded strong quantifier rank. The idea how this can be
done was presented in [19], where the notions of pseudo-cores and pseudo-sunflowers
are introduced. The definitions are somewhat technical, see below, but the interesting fact
about these definitions is that they can be expressed very nicely in a way similar to (20)
and (21).

For a level L and a number k, let Tk
L denote the rooted tree in which all leaves are at the

same depth L and all inner nodes have exactly k + 1 children. The root of Tk
L will always be

called r in the following. Thus, Tk
1 is just a star consisting of r and its k + 1 children, while

in Tk
2 each of the k + 1 children of r has k + 1 new children, leading to (k + 1)2 leaves in

total. For each l ∈ leaves(Tk
L) = {l | l is a leaf of Tk

L} there is a unique path (l0, l1, . . . , lL)
from l0 = r to lL = l.

Definition 4 (Pseudo-Sunflowers and Pseudo-Cores, [19]). Let H = (V, E) be a hypergraph
and let L and k be fixed. A set c ⊆ V is called a k-pseudo-core of level L in H if there exists a
mapping S : leaves(Tk

L)× {0, 1, . . . , L} → {e | e ⊆ V}, called a Tk
L-pseudo-sunflower for H with

pseudo-core c, such that for all l, m ∈ leaves(Tk
L) with l 6= m we have:

1. S(l, 0) = c.
2. S(l, 0) ∪ S(l, 1) ∪ · · · ∪ S(l, L) ∈ E.
3. S(l, i) ∩ S(l, j) = ∅ for 0 ≤ i < j ≤ L, but S(l, i) 6= ∅ for i ∈ {1, . . . , L}.
4. Let z ∈ {1, . . . , L} be the smallest number such that lz 6= mz, that is, z is the depth where the

path from r to l and the path from r to m diverge for the first time. Then S(l, z)∩ S(m, z) = ∅
must hold.

This definition translates almost directly into a formula PSEUDOCOREL c, which starts
with a block of weak existential quantifiers, one for each element of leaves(Tk

L)×{1, . . . , L}×
{1, . . . , d}:

(∃ẋj
l,i)l∈leaves(Tk

L),i∈{1,...,L},j∈{1,...,d}∧
l,m∈leaves(Tk

L),l 6=m,z as in the definition

(
∃e
(

HYPEREDGE e ∧ SUBSET ce ∧ {ẋ1
l,1, . . . , ẋd

l,L} = {v | IN ve ∧ ¬ IN vc}
)
∧ (24)∧

i 6=j
∧

p,q∈{1,...,d} ẋp
l,i 6= ẋq

l,j ∧ (25)∧
p,q∈{1,...,d} ẋp

l,z 6= ẋq
m,z

)
. (26)

Here, (24) ensures, similarly to (21) for normal sunflowers, that S(l, 0) ∪ S(l, 1) ∪ · · · ∪
S(l, L) is a hyperedge, item 2 of the definition. The inequalities (25) ensure that item 3 of
the definition holds, while (26) ensures item 4.

The important observation is that PSEUDOCOREL has a strong quantifier rank that is
independent of L. Since, as shown in [19], we can use PSEUDOCOREL as a replacement for
COREL in (23), we get that the hitting set problem can be described by a family of formulas
of constant strong quantifier rank.

This concludes the proof of Theorem 6, which compared to the original proof in [19] is
considerably simpler and shorter because of the use of the framework from the present paper.

4.4. Bounded Strong-Rank Description of Model Checking for First-Order Logic

An important result by Flum and Grohe [10] states that the model checking problem
for first-order logic lies in FPT on structures whose Gaifman graph has bounded degree
(the Gaifman graph of a logical structure has the structure’s universe as its vertex set and
has an undirected edge between two vertices u and v if u and v are simultaneously part of
some tuple of some relation of the structure; in particular, the Gaifman graph of a directed
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graph is its underlying undirected graph). Once more, this result can now be obtained
“syntactically.” For simplicity, we only consider graphs and let

pψ,δ-MC(FO) =
{
(G, num(ψ, δ))

∣∣ G ∈ STRUC[(E2)], ψ ∈ FO,

G |= ψ, max-degree(G) ≤ δ
}

.

Theorem 7 ([7,10]). pψ,δ-MC(FO) ∈ para-AC0↑.

Proof. We present a family (φψ,δ)ψ∈FO,δ∈N with a bound on the number of strong variables
that describes pψ,δ-MC(FO). Fix ψ and δ. Recall that we fixed the signature for ψ to just
τ = (E2) for simplicity and, thus, τ-structures are just graphs G. In particular, there are no
arithmetic predicates available to ψ (one could, of course, also consider them, but then the
Gaifman graph would always be a clique and the claim of the theorem would be boring).
In contrast, the φψ,δ are normal FO[+,×] formulas and they have access to arithmetics.

For a graph G let us write Ḡ for the underlying undirected graph and let us write Ēxy
as a shorthand for Exy ∨ Eyx. The first thing we check is that the maximum degree of the
input graph Ḡ is, indeed, δ. This is rather easy: ∀x∃≤δy(Ēxy).

For the hard part of determining whether G |= ψ, let d̄(a, b) denote the distance of two
vertices in Ḡ and let Nr(a) =

{
b ∈ |G|

∣∣ d̄(a, b) ≤ r
}

be the ball around a of radius r in Ḡ.
Let G[Nr(a)] denote the subgraph of G induced on Nr(a). By Gaifman’s Theorem [21] we
can rewrite ψ as a Boolean combination of formulas of the following form:

∃x1 · · · ∃xk

(∧
i 6=j γd̄(xi ,xj)>2r ∧ (27)∧
i ρ(xi)

)
(28)

where γd̄(xi ,xj)>2r expresses that d̄(xi, xj) > 2r should hold and ρ is r-local, meaning that for
all a ∈ |G| we have G |= ρ(a) ⇐⇒ G[Nr(a)] |= ρ(a) (the minimum number r for which is
the case is called the locality rank of ρ).

We now wish to express the above formula using only a constant number of strong
variables. The problem is, of course, that the xi are not (yet) weak since they are used many
times. We fix this in two steps. First, let us tackle (27): Clearly, the xi will have a pairwise
distance of at least 2r, if the balls of radius r that surround them are pairwise disjoint. Now,
because of the bounded degree of the graph, a ball of radius r can have maximum size δr.
This allows us to bind all members of each ball and testing disjointness is exactly what
weak variables are all about.

In detail, let γd̄(x,y)≤r be the standard formula with two bound variables expressing
that there is path from x to y of length at most r in Ḡ. Then we can express (27) as follows:

∃ẋ1 · · · ∃ẋk ∃ẏ1
1 · · · ∃ẏδr

k
(∧

i 6=j
∧

p,q∈{1,...,δr} ẏp
i 6= ẏq

j ∧∧k
i=1 ∃x(x = ẋi ∧ {ẏ1

i , . . . , ẏδr

i } = {y | γd̄(x,y)≤r})
)
.

In the formula, at the end we bind the variables ẏ1
i , . . . , ẏδr

i exactly to the elements
of the ball around ẋi or radius r; and in the first part we require that all these balls are
pairwise disjoint. Note that we do not require all ẏp

i to be different: If the size of a ball is
less than δr, we must allow some ẏp

i and ẏq
i to be identical.

In order to express (28), we just have to check for each ẋi that the ball of radius δr

around it is a model of ρ(ẋi). Since the size of this ball is at most δr, we can use the
INDUCED notation. There is, however, a technical problem: We basically wish to check
whether G[Nr(a)] ∈ {H | H |= ρ(a)} holds for a given a, but {H | H |= ρ(a)} obviously
depends on a—which is not compatible with the INDUCED notation. Fortunately, this
problem can be fixed: For i ∈ N let Qi = {H | i ≤ ‖H‖, a is the ith element of |H| with
respect to <H,H |= ρ(a)} (recall that for the INDUCED notation the set Q can be arbitrarily
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complex). If we know for some element a ∈ |G| that it is the ith element in Nr(a), then
our problematic test can be replaced by G[Nr(a)] ∈ Qi. Since testing whether a is the ith
element in Nr(a) is possible using a formula like ιi(a) = ∃=i−1b(b < a ∧ γd̄(a,b)≤r), we get
the following complete formula φψ,δ:

∃ẋ1 · · · ∃ẋk ∃ẏ1
1 · · · ∃ẏδr

k

(∧
i 6=j
∧

p,q∈{1,...,δr} ẏp
i 6= ẏp

j ∧∧k
i=1 ∃x

(
x = ẋi ∧ {ẏ1

i , . . . , ẏδr

i } = {y | γd̄(x,y)≤r} ∧∨δr

i=1(ιi(x) ∧ INDUCEDsize≤δr{y | γd̄(x,y)≤r} ∈ Qi)
))

.

This formula uses only a constant number of strong variables. Its strong quantifier
rank would also be constant except that the formula γd̄(x,y)≤r uses r nested (strong) quan-
tifiers (but only 2 variables). This means that the strong quantifier rank of φψ,δ will be
O(locality-rank(ψ)).

4.5. Bounded Strong-Rank Description of Embedding Graphs of Constant Tree Width or
Constant Tree Depth

For our final example, a graph H = (V(H), E(H)) embeds into another graph
G = (V(G), E(G)) if there is an injective mapping ι : V(H) → V(G) such that for all
(u, v) ∈ E(H) we have (ι(u), ι(v)) ∈ E(G). We wish to show that the embedding problems
for graphs of bounded tree depth or bounded tree width, parameterized by the to-be-
embedded graphs, lie in para-AC0 and para-AC0↑, see Theorem 8 below. Let us first briefly
review the underlying definitions. A tree decomposition of H is a tree T = (V(T), E(T)) (a
connected, acyclic, undirected graph) together with a mapping B that assigns a subset of
V(H) to each node in V(T). These subsets are called bags and must have two properties:
First, for every edge {u, v} ∈ E(H) there must be a node n ∈ V(T) with u, v ∈ B(n).
Second, for each vertex v ∈ V(H) the set {n ∈ V(T) | v ∈ B(n)} must be nonempty and
connected in T. Let width(B) = maxn∈V(T) |B(n)| − 1. The tree width tw(H) of H is the
minimum width of any tree decomposition for it. We call (T, B) a tree-depth decomposition
if T can be rooted in such a way that if u lies on the path from some vertex v to the root, then
B(u) ( B(v). The tree depth td(H) is the minimum width of a tree-depth decomposition
(T, B) of H plus 1. Note that this width is an upper bound on depth(T), the depth of T, and
that this definition is slightly different from the one briefly mentioned in the introduction
(but gives the same class).

The problems pH -EMBtd(H)≤c and pH -EMBtw(H)≤c, for a fixed number c (not a pa-
rameter), contains all pairs (G, num(H)) ∈ STRUC[(E2)] × N such that there exists an
embedding of H into G and td(H) ≤ c and tw(H) ≤ c, respectively.

Theorem 8 ([6,7]). pH -EMBtd(H)≤c ∈ para-AC0 and pH -EMBtw(H)≤c ∈ para-AC0↑ for each c.

Proof. We present a family (φH,T,B) of τ-formulas (where τ = (E2,<2, SUCC1, ADD3,
MULT3, 00) is the arithmetic signature of graphs) indexed by graphs H together with
any tree decomposition (T, B) of H (without bounds on the depth or width) that describe
the embedding problem. More precisely, we show the following:

Claim 5. There is a family (φH,T,B)H ∈ STRUC[τ],(T, B) is a tree decomposition of H such that:

1. G |= φH,T,B if and only if H embeds into G (more precisely, into (|G|, EG)).
2. strong-qr(φH,T,B) = depth(T).
3. |strong-bound(φH,T,B)| = width(B) + 1.

Proof. Before we present the formula, we define what we will call a consistent numbering
of the vertices of H. It is a mapping p : V(H)→ {1, . . . , m}, where m is the maximum bag
size of the decomposition (so m = width(B) + 1). The number p(v) for v ∈ V(H) can be
thought as the “position” or “index” of v in all bags that contain it, that is, we require
that for any bag B(n) = {b1, . . . , b|B(n)|} the values p(b1), . . . , p(b|B(n)|) are all different.
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(Phrased differently, p restricted to any bag is injective.) Such a consistent numbering can
be obtained as follows: First, assign the numbers 1 to |B(r)| to the elements of the root
bag B(r). Now, consider a child c of the root r in T. The bag B(c) may miss some of the
elements of B(r) and there may be some new elements. For each new element e, let p(e)
be a different number from the set {1, . . . , m} \ {p(v) | v ∈ B(r) ∩ B(c)} and note that we
will not run out of numbers. We assign numbers to all elements in the bags of the children
of the root in this way and, then, we recursively use the same method for the children’s
children and so on. Note that, not only, we do not run out of numbers, but the consistency
condition is also met: Once an element drops out of a bag, we will never see it again in a
later bag and, hence, we cannot inadvertently assign a different number to it later on.

As a running example, we will use the graph H and the tree decomposition (T, B) of
it from Figure 1.

H :

1

2

3

4

5

6

7

(T, B) : r

a b

c d e

{3
1

}

{1
2

, 3
1

}

{1
2

, 2
3

, 3
1

}

{1
2

, 4
3

, 3
1

}

{3
1

, 5
2

}

{5
2

, 6
1

, 7
3

}

Figure 1. An example graph H together with a tree decomposition for it, consisting of the tree T and
the bag function B indicated using the small gray mapping arrows. A consistent numbering p is
indicated in red.

Let us now define φH,T,B. We may assume V(H) = {1, . . . , |V(H)|}. The first step is
to bind all vertices of H to weak variables using ∃ẋ1 · · · ∃ẋ|V(H)|

∧
i 6=j ẋi 6= ẋj ∧ ψ, where ψ

must now express that the bound elements form an embedding. To achieve this, we build
ψ recursively, starting at the root r of T and ψ = ψr.

For our example, we would have:

φH,T,B = ∃ẋ1 · · · ∃ẋ7
∧

i 6=j ẋi 6= ẋj ∧ ψr.

For any node n ∈ V(T), let the elements of the set B(n) be named b1 to bs (these are
just temporary names that have nothing to do with the consisting numbering p) and let
the first t of them be new, that is, not present in the parent bag (for the root, s = t and all
elements are new; if there are no new elements, t = 0). The formula ψn will now express
the following: First, it binds the new elements using strong variables that are made equal
to the weak variables representing the elements in the input structure. This makes the new
strong variables disjoint from one another and also from all other (images of) vertices of H.
Second, we check that for all edges {x, y} ∈ E(H) between elements x and y of B(n), that
their images (which we have bound to strong variables) are also connected in the input
structure. Third, we require that these properties also hold for all children of n. In symbols,
we set:

ψn = ∃vp(b1)
· · · ∃vp(bt)

(
vp(b1)

= ẋb1 ∧ · · · ∧ vp(bt) = ẋbt ∧∧
x,y∈B(n),{x,y}∈E(H) Evp(x)vp(y) ∧∧
c∈children(n) ψc

)
.

For our example, let us start with the root r. Here, we have B(r) = {3} and p(3) = 1
and there are no edges between the vertices in the bag (there is just one vertex, after all).
This yields: ψn = ∃v1(v1 = ẋ3 ∧ ψa ∧ ψb).

For the node a, a new node (1) enters the bag B(a) with index 2 = p(1), but there are
no intra-bag edges, so ψa = ∃v2(v2 = ẋ1 ∧ ψc ∧ ψd).



Algorithms 2021, 14, 96 35 of 37

For the node b the situation is very similar, but there is now an edge {3, 5} in H. This
means that we must check that the nodes v1, representing 3, and v2, representing 5, are
connected in the input structure. This yields ψb = ∃v2(v2 = ẋ5 ∧ Ev1v2 ∧ ψe).

For the node c, we only have one new node (2) with a new index (3 = p(2)), but now
there are two intra-bag edges in H, namely {1, 2} ∈ E(H) and {2, 3} ∈ E(H). This yields:
ψc = ∃v3(v3 = ẋ2 ∧ Ev3v1 ∧ Ev3v2), where Ev1v3 checks whether for {2, 3} ∈ E(H) there
is a corresponding edge in the input structure (recall that p(2) = 3 and p(3) = 1) and
Ev3v2 checks the same for {1, 2}.

In a similar way, we get ψd = ∃v3(v3 = ẋ4 ∧ Ev3v1 ∧ Ev3v2) and observe that the only
difference is that v3 is made equal to ẋ4 instead of ẋ2, the rest is the same.

Finally, for the node e, we bind two strong variables since there are two new vertices
(6 and 7), but we reuse variable v1 for 6 since the vertex 3 that used to have index 1 has
dropped out of the bag. We get

ψe = ∃v1∃v3(v1 = ẋ6 ∧ v3 = ẋ7 ∧ Ev1v2 ∧ Ev1v3 ∧ Ev2v3).

Putting it all together, we have the following φH,T,B, whose structure closely mir-
rors T’s:

∃ẋ1 · · · ∃ẋ7
∧

i 6=j ẋi 6= ẋj ∧
∃v1(v1 = ẋ3 ∧
∃v2(v2 = ẋ1 ∧
∃v3(v3 = ẋ2 ∧ Ev3v1 ∧ Ev3v2) ∧
∃v3(v3 = ẋ4 ∧ Ev3v1 ∧ Ev3v2)) ∧

∃v2(v2 = ẋ5 ∧ Ev1v2 ∧
∃v1∃v3(v1 = ẋ6 ∧ v3 = ẋ7 ∧ Ev1v2 ∧ Ev1v3 ∧ Ev2v3))).

It remains to argue that φH,T,B has the claimed properties. Clearly, by construction,
the strong quantifier rank and number of strongly bound variables are as claimed. The
semantic correctness also follows easily from the construction: If the input structure is a
model of the formula then, clearly, the assignments of the ẋi to elements of the universe
form an embedding since for every edge {u, v} ∈ E(H) somewhere in the formula we
test whether Evp(u)vp(v) holds where vp(u) is equal to ẋu and vp(v) to ẋv. The other way
round, given a model of the formula, any assignment to the ẋi that makes it true is an
embedding since, first, we require that all ẋi are different and we require Evp(u)vp(v) for all
{u, v} ∈ E(H). This concludes the proof of the claim.

With the claim established, we can now easily derive the statement of the theorem.
To show pH -EMBtd(H)≤c ∈ para-AC0, we must present a family (φH)H∈STRUC[τ],td(H)≤c that
describes pH -EMBtd(H)≤c and that has bounded quantifier rank. Clearly, we can just set φH
to φH,T,B where (T, B) is a tree-depth decomposition of H of depth c (which must exist by
the assumption that td(H) ≤ c). The second item of the claim immediately tells us that
all φH will have a strong quantifier rank of at most c; and we can use the characterization
of para-AC0 from Fact 1. For the second statement, pH -EMBtw(H)≤c ∈ para-AC0↑, we use
a different family (ψH)H∈STRUC[τ],tw(H)≤c, this time setting ψH to φH,T,B where (T, B) is a
tree decomposition of H of width c. Now the third item of the claim gives us the bound
on the number of strong variables; and we can use the characterization of para-AC0↑ from
Theorem 1.

5. Conclusions

In the present paper, we showed how the color coding technique can be turned into
a powerful tool for parameterized descriptive complexity theory. This tool allows us to
show that important results from parameterized complexity theory—like the fact that
the embedding problem for graphs of bounded tree width lies in FPT—follow just from
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the syntactic structure of the formulas that describe the problem. The core contribution
of the paper does not lie in proving new membership results for para-AC0 or para-AC0↑,
but in explaining why problems lie in these classes in terms of the syntax of formulas
describing the problems. Apart from unifying previous results, we also get much shorter
and simpler proofs.

In all our syntactic characterizations it was important that variables or color predicates
were not allowed to be within a universal scope. The reason was that literals, disjunctions,
conjunctions, and existential quantifiers all have what we called the small witness property,
which universal quantifiers do not have. However, there are other quantifiers, from more
powerful logics that we did not explore, that also have the small witness property. An
example are operators that test whether there is a path of length at most k from one vertex
to another for some fixed k: if such a path exists, its vertices form a “small witness.” Weak
variables may be used inside these operators, leading to broader classes of problems
that can be described by families of bounded strong quantifier rank. On the other hand,
we cannot add the full transitive closure operator TC (for which it is well-known that
FO[TC] = NL) and hope that Theorems 2 and 3 still hold: If this were the case, we should be
able to turn a formula that uses two colors C1 and C2 to express that there are two vertex-
disjoint paths between two vertices into a FO[TC] formula—thus proving the unlikely result
that the NP-hard disjoint path problem is in NL.

Another line of inquiry into the descriptive complexity of parameterized problems
was already started in the repeatedly cited paper by Chen et al. [4]: They give first syntactic
properties for families of formulas describing weighted model checking problems that
imply membership in para-AC0. We believe that it might be possible to base an alternative
notion of weak quantifiers on these syntactic properties. Ideally, we would like to prove a
theorem similar to Theorem 4 in which there are just more quantifiers that count as weak
and, hence, even more families have bounded strong quantifier rank. This would allow us
to prove for even more problems that they lie in FPT just because of the syntactic structure
of the natural formula families that describe them.
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