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Abstract: Cicerone and Di Stefano defined and studied the class of k-distance-hereditary graphs, i.e.,
graphs where the distance in each connected induced subgraph is at most k times the distance in the
whole graph. The defined graphs represent a generalization of the well known distance-hereditary
graphs, which actually correspond to 1-distance-hereditary graphs. In this paper we make a step
forward in the study of these new graphs by providing characterizations for the class of all the
k-distance-hereditary graphs such that k < 2. The new characterizations are given in terms of both
forbidden subgraphs and cycle-chord properties. Such results also lead to devise a polynomial-time
recognition algorithm for this kind of graph that, according to the provided characterizations, simply
detects the presence of quasi-holes in any given graph.

Keywords: distance-hereditary graphs; stretch number; recognition problem; forbidden subgraphs;
hole detection

1. Introduction

Distance-hereditary graphs have been introduced by Howorka [1], and are defined as
those graphs in which every connected induced subgraph is isometric; that is, the distance
between any two vertices in the subgraph is equal to the one in the whole graph. Therefore,
any connected induced subgraph of any distance-hereditary graph G “inherits” its distance
function from G. Formally:

Definition 1 (from [1]). A graph G is a distance-hereditary graph if, for each connected induced
subgraph G′ of G, the following holds: dG′(x, y) = dG(x, y), for each x, y ∈ G′.

This kind of graph have been rediscovered many times (e.g., see [2]). Since their
introduction, dozens of papers have been devoted to them, and different kinds of char-
acterizations have been found: metric, forbidden subgraphs, cycle/chord conditions,
level/neighborhood conditions, generative, and more (e.g., see [3]). Among such results,
the generative properties resulted as the most fruitful for algorithmic applications, since
they allowed researchers to efficiently solve many combinatorial problems in the class of
distance-hereditary graphs (e.g., see [4–9]).

From an applicative point of view, distance-hereditary graphs are mainly attractive
due to their basic metric property. For instance, these graphs can model unreliable com-
munication networks [10,11] in which vertex failures may occur: at a given time, if sender
and receiver are still connected, any message can be still delivered without increasing the
length of the path used to reach the receiver.

Since in communication networks this property could be considered too restrictive,
in [12] the class of k-distance-hereditary graphs has been introduced. These graphs can model
unreliable networks in which messages can eventually reach the destination traversing a
path whose length is at most k times the length of a shortest path computed in absence
of vertex failures. The minimum k a network guarantees regardless the failed vertices is
called stretch number. Formally:
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Definition 2 (from [12]). Given a real number k ≥ 1, a graph G is a k-distance-hereditary
graph if, for each connected induced subgraph G′ of G, the following holds: dG′(x, y) ≤ k · dG(x, y),
for each x, y ∈ G′.

The class of all the k-distance-hereditary graphs is denoted by DH(k). Concerning
this class of graphs, the following relationships hold:

• DH(1) coincides with the class of distance-hereditary graphs;
• DH(k1) ⊆ DH(k2), for each k1 ≤ k2.

Additional results about the class hierarchy DH(k) can be found in [13,14]. It is worth
to notice that this hierarchy is fully general; that is, for each arbitrary graph G there exists a
number k such that G ∈ DH(k). It follows that the stretch number of G, denoted as s(G),
is the smallest number t such that G belongs to DH(t). In [12], it has been shown that the
stretch number s(G) of any connected graph G can be computed as follows:

• the stretch number of any pair {u, v} of distinct vertices is defined as sG(u, v) =
DG(u, v)/dG(u, v), where DG(u, v) is the length of any longest induced path between
u and v, and dG(u, v) is the distance between the same pair of vertices;

• s(G) = max{u,v} sG(u, v).

It follows that for any non-trivial graph G with n ≥ 4 vertices, by simply maximizing
D(u, v) and minimizing d(u, v), we get s(G) ≤ (n− 2)/2. From the above relationship
about s(G), we get that the stretch number is always a rational number. Interestingly, it has
been shown that there are some rational numbers that cannot be stretch numbers. Formally,
a positive rational number t is called admissible stretch number if there exists a graph G
such that s(G) = t. The following result characterizes which numbers are admissible
stretch numbers.

Theorem 1 (from [14]). A rational number t is an admissible stretch number if and only if
t = 2− 1

i , for some integer i ≥ 1, or t ≥ 2.

Apart from the interesting general results found for the classes DH(k), the original
motivation was studying how (if possible) to extend the known algorithmic results from
the base class, namely DH(1), to DH(k) for some constant k > 1. According to Theorem 1,
in this work we are interested in studying the class containing each graph G such that
s(G) < 2. Since this class contains graphs with stretch number strictly less than two,
throughout this paper it will be denoted by sDH(2).

Results. In this work, we provide three results for the class sDH(2), namely two
different characterizations and a recognition algorithm (notice that the characterizations
have already been presented in [13] but with omitted proofs). The first characterization
is based on listing all the minimal forbidden subgraphs for each graph in the class. It is
interesting to observe the similarity with the corresponding result for the class DH(1):

• (adapted from [2]) G ∈ DH(1) if and only if the following graphs are not induced
subgraphs of G:

– holes Hn, for each n ≥ 5;
– cycles C5 with cd(C5) = 1;
– cycles C6 with cd(C6) = 1.

• (this paper) G ∈ sDH(2) if and only if the following graphs are not induced subgraphs
of G:

– holes Hn, for each n ≥ 6;
– cycles C6 with cd(C6) = 1;
– cycles C7 with cd(C7) = 1;
– cycles C8 with cd(C8) = 1.
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Here we used the notion of “chord distance” cd(C) to express the position of possible
chords within any cycle C (see Section 2 for a formal definition). Notice that in [14] a similar
result has been provided for the generic class DH(2− 1

i ), i > 1.
The second result is a characterization based on a cycle-chord property. As in the

previous case, notice the similarity with the corresponding result for the class DH(1):

• (from [12]) G ∈ DH(1) if and only if cd(Cn) > 1 for each cycle Cn, n ≥ 5, of G;
• (this paper) G ∈ sDH(2) if and only if cd(Cn) > 1 for each cycle Cn, n ≥ 6, of G.

The last result is a recognition algorithm for graphs belonging to sDH(2) that works
in O(n2m2) time and O(m2) space. Basically, this algorithm exploits the result based on
the cycle-chord property and, as a consequence, simply detects quasi-holes in any graph.
A quasi-hole is any cycle with at least five vertices and chord-distance at most one (i.e.,
all the possible chords of the cycle must be incident to the same vertex). This algorithm
is obtained by adapting the algorithm provided in [15] for detecting holes (i.e., any cycle
with at least five vertices and no chords).

Outline. The paper is organized as follows. In Section 2, we introduce notation and
basic concepts used throughout the paper. Sections 3 and 4 are devoted to providing the
characterization based on minimal forbidden subgraphs and cycle-chord conditions for
graphs in sDH(2), respectively. In Section 5, we provide the algorithm for detecting quasi-
holes and hence to solve the recognition problem for the class sDH(2). Finally, Section 6
provides some concluding remarks.

2. Notation and Basic Concepts

We consider finite, simple, loop-less, undirected, and unweighted graphs G = (V, E)
with vertex set V and edge set E. A subgraph of G is a graph having all its vertices and edges
in G. Given S ⊆ V, the induced subgraph G[S] of G is the maximal subgraph of G with vertex
set S. Given u ∈ V, NG(u) denotes the set of neighbors of u in G, and NG[u] = NG(u)∪ {u}.

A sequence of pairwise distinct vertices (x0, x1, . . . , xk) is a path in G if (xi, xi+1) ∈ E
for 0 ≤ i < k; vertex xi, for each 0 < i < k, is an internal vertex of that path. A chord of a path
is any edge joining two non-consecutive vertices in the path, and a path is an induced path
if it has no chords. We denote by Pk any induced path with k ≥ 3 vertices (e.g., an induced
path on three vertices is denoted as P3 whereas an induced path on four vertices is denoted
as P4). Two vertices x and y are connected in G if there exists a path (x, . . . , y) in G. A graph
is connected if every pair of vertices is connected.

A cycle in G is a path (x0, x1, . . . , xk−1) where also (x0, xk−1) ∈ E. Two vertices xi and
xj are consecutive in the cycle (x0, x1, . . . , xk−1) if j = (i + 1) mod k or i = (j + 1) mod k.
A chord of a cycle is an edge joining two non-consecutive vertices in the cycle. We denote
by Ck any cycle with k ≥ 3 vertices, whereas Hk denotes a hole, i.e., a cycle Ck, k ≥ 5,
without chords. The chord distance of a cycle Ck is denoted by cd(Ck) and is defined as the
minimum number of consecutive vertices in Ck such that every chord of Ck is incident
to some of such vertices (see Figure 1 for an example of chord distance). We assume
cd(Hk) = 0.

The length of any shortest path between two vertices x and y in a graph G is called
distance and is denoted by dG(x, y). Moreover, the length of any longest induced path
between them is denoted by DG(x, y). If x and y are distinct vertices, we use the symbols
pG(x, y) and PG(x, y) to denote any shortest and any longest induced path between x
and y, respectively. Sometimes, when no ambiguity occurs, we also use pG(x, y) and
PG(x, y) to denote the sets of vertices belonging to the corresponding paths. If dG(x, y) ≥ 2,
then {x, y} is a cycle-pair if there exist two induced paths pG(x, y) and PG(x, y) such that
pG(x, y) ∩ PG(x, y) = {x, y}. In other words, if {x, y} is a cycle-pair, then there exist
induced paths pG(x, y) and PG(x, y) such that the vertices in pG(x, y) ∪ PG(x, y) form a
cycle in G; this cycle is denoted by G[x, y]. In Figure 1 {v3, v6} is a cycle-pair that induces
the cycle (v3, v4, v5, v6, v1); in particular, G[v3, v6] is induced by pG(v3, v6) = (v3, v1, v6)
and PG(v3, v6) = (v3, v4, v5, v6). We use the symbol S(G) to denote the set containing all
pairs {u, v} of connected vertices that induce the stretch number of G, namely S(G) =
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{{x, y} : sG(x, y) = s(G)}. The following lemma states that cycle-pairs are useful to
determine the stretch number.

v3

v4

v2v1

v5

v6

Figure 1. The chord distance of this C6 graph is two because: (i) vertices v1 and v2 are consecutive in
the cycle, (ii) every chord is incident to one of such vertices, and (iii) there is no other set with less
than two vertices with the same properties.

Lemma 1 (from [12]). Let G be a graph such that s(G) > 1. The following relationships hold:

(i) dG(u, v) ≥ 2 for each pair {u, v} such that {u, v} ∈ S(G),
(ii) there exists a cycle-pair {u, v} that induces the stretch number of G, that is {u, v} ∈ S(G).

This lemma suggests that studying s(G) concerns the analysis of cycles in G. In partic-
ular, if {u, v} is a cycle-pair that belongs to S(G), then the cycle G[u, v] is called inducing-
stretch cycle for G. In Figure 1, the represented graph G belongs to DH(3/2); moreover,
both {v3, v5} and {v3, v6} are cycle-pairs in S(G), and (v1, v3, v4, v5, v6) is the correspond-
ing inducing-stretch cycle.

3. A Characterization Based on Forbidden Subgraphs

A well known characterization based on minimal forbidden subgraphs has been provided
for the class of distance-hereditary graphs.

Theorem 2 (from [2]). A graph G is a distance-hereditary graph if and only if it does not contain,
as an induced subgraph, any of the following graphs: the hole Hn, n ≥ 5, the house, the fan, and the
domino (cf. Figure 2).

Figure 2. The minimal forbidden subgraphs of distance-hereditary graphs: from left to right, the hole,
the house, the fan, and the domino. Dashed lines represent paths of length at least one.

This result can be easily reformulated, and simplified, by using the notion of chord
distance. In particular, it is possible to characterize in a compact way all the forbidden
subgraphs by using just the notion of chord distance as follows:

• G is a distance-hereditary graph if and only if the following graphs are not induced subgraphs
of G:

(i) Hn, for each n ≥ 5;
(ii) cycles C5 with cd(C5) = 1;
(iii) cycles C6 with cd(C6) = 1.

It is worth to notice that in this way we do not consider the minimal subgraphs only
(cf. Figure 3).
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Figure 3. The forbidden subgraphs of DH(1) expressed according to the notion of chord distance.
Dashed lines represent paths of length at least one. Dotted lines represent chords that may or may
not exist.

In the following we provide a characterization similar to that of Theorem 2 for
any graph G ∈ sDH(2). Before giving such a result, we need to recall the following
technical lemma.

Lemma 2. Let G be a graph and let G[x, y] be an inducing-stretch cycle of G defined by the induced
paths PG(x, y) = (x, u1, u2, . . . , up−1, y) and pG(x, y) = (x, v1, v2, . . . , vq−1, y). If d(x, y) ≥ 3
then v1 must be incident to chords of the cycle G[x, y].

Proof. Since G[x, y] is an inducing-stretch cycle of G, then s(G) = p
q . If v1 is not incident

to any chords of G[x, y], then the induced paths PG(v1, y) = (v1, x, u1, u2, . . . , up−1, y) and

pG(v1, y) = (v1, v2, . . . , vq−1, y) imply sG(v1, y) = p+1
q−1 > p

q , a contradiction.

Let G be any graph. According to Lemma 1, let us consider an inducing-stretch
cycle G[x, y] of G. Assume that G[x, y] is formed by the vertices of the induced paths
PG(x, y) = (x, u1, u2, . . . , up−1, y) and pG(x, y) = (x, v1, v2, . . . , vq−1, y). Since PG(x, y)
and pG(x, y) are induced paths, each chord of G[x, y] (if any) joins vertices vi and uj,
with 1 ≤ i ≤ q− 1 and 1 ≤ j ≤ p− 1. When some vertex vi is incident to chords of G[x, y],
we denote by (vi, uli ) and (vi, uri ) the leftmost and rightmost chords of vi, respectively.
Formally, the indices li and ri are defined as follows:

• li = min{i′ | 1 ≤ i′ ≤ p− 1 and (vi, ui′) is a chord of G[x, y]}
• ri = max{i′ | 1 ≤ i′ ≤ p− 1 and (vi, ui′) is a chord of G[x, y]}

Theorem 3. Let G be a graph. G ∈ sDH(2) if and only if the following graphs are not induced
subgraphs of G:

(i) Hn, for each n ≥ 6;
(ii) cycles C6 with cd(C6) = 1;
(iii) cycles C7 with cd(C7) = 1;
(iv) cycles C8 with cd(C8) = 1.

Proof. (⇒) Each provided hole and cycle has stretch number greater or equal to 2,
and hence it cannot be an induced subgraph of G.

(⇐) We prove that if s(G) ≥ 2, then G contains one of the subgraphs in items (i), (ii), (iii),
or (iv), or G contains a proper induced subgraph G′ such that s(G′) ≥ 2. In the latter
case, we can recursively apply to G′ the following proof.
According to Lemma 1, consider an inducing-stretch cycle G[x, y] of G and assume

it is formed by the vertices of the induced paths PG(x, y) = (x, u1, u2, . . . , up−1, y) and
pG(x, y) = (x, v1, v2, . . . , vq−1, y). Notice that, since PG(x, y) and pG(x, y) are induced
paths, each possible chord of G[x, y] joins vertices vi and uj, with 1 ≤ i ≤ q − 1 and
1 ≤ j ≤ p− 1.

Since p
q ≥ 2 by hypotheses, then q ≥ 2 by Item (i) of Lemma 1, and hence p ≥ 4.

According to the value of q, we analyze two different cases:

q = 2: In this case, if G[x, y] is chordless, then it corresponds to a hole as described in
Item (i). If the chord distance of G[x, y] is equal to 1, all chords are incident to v1.
According to p, we have:
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p = 4: G[x, y] corresponds to the cycle in Item (ii);
p = 5: G[x, y] corresponds to the cycle in Item (iii);
p = 6: G[x, y] corresponds to the cycle in Item (iv);
p ≥ 7: Let (v1, ul1) be the leftmost chord of v1. If l1 ≥ 4 the cycle (v1, x, u1, u2, . . . , ul1)

corresponds to the cycle in Item (i). When l1 ≤ 3, consider the subgraph G′

induced by the vertices in the cycle (v1, ul1 , ul1+1, . . . , up−1, y). The induced
paths P′ = (ul1 , ul1+1, . . . , up−1, y) and p′ = (ul1 , v1, y) provide the following
lower bound for sG′ :

sG′(ul1 , y) ≥ p−l1
2 ≥ 7−3

2 = 2.

Hence, G′ is a proper subgraph of G with s(G′) ≥ 2. The statement follows by
recursively applying to G′ this proof.

q ≥ 3: In this case, according to Lemma 2, v1 must be incident to chords. We now analyze
two cases with respect to the value of r1, (v1, ur1) being the rightmost chord of v1:

r1 ≥ 4: Consider the subgraph G′′ induced by the vertices in the cycle
(v1, x, u1, u2, . . . , ur1). In this case, the induced paths P′′ = (x, u1, u2, . . . , ur1)
and p′′ = (x, v1, ur1) provide the following lower bound for sG′′ : sG′′(x, ur1) ≥
r1/2 ≥ 2. Hence, G′′ is a proper subgraph of G with s(G′′) ≥ 2. The statement
follows by recursively applying to G′′ this proof.

r1 ≤ 3: in this case the induced paths P′′′ = (v1, ur1 , ur1+1, . . . , up−1, y) and p′′′ =
(v1, v2, . . . , vq−1, y) provide the following lower bound for sG(v1, y):

sG(v1, y) ≥ p−2
q−1 .

Since p−2
q−1 ≥

p
q is equivalent to p

q ≥ 2 (which holds by hypothesis), then the subgraph
G′′′ induced by the vertices in both P′′′ and p′′′ is a proper subgraph of G with stretch
p∗/q∗ ≥ 2 and q∗ = q− 1. Hence, the statement follows by recursively applying to G′′′

this proof.
This concludes the proof.

Figures 3 and 4 summarize the characterizations based on forbidden subgraphs for
classes DH(1) and sDH(2), respectively. Figure 5 provides the list of all the minimal
forbidden subgraphs of any graph in sDH(2).

Figure 4. The forbidden subgraphs of graphs having stretch number less than 2. Dashed (dot-
ted, respectively) lines represent paths of length at least one (chords that may or may not exist,
respectively).
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Figure 5. The minimal forbidden subgraphs of any graph with stretch number less than 2. Dashed
lines represent paths of length at least one.

4. A Characterization Based on Cycle-Chord Conditions

For the class of distance-hereditary graphs, Howorka provided the following well
known characterization based on cycle-chord conditions.

Theorem 4 (from [1]). Let G be a graph. G ∈ DH(1) if and only if each cycle Cn, n ≥ 5, of G
has two crossing chords.

In [12], this result has been reformulated in terms of chord distance:

Theorem 5 (from [12]). Let G be a graph. G ∈ DH(1) if and only if cd(Cn) > 1 for each cycle
Cn, n ≥ 5, of G.

In the remainder of this section, we provide a similar characterization for graphs
belonging to sDH(2).

Lemma 3. Let G be a graph. If s(G) = 2 then G contains, as induced subgraph, a cycle C6 with
chord distance at most 1.

Proof. According to Lemma 1, consider an inducing-stretch cycle G[x, y] of G. Since
s(G) = 2, assume that G[x, y] is formed by the vertices of the induced paths PG(x, y) =
(x, u1, u2, . . . , u2s−1, y) and pG(x, y) = (x, v1, v2, . . . , vs−1, y), with s ≥ 2.

If s = 2 then the proof is concluded. In fact, cycle G[x, y] has 6 vertices and every
chord of G[x, y] (if any) is incident to v1.

In the remainder of the proof assume s ≥ 3. In this case, according to Lemma 2, v1 is
incident to chords of G[x, y]. Let (v1, ur1) be the rightmost chord incident to v1. We analyze
different cases according to the value of r1.

• Assume r1 > 4. In this case, the induced paths (x, u1, u2, . . . , ur1) and (x, v1, ur1)
provide a stretch number sG(x, ur1) ≥

r1
2 > 2, a contradiction.

• Assume r1 ≤ 2. In this case, the induced paths (v1, ur1 , ur1+1, . . . , u2s−1, y) and
(v1, v2, . . . , vs−1, y) provide the following lower bound on sG(v1, y):

sG(v1, y) ≥ 2s− r1 + 1
s− 1

≥ 2s− 2 + 1
s− 1

= 2 +
1

s− 1
.
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This contradicts s(G) = 2.

It follows that either r1 = 4 or r1 = 3. In the first case the cycle (v1, x, u1, u2, u3, u4)
represents the requested cycle C6: chords of G[x, y] (if any) are all incident to v1. In the
second case consider the induced paths (v1, ur1 , ur1+1, . . . , u2s−1, y) and (v1, v2, . . . , vs−1, y).
These paths induce the following lower bound on sG(v1, y):

sG(v1, y) ≥ 2s− r1 + 1
s− 1

=
2s− 3 + 1

s− 1
= 2.

Hence, the above paths induce a proper subgraph G′ of G with stretch number 2.
Hence, this proof can be recursively applied to G′.

Lemma 4. Let G be a graph. s(G) ≥ 2 if and only if G contains, as an induced subgraph, a cycle
Cn, n ≥ 6, with chord distance at most 1.

Proof. (⇐) Trivial.
(⇒) If s(G) = 2, then it is sufficient to use Lemma 3. Now, let us assume that s(G) =

p/q > 2 such that p and q are coprime. By Lemma 1, if G[x, y] is an inducing-stretch
cycle of G, according to the hypotheses, we may assume that G[x, y] is formed by
the vertices of the induced paths PG(x, y) = (x, u1, u2, . . . , up·s−1, y) and pG(x, y) =
(x, v1, v2, . . . , vq·s−1, y), with s ≥ 1.
If d(x, y) = 2, then G[x, y] contains at least 6 vertices and all its chords (if any) are

incident to v1. Then, G[x, y] corresponds to the requested cycle.
In the remainder, assume that d(x, y) ≥ 3. In this case, by Lemma 2, vertex v1 is

incident to chords of G[x, y]: let (v1, ur1) be the rightmost chord incident to it.
If r1 ≤ 3, then the two induced paths (v1, ur1 , ur1+1, . . . , up·s−1, y) and

(v1, v2, . . . , vq·s−1, y) provide the following lower bound for sG(v1, y):

sG(v1, y) ≥ p · s− r1 + 1
q · s− 1

.

Now we show that
p · s− r1 + 1

q · s− 1
>

p
q

. (1)

It can be easily observed that Equation (1) is equivalent to

p
q
> r1 − 1. (2)

Since r1 ≤ 3 and p/q > 2 by hypothesis, then Equation (2) holds. This implies that
sG(v1, y) > p/q, a contradiction.

Then, it follows that r1 ≥ 4. In this case, C = (x, u1, u2, . . . , ur1 , v1) is an induced cycle
with r1 + 2 ≥ 6 vertices and chord distance at most 1 (In C, all the possible chords are
incident to v1). This concludes the proof.

This lemma can be reformulated so that it directly provides a characterization for the
graphs under consideration.

Theorem 6. Let G be a graph. G ∈ sDH(2) if and only if cd(Cn) > 1 for each cycle Cn, n ≥ 6,
of G.

Compare Theorems 5 and 6 to observe the similarity between the cycle-chord charac-
terizations of graphs with stretch number equal to 1 and graphs with stretch number less
than 2, respectively.
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5. Recognition Algorithm

The distance-hereditary graphs, i.e., graphs in DH(1), can be recognized in linear
time [16], while the recognition problem for the generic class DH(k), k not fixed, is co-NP-
complete [12]. For small and fixed values of k, in [14] a partial answer to this basic problem
is given. In particular, Lemma 1 states that for k < 2, only specific rational numbers
may act as stretch numbers. In [14], a characterization for each class DH(2− 1/i), i > 1,
has been provided, and such a characterization led to a polynomial time algorithm for the
recognition problem for the class DH(2− 1/i), with fixed i > 1. Unfortunately, the running
time of this algorithm is bounded by O(n3i+2).

In this section, we propose a polynomial-time algorithm for solving the recognition
problem for the class sDH(2) according to the following approach. Lemma 4 provides a
characterization for all graphs not belonging to sDH(2). It is based on detecting whether a
given graph G contains or not an induced cycle Cn, n ≥ 6, with chord distance at most 1.
Now, assume that we have an algorithm A returning true if and only if a given graph G
contains such a cycle. Then, to recognize whether G ∈ sDH(2) we can simply use A on G
and certify the membership if and only if A return false. In the remainder of this section we
show that such an algorithm A can be defined.

5.1. An Existing Hole Detection Algorithm

We remind that Hk denotes a hole, i.e., a chordless cycle with k ≥ 5 vertices. In [15],
Nikolopoulos and Palios provided the following result about the hole detection problem.

Theorem 7 (from [15]). Given any connected graph G = (V, E) with |V| = n and |E| = m, it
is possible to determine whether G contains a hole in O(m2) time and O(nm) space.

They also extended their result to larger versions of holes.

Corollary 1 (from [15]). Let G = (V, E) be a connected graph with |V| = n and |E| = m, and
let k ≥ 5 be a constant. It is possible to determine whether G contains a hole on at least k vertices in
O(nmp−1) time and O(mp−1) space if k = 2p, and in O(n + mp) time and O(nmp−1) space if
k = 2p + 1.

Therefore, according to this corollary, it is possible to check whether G contains a hole
Hk, with k ≥ 6 vertices, in O(nm2) time and O(m2) space.

5.2. Quasi-Hole Detection Algorithm

We call quasi-hole any cycle Ck such that k ≥ 5 and cd(Ck) ≤ 1. In what follows, we
show that the hole-detection algorithms recalled in Theorem 7 and Corollary 1 can be
adapted to detect quasi-holes in any connected graph G. This adapted version is called
QuasiHoleDetection and it is described in pseudo-code as shown in Algorithms 1 and 2.
The strategy behind QuasiHoleDetection is based on the following result:

Lemma 5. A connected graph G contains a quasi-hole if and only if there exists a cycle (v0, v1, . . . , v`),
` ≥ 4, in G such that each path (vi, vi+1, vi+2, vi+3), i = 1, . . . , `− 3, is a P4 of G.

Proof. (⇒) If G contains a quasi-hole Ck then the vertices of Ck form a cycle fulfilling the
conditions of the statement (where v0 is the only vertex incident to possible chords of
the cycle).

(⇐) Suppose that G admits cycles as described in the statement, and let C = (v0, v1, . . . , v`)
be the shortest among such cycles. We now show that (i) C has at least 5 vertices and
(ii) cd(C) ≤ 1:

(i) Since C fulfills the conditions of the statement, then C contains at least 5 vertices;
(ii) Suppose by contradiction that cd(C) > 1. Then, there must exist chords (vi, vj) with

both vi and vj different from v0. To each chord (vi, vj) not incident on v0, we associate
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a “length” defined as length(vi, vj) = |j− i|. Now, let (vl , vr), with l < r, be a chord
with minimum length. By definition, 0 < l < r ≤ ` holds. Since (vl , vl+1, vl+2, vl+3)
is a P4, then r ≥ l + 4, and hence C′ = (vl , vl+1, . . . , vr) results to be a cycle with
at least 5 vertices. Moreover, between vi and vj, for each l ≤ i < i + 2 ≤ j ≤ r,
(i, j) 6= (l, r), cannot exist an edge, otherwise it would be a chord with length smaller
than length(vl , vr).

Since C′ is a cycle with at least 5 vertices and with chord distance zero, then it
contradicts the fact that C is the shortest among the cycles fulfilling the conditions of the
statement. Hence, cd(C) ≤ 1.

Since both the properties at points (i) and (ii) hold, it follows that C is a quasi-hole.

Algorithm 1: A quasi-hole detection algorithm.
Algorithm: QuasiHoleDetection

Input : a connected undirected graph G = (V, E)
Output : “true” if G contains a quasi-hole, “false” otherwise.

1 calculate the adjacency matrix M[ ] of G ;
2 foreach v1 ∈ V do
3 set each entry of the arrays walked_P3[ ] and AP[ ] to 0;
4 base← v1;
5 AP[v1]← 1;
6 foreach (v2, v3) ∈ E do
7 if (v1, v2) ∈ E and v1 6= v3 then
8 AP[v2]← 1;
9 Visit(base, v1, v2, v3);

10 AP[v2]← 0;
11 end
12 if (v1, v3) ∈ E and v1 6= v2 then
13 AP[v3]← 1;
14 Visit(base, v1, v3, v2);
15 AP[v3]← 0;
16 end
17 end
18 AP[v1]← 0;
19 end
20 print “false”.

The above lemma is used by the provided algorithm for the detection of quasi-holes
in G. To this end, we associate to G a directed graph G+ defined as follows:

• {vabc | (a, b, c) is a P3 in the graph G} is the vertex set of G+;
• {(vabc, vbcd) | (a, b, c, d) is a P4 in the graph G} is the edge set of G+.

If (a, b, c) is a path P3 of G, then both the vertices vabc and vcba belong to G+. In a
similar way, if (a, b, c, d) is a path P4 of G, then the edges (vabc, vbcd) and (vdcb, vcba) must be
contained in G+. Hence, visiting G+ is equivalent to proceeding along P4s of G. It follows
that the conditions of Lemma 5 on G can be verified by performing a revised DFS on G+

(cf. [17]). In turn, the following lemma holds:

Lemma 6. Let G be any connected graph, and let G+ be its associated directed graph. By performing
a DFS on G+, if the DFS-path is vu0u1u2 , vu1u2u3 , . . . , vuk−2uk−1uk , where ui 6= uj for each 0 ≤ i <
j < k and uk = u` for some ` such that 0 ≤ ` < k, then u`, u`+1, . . . , uk−1 are vertices forming a
cycle in G that fulfill Lemma 5. Conversely, if G contains a quasi-hole, the DFS on G+ will meet a
sequence of vertices in G+ whose corresponding P3s in G produce a path as the path (v1, v2, . . . , v`)
in the cycle as in Lemma 5.
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Algorithm 2: A recursive procedure used by QuasiHoleDetection to perform
an adapted DFS.

Procedure: procedure Visit

Input : four vertices base, u1, u2, and u3 of G

1 AP[u3]← 1;
2 walked_P3[(u1, u2), u3]← 1;
3 foreach (u3, u4) ∈ E \ {(u3, u2)} do
4 if u4 = base then
5 if AP.size ≥ 5 then

// the active path determines a quasi-hole
6 print “true” ;
7 exit;
8 else
9 break

10 end
11 else
12 if (u2, u4) 6∈ E and (u1 = base or (u1, u4) 6∈ E) then

// here, when u1 6= base, (u1, u2, u3, u4) forms a P4 in G
13 if AP[u4] = 1 then

// the active path determines a hole
14 print “true” ;
15 exit;
16 end
17 if walked_P3[(u2, u3), u4] = 0 then
18 Visit(base, u2, u3, u4);
19 end
20 end
21 end
22 end
23 AP[u3]← 0;

By following the same strategy used in [15], to reduce the space complexity required
by G+, the DFS on G+ is simulated by performing a revised DFS directly on G. This revised
DFS on G is implemented by Algorithm QuasiHoleDetection (cf. Figure 1).

At Line 1, the algorithm computes the adjacency matrix M[ ] of G from its adjacency-
list (we assume that G is provided as input according to this representation). M[ ] is used
to check the adjacency in constant time. At Line 2, each vertex v1 of G is checked against
the following possible role: v1 belongs to a quasi-hole C and all the chords of C, if any, are
adjacent to v1. To perform this check, at Line 6 we consider each edge (v2, v3) in G: if this
edge, along with (v1, v2) (cf. Line 7) or (v1, v3) (cf. Line 12), form a path with three vertices,
then the algorithm tries to extend this path into the requested cycle by recursively calling
the Procedure Visit (see Algorithm 2).

Visit works according to Lemma 5: in any step, it attempts to extend a path P3 defined
by (u1, u2, u3) into P4s of the form (u1, u2, u3, u4); then, for each such P4, the procedure
proceeds by extending the P3 formed by (u2, u3, u4) into P4s of the form (u2, u3, u4, u5), and
so on. In this situation, the active-path is first extended from (u1, u2, u3) to (u1, u2, u3, u4),
then to (u1, u2, u3, u4, u5) and so on. In case of backtracking, the last vertex is removed of
the current active-path. By proceeding in this way, two cases may occur:

• the initial vertex v1 (called base in the algorithm) is added again to the active-path
(cf. Line 4). If the length of the active-path is 5 or more (cf. Line 5), then the graph
contains a cycle fulfilling the conditions of Lemma 5 and hence a quasi-hole is found;
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• at the end of the active-path there is a vertex different from base but already inserted in
the active-path (cf. Lines 12–13). In this case, again the conditions of Lemma 5 apply,
but now we are sure that a hole is found.

It is worth to remark that the ongoing active-path P on G and the ongoing DFS-path
P+ on G+ contain exactly the same vertices: the elements of P correspond to the vertices of
the P3s associated with the elements of P+ (in P, the repeated vertices of G in adjacent P3s
are present only once).

We now explain the role of the additional data structures AP[·] and walked_P3[(·, ·), ·].
The former is an auxiliary array of size n used to check if a vertex appears in the “active
path” computed so far; given u, AP[u] is equal to 1 if u appears in the active path, 0
otherwise. Concerning the latter, during the visit on G+, vertices that correspond to path
P3s of G are recorded so that they are not “visited” again. The entry walked_P3[(u1, u2), u3]
equals one if and only if the vertices u1, u2, u3 induce (u1, u2, u3) as a path P3 of G already
encountered during the DFS, otherwise it equals zero. Since walked_P3[(·, ·), ·] has entries
walked_P3[(u1, u2), u3] and walked_P3[(u2, u1), u3] for each edge (u1, u2) ∈ E and for each
u3 ∈ V, then its size is 2m · n. Notice that Visit registers the entry of walked_P3[ ] at the
beginning, thus avoiding another execution on the same path P3. In this way, Visit() is
executed exactly once for each path P3 of G.

Notice that the description of Visit() assures that starting from a P3 formed by
(u1, u2, u3) we proceed to a P3 formed by (u2, u3, u4) only if (u1, u2, u3, u4) is a path P4
of G. The only exception is when u1 coincides with the starting vertex v1 selected at
Line 2 by QuasiHoleDetection: in such a case (u1, u2, u3, u4) may have chords from u1.
For this purpose, the initial vertex v1 is assigned to the variable base (cf. Line 4 of the main
algorithm) and it is later passed to Visit (cf. Lines 9 and 14 of the main algorithm).

We can now provide the following statement:

Theorem 8. Given any connected graph G = (V, E) with |V| = n and |E| = m, it is possible to
determine whether G contains a quasi-hole in O(nm2) time and O(nm) space.

Proof. According to the above description of QuasiHoleDetection, its correctness follows
from Lemmas 5 and 6, and from the inherent execution of DFS on G+. In the remainder of
the proof we analyze the complexity of the algorithm about the required time and space.

As G is a connected graph, we get n = O(m). Concerning the data structures used by
the algorithm, we assume that from any edge (v1, v2) it is possible to access in constant time
both its endpoints; alike, from any entry in the adjacency matrix M[ ] of G corresponding
to v1 and v2 it is possible to access in constant time the edge (v1, v2).

Consider first the time complexity of performing the revised DFS of G. The visit starts
at Line 6, and proceeds by recursive calls to Visit. This recursive procedure checks each
path (u1, u2, u3) of G which is a P3 and tries to extend it into a P4 of the form (u1, u2, u3, u4).
Notice that each set of vertices {u1, u2, u3, u4} where (u1, u2, u3) is a P3 and u4 is adjacent
to u3 is uniquely characterized by the ordered pair ((u1, u2), (u3, u4)) where (u1, u2) and
(u3, u4) are ordered pairs of adjacent vertices in G. Hence, the time required to perform
the whole visit according to the recursive executions of Visit is O(m2). We can now
determine the time complexity of QuasiHoleDetection. Step at Line 1 clearly takes O(n2)
time. The subsequent loop at Line 2 is repeated O(n) times, and for each step the algorithm
requires O(nm) time for the initialization at Line 3 and, as described before, O(m2) time
for visiting G according to the recursive calls to Visit.

It follows that the final time complexity is O(nm2). The algorithm requires O(nm)
space: O(n) and O(nm) for the arrays AP[ ] and walked_P3[ ], respectively, and O(n2) for
the adjacency matrix M[ ] and the adjacency-list used to represent G.

5.3. Detecting Quasi-Hole on at Least k Vertices

As in [15], the strategy described above to define a quasi-hole detection algorithm
can be generalized to built algorithms for the detection of quasi-holes on at least k ver-
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tices, with k ≥ 5. For any input graph G, we consider the following family of directed
graphs G(t):

• {vu1u2···ut−1 | (u1, u2, . . . , ut−1) is an induced path Pt−1 in G} is the vertex set of G(t),
• {(vu1u2···ut−1 , vu2u3···ut) | (u1, u2, . . . , ut) is an induced path Pt in G} is the edge set of G(t).

By definition, G ≡ G(2) and G+ ≡ G(4) where G+ is the direct graph associated to
G in Section 5.2. Therefore, in the same way that running DFS on G+ ≡ G(4) allowed us
to detect quasi-holes (on at least five vertices), running DFS on G(k−1) allows us to detect
(extended) quasi-holes on at least k vertices, for each constant k ≥ 5. This is ensured by the
following statement, which represents a generalization of Lemma 5:

Lemma 7. Given a constant k ≥ 5, a graph G contains a quasi-hole on at least k vertices if and
only if G contains a cycle (u0, u1, . . . , ut), with t ≥ k− 1, such that (ui, ui+1, . . . , ui+k−2) is an
induced path Pk−1 of G for each i = 1, 2, . . . , t− k + 2.

Lemmas 6 and 7 induce the following statement:

Corollary 2. Let G be a connected graph and let k ≥ 5 be a constant. Assume that a DFS is
executed on G(k−1), the directed graph associated to G. If the active path computed by the DFS is
vu0u1···uk−3 , vu1u2···uk−2 , . . . , vur−k+3ur−k+4···ur , where ui 6= uj for all 0 ≤ i < j < r, and ur = up
for some p such that 0 ≤ p < r, then up, up+1, . . . , ur−1 are vertices forming a cycle in G that
fulfill the conditions of Lemma 7. Conversely, if G contains a quasi-hole on at least k vertices,
the DFS on G(k−1) will meet a sequence of vertices whose associated Pk−2s in G form a path as the
path (u1, u2, . . . , ut) in the cycle of Lemma 7.

Additionally, in this situation we do not build G(k−1) since we implicitly run DFS
on this associated graph. In particular, we process each unvisited Pk−2 of G as fol-
lows: we try to extend the induced path Pk−2 formed by (u0, u1, . . . , uk−3) into Pk−1s
of the form (u0, u1, . . . , uk−3, uk−2); then, for each such Pk−1, we proceed by extending the
Pk−2 (u1, u2, . . . , uk−2) into Pk−1s, and so on. Since there exist O(ma) induced paths on 2a
vertices and O(nma) on 2a + 1 vertices, and it requires O(k) time to detect whether a vertex
extends a Pk−1 into a Pk, we have the following corollary:

Corollary 3. Let G = (V, E) be a connected graph with |V| = n and |E| = m, and let k ≥ 5
be a constant. By implicitly running DFS on G(k−1) it is possible to detect whether G contains a
quasi-hole on at least k vertices in O(n2mp−1) time when k = 2p, and in O(n2 + nmp) time when
k = 2p + 1.

The space required is O(mp−1) when k = 2p, and O(nmp−1) when k = 2p + 1.
According to Lemma 4 and Corollary 3, we finally get the following result:

Theorem 9. Let G = (V, E) be a connected graph with |V| = n and |E| = m. It is possible to
recognize whether G ∈ sDH(2) in O(n2m2) time and O(m2) space.

6. Conclusions

In this paper, we studied the class sDH(2). It contains each graph G with stretch
number less than two, that is s(G) < 2. These graphs form a superclass of the well studied
distance-hereditary graphs, which corresponds to graphs with stretch number equal to
one.

For the class sDH(2) we provided: (1) a characterization based on listing all the mini-
mal forbidden subgraphs, (2) a characterization based on cycle-chord properties, and (3)
a recognition algorithm that works in O(n2m2) time and O(m2) space. This algorithm
exploits the result based on the cycle-chord property to detects quasi-holes in a graph; it is
a simple adaptation of the algorithm provided in [15] for detecting holes.
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The characterizations found seem to suggest that the graphs in sDH(2) and those in
DH(1) may be really similar in structure and hence properties. As a consequence, it would
be interesting to determine whether the class sDH(2) can be also characterized according
to generative operations (we remind that the generative properties resulted as the most
fruitful for devising efficient algorithms for distance-hereditary graphs). This problem has
been partially addressed in [18,19].

On the contrary, Theorem 1 could suggest that graphs with stretch number greater or
equal to two may have a completely different structure with respect to those in DH(1).

Another possible extension of this work could be to investigate in the class sDH(2)
other specific combinatorial problems that have been solved in the class of distance-
hereditary graphs.
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