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Abstract: In the context of combinatorial sampling, the so-called “unranking method” can be seen
as a link between a total order over the objects and an effective way to construct an object of given
rank. The most classical order used in this context is the lexicographic order, which corresponds to
the familiar word ordering in the dictionary. In this article, we propose a comparative study of four
algorithms dedicated to the lexicographic unranking of combinations, including three algorithms that
were introduced decades ago. We start the paper with the introduction of our new algorithm using a
new strategy of computations based on the classical factorial numeral system (or factoradics). Then,
we present, in a high level, the three other algorithms. For each case, we analyze its time complexity
on average, within a uniform framework, and describe its strengths and weaknesses. For about
20 years, such algorithms have been implemented using big integer arithmetic rather than bounded
integer arithmetic which makes the cost of computing some coefficients higher than previously stated.
We propose improvements for all implementations, which take this fact into account, and we give
a detailed complexity analysis, which is validated by an experimental analysis. Finally, we show
that, even if the algorithms are based on different strategies, all are doing very similar computations.
Lastly, we extend our approach to the unranking of other classical combinatorial objects such as
families counted by multinomial coefficients and k-permutations.

Keywords: unranking algorithm; combinatorial generation; combination; lexicographic order;
complexity analysis

1. Introduction

One of the most fundamental combinatorial objects is called a combination. A combi-
nation of k objects among n is a subset of cardinality k of a set containing n objects. In many
enumerating problems, it appears either as the main combinatorial structure or as a core
building block because of its simplicity and counting characteristics.

In the 1960s while resolving some optimization problems related to scheduling,
Lehmer rediscovered an important property linking natural numbers with a mixed radius
numeral system based on combinations. This relation gave him the possibility to exhibit
some greedy approach for a ranking algorithm that transforms (bijectively) a combination
into an integer. This numeral system is now commonly called the “combinatorial number
system” or “combinadics”. It is often used for the reverse of Lehmer’s problem: gener-
ating the uth combination (for a given order on the set of combinations). For efficiency
reasons, this approach can be substituted to exhaustive generation once the latter is no
longer possible due to the combinatorial explosion of the number of objects when their size
increases. In the context of combinations, the explosion appears quickly (we recall that

(2n
n ) ∼ (2πn)−

1
2 4n). This generation strategy of a single element is classically called an

unranking method. It appears as the fundamental problem in combinatorial generation
such as in [1] and in optimization [2]. It is also used as a basic building block in scheduling
problems [3], as well as, e.g., in software testing [4]. In other contexts, it appears as the core
problem for the generation of complex structures: we can for example cite phylogenetics [5]
and bioinformatics [6].
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Prior to speaking of unranking one must specify a total order over the objects under
consideration. The one that is frequently used is the lexicographic order; since it is humanly
easy to handle, it has been extensively studied. However, as Ruskey mentioned [7] (p. 59),
lexicographic generation is usually not the most efficient, thus particular care must be
taken while unranking for this order. Knuth dedicated a section to the lexicographic
generation of combinatorial objects, especially combination [8], relating it to the special
case of Gray codes. Usually, while describing an unranking method, the dual approach
for ranking, i.e., taking a built object and computing its rank, is also studied. The above
reference to Knuth presents such algorithms. Other combinatorial objects are also studied
in Ruskey’s book about combinatorial generation [7] and in Skiena’s book dedicated to the
practical implementation of such algorithms [9]. For another ad hoc approach focused on
the efficiency aspects of the ranking problem, one can refer to the work of Ryabko [10].

The classical approach for the construction of combinatorial structures presenting a
recursive decomposition schema consists in taking advantage of this decomposition in
order to build a bigger object from smaller ones. The method is detailed in the famous
book by Nijenhuis and Wilf [11]. There, the authors were mostly interested in exhaustive
generation and uniform random sampling, but some ideas about the decomposition schema
are also applicable in the unranking context. The method has been applied generically to
decomposable objects in the sense of analytic combinatorics, first in the context of recursive
generation [12], and then in the context of unranking approaches [13].

Aside from such generic approaches there exist several ad hoc algorithms. The paper
by Kokosinski [14] presents a comparative study of several of them. The complexity
analysis of these algorithms have been settled to be linear in n on average over all possible
combinations when k is ranging from 0 to n.

However, to the best of our knowledge, these complexity analyses are only counting
the number of calls to the function that computes a binomial coefficient, assuming that all
the necessary coefficients have been pre-computed and stored (this pre-computation step
is not included in the complexity analysis). From this fact, two questions arise. First, is
this complexity analysis relevant? That is, does it faithfully reflect the actual runtime of
the algorithms and can we afford the pre-computation of that many binomial coefficients?
Second, among the different existing algorithms, which one performs best in practice?

Using exact computations, it is actually not a problem to deal with combinations over
sets of several thousands of objects. In this context, using a table filled with all possible
binomial coefficients that might be needed is impractical. Most classical computer algebra
systems (CAS) can unrank combinations in a reasonable time though, which suggests
that there are better approaches. In Table 1, we present some of our experimental results.
We detail everything in Section 4, but as a foretaste here we give some key points. In
Section 2, we introduce a new unranking algorithm. The first column gives the typical run
time of our C implementation of this algorithm. In the other columns, we give a rough
performance comparison of four different CAS. For each one, we compare the average
run time in milliseconds to unrank a combination first by using the native algorithm of
the CAS (“their algo.”) and second by implementing our new algorithm in the high-level
programming language of the CAS. We observe a great diversity of run times in Table 1.
Unfortunately, Maple, Mathematica, and MATLAB (to deal with integers with arbitrary
precision in MATLAB, we use symbolic computations by calling the function sym) are
all closed source so we cannot take a look at their implementation to understand these
differences. However, a detailed study of the different algorithms from the literature and
some practical considerations presented in Section 4 provide some insights on this question.
Sagemath is a special case to us. Since version 9.1, our algorithm has been implemented (in
Python 3) and is used as the native algorithm.
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Table 1. Average time (in ms) for the unranking of a combination of k elements among n (too long means that the average time is larger than 30,000 ms).

Time in ms

Implem.

Sample
Our Algo.

Sagemath Maple Mathematica Matlab

in C
v. 9.0 v. 9.2 v. 2020.0 v. 12.1.1.0 v. R2020b

Their Algo. New Algo. Their Algo. Our Algo. Their Algo. Our Algo. Their Algo. Our Algo.

n = 1000 0.05464 2.6045 2.9672 78.2 2.12 0.44176 4.3145 3996.6 3041.2k = 100

n = 1000 0.06052 8.8903 2.4784 614 2.96 0.34608 3.9547 3520.6 3380.0k = 500

n = 3000 0.17496 15.8968 8.7929 1180 13.2 5.9131 11.823 11,846 9315.2k = 300

n = 3000 0.27524 96.3589 8.0500 6130 19.2 4.9624 13.067 11,087 9879.4k = 1500

n = 10,000 1.2554 191.03 31.665 too long 65.1 21.906 39.935 too long too longk = 1000

n = 10,000 2.3849 2 245.6 29.027 too long 97.9 29.916 46.452 too long too longk = 5000
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Combinatorial Context

Throughout the paper, we represent combinations as follows.

Definition 1. Let n and k be two integers with 0 ≤ k ≤ n. We represent a combination of k
elements among n elements denoted by {0, 1, . . . , n− 1} as a finite increasingly sorted sequence
containing k distinct elements.

For example, let n and k be, respectively, 5 and 3. The finite sequences (0, 1, 2) and
(0, 2, 4) are combinations of k elements among n, but (0, 2, 1) and (0, 1, 2, 3) are not. Other
representations are sometimes used, notably by using a two-letter alphabet, but we stick to
the one given in Definition 1 in this paper.

There are several possible orders for comparing combinations. In the following, we
restrict our attention to orders comparing combinations of the same length, i.e., the same
number of elements.

Definition 2. Let A = (a0, a1, . . . , ak−1) and B = (b0, b1, . . . , bk−1) be two distinct combinations
of k elements among n.

• In the lexicographic order, we say that A is smaller than B if and only if both combinations
have the same (possibly empty) prefix such that (a0, . . . , ap−1) = (b0, . . . , bp−1) and if in
addition ap < bp.

• In the co-lexicographic order, we say that A is smaller than B if and only if the finite sequence
(ak−1, . . . , a0) is smaller than (bk−1, . . . , b0) for the lexicographic order.

• If A is smaller than B for a given order, then, for the reverse order, B is smaller that A.

Definition 3. Let 0 ≤ k ≤ n be two integers and let A be a combination of k elements among
n. For a given order, the rank u of A belongs to {0, 1, . . . (n

k)− 1} and is such that A is the uth
smallest combination.

With these definitions in mind, we can enter the core of the paper organized as follows.
We first give the presentation and a first complexity analysis of our new algorithm solving
the lexicographic combination unranking problem in Section 2. Section 3 is dedicated to
the survey of three classical algorithms for the latter problem. The first one is based on the
so-called recursive method and the two other algorithms are based on combinadics, which
is a specific numeral system. It seems that it is the first time that both are compared and the
reason one is better is explained. We also propose a new method for their analysis based on
a generating function approach. Obviously, we obtain the same results as in the literature,
but we manage also to obtain better asymptotic bounds than in the literature. In Section 4,
we then compare their efficiency experimentally (the implementation and the exhaustive
material used for repeating the experiments are all available at http://github.com/Kerl1
3/combination_unranking (accessed on 15 March 2021)) and propose a way to improve
the computation of the binomial coefficients used in all four algorithms. Surprisingly, once
the improvements have been implemented in all algorithms, we observe deep similarities
in their computations, which is reflected by their observed run times. Finally, we extend
our approach to solve the problem of unranking structures enumerated by multinomial
coefficients and also objects counted by the k-permutations of n (also called arrangements).

2. Unranking through Factoradics: A New Strategy

The classical methods to unrank combinations are relying on the combinatorial number
system introduced in 1887, by E. Pascal [15] and later by D. H. Lehmer (detailed in the
book [16] (p. 27)). We survey these classical algorithms in Section 3.2. In this section, we
first present a new strategy based on another number system called factoradics. To the best
of our knowledge, the latter has never been used for the unranking of combinations.

http://github.com/Kerl13/combination_unranking
http://github.com/Kerl13/combination_unranking
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2.1. Link between the Factorial Number System and Permutations

We recall that the factorial number system, or factoradics, is a mixed radix numeral
system in which the representation of integers relies on the use of factorial numbers. Its
definition belongs to the folklore but already appeared in 1888 in [17].

Definition 4. Let u be a positive integer and let n be the unique integer satisfying (n− 1)! ≤
u < n!. Then, there exists a unique sequence of integers ( f`)`∈{0,...,n−1}, with 0 ≤ f` ≤ ` for all `,
such that:

u = f0 · 0! + f1 · 1! + · · ·+ fn−2 · (n− 2)! + fn−1 · (n− 1)!

The finite sequence ( f0, f1, . . . , fn−1) is called the factoradic decomposition (or factoradic)
of u (note that f0 = 0 for all u).

Taking the number u = 2021 as an example, we obtain the following decomposition:
2021 = 0× 0! + 1× 1! + 2× 2! + 0× 3! + 4× 4! + 4× 5! + 2× 6!. Thus, its factoradic is
(0, 1, 2, 0, 4, 4, 2).

Definition 5. Let n be a positive integer. A permutation of size n is an ordering of the elements of
the set {0, 1, . . . , n− 1}.

We represent a permutation of size n as a finite sequence of length n indicating the
order of its elements. For example, the sequence (2, 4, 0, 3, 1) is a permutation of size 5.

The factorial number system is particularly suitable to define a one-to-one correspon-
dence between integers and permutations and thus can be used as an unranking method
for permutations. The algorithm implemented in the function UNRANKINGPERMUTATION

in Algorithm 1 is a straightforward adaptation of the Fisher–Yates random sampler for
permutations [18].

Fact 1. For all 0 ≤ u < n!, UNRANKINGPERMUTATION(n, u) returns the uth permutation in
lexicographic order among the n! permutations of n elements.

Algorithm 1 Unranking a permutation.

1: function UNRANKINGPERMUTATION(n, u)
2: F ← factoradic(u)
3: while length(F) < n do
4: append(F, 0)
5: return EXTRACT(F, n, n)

1: function EXTRACT(F, n, k)
2: P← [0, 1, . . . , n− 1]
3: L← [0, . . . , 0] . k components
4: for i from 0 to k− 1 do
5: L[i]← P[F[n− 1− i]]
6: remove(P, F[n− 1− i])
7: return L

factoradic(u): computes the factoradic of u;
length(F): computes the number of components in F;
append(F, i): appends the element i at the end of F;
remove(F, i): removes from F the element at index i.

Since the factoradic (with 8 components) of 2021 is (0, 1, 2, 0, 4, 4, 2, 0), the permutation
(of size 8) of rank 2021 is (0, 3, 6, 7, 1, 5, 4, 2). To obtain this permutation, we read the
factoradic from right to left, and extract iteratively from the list (0, 1, . . . , 8− 1) the element
whose index is the coefficient read in the factoradic. This goes on until the list is empty
and we reach the leftmost component of the factoradic. Thus, in our example, we start by
extracting the element of index 0, which is 0. Then, the list P becomes (1, 2, . . . , 7) and we
extract the element of index 2, which is 3. Then, P becomes (1, 2, 4, 5, 6, 7) and we extract
the fourth element, which is 6, and so on.

Note that, for the sake of clarity, we present the function EXTRACT using a list for P,
but a better data structure must be used to achieve good performance. Good candidates
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are dynamic balanced trees, as presented in [19], or multisets with elements of weight 1 or
0, as presented in the Appendix of [20], since both provide logarithmic access and removal.
Unfortunately, it seems that there is no algorithm based on some swap operation giving
an in-place shuffle to unrank permutations in the lexicographic order; put differently:
Durstenfeld’s algorithm [21] cannot be easily adapted for the lexicographic order.

2.2. Combinations Unranking through Factoradics

We start with the definition of our algorithm to unrank combinations via the use of
factoradics. The basic ideas driving our algorithm are the following:

1. We define a bijection between the combinations of k elements among n and a subset
of the permutations of n elements.

2. We transform the combination rank u into the rank u′ of the appropriate permutation.

3. We build (the prefix of) the permutation of rank u′ by using Algorithm 1.

Definition 6. Let n and k be two integers with 0 ≤ k ≤ n. We define Pn,k as the function which
maps the combination (`0, `1, . . . , `k−1) to the size-n permutation (`0, `1, . . . , `k−1, dk, . . . , dn−1)
where the integers di are such that dk < dk+1 < · · · < dn−1 and {`0, . . . , `k−1, dk, . . . , dn−1} =
{0, 1, . . . , n− 1}.

For instance, by definition, for n = 5 and k = 3, the permutations associated with the
combinations (0, 1, 2) and (0, 2, 4) are, respectively, (0, 1, 2, 3, 4) and (0, 2, 4, 1, 3). Note that
the function Pn,k returns the smallest size-n permutation for the lexicographic order whose
prefix is the given combination.

Proposition 1. For all integers 0 ≤ k ≤ n, the function Pn,k is a bijection from the set of (n, k)
combinations to the set of size-n permutations whose prefix of length k and suffix of length n− k
are both increasingly sorted.

Remark that the permutation (of size 5) (0, 1, 2, 3, 4) is the permutation associated with
combinations (0, 1) and (0, 1, 2) by, respectively, P2,5 and P3,5. In fact, there are exactly
six combinations associated with the latter permutation, but for different values of k. The
proof of Proposition 1 is straightforward.

Fact 2. For any integer m ≥ 0, the number of sequences ( fi)0≤i<n satisfying n− k ≥ fn−k ≥
fn−k+1 ≥ · · · ≥ fn−1 ≥ m is given by (n−m

k ).

In fact, we get this result using a classical cardinality argument: a sequence of integers
of the form x0 = 0 ≤ x1 ≤ x2 ≤ · · · ≤ xk ≤ xk+1 = ` corresponds to a weak composition
(consider the differences xi+1 − xi) of the integer ` into k + 1 terms. The number of such
compositions is given by (`+k

k ). Hence, the number of sequences matching the description
of Fact 2 is given by (n−k−m+k

k ).
We now exhibit how to transform a combination rank into its corresponding permuta-

tion rank.

Lemma 1. For any given 0 ≤ k ≤ n, the factoradic decompositions of the ranks of the permutations
obtained as the image by Pn,k of some combination of k elements among n are all the finite sequences
of the form (0, . . . , 0, fn−k, . . . , fn−1) with n− k ≥ fn−k ≥ fn−k+1 ≥ · · · ≥ fn−1 ≥ 0.

Proof. Let u be an integer whose factoradic is (0, . . . , 0, fn−k, . . . fn−1) as in the lemma. Due
to the constraint n− k ≥ fn−k ≥ fn−k+1 ≥ · · · ≥ fn−1 ≥ 0, the permutation corresponding
to u has for prefix of length k the sequence ( fn−1, fn−2 + 1, fn−3 + 2, . . . , fn−k + k− 1) which
is increasingly sorted. The rest of the permutation (the suffix of length n− k) corresponds to
the increasing sequence of elements that have not been taken yet. Thus, the result corresponds
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to a combination via Pn,k.
Fact 2 completes the proof.

Thus, to convert the combination rank u into its corresponding permutation rank
u′, it is sufficient to find the uth sequence satisfying Lemma 1 in co-lexicographic order.
This is presented in Algorithm 2 where the RANKCONVERSION function implements the
conversion from u to u′ and the UNRANKINGCOMBINATION function implements the
whole unranking procedure.

The key to the rank conversion is also Fact 2. As a consequence, we get that the first
(n−1

k−1) such sequences (in co-lexicographic order) have fn−1 = 0 and that the (n−1
k ) following

have fn−1 ≥ 1.
Once again, we opt for a simple presentation here where the rank conversion and the

unranking part of the algorithm are clearly separated. There is much room for improvement
here: for instance, note that, at the end of the function RANKCONVERSION, a factoradic
decomposition is transformed into the integer it represents, but then at the beginning of
UNRANKINGPERMUTATION this integer will be decomposed again in factoradics. In fact,
instead of storing m into F on Line 8 we could directly compute the ith component of the
combination as m + i by using the remark at the beginning of the proof of Lemma 1. In
Section 4.2, we provide a more efficient way to implement this algorithm including this
particular optimization and other improvements.

Proposition 2. The function UNRANKINGCOMBINATION(n, k, u) computes the uth combina-
tion of k elements among n in lexicographic order.

Proof. The algorithm, and thus its proof, relies heavily on Fact 2. The key to prove the
correctness of the RANKCONVERSION function is the following loop invariant:

• The values of fn−1−j for all 0 ≤ j < i have been computed and stored in F.
• The value of fn−i−1 (which has not been determined yet, as we enter the loop) is at

least m.
• The variable u′ holds the rank of the sequence ( f j)0≤j<n−i (note that j < i) among all

sequences satisfying the condition of Fact 2 with k = k− i and n = n− i.

With this invariant at hand, the combinatorial argument behind the condition u < (n−m−i−1
k−i−1 )

in the algorithm becomes more apparent; that is, the binomial coefficient counts the number
of such sequences ending with m. Hence, if u < (n−m−i−1

k−i−1 ), then fn−1−i = m and we move
to the evaluation of the next coefficient ( fn−i−2); otherwise, we try the next possible value
for m.

Algorithm 2 Unranking a combination.

1: function UNRANKINGCOMBINATION(n, k, u)
2: u′ ← RANKCONVERSION(n, k, u)
3: p← UNRANKINGPERMUTATION(n, u′)
4: return the first k elements of p

1: function RANKCONVERSION(n, k, u)
2: F ← [0, . . . , 0] . n components in F
3: i← 0
4: m← 0
5: while i < k do
6: b← binomial(n− 1−m− i, k− 1− i)
7: if b > u then
8: F[n− 1− i]← m
9: i← i + 1

10: else
11: u← u− b
12: m← m + 1

13: . F is the factoradic decomposition
14: return composition(F)

binomial(n, k) computes the value of (n
k);

composition(F): computes the integer whose factoradic is F.
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The usual way to evaluate the efficiency of such an algorithm is to count the number
of times the binomial function is called (see, e.g., the book [7] (p. 66) or the papers [22,23]).
During the conversion from the rank of the combination to the one of the associated
permutation, the coefficients are obtained via trials (in the factoradic notation) for fn−1 to
fn−k, remarking that through our bijection Pn,k the latter sequence is weakly increasing.
Thus, the worst cases are obtained when the value fn−k is as large as possible, that is n− k.
In these cases, the number of calls to binomial is n.

To study the average number of calls to binomial, when u describes the whole range
from 0 to (n

k)− 1, we introduce the following cumulative sequence.

Lemma 2. Let un,k be the cumulative numbers of calls to binomial while unranking all possible
combinations u from 0 to (n

k)− 1. The sequence satisfies: un,0 = 0 and un,n+i = 0 for all n and
i > 0, and otherwise:

un,k =

(
n
k

)
+ un−1,k−1 + un−1,k.

In Table 2, we give the first values of un,k, when n is less than 9. The obtained sequence
is stored under the reference OEIS A127717 (throughout this paper, a reference OEIS A· · ·
points to Sloane’s Online Encyclopedia of Integer Sequences www.oeis.org (accessed on
15 March 2021)). The bijection between both structures is direct, and thus we provide new
information about this sequence in the following.

Table 2. First values of un,k for n = 1 . . . 8 and k = 0 . . . n (Algorithm 2).

n

k
0 1 2 3 4 5 6 7 8

1 0 1
2 0 3 2
3 0 6 8 3
4 0 10 20 15 4
5 0 15 40 45 24 5
6 0 21 70 105 84 35 6
7 0 28 112 210 224 140 48 7
8 0 36 168 378 504 420 216 63 8

Proof. The recurrence can be observed by unrolling the first iteration of the while loop. In
the first iteration of the loop, a binomial coefficient b is always computed (regardless the
value of k and n) which accounts for the term (n

k) in the recurrence relation. Then, for all
the ranks u such that u < b, we choose fn−1 = 0 and increment i, so that the rest of the
execution corresponds to unranking a combination of k− 1 elements among n− 1. This
is accounted for by un−1,k−1. Conversely, for all ranks u such that u ≥ b, the value of m is
incremented and the rest of the execution corresponds to unranking a combination of k
elements among n− 1, which is accounted for by un−1,k.

We turn to bivariate generating functions to encode the sequence (un,k) as a power
series and express the above recurrence as a simple equation satisfied by this function,
which can be solved explicitly. The reader can refer to the two books of Flajolet and
Sedgewick [24,25] for a global presentation of such method.

www.oeis.org
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Theorem 3. Let U(z, y) be the generating functions associated with (un,k). Then,

U(z, y) =
1

1− z− zy

(
1

1− z− zy
− 1

1− z

)
; thus

un,k =

(
n
k

)
k

k + 1
(n + 1).

Proof. The first step of the proof consists in exhibiting the ordinary generating function
associated with U(z, y). To obtain a functional equation satisfied by U, we start from the
result presented in Lemma 2. The extreme cases are un,0 = 0 and un,n+i = 0 for all n and
i > 0. The recursive equation is un,k = (n

k) + un−1,k−1 + un−1,k.
We remark the constant (n

k) in the equation. We thus need the bivariate generating
function of binomial coefficients. Let us denote it by B(z, y), which is equal to

B(z, y) = ∑
n≥0

n

∑
k=0

(
n
k

)
zn yk =

1
1− z− zy

.

To take into account the extreme cases, we must remove the terms corresponding to
k = 0:

B̃(z, y) =
1

1− z− zy
− 1

1− z
.

By summing both sides of the recursive relation and by taking care of the extreme
cases, we get:

∑
n≥1

n

∑
k=1

un,kzn yk = B̃(z, y) + ∑
n≥1

n

∑
k=1

un−1,k−1zn yk + ∑
n≥1

n

∑
k=1

un−1,kzn yk

U(z, y) = B̃(z, y) + z y U(z, y) + z U(z, y).

We thus deduce

U(z, y) =
1

1− z− zy

(
1

1− z− zy
− 1

1− z

)
.

The second step in the proof consists in extracting the coefficient un,k. We rewrite
U(z, y) as:

U(z, y) =
1

1− z(1 + y)

(
1

1− z(1 + y)
− 1

1− z

)
=

(
∑
r≥0

zr(1 + y)r

)
·
(

∑
r≥0

zr(1 + y)r − ∑
r≥0

zr

)

=

(
∑
r≥0

zr(1 + y)r

)
·
(

1− 1 + ∑
r≥1

zr((1 + y)r − 1
))

.

By extraction, the coefficient in front of zn is:

[zn]U(z, y) =
n−1

∑
`=0

(1 + y)`
(
(1 + y)n−` − 1

)
=

n−1

∑
`=0

(1 + y)n − (1 + y)`

= n(1 + y)n − (1 + y)n − 1
y

.



Algorithms 2021, 14, 97 10 of 25

The latter result corresponds to the distribution of the costs when k varies from 0 to n.
We can then exactly extract the coefficient of zn yk:

[zn yk]U(z, y) = n ·
(

n
k

)
−
(

n
k + 1

)
=

(
n
k

)
k

k + 1
(n + 1).

Corollary 1. To unrank a combination of k elements among n, the function
UNRANKINGCOMBINATION(n, k, ·) needs on average un,k/(n

k) calls to the function binomial.
For n being large and k being of the form αn for 0 < α < 1, this average number of calls is

un,k

(n
k)

=
n→∞
k=αn

n + 1− 1
α
+ O

(
1
n

)
.

The result is direct by using Theorem 3. Since we have the exact value of un,k, the
mean value can easily be computed in other cases such as k = o(n) or k = n− o(n).

3. Classical Unranking Algorithms

This section is dedicated to the presentation of a survey of the usual approaches to
unrank combinations in the lexicographic order. The motivation behind this section is
threefold. First, the classical algorithms were developed in the 1970s and 1980s and it
is a hard task to get access to the papers we mention. Second, although they have been
analyzed according to the number of calls to the binomial coefficient computations, we
present here a standardization of the analysis using generating functions such as in the
previous section. Finally, as shown in Section 4 and in the conclusion of the paper, a detailed
analysis of all the possible approaches is necessary to well understand the behaviors of
the computations.

3.1. Unranking through the Recursive Method

We are dealing with a combinatorial structure here, combinations, that is well under-
stood in the combinatorial sense. Thus, when trying to develop an unranking algorithm,
the first idea consists in developing one based on the classical recursive generation method
presented in [11]. This type of algorithm is based on a recursive decomposition of the
structure into smaller parts. Here, this idea is to use the following fact: a combination of k
elements among {0, 1, . . . , n− 1} either contains n− 1 or does not. In the first case, the rest
of the combination can be seen as a combination of k− 1 elements among n− 1 and in the
second case the combination is a combination of k elements among n− 1. From a counting
point of view, this translates into the well-known identity (n

k) = (n−1
k−1) + (n−1

k ) and, from an
unranking point of view, this translates into Algorithm 3.

Algorithm 3 Recursive Unranking.

1: function UNRANKINGRECURSIVE(n, k, u)
2: L← RECGENERATION(n, k, u)
3: L′ ← [0, . . . , 0] . k components
4: for i from 0 to k− 1 do
5: L′[i]← n− 1− L[k− 1− i]
6: return L′

1: function RECGENERATION(n, k, u)
2: if k = 0 then
3: return []

4: if n = k then
5: return [0, 1, 2, . . . , k− 1]
6: b← binomial(n− 1, k− 1)
7: if u < b then
8: R← RECGENERATION(n− 1, k− 1, u)
9: append(R, n− 1)

10: return R
11: else
12: return RECGENERATION(n− 1, k, u− b)
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Remark 1. An alternative choice would have been to test whether b < (n−1
k ) on Line 6. This

corresponds to putting first the combinations that do not contain n− 1 and then those that contain
n− 1. In this case, the unranking order is different but the performance is similar.

Proposition 3. The function RECGENERATION(n, k, u) computes the uth combination of k ele-
ments among n for the reverse co-lexicographic order.

Corollary 2. The function UNRANKINGRECURSIVE(n, k, u) computes the uth combinations of
k elements among n for the lexicographic order.

Proof. The proposition is proved by induction and the corollary is a direct observation
given in [26] (p. 47).

Here, again, we are interested in the average number of calls to the binomial function,
when u describes the whole range of integers from 0 to (n

k)− 1. Ruskey justified such a
measure by supposing the table of all binomial coefficients pre-computed, thus each call is
equivalent. In Section 4, we discuss this measure. We introduce the sequence (to simplify
the notations, we use several times the notations un,k and U(z) for distinct sequences and
series) un,k equal to the cumulative number of calls to binomial for the whole range of
possible values for u.

Lemma 3. Let un,k be the cumulative number of calls to binomial for the recursive unranking
while unranking all possible u from 0 to (n

k)− 1. The sequence satisfies: un,0 = 0 and un,n+i = 0
for all n and i ≥ 0, and otherwise

un,k =

(
n
k

)
+ un−1,k−1 + un−1,k.

Proof. If 0 < k < n, calling RECGENERATION(n, k, u) incurs one call to binomial and a
recursive call. The cumulative cost of the first call to binomial is (n

k), the cumulative cost of
the recursive calls for u < (n−1

k−1) is un−1,k−1 and the cumulative costs of the recursive calls
for u ≥ (n−1

k−1) is un−1,k.

In the following Table 3, we give the first values of un,k, when n is less than 9.

Table 3. First values of un,k for n = 1 . . . 8 and k = 0 . . . n (Algorithm 3).

n

k
0 1 2 3 4 5 6 7 8

1 0 0
2 0 2 0
3 0 5 5 0
4 0 9 16 9 0
5 0 14 35 35 14 0
6 0 20 64 90 64 20 0
7 0 27 105 189 189 105 27 0
8 0 35 160 350 448 350 160 35 0

Theorem 4. Let U(z, y) be the ordinary generating function associated with (un,k), such that
U(z, y) = ∑n≥0 ∑n

k=0 un,k yk zn. Then,

U(z, y) =
1

1− z− zy

(
1

1− z− zy
− 1

1− z
− zy

1− zy

)
, thus,

un,k =

(
n
k

)
k
(

n + 1
k + 1

− 1
n− k + 1

)
.
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The proof of Theorem 4 is very similar to the one of Theorem 3.

Proof. The first step of the proof consists in exhibiting the ordinary generating function
associated with U(z, y). To obtain the equation for U, we start from the result presented in
Lemma 3. The extreme cases are un,0 = 0 and un,n+i = 0 for all n and i ≥ 0. The recursive
equation is un,k = (n

k) + un−1,k−1 + un−1,k.
Again, the numbers (n

k) appear in the equation, thus we need the bivariate generating
function of binomial coefficients. Let us denote it by B(z, y). It satisfies:

B(z, y) = ∑
n≥0

n

∑
k=0

(
n
k

)
zn yk =

1
1− z− zy

.

To follow the extreme cases, we must remove the first column k = 0 and the diagonal
k = n:

B̃(z, y) =
1

1− z− zy
− 1

1− z
− zy

1− zy
.

By summing the recursive equation and taking care of the extreme cases, we get:

∑
n≥1

n

∑
k=1

un,kzn yk = B̃(z, y) + ∑
n≥1

n

∑
k=1

un−1,k−1zn yk + ∑
n≥1

n

∑
k=1

un−1,kzn yk

U(z, y) = B̃(z, y) + z y U(z, y) + z U(z, y).

We thus deduce

U(z, y) =
1

1− z− zy

(
1

1− z− zy
− 1

1− z
− zy

1− zy

)
.

The second step of the proof consists in extracting the coefficient un,k.

U(z, y) =
1

1− z(1 + y)

(
1

1− z(1 + y)
− 1

1− z
− zy

1− zy

)
=

(
∑
r≥0

zr(1 + y)r

)
·
(

∑
r≥0

zr(1 + y)r − ∑
r≥0

zr − ∑
r≥1

zryr

)

=

(
∑
r≥0

zr(1 + y)r

)
·
(

1− 1 + ∑
r≥1

zr((1 + y)r − 1− yr)).

By extraction the coefficient in front of zn is:

[zn]U(z, y) =
n−1

∑
`=0

(1 + y)`
(
(1 + y)n−` − 1− yn−`

)
=

n−1

∑
`=0

(1 + y)n − (1 + y)` − yn−`(1 + y)`

= n(1 + y)n − (1 + y)n − 1
y

− y(1 + y)n + yn+1.

The latter result corresponds to the distribution of the costs when k varies from 0 to n.
We can then extract the coefficient of zn yk:

[zn yk]U(z, y) = n ·
(

n
k

)
−
(

n
k + 1

)
−
(

n
k− 1

)
=

(
n
k

)(
n− n− k

k + 1
− k

n− k + 1

)
which completes the proof.
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This sequence un,k is a shifted version of the sequence stored under the reference
OEIS A059797. We thus can complete its properties in the OEIS using our results.

Due to the values of the extreme cases when k = 0 and k = n and the symmetry in the
recurrence, we obviously obtain that un,k = un,n−k, reflecting the symmetry of the binomial
coefficients.

Corollary 3. The function UNRANKINGRECURSIVE(n, k, ·) needs on average un,k/(n
k) calls to

the function binomial. For n being large and k being of the form α · n for 0 < α < 1, we get:

un,k

(n
k)

=
n→∞
k=αn

n + 2− 1
α(1− α)

+ O
(

1
n

)
.

Note that, for this algorithm too, the average complexity is only below the worst-case
complexity by a constant (when k ∼ αn).

Naturally, to be able to handle large values of n and k, a tail-recursive variant of this
algorithm, or an iterative version, should be preferred over the straightforward implemen-
tation. The recursive approach is a drawback for some programming languages that do
not handle recursion efficiently (due to the depth of the stack). Naturally, other strategies
have been suggested in the literature.

3.2. Unranking through Combinadics

In 1887, E. Pascal [15] and later D. H. Lehmer (detailed in the book [16] (p. 27))
presented an interesting way to decompose a natural number, in what we call today a
mixed radix numeral system. In their case, it is the so-called combinatorial number system,
or combinadics. The decomposition relies on binomial coefficients.

Fact 5. Let n ≥ k be two positive integers. For all integers u, with 0 ≤ u < (n
k), there exists a

unique sequence 0 ≤ c1 < c2 < · · · < ck < n such that (we extend the definition of binomial
coefficients with (n

k) = 0 when k > n)

u =

(
c1

1

)
+

(
c2

2

)
+ · · ·+

(
ck−1
k− 1

)
+

(
ck
k

)
.

The finite sequence (c1, . . . , ck) is called the combinadic of u.

For example, when n = 5 and k = 3, the number 8 is represented as (1
1) + (3

2) + (4
3),

thus the combinadic of 8 is (1, 3, 4). In Table 4, we present for various values of u the
combinadic of u and the combination of rank u for n = 6 and k = 2. Here, we observe
that the exhibited ranking is co-lexicographic and that the combination of rank u can
be deduced from the combinadic of u by reversing it and applying the transformation
x 7→ n− 1− x to each of its components.

In 2004, using this representation, McCaffrey exhibited, in the MSDN article [27], an al-
gorithm to build the uth element (in lexicographic order) of the combinations of k elements
among n. However, in fact, this algorithm was already published by Kreher and Stinson [26]
(p. 47) and can also be seen as an extension of the work of Lehmer. This algorithm is interest-
ing as it corresponds to the previous implementation used in the mathematics software sys-
tem Sagemath [28] (the previous unranking algorithm from Sagemath is stored in the Soft-
ware Heritage Archive swh:1:cnt:c60366bc03936eede6509b23307321faf1035e23;lines=539-
605). In the beginning of 2020, we replaced the Sagemath implementation by the algorithm
presented in Section 2 (the new unranking algorithm from Sagemath is stored in the Soft-
ware Heritage Archive swh:1:cnt:b2a68056554dbf90fa55e76820f348d9d55019e3;lines=539-
653 (accessed on 15 March 2021)).

The algorithm simply performs the combinadic decomposition of u and then ap-
plies the aforementioned transformation. The idea to get the combinadic of an integer
0 ≤ u < (n

k) is the following: ck is obtained as the maximum integer such that u ≥ (ck
k ), and

http://archive.softwareheritage.org/swh:1:cnt:c60366bc03936eede6509b23307321faf1035e23;origin=https://github.com/sagemath/sage;lines=539-605
http://archive.softwareheritage.org/swh:1:cnt:c60366bc03936eede6509b23307321faf1035e23;origin=https://github.com/sagemath/sage;lines=539-605
http://archive.softwareheritage.org/swh:1:cnt:b2a68056554dbf90fa55e76820f348d9d55019e3;origin=https://github.com/sagemath/sage;lines=539-653
http://archive.softwareheritage.org/swh:1:cnt:b2a68056554dbf90fa55e76820f348d9d55019e3;origin=https://github.com/sagemath/sage;lines=539-653
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then the remaining part u− (ck
k ) is smaller than (n−1

k−1) so it can be decomposed recursively
into a combinadic with k− 1 components smaller than n− 1. McCaffrey’s algorithm is
described in Algorithm 4.

Table 4. Combinadics and their combinations for n = 6 and k = 2.

Rank, u Reversed Rank, u′ = (6
2)− 1− u Combinadic of u′ Combination of Rank u

0 14 (4, 5) (0, 1)
1 13 (3, 5) (0, 2)
2 12 (2, 5) (0, 3)
3 11 (1, 5) (0, 4)
4 10 (0, 5) (0, 5)
5 9 (3, 4) (1, 2)
6 8 (2, 4) (1, 3)
7 7 (1, 4) (1, 4)
8 6 (0, 4) (1, 5)
9 5 (2, 3) (2, 3)
10 4 (1, 3) (2, 4)
11 3 (0, 3) (2, 5)
12 2 (1, 2) (3, 4)
13 1 (0, 2) (3, 5)
14 0 (0, 1) (4, 5)

Algorithm 4 Unranking a combination.

1: function UNRANKINGVIACOMBINADIC(n, k, u)
2: L← [0, . . . , 0] . k components
3: u′ ← binomial(n, k)− 1− u
4: v← n
5: for i from 0 to k− 1 do
6: v← v− 1
7: b← binomial(v, k− i)
8: while u′ < b do
9: v← v− 1

10: b← binomial(v, k− i)
11: u′ ← u′ − b
12: L[i]← n− 1− v
13: return L

As noted while explaining Table 4, we work with the reverse of the rank u (see Line 3 in
the algorithm) in order to unrank combinations in lexicographic order. The presented algo-
rithm is also close to Er’s algorithm [23] whose representation for combinations is distinct,
but the computations are analogous; furthermore, in his paper, Theorem 2 corresponds
exactly to the combinadic decomposition.

The function UNRANKINGVIACOMBINADIC(n, k, u) computes the combinations of k
elements among n of rank u in lexicographic order, although the core of the algorithm is
reverse co-lexicographic. The correctness of the algorithm is stated in [26].

Again, we express the complexity of this algorithm as its number of calls to the
binomial function. First note that, the values n and k being given, the worst cases are
obtained when v gets as small as possible at the end of the loop, thus for all u whose
combinadic satisfies c1 = 0. Hence, the worst case complexity is n− 1. Again, we complete
this analysis, by computing the average complexity of the algorithm. To reach this goal, we
again introduce the sequence un,k computing the cumulative number of calls to binomial
when u ranges from 0 to (n

k)− 1.
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Lemma 4. Let un,k be the cumulative numbers of calls to binomial while unranking all possible
u from 0 to (n

k)− 1. The sequence satisfies: un,0 = 1 and un,n+i = 0 for all n and i > 0, and
otherwise

un,k =

(
n
k

)
+ un−1,k−1 + un−1,k.

Table 5 presents the sequence given in Lemma 4. The difference with the two se-
quences studied before lies in the extreme cases. This sequence is a shifted version of the
sequence OEIS A264751. Both combinatorial objects can be put in bijection, and thus some
conjectures stated there are solved in the following.

Table 5. First values of un,k for n = 1 . . . 8 and k = 0 . . . n (Algorithm 4).

n

k
0 1 2 3 4 5 6 7 8

1 1 2
2 1 5 3
3 1 9 11 4
4 1 14 26 19 5
5 1 20 50 55 29 6
6 1 27 85 125 99 41 7
7 1 35 133 245 259 161 55 8
8 1 44 196 434 574 476 244 71 9

Proof. Note that n − ck calls to binomial are necessary to determine ck, then ck − ck−1
calls to determine ck−1, . . . , and finally c2 − c1 to determine c1. Hence, the total number
of binomial coefficients evaluations necessary to compute the combinadic of u is n− c1
(and thus only depends on c1). Besides, for a given j ≥ 0, the number of finite sequences
c1 = j < c2 < c3 < · · · < ck < n is equal to the number of sequences 0 ≤ c′2 < c′3 < · · · <
ck < n− j− 1 by the change of variable c′i ← ci − j− 1. Hence, this number is equal to
(n−1−j

k−1 ). In addition, there is a first call to binomial at the beginning of the algorithm to
reverse the rank, regardless of the value of u. We thus obtain:

un,k =

(
n
k

)
+

n−k

∑
j=0

(n− j) ·
(

n− j− 1
k− 1

)
.

Using the latter equation, the recursive equation is directly proved by induction.

Note that in this case the cumulative numbers are not symmetrical un,k 6= un,n−k. In
fact, the computation of the combinadics is not symmetrical.

Theorem 6. Let U(z, y) be the generating function associated with (un,k). Then,

U(z, y) =
1

1− z− zy

(
1

1− z− zy
− z

1− z

)
; thus

un,k =

(
n
k

)(
n + 1− n− k

k + 1

)
.

The proof is the same as for Theorem 3. The values for un,k are a bit different due to
the extreme cases un,0.
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Corollary 4. The average number of calls to binomial in Algorithm 4 for n being large and k
being of the form αn for 0 < α < 1 is

un,k

(n
k)

=
n→∞
k=αn

n + 2− 1
α
+ O

(
1
n

)
.

In the literature, another algorithm based on combinadics is given in [22]. We provide
a pseudo-code equivalent of the original Fortran algorithm in Algorithm 5. Note that the
algorithm does not handle the case k = 1, which should thus be treated separately. There,
in the computation of the combinadic for a given rank, the coefficients are computed from
the smallest one, c1, to the second largest one, ck−1, and finally the value for ck is directly
deduced with no need for further trials. In this algorithm, the variable L contains the
combinadic of u (not its reverse). We note two differences with Algorithm 4. First, the last
coefficient (ck) is directly computed without “trying” the different possible values as for
the previous coefficients (see Line 13 ). Second, it uses a combinatorial argument to find the
value of the ci coefficients that is the complementary of the argument used in the previous
algorithm: the number of sequences 0 ≤ c1 < c2 < · · · < ck < n with c1 ≥ j is equal to

∑
j
i=0 (

n−i−1
k−1 ), hence the accumulation performed in the r variable. The fact that the same

combinatorial argument can be used in two different ways here has to be put in parallel
with Remark 1 at the beginning of this section.

The first point mentioned above is an improvement over Algorithm 4, but in fact this
second algorithm is penalized by the extra addition that it has to perform and then undo
on Line 12 to find each ci. With this approach, it is mandatory to compute the accumulation
of binomial coefficients in r until it becomes greater than u to know when to exit the loop.
It appears in our experimentations in the next section that this has a noticeable impact
on performance.

Algorithm 5 Unranking a combination (alternative algorithm).

1: function UNRANKINGVIACOMBINADIC2(n, k, u)
2: L← [0, . . . , 0] . k components
3: r ← 0
4: for i from 0 to k− 2 do
5: if i 6= 0 then L[i]← L[i− 1]
6: else L[i]← −1
7: while true do
8: L[i]← L[i] + 1
9: b← binomial(n− L[i]− 1, k− i− 1)

10: r ← r + b
11: if r > u then exit the loop

12: r ← r− b

13: L[k− 1]← L[k− 2] + u− r + 1
14: return L

UNRANKINGVIACOMBINADIC2(n, k, u) is a lexicographic unranking for combina-
tions. This algorithm was presented by Buckles and Lybanon [22], and its correctness is
presented in [26]. Finally, note it is approximately the implementation in Matlab [29] whose
code was also presented by Ruskey ([7], p. 65). The latter approach also does trials to find
the last coefficient of the combination instead of computing it directly on Line 13.
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Lemma 5. Let un,k be the cumulative numbers of calls to binomial while unranking all possible u
from 0 to (n

k)− 1. For all n, the sequence satisfies un,k = 0 when k = 1, 2 or k > n, and otherwise

un,k =

(
n
k

)
+ un−1,k−1 + un−1,k.

The result is proved in an analogous way as Lemma 4, summing over ck−1 instead of
c1. In Table 6, we compute the first values of (un,k). We note the first values are smaller
than the previous ones, and Theorem 7 gives their asymptotic behavior.

Table 6. First values of un,k for n = 1 . . . 8 and k = 0 . . . n (Algorithm 5).

n

k
0 1 2 3 4 5 6 7 8

1 0 0
2 0 0 1
3 0 0 4 2
4 0 0 10 10 3
5 0 0 20 30 18 4
6 0 0 35 70 63 28 5
7 0 0 56 140 168 112 40 6
8 0 0 84 252 378 336 180 54 7

Theorem 7. Let U(z, y) be the generating functions associated with (un,k). Then,

U(z, y) =
z2 y2

(1− z)2 (1− z− zy)2 ; thus

un,k =

(
n
k

)
k− 1
k + 1

(n + 1).

Corollary 5. The average number of calls to binomial in Algorithm 5 for n being large and k
being of the form αn for 0 < α < 1 is

un,k

(n
k)

=
n→∞
k=αn

n + 1− 2
α
+ O

(
1
n

)
.

The improvement for the efficiency of the algorithm is seen only on the second order
in comparison to the one of Corollary 4 on average. Let us conclude this part with an
interesting remark.

Remark 2. In our Algorithm 3, while unranking k elements among n, we combinatorially see (n
k)

as first (n−1
k−1) and otherwise at (n−1

k ). This is the same approach as in Algorithm 5. However, as
explained after Algorithm 3, we could have first been interested in (n−1

k ) and then in (n−1
k−1). Then,

the algorithm would have been in a reverse co-lexicographic fashion, and it would follow exactly the
same approach as Algorithm 4.

4. Improving Efficiency and Realistic Complexity Analysis

Finally, we show that the complexity model used above is no longer adequate. Al-
though the approximation that computing one binomial coefficient has a constant cost
seems to have been sufficient in the past (due the limitation of the implementations to
32-bit integers; see the work of McCaffrey [27], who seems to be the first to introduce
combination unranking using big integer computations), this is no longer a valid model as
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big integers are now more widely used. We discuss the impact of big integer arithmetic
and some optimizations that significantly improve the performance of all algorithms.

From the two last sections, we know the different algorithms that are mostly used in
practice. However, having in mind the results exhibited in Table 1, implementations may
vary a lot. Obviously, using a specialized library for big integer arithmetic such as the GMP
C library is the best way to carry out fast operations, but the distinct behaviors observed in
the table suggests that deeper differences exists between the various implementations than
just the choice of the library.

For all algorithms, we prove that the average number of calls to the binomial function
is equivalent to n (when k grows linearly). A first question to investigate is about this
complexity measure: Is it reasonable? An obvious approach consists in comparing these
results with the actual run time of the algorithms.

4.1. First Experiments to Visualize the Time Complexity in a Real Context

In the two next plots in Figure 1, we present the average time needed for the compu-
tations of 500 combinations for each pair (n, k = n/2) where n ranges from 250 to 10,000
with a step size of 250. The choice k = n/2 was made because it corresponds to the worst
complexity cases when k varies from 0 to n. To conduct our experiments, we implemented
all algorithms in C using the classical GMP library for big integers arithmetic (the imple-
mentation and the exhaustive material used for repeating the experiments are available
at http://github.com/Kerl13/combination_unranking (accessed on 15 March 2021)). The
experiments were run on a standard laptop PC with an I7-8665U CPU, 32Gb RAM run-
ning Ubuntu Linux 2020. Moreover, except for Table 1, which required running different
computer algebra systems and thus the X server, the experiments were run in the console
while the X server and other time-consuming services (wifi, sound, etc.) were off. On
the leftmost plot, we present the average time for the unranking of a combination for n
ranging from 250 to 10,000 by steps of 250 too. Note that all the curves are merged: all
algorithms seem to need almost exactly the same time to unrank a combination. In the
rightmost plot, we present a version with memoization (memoization is an optimization
technique consisting in storing the results of expensive function calls and returning the
cached values when the function is called again with the same arguments; this technique
is sometimes called “tabling”) for the algorithms: we first run a pre-computation step
storing all binomial coefficients that will be used. The second step consists in unranking
the combinations by using the pre-calculated values for the binomial coefficients. In our
plot, we present only the time used for the second step. We remark that the recursive
Algorithm 3 is not as efficient as the others. Below, we show that this is due to its recursive
nature and that this can be easily avoided. As explained above, Algorithm 5 should be less
efficient than Algorithm 4, which is indeed apparent in the plots. Our Algorithms 2 and 4
are the most efficient when used in this setup.

Figure 1. Time (in ms) for unranking a combination, with n = 250 . . . 10,000 and k = n/2.

While the number of evaluations of binomial coefficients is linear in n, it is clear that it
is not the case for the time complexity of the algorithms (see the leftmost plot). However,

http://github.com/Kerl13/combination_unranking
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once the binomial coefficients have been pre-computed, running the four algorithms
without computing binomial coefficients is closer to a linear function but they still are not
really linear.

While memoizing all binomial coefficients when n is of order of some hundreds is
possible, it is no longer the case when n is of the order of several thousands (for the
experiments in Figure 1, we only computed the necessary binomial coefficients using a lazy
approach). Such use cases did not occur when the methods (e.g., [22,23]) were derived.
However, now that big integers are more widely used, it becomes reasonable to unrank
combinations of large size and it is thus necessary to take the cost of arithmetic operations
into account. The first use of big integers for combination unranking appears to date back
to 2004 [27].

4.2. Improving the Implementations of the Algorithms

Before going further with the experiments, we propose an improvement in the com-
putation of the binomial coefficient, which is applicable to all algorithms presented in
this paper.

In all of the presented algorithms, a binomial coefficient is computed at each step of
the generation. There are various ways to implement those. One possibility is to compute
the two products n · (n− 1) · (n− 2) · · · (n− k + 1) and k! separately using a divide and
conquer strategy as described in [30] (Section 15.3) and then to compute the division.

In the unranking algorithms, instead of doing the “full” evaluation of the binomial
coefficient at each step, it is possible to reuse the computations from the previous step and
obtain the value of the new coefficient by a constant number of multiplications or divisions
by a small integer. This is possible because in all algorithms the parameters of the binomial
coefficients vary only by ±1 from one step to the next. For instance, in Algorithm 2, just
before incrementing i on Line 9, the coefficient for the next iteration can be obtained by
multiplying b by k− 1− i and dividing it by n− 1−m− i. Similarly, in the other branch
of the if, just before incrementing m on Line 12, the value of the coefficient for the next
iteration can be obtained by multiplying b by n−m− k and dividing it by n− 1−m− i.
In the end, only the first binomial coefficient is computed from scratch and all others are
obtained as described above. This lowers the amortized cost of computing one coefficient
to Θ(1) multiplication of a big integer by a small integer. This optimization is applicable to
all the algorithms presented in this paper.

In Algorithm 6, we propose an optimized version of our Algorithm 2 based on the
above remarks. It also includes some other enhancements. First, instead of computing the
permutation rank of the combination and then unranking the combination as a permutation,
it is possible to process the coefficients of the factoradic decomposition on the fly to extract
the right value from the set {0, 1, 2, . . . , n− 1}. Second, we can note that we are in a special
use-case of the EXTRACT function where values are extracted in increasing order. Hence,
there is no need to explicitly store the set of remaining values (not yet in the combination)
to get access to its mth value: it is m + i where i is the number of already extracted values.
Finally, the last component of the combination can be deduced without computing more
binomial coefficients (Line 15) in order to leave the loop earlier.

Before going on with the efficiency comparisons, we use the remarks related to the
binomial coefficient computation to improve Algorithms 3–5. Furthermore, to make the
comparison fair, we used a variant of Algorithm 3 for the recursive approach in which the
array storing the result is allocated with the right size at the beginning of the execution, as
in the other algorithms. In addition, in order not to penalize it due to its recursive nature,
the order of some instructions have been changed so that it is tail-recursive. The optimized
version is given in Algorithm 7.

In UNRANKTR, the variable i represents the position in L of the next value to be
computed and the variable m represents the next candidate to be the value of L[i]. The
invariant satisfied by b is that UNRANKTR is always called with b = n · (n−1

k−1).
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Algorithm 6 Unranking a combination with optimization.

1: function OPTIMIZEDUNRANKINGCOMBINATION(n, k, u)
2: L← [0, . . . , 0] . k components
3: b← binomial(n− 1, k− 1) · n
4: m← 0; i← 0;
5: while i < k− 1 do . Invariant: b = (n−m−i−1

k−1−i ) · (n−m− i)
6: b← b/(n−m− i)
7: if b > u then
8: L[i]← m + i
9: b← b · (k− i− 1)

10: i← i + 1
11: else
12: u← u− b
13: b← b · (n−m− k)
14: m← m + 1

15: if k > 0 then L[k− 1]← n + u− b
16: return L

We propose a second time efficiency comparison for some algorithms with their
optimizations in Figure 2. Comparing this plot with the leftmost one of Figure 1, we note
that, when n = 10,000, the algorithms run approximately 45 times faster. Again, we note
that Algorithm 5 is still less efficient than the others, which all seem to be equivalent.

Algorithm 7 Recursive method with optimizations.

1: function OPTIMIZEDUNRANKING-
RECURSIVE(n, k, u)

2: L← [0, . . . , 0] . k components
3: b← binomial(n, k)
4: UNRANKTR(L, 0, 0, n, k, u, b)
5: return L

1: function UNRANKTR(L, i, m, n, k, u, b)
2: if k = 0 then do nothing
3: else if k = n then
4: for j from 0 to k− 1 do
5: L[i + j]← m + j
6: else
7: b← b/n
8: if u < b then
9: L[i]← m

10: b← (k− 1) · b
11: UNRANKTR(L, i + 1, m + 1, n− 1, k− 1, u, b)
12: else
13: u← u− b
14: b← (n− k) · b
15: UNRANKTR(L, i, m + 1, n− 1, k, u, b)

Figure 2. Time (in ms) for unranking a combination with the optimized algorithms.
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To understand the behavior of the curves of the above plot, we introduce another way
to analyze the time complexity in Figure 3. Now, we take n = 10,000 and we let k range
from 250 to 9750 with an iteration step of 250. For each step, we present an average value
for 500 tests. Again (in the leftmost plot), the dashed lines correspond to the first version
of each algorithm and the solid lines to the optimized versions. In the rightmost plot, we
only focus on the optimized versions of the four algorithms. We remark that the worst
time complexity is obtained when k = n/2. In addition, Algorithm 6 and the tail-recursive
Algorithms 4 and 7 behave in almost the same way. Whereas Algorithm 4 is a little bit more
efficient when k < n/2, the two other are a bit more efficient for the second half range.

Figure 3. Time (in ms) for unranking a combination, with n = 10,000 and k = 25 . . . 9975.

Thus, the curves for Algorithms 4, 6, and 7 (once optimized) are hard to distinguish.
There is a surprising explanation for this. In fact, it can be shown that all three algorithms
perform the exact same arithmetic operations on big integers except for a few terms at then
end of their execution, due to their different base cases. In the case of the recursive and
factoradic-based algorithms, the similarity goes further. Algorithm 7, being tail-recursive, it
can be automatically translated into the imperative style (the conversion of a tail-recursive
algorithm into its imperative version is called “tail-call” optimization and is implemented
by most compilers for languages with recursion) and the result of the automatic translation
is an algorithm which is almost identical to Algorithm 2. In the case of Algorithm 4 (once
optimized), although the computations are the same, they are used to obtain the values of
the ci coefficients in a different order, which makes the parallel less obvious.

As a result, the only fundamental differences between all these algorithms are their
base cases. Since they are all based on a different combinatorial point of view, their base
cases have been characterized slightly differently, but, as we can see by comparing the
results of their complexity analyses (establishing how many calls to binomial are done),
this only impacts the second order of their complexity.

Besides, for all algorithms, a significant speed-up can be achieved by re-using the
value of the most recently computed binomial coefficient.

4.3. Realistic Complexity Analysis

We now propose a more precise complexity analysis based on a more realistic cost
model. Recall that we are dealing with big integers. More precisely for n and k being given,
the ranks as well as the binomial coefficients computed during the generation can have up
to Ln,k = 1 + log2 (

n
k) bits. Using Stirling’s approximation, we get that

Ln,k ∼n→∞
k=αn

n
(

α log2
1
α
+ (1− α) log2

1
1− α

)
.

Besides, the cost of the multiplication of a big integer with O(n) bits with a smaller
integer of O(ln n) bits can be bounded by O( n

ln n M(ln n)) where M(x) is the cost of multi-
plying two x-bits integers. This can be achieved by writing the big integer in base 2log2 n = n
and performing the multiplication using the naive “textbook” algorithm in this base. The
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first term n
ln n counts the number of operations done in base n and the second term M(ln)

is the cost of one single multiplication in this base.
A rough upper bound for M(x) is x2, obtained by using the naive multiplication

algorithm. Actually, the naive algorithm is often used in practice for small values of
x since the asymptotically more efficient algorithms only become better above a given
threshold. For our use-case, n is likely to fit in a machine word in practice and thus
the naive algorithm must be used. Hence, the upper bound of O(n ln n) for the cost of
the multiplication of a small integer by a big integer should faithfully reflect the actual
runtime of our implementations, although it is theoretically not optimal. A tighter bound
of O(n(ln ln n)(ln ln ln n)) can be obtained by using the Schönhage–Strassen algorithm,
although it is not advisable in practice.

In addition to the cost of the multiplications discussed above, a linear number of
comparisons and additions are performed. The cost of one such operation is linear in n
and thus negligible compared to the cost of the multiplications. Finally, the first binomial
coefficient must be computed from scratch which can be done at negligible cost compared
to n2

ln n M(ln n).
By combining the above discussion with the results from the previous sections, we get

the average bit-complexity of all algorithms when k grows linearly with n, as presented in
Theorem 8.

Theorem 8. For all the optimized algorithms of the present paper, there exist a constant c > 0
such that for all n large enough and k = αn for 0 < α < n, the bit-complexity of the algorithm is
bounded by:

c · n2 ln n ·
(

α log2
1
α
+ (1− α) log2

1
1− α

)
.

In Figure 4, we display the time complexity of our algorithm (in green) with the graph
of the function α 7→ C ·

(
α ln 1

α + (1− α) ln 1
1−α

)
where the constant C was chosen so that

the maximum values of both curves coincide.
This validates experimentally our complexity results. Besides, we checked by profiling

the optimized algorithms that most of the run time is spent in the arithmetic operations,
which also confirms the validity of our complexity model.

Figure 4. Merge of Algorithm 2 and its theoretical complexity.

5. Extensions of the Algorithmic Context
5.1. Objects Counted by Multinomial Coefficients

Let n and m be two positive integers and let K = (k1, k2, . . . , km) be a finite sequence
of non-negative integers whose sum equals n. The multinomial coefficient ( n

k1,...,km
) counts

the number of ways of depositing n distinct objects into m distinct buckets such that there
are ki objects in the ith bucket. It can also be interpreted as combination with repetitions as
follows. Consider we have a (large enough) pool of m kinds of different objects and we
must pick a finite sequence of n objects from this pool such that k1 of them are of the first
kind, k2 of the second kind, and so on.
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Note that, when m = 2, the multinomial coefficient corresponds to a binomial coef-
ficient. Informally, Proposition 1 (related to combinations) states that combinations are
in one-to-one correspondence with permutations containing two increasing runs. We
have an analogous interpretation here. The ranks from 0 to ( n

k1,...,km
)− 1 are in one-to-one

correspondence with size-n permutations composed of m increasing runs. We now exhibit
this link more formally.

Proposition 4. Let n and m be two positive integers and let K = (k1, k2, . . . , km) be a sequence of
non-negative integers such that ∑i ki = n. Each object enumerated by ( n

k1,...,km
) is represented by a

finite sequence (`1, `2, `km) where for all 1 ≤ i ≤ m, `i is an increasing finite sequence of length ki.
Furthermore, the union over i of all elements of `i is exactly {0, 1, . . . , n− 1}.

Our unranking algorithm relies on the classical formula expressing the multinomial
coefficient as a product of binomial coefficients.(

n
k1, . . . , km

)
=

(
km

km

)
·
(

km + km−1

km−1

)
· · ·
(

km + · · ·+ k2

k2

)
·
(

km + · · ·+ k1

k1

)
.

Algorithm 8 Unranking a combination with repetitions.

1: function UNRANKINGCOMBINATIONWITHREPETITIONS(n, K = (k1, . . . , km), u)
2: F ← [0, . . . , 0] . n components in M
3: u′ ← u
4: n′ ← km
5: for i from m− 1 downto 1 do
6: n′ ← n′ + ki
7: b← binomial(n′, ki)
8: (u′, u′′)← division(u′, b)
9: F′ ← factoradic(RANKCONVERSION(n′, ki, u′′))

10: for j from 0 to ki − 1 do
11: F[n′ − ki + j]← F′[n′ − ki + j]

12: r ← composition(F)
13: return UNRANKINGPERMUTATION(n, r)

division(s, t): returns the pair (q, r) corresponding respectively to the quotient and the
remainder of

the integer division of s by t.

Proposition 5. The function UNRANKINGCOMBINATIONWITHREPETITIONS(n, (k1, . . . , km), u)
computes the uth object counted by ( n

k1,...,km
) in lexicographic order.

The core of the algorithm consists in computing the rank of the permutation, written
in factoradics, associated with the combination with repetitions we are interested in. It
remains then to unrank a permutation.

Proof. Based on Proposition 4, the core of the algorithm computes the rank of a permuta-
tion containing m increasing runs respectively of lengths k1, k2, . . . , km. Determining the
contribution of each run in the factoradic decomposition of the permutation rank is done in
the external loop starting in Line 5, from km down to k1. The correctness of our algorithm
relies on the following loop invariant:

• The values of f j for all 0 ≤ j < km + · · ·+ ki+1 have been computed and stored in F.
• The values of fkm+···+ki+1

, . . . , fkm+ki+1+ki−1 (which has not been determined yet, as

we enter the loop) are equal to the factoradics of the rank u′mod(km+···+ki
ki

) in the
combinations of ki elements among km + · · ·+ ki possible elements.
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• The variable u′ holds the rank of the runs that must be still unranked.

Once the factoradic F′ of the run under consideration has been computed (Line 10), it
remains to update F according to the ki last components of F′.

5.2. Objects Counted by k-Permutations

Let n and k be two positive integer. A k-permutation is given by a combination
of k elements among n elements, and an ordering of these k elements. The number of
k-permutation over a set of n elements is given by:

k!
(

n
k

)
=

(
n

1, . . . , 1, n− k

)
.

Proposition 6. The function UNRANKINGKPERMUTATION(n, k, u) returns the result of a call
to UNRANKINGCOMBINATIONWITHREPETITIONS(n, (1, . . . , 1, n− k), u). Thus, it computes
the uth k-permutation among n elements in lexicographic order.

Proof. The facts that both combinatorial classes have the same cardinality and that the al-
gorithm for unranking combination with repetitions is lexicographic induce the correctness
of the function.

6. Conclusions

In the present article, we first exhibit, in Section 2, a new algorithm based on the
classical factoradic numeral system for the lexicographic unranking of combinations. We
also give a first step complexity analysis of the algorithm.

Section 3 is dedicated to the survey of three classical algorithms. The first one is the
algorithm based on the so-called recursive method. The other two algorithms are based on
combinadics, which is a numeral system particularly suited to representing combinations.
To the best of our knowledge, it is the first time that both algorithms are compared. During
the survey, we extend our complexity analysis based on a generating function approach, as
presented in Section 2, in order to obtain a uniform presentation of the analysis of all four
algorithms. Obviously, we thus reprove their average complexity results but with more
details. Then, in Section 4, we compare their efficiency experimentally and propose a way
to improve all these algorithms based on classical formulas of the binomial coefficient.

As a surprising result, we find that all the usual algorithms share a very similar
core, doing almost the same computations in order to reconstruct the combination under
consideration.

One interesting remark is that understanding in detail the core computations that are
necessary to unrank combinations, it is possible to significantly improve all algorithms.
This understanding, joined with a detailed and realistic theoretical complexity analysis,
leads to a prediction of the run time of the algorithm that closely matches the actual run
time of their implementations.

However, due to details that are neglected in practice, we realize in Table 1 that some
improvements are still necessary in various computer algebra systems in order to get the
most efficient implementations possible for the unranking of combinatorial objects.

Finally, in Section 5, we extend our approach to solve the problem of unranking struc-
tures enumerated by multinomial coefficients and objects counted by the k-permutations
of n elements (also called arrangements).
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