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Abstract: This paper presents an effective stochastic algorithm that embeds a large neighborhood
decomposition technique into a variable neighborhood search for solving the permutation flow-shop
scheduling problem. The algorithm first constructs a permutation as a seed using a recursive appli-
cation of the extended two-machine problem. In this method, the jobs are recursively decomposed
into two separate groups, and, for each group, an optimal permutation is calculated based on the
extended two-machine problem. Then the overall permutation, which is obtained by integrating the
sub-solutions, is improved through the application of a variable neighborhood search technique. The
same as the first technique, this one is also based on the decomposition paradigm and can find an
optimal arrangement for a subset of jobs. In the employed large neighborhood search, the concept of
the critical path has been used to help the decomposition process avoid unfruitful computation and
arrange only promising contiguous parts of the permutation. In this fashion, the algorithm leaves
those parts of the permutation which already have high-quality arrangements and concentrates
on modifying other parts. The results of computational experiments on the benchmark instances
indicate the procedure works effectively, demonstrating that solutions, in a very short distance of the
best-known solutions, are calculated within seconds on a typical personal computer. In terms of the
required running time to reach a high-quality solution, the procedure outperforms some well-known
metaheuristic algorithms in the literature.

Keywords: metaheuristics; decomposition techniques; local search; large neighborhood; permutation
flow-shop

1. Introduction

The endeavor of developing a suitable neighborhood scheme is a key factor in the
success of any local search algorithm. The reason is that the critical role the size of the
neighborhood plays in striking a balance between the effectiveness and computational
time [1,2]. For striking such a balance in solving the permutation flow-shop scheduling
problem, this paper presents a two-level decomposition-based, variable neighborhood
search stochastic algorithm that embeds a large neighborhood scheme into a small one.

The algorithm, called Refining Decomposition-based Integrated Search (RDIS), refines
a solution obtained by its small neighborhood search through its large neighborhood search,
and uses the notion of decomposition in the two levels of (i) producing an initial solution,
and (ii) performing large neighborhood search on the initial solution. Both neighborhood
schemes employed are k-exchange [3].

The k-exchange schemes, as the most common types of neighborhood schemes, con-
sider two candidate solutions as neighbors if they differ in at most k solution elements [3].
It is clear that larger neighborhood schemes contain more and potentially better candidate
solutions but this increases the neighborhood size of these schemes exponentially with
k [2]. In effect, when k is as large as the size of the problem, the corresponding neigh-
borhood scheme makes local optimal solutions global optimal; however, because of their
impracticality, these kinds of neighborhood schemes are not used in practice. On the other
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hand, smaller values of k require lower computational time at the cost of generating fewer
candidate solutions [1,3].

In combing small and large neighborhood schemes, the RDIS has three synergetic
characteristics of (i) generating an initial solution with a construction method that has
been built upon the concept of decomposition of jobs and the extended two-machine
solution strategy, (ii) improving the initial solution with a small neighborhood search,
and (iii) enhancing the result produced by the small-neighborhood search with a large
neighborhood search which has been built based on a decomposition technique.

The construction method for generating initial solutions is based on the recursive
application of the extended 2-machine problem [4], described in Section 2. Aimed at
generating high-quality solutions, and inspired by the famous two-machine problem [4],
this recursive algorithm repeatedly decomposes the jobs and finds the best permutation for
the decomposed jobs, with the goal of improving the quality of initial solutions.

Although the employed large neighborhood search, the same as the engaged construc-
tion method, is based on decomposition, it performs decomposition in an iterative manner,
and not recursively. This iterative decomposition technique starts with the top k jobs in the
permutation and ends with the k bottom jobs, ignoring any unfruitful contiguous parts in
the middle. In each round, it also keeps the result of calculations in memory to prevent any
repeat of calculations in further rounds. In optimizing small chunks, this effective use of
memory makes the optimization process as fast as simple decoding of a permutation to a
solution. The main contributions of this paper are outlined in the following:

• The effective embedding of a large neighborhood decomposition technique into a
variable neighborhood search for the permutation flow-shop scheduling problem;

• Efficient decomposition of the main problem into subproblems, and finding optimal
permutations for those smaller subproblems; and

• Employing the concept of the critical path, as described in Section 4, in the employed
large neighborhood search.

The paper is structured as follows. In Section 2, the related work is discussed, and
Section 3 presents the formulation of the permutation flow-shop scheduling problem.
Section 4 presents the RDIS and provides a stepwise description of the corresponding algo-
rithm. In Section 5, the results of computational experiments are discussed. The concluding
remarks, as well as the suggestions for the further enhancement of the stochastic algorithm,
are discussed in Section 6.

2. Related Work

In manufacturing systems, scheduling is about the allocation of resources to opera-
tions over time to somehow optimize the efficiency of the corresponding system. Quite
interestingly, because of their complexity, scheduling problems have been among the
first categories of problems that have promoted the development of the notion of NP-
completeness [5].

The Flow-shop Scheduling Problem (FSP), in which jobs should pass all machines
in the same order, is one of the easy-to-state but hard-to-solve problems in scheduling.
Because of these contrasting features, the FSP is one of the first problems in scheduling
which captured the attention of pioneers in scheduling [4,6], and later became an attractive
topic for a significant number of researchers.

Interestingly, one of the most elegant procedures in the area of algorithmic design is
an efficient exact algorithm [4] that has been presented for the two special cases of this
problem, which are a two-machine problem and a restricted case of the three-machine
problem. Although this algorithm has been extended [6,7] to tackle some less restricted
cases of the three-machine problem, it has never been extended to solve problems with a
larger number of machines to optimality.

Several variations and extensions of the FSP, with multiple objective function criteria,
have been studied in the literature [8–10]. Among the variants of the FSP, the Permutation
Flow-shop Scheduling Problem (PFSP), in which jobs have the same sequence on all
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machines, plays a key role. The PFSP best suits multi-stage production systems in which
conveyor belts are used to perform material handling between machines. Both the FSP
and the PFSP have shown to be NP-Hard [11,12]. An interesting variant of the PFSP is the
distributed permutation flow shop scheduling problem (DPFSP) which has been studied
in [13], and, in [14], energy consumption considered as one of its multi-objective criteria.
The rest of this section briefly surveys the related literature with a focus on the PFSP.

Extensive literature surveys on the early efficient algorithms presented for the FSP
can be found in [15,16]. A more recent review and classification of heuristics for the PFSP
has been presented in [17]. In the proposed framework of [17], heuristics are analyzed
in the three phases of (i) index development, (ii) solution construction and (iii) solution
improvement. In the following, some related work is briefly reviewed.

The most related method is Jonson’s method that because of the complete dependence
of the RDIS on it, this method will be described as part of the RDIS in Section 4. The Palmer
method developed in [18] can be considered as another related work. The author has not
provided any reference to Johnson’s paper but has mentioned that the rationale behind
the development of the procedure is to minimize the makespan based on the notion of the
lower bound of the single machine problem, which is obtained by the head time plus its
total processing times plus its tail time. It is these heads and tails that the Palmer algorithm
tries to minimize.

Based on advancing Palmer’s index method, an algorithm has been presented in [19]
which works based on a slope matching mechanism. First, assuming that only one job
exists, the starting time and ending time of each job on each machine is calculated and, by
running the regression, a starting slope and an ending slope are calculated for each job.

The first method, with which they have compared their two techniques, is the method
presented in [20], that finds the actual slope of jobs. For calculating this actual slope, simply
the regression is run for each job.

The other method that they have compared with their two methods is the method
based on the priority presented by [21], and obtained based on Johnson’s rule.

In comparing these four methods with one another, they found the following ranking (i)
TSP-approximation, (ii) slope-matching mechanism, (iii) Gupta’s method, and (iv) Palmer’s
method. These ranking criteria can be used as the basis of any construction method.

As another example, in [22] a heuristic algorithm for n-job m-machine sequencing
problem has been presented that, based on the two-machine problem, builds a sequence by
decomposing total processing times into three parts.

Among other effective heuristics developed for the permutation flow-shop problem,
TB [23], SPIRIT [24], FSHOPH [25], NEH [26], and NEHLJP1 [27] can be mentioned. It is
worth noting that NEH is one of the earliest effective heuristics and it is incorporated in
many other metaheuristics. For instance, an iterated greedy algorithm is presented in [28],
in which a solution is improved through repeated removal and re-insertion of the jobs,
from a given solution, using the NEH heuristic.

Some effective metaheuristics developed are Ogbu and Smith’s simulated annealing [29],
Taillard’s tabu search [30], Nowicki and Smutnicki’s fast tabu search [31], Reeves’s genetic
algorithm [32], Nowicki and Smutnicki’s scatter search [33], Iyer and Saxena’s genetic
algorithm [34], Yagmahan and Yenisey’s ant colony algorithm [35], Lian et al.’s particle
swarm algorithm [36], artificial bee colony algorithm of [37], Discrete differential evolu-
tion algorithm of [38], algebraic decomposition-based evolutionary algorithm of [8], and
re-blocking adjustable memetic Procedure (RAMP) of [39]. A comprehensive review and
comparison of heuristics and metaheuristics for the PFSP can found in [40].

3. Problem Formulation

Assuming that there are n jobs and m machines, and that all jobs require to be pro-
cessed on machines 1, 2, 3,. . . , and m, one after another, the PFSP is aimed at finding a
permutation π of jobs, identical for all machines, that minimizes the completion time of the
last job on the last machine, referred to as makespan.
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Given a permutation π = (π1, π2, . . . , πn), in which πk shows the number of job in
the sequence of jobs, and denoting the processing time of job j on machine i, as tji, the
makespan of the problem can be calculated by rearranging the jobs based on π. In effect,
by denoting the earliest completion time of job πk on the machine i as cki, the value of
cnm shows the exact amount of makespan. Hence, the objective can be stated as finding
a permutation π∗ over the set of all permutations, Π, so that cnm is minimized. A simple
formulation of the PFSP, based on the formulation presented in [41] is as follows.

min
π∈Π

cnm (1)

where,

c11 = tπ1,1 (2)

c1i = c1,i−1 + tπ1,i i = 2, 3, . . . , m (3)

ck1 = ck−1,1 + tπk ,1 k = 2, 3, . . . , n (4)

cki = max (ck,i−1, ck−1,i) + tπk ,i i = 2, 3, . . . , m

k = 2, 3, . . . , n (5)

It is worth noting that Formulas (2)–(5) also shows how, for a given permutation, the
makespan can be calculated in O(nm).

Figure 1 shows a sample 4-Job 4-Machine PFSP problem, with the permutation
π1 = (1, 2, 3, 4) of jobs leading to the solution value of 30. The arrows originating from each
circle in Figure 1, show the corresponding processing time of the corresponding job on the
corresponding machine and the sum of processing times on the bold arrows indicates the
makespan. Figure 2 shows how by changing the order of π1 = (1, 2, 3, 4) to π2 = (1, 4, 3, 2),
the makespan has changed to 29, which is the optimal solution.
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Figure 1. A sample 4-job 4-machine Permutation Flow-shop Scheduling Problem (PFSP) problem,
with the permutation of (1,2,3,4) of jobs leading to the solution value of 30.



Algorithms 2021, 14, 112 5 of 18

1 1 1

2 2 2

3 3 3

3 2

4 5

7 3

6

4 4 4
2 6

1

2

3

4
3

5

1

Samp04 A sample solution with the makespan of : 30

Optimal solution, makespan 29: 

3 2 1 4

4 5 6 2

7 3 5 4

Job 1

Job 2

Job 3

Job 4

Machine 1 Machine 2 Machine 3 Machine 4

3

f

1 1 1

2 2 2

3 3 3

3 2

4 5

7 3

6

4 4 4
2 6

1

2

3

4
3

5

1

3 2 1 4

7 3 5 4

Job 1

Job 2

Job 3

Job 4

Machine 1 Machine 2 Machine 3 Machine 4

2 6 3 3
2

f

Figure 2. Changing the order of (1,2,3,4) to (1,4,3,2) in the sample problem and obtaining the optimal
solution with the makespan of 29.

4. RDIS

A key justification for the design of the RDIS is an effective integration of decom-
position, converting a non-tractable problem into tractable subproblems, with variable
neighborhood search techniques, synergetically striking a balance between diversification
and intensification elements of the algorithm.

Starting with the notion of decomposition, the RDIS works in the two levels of con-
structing an initial solution, and improving this solution through local searches. For this
purpose, it first employs the recursive application of the extended two-machine problem
as a seed-construction technique and constructs an initial permutation as a seed. This
construction technique recursively decomposes the jobs into two groups and calculates the
optimal solutions of each group based on the extended two-machine problem.

After such an initial seed is constructed, a variable neighborhood search is activated.
This variable neighborhood search consists of two local searches, one with the small
neighborhood and the other with the large neighborhood. The large neighborhood local
search uses a decomposition technique for finding an optimal arrangement for different
subsets of jobs. In effect, both the seed construction technique and the employed large
neighborhood search work are based on the notion of decomposition.

The small neighborhood search component uses both the insertion and swapping
operations as the basis of its moves. In both the small and large neighborhood searches, the
concept of the critical path plays a crucial role in avoiding unfruitful changes. Whereas in
the small neighborhood, the critical path is used to avoid unfruitful swaps or interchanges,
in the large neighborhood search, it is used to re-arrange only promising contiguous parts
of the permutation, leaving those parts whose re-arrangement is not beneficial. Figure 3
shows the c-type pseudocode of the RDIS, and Figure 4 shows the flowchart of the key
steps of the RDIS.
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01 Procedure RDIS()
02 {
03 while (termination criterion has not been met)
04 {
05 construct an initial solution and call it x;
06 do{
07 do{
08 apply a 2−swap local search on x;
09 apply an insertion local search on x;
10 }while(insertion improves the result of 2−swap);
11 apply large neighborhood search on x;
12 }while(large neighborhood search improves the combined result of the two);
13 }
14 return x;
15 }

Figure 3. The c-type pseudocode of the Refining Decomposition-based Integrated Search (RDIS)
algorithm.

start

Did insertion local search 
improve the solution?

yes

Output best found 
solution end

Read instance
dataConstruct a new solution

Apply 2-swap local search

Apply insertion local search

Apply large neighborhood
search

Did 
large neighborhood search 

improve the solution?

Termination
 criterion met ?

yes

no

no

yesno

Figure 4. The flowchart of the the main steps of the RDIS algorithm.

In describing different components of this pseudocode, first, we describe the way in
which the seed-construction technique uses decomposition to create the initial solutions.
For creating this technique, we have modified the Johnson algorithm [4] and called the
result the Recursive-Johnson Procedure (RJP). For tackling any PFSP problem, the RJP
decomposes it into smaller problems and continues this in different rounds until the
decomposed problem includes only one job or one machine.

The decomposition process in the RJP proceeds in several consecutive rounds. In the
first round, the number of columns (machines) of the decomposed problems is divided
into two equal parts, with the first machines comprising the first part and the last machines
comprising the second part. All machines located in the first part comprise auxiliary
machine 1, and those in the second part comprise auxiliary machine 2.
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Then the corresponding two-machine problem is solved with Johnson’s algorithm
and a permutation for the given jobs is determined. This permutation is only a preliminary
one and the goal of further rounds is to further improve this permutation. Because of the
recursive nature of the algorithm, further rounds are similar to the first round and their
only difference is that they operate on a portion of jobs.

The employed large neighborhood search decomposes the problem into several dis-
tinct parts and optimizes each part separately. Based on a technique initially proposed
in [30], two forward and backward matrixes simultaneously help the optimization cost
to decrease.

Whereas in the forward matrix the distance of each operation from the first performed
operation is presented, in the backward matrix, the distance of each operation from the
final performed operation is provided. Moreover, the preliminary evaluation renders
many of these combinations unnecessary. Because of using two forward and backward
matrixes, when the positions of two jobs are not far from one another in the permutation,
the evaluation of their swap can be performed very fast.

The solutions provided by the RJP undergo both small and large neighborhood
searches. As is seen in the pseudocode presented in Figure 3, the large neighborhood
search is called at line 11. The pseudocode presented in Figure 5 describes how this large
neighborhood search operates. As is seen in this pseudocode, the main loop starts at
line 3 and is aimed at improving the given solution, shown with permutation π, through
modifying different parts of this permutation.

01 largeNeighborhoodSearch(π)
02 {
03 do{
04 improvement=false;
05 for ( j=1; j<numberOfJobs; j=j+ chunkSize*sweepRatio)
06 {
07 if (optimizing the chunk starting from location j can be fruitful )
08 {
09 optimize the chunk starting from the location j of solution π
10 integrate the optimization result with π ;
11 if (the optimization resulted in improvement)
12 set improvement to true;
13 } // end if (optimizing . . .
14 } // for
15 } while(improvement);
16 return π ;
17 }

Figure 5. The c-type pseudocode of largeNeighbourhoodSearch.

The substrings selected for modification are called chunk and all have the same size
of chunkSize. For the purpose of modification, a subproblem of the given problem is solved
to optimality through evaluating all possible ordering of jobs in a given chunk, keeping
other jobs fixed in their current positions. In particular, it is line 9 of the pseudocode that
calculates the makespan values of all chunkSize! permutations. For instance, if the value of
chunkSize is 6, line 9 has to evaluate 6! = 720, different permutations to find the optimal one.

As is shown in line 5, the number of chunks to be optimized for a given solution is
controlled through a parameter named sweepRatio, which is in the range between 0 and 1.
For instance, setting sweepRatio to 0.5 and chunkSize to 6 causes the first chunk, which starts
from position 1 and ends in position 6, to be optimized and then the starting position for
the next chunk to be set to (1 + 6 ∗ 0.5) = 4.

In other words, around 50% of jobs for the optimized chunk are fixed and the remain-
ing jobs appear in the first half of the next chunk to be optimized. After re-arranging the
chunk starting at position 4, through the employed optimization process, and ending at
position 9, positions 4, 5, and 6 are fixed and the next chunk starting from position 7 and
ending in position 12 is selected for being re-arranged.

Fixing half of the re-arranged jobs in a chunk and carrying the other half with the next
chunk continues until a chunk is selected whose ending point is the last position in the
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permutation, signaling the end of a cycle. As indicated in lines 3 and 15 of the pseudocode,
a new cycle can again resume from position 1 if the current cycle has been able to improve
the solution.

The quality of the obtained solutions depends on the values of chunkSize and sweepRa-
tio. Whereas increasing the value of sweepRatio leads to increasing the exploration power
and reduces computation time, its decreasing can produce better solutions at the expense of
higher computation time. Since optimizing a chunk is involved with evaluating chunkSize!
permutations, the execution time is highly dependent on the chunk size.

This implies that a combination of selecting a proper value for this parameter and
a mechanism for the recognition of unfruitful chunks can greatly improve the efficiency
of the stochastic algorithm. Values between 6 and 9 for chunkSize can lead to improving
solution quality, without increasing execution time significantly.

With respect to having a necessary mechanism for the recognition of unfruitful chunks,
line 7 detects such chunks based on the critical path properties of the current solution. This
is done based on the fact that if all of the critical operations in a chunk belong to the same
machine, optimizing such a chunk cannot reduce the makespan, and therefore the chunk
can be skipped. In other words, regardless of the order of jobs in such an unfruitful chunk,
the previous critical path persists in the new solution and this makes any decrease in the
makespan impossible.

Setting the values of chunkSize and sweepRatio to 4 and 0.5, respectively, Figure 6
illustrates how the application of just one cycle of the steps presented in the pseudocode
leads to improving an initial solution for a sample 8-jobs 8-machines instance from 1057
to 942. In this instance, the processing times of operations have been selected as integers
between 0 and 100 with a uniform distribution.
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Figure 6. Changing the order of (1,2,3,4,5,6,7,8) to (3,1,2,6,4,8,7,5) in a sample 8 (×) 8 problem in 3
steps, with each step optimizing a chunk of size 4.

As is seen in the figure, each solution has been shown with a matrix, in which the
permutation of jobs has been represented in its first column. In each matrix, the critical
operations corresponding to the solution are highlighted and its makespan, which is equal
to the sum of the highlighted processing times, has also been shown. Figure 6a shows the
initial solution, π0 = {1, 2, 3, 4, 5, 6, 7, 8} with the cost of 1057.
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In Figure 6b, the first chunk [1, 2, 3, 4] is optimized and is changed to [3, 1, 2, 4]. This
alone reduces the makespan by 38 units and changes it to 1019. Since the sweepRatio is 0.5,
the next chunk to be optimized starts from the 3rd row and is [2, 4, 5, 6] which is optimized
to [2, 6, 5, 4], shown in Figure 6c.

This procedure continues accordingly and optimizes all corresponding chunks. As
mentioned, Figure 6 shows the result of applying the main loop of the psedudocode just
for one cycle and as lines 3, 4 and 15 of the pseudocode show, in general, the optimization
of chunks continues for consecutive cycles until no improvement occurs in a cycle.

5. Computational Experiments

The RDIS has been implemented in C++ and compiled via the Visual C++ compiler
on a PC with 2.2 GHz speed. Before testing the algorithm on the benchmark instances, the
parameters of the construction and large neighborhood components have been set. With
respect to the construction component, the algorithm has two parameters, namely NRepeats
and SwapProb, indicating the frequency and the probability of performing swap moves in the
RJP method. Based on the preliminary experiments, we observed that setting NRepeats and
SwapProb to 1 and 0.4, respectively, yields the best results by providing a balance between
the quality and diversity of the initial solutions generated by the construction component.

With respect to the large neighborhood component, the RDIS has also two parameters,
namely ChunkSize, and SweepRatio. Setting ChunkSize to a small value (≤5) will increase
the speed of the procedure at the expense of lower solution quality. On the other hand, setting
ChunkSize to any value larger than 10 will dramatically increase the running time. Moreover,
the computational experiments show that setting the value of SweepRatio close to 1 or 0
degrades the performance. Due to these observations, and based on further preliminary
experiments, ChunkSize and SweepRatio have been set to 7 and 0.3, respectively.

We have employed Taillard’s repository of benchmark instances [42], available on the
website supported by the University of Applied Sciences of Western Switzerland, to test
the performance of the RDIS. In this repository, as many as 120 instances exist, and all of
these instances have been extracted for the RDIS to be tested on. These instances are in
12 classes, with 10 instances existing in each class. The number of jobs and machines of
these instances are in the range 20–500 and 5–20, respectively.

Before presenting the performance of the stochastic algorithm on the benchmark
instances and comparing the results with the best available solutions in the literature, we
present the internal operations and convergence of the algorithm in solving the instances
ta001, and ta012. Figure 7 shows solution value versus iteration for 5000 iterations, for the
instance ta001. As is seen, a high-quality solution can follow a low-quality one, and vice
versa.
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Figure 7. Solution value versus iteration in the benchmark instance ta001.
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In general, the quality of the best solution obtained improves as the number of
iterations increases. Figure 8a shows how this has happened in the first 100 iterations of
the ta001 problem instance. As is seen, before iteration 20, the quality of the best-obtained
solution has improved from 1413 to 1336 and for the next 60 iterations, no improvement
has occurred. Between iterations 80 and 100, two other improvements have occurred and
1336 has improved to 1297. A similar trend can be seen in other instances as well; Figure 8b
shows the convergence pattern, in just over 2000 iterations for a larger problem instance,
ta012.
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Figure 8. So-far-Best solution versus iteration in the benchmark instances ta001 (a) and ta012 (b).

Comparison with Other Metaheuristics

RDIS is compared with a variety of metaheuristic in terms of solution quality and
computation time. In particular, as presented in Table 1, RDIS is compared with the Re-
blocking Adjustable Memetic Procedure (RAMP) of [39] NEGAVNS of [43], Particle swarm
optimization algorithm, PSOVNS,of [44], Simulated Annealing algorithm, SAOP, of [45]
,two Ant Colony Optimization algorithms, PACO and M-MMAS, due to [46],the iterated
local search (ILS) of [47], and Hybrid genetic algorithm, HGA_RMA, of [48].

Table 1. Comparison of average percent deviation with the best methods in the literature.

Group Instances Size SAOP ILS M-MMAS PACO HGA_RMA PSOVNS NEGAVNS RAMP RDIS

1 ta001–ta010 20 × 5 1.05 0.33 0.04 0.18 0.04 0.03 0.00 0.00 0.00
2 ta011–ta020 20 × 10 2.60 0.52 0.07 0.24 0.02 0.02 0.01 0.03 0.03
3 ta021–ta030 20 × 20 2.06 0.28 0.06 0.18 0.05 0.05 0.02 0.04 0.04
4 ta031–ta040 50 × 5 0.34 0.18 0.02 0.05 0.00 0.00 0.00 0.00 0.01
5 ta041–ta050 50 × 10 3.50 1.45 1.08 0.81 0.72 0.57 0.82 0.37 0.95
6 ta051–ta060 50 × 20 4.66 2.05 1.93 1.41 0.99 1.36 1.08 0.61 1.88
7 ta061–ta070 100 × 5 0.30 0.16 0.02 0.02 0.01 0.00 0.00 0.00 0.01
8 ta071–ta080 100 × 10 1.34 0.64 0.39 0.29 0.16 0.18 0.14 0.06 0.38
9 ta081–ta090 100 × 20 4.49 2.42 2.42 1.93 1.30 1.45 1.40 1.76 2.35

10 ta091–ta100 200 × 10 0.94 0.50 0.30 0.23 0.14 0.18 0.16 0.15 0.32
11 ta101–ta110 200 × 20 3.67 2.07 2.15 1.82 1.26 1.35 1.25 2.00 2.30
12 ta111–ta120 500 × 20 2.20 1.20 1.02 0.85 0.69 – 0.71 1.20 1.32

SAOP, PACO, M-MMAS, ILS and HGA_RMA are all run on a CPU with 2.6 GHz
clock speed and the results are reported in [48]. However, RAMP and NEGAVNS are
run on a 2.2 GHz and a 2.4 GHz CPU respectively, and PSOVNS is run on a 2.8 GHz
CPU. Furthermore, CPU clock speeds are presented in Table 2 and a scaling factor has
been calculated. However, since CPU times depend on many factors such as developer
skills, compiler efficiency, implementation details, and CPU architecture, any running time
comparison should be made with caution.
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Table 2. Scaling factor computed for each CPU.

Algorithm Clock Speed (GHz) Scaling Factor

RDIS 2.2 1.00
RAMP 2.2 1.00

NEGAVNS 2.4 1.09
HGA_RMA 2.6 1.18

ILS 2.6 1.18
SAOP 2.6 1.18

M-MMAS 2.6 1.18
PACO 2.6 1.18

PSOVNS 2.8 1.27

Table 3 shows the comparison of the real and scaled maximum allowed running time
for RDIS, NEGAVNS, PSOVNS, and HGA_RMA. The maximum allowed running time of the
other approaches in Table 3 is equal to that of HGA_RMA, since they are re-implemented
and compared in [48]. Furthermore, since only NEGAVNS and PSOVNS have reported the
average time needed to reach their best solution, a comparison is presented in Table 4.

Table 3. Comparison of maximum allowed running times for different metaheuristics.

HGA_RMA PSOVNS NEGAVNS RDIS / RAMP

Group Instances Size Real Scaled Real Scaled Real Scaled Real Scaled

1 ta001–ta010 20 × 5 4.5 5.31 300 381 10 10.9 10 10
2 ta011–ta020 20 × 10 9 10.62 300 381 20 21.8 20 20
3 ta021–ta030 20 × 20 18 21.24 300 381 40 43.6 40 40
4 ta031–ta040 50 × 5 11.3 13.334 300 381 25 27.25 25 25
5 ta041–ta050 50 × 10 22.5 26.55 300 381 50 54.5 50 50
6 ta051–ta060 50 × 20 45 53.1 300 381 100 109 100 100
7 ta061–ta070 100 × 5 22.5 26.55 600 762 50 54.5 50 50
8 ta071–ta080 100 × 10 45 53.1 600 762 100 109 100 100
9 ta081–ta090 100 × 20 90 106.2 600 762 200 218 200 200

10 ta091–ta100 200 × 10 90 106.2 600 762 200 218 200 200
11 ta101–ta110 200 × 20 180 212.4 600 762 400 436 400 400
12 ta111–ta120 500 × 20 450 531 – – 1000 1090 1000 1000

Table 4. Comparison of average time needed to reach the best solution for PSOVNS, NEGAVNS,
RAMP, and RDIS.

PSOVNS NEGAVNS RDIS / RAMP

Group Instances Size Real Scaled Real Scaled Real Scaled

1 ta001–ta010 20 × 5 13.5 17.145 2.2 2.4 0.0 0.0
2 ta011–ta020 20 × 10 26.3 33.401 12.2 13.3 0.3 0.3
3 ta021–ta030 20 × 20 69.3 88.011 29.2 31.8 13.5 13.5
4 ta031–ta040 50 × 5 2.8 3.556 8.2 8.9 0.1 0.1
5 ta041-ta050 50 × 10 79.8 101.346 32.3 35.2 19.9 19.9
6 ta051–ta060 50 × 20 168.1 213.487 55 60.0 34.3 34.3
7 ta061–ta070 100 × 5 52.6 66.802 30.8 33.6 1.5 1.5
8 ta071–ta080 100 × 10 211 267.97 58.7 64.0 39.3 39.3
9 ta081–ta090 100 × 20 310.8 394.716 122.7 133.7 75.0 75.0

10 ta091–ta100 200 × 10 191.3 242.951 134.5 146.6 49.8 49.8
11 ta101–ta110 200 × 20 438.7 557.149 271.7 296.2 170.0 170.0
12 ta111–ta120 500 × 20 – – 523.4 570.5 482.3 482.3

In addition, based on the fact that NEGAVNS, RAMP, and RDIS, allow similar maxi-
mum allowed running time (ref. Table 3), statistical testing has been performed to further
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analyze their difference. For this purpose, these methods are initially ranked based on their
average deviation from the best-known solution %DEVavg , for each instance group, as
shown in Table 5. In the case of tied %DEVavg values, the average of the ranks with the
assumption of no tied values, are calculated. The mean rank for NEGAVNS, RAMP, and
RDIS are 1.5, 1.667 and 2.833 respectively. Friedman test has been performed on the ranked
data set, showing a statistically significant difference in the ranks, with χ2(2) = 15.2,
p = 0.0005.

Further, for each pair of algorithms, post-hoc analysis using Wilcoxon signed-rank
tests has been conducted with a significance level set at p < (0.05/3 = 0.017) (Bonferroni
correction). It has been found that there were no significant differences between the ranks
of NEGAVNS and RAMP (p = 0.482) but a significant difference between the ranks of
NEGAVNS, and RDIS (p < 0.001 ) as well as between RAMP and RDIS (p < 0.001). This
could indicate that out of the three compared methods, NEGAVNS and RAMP are the best
performing ones and RDIS falls in second place. It is worth noting, these results should be
interpreted with caution, as they are solely based on average deviation, and other factors
such as best deviation, average and best running times, and implementation details have
not been considered. An interested reader can see [49] for a tutorial on nonparametric
statistical tests, used for comparing metaheuristics.

Table 5. NEGAVNS, RAMP, and RDIS ranked based on %DEVavg for each problem group.

Group Instances NEGAVNS RAMP RDIS

1 ta001–ta010 2.00 2.00 2.00
2 ta011–ta020 1.00 2.50 2.50
3 ta021–ta030 1.00 2.50 2.50
4 ta031–ta040 1.50 1.50 3.00
5 ta041–ta050 2.00 1.00 3.00
6 ta051–ta060 2.00 1.00 3.00
7 ta061–ta070 1.50 1.50 3.00
8 ta071–ta080 2.00 1.00 3.00
9 ta081–ta090 1.00 2.00 3.00

10 ta091–ta100 2.00 1.00 3.00
11 ta101–ta110 1.00 2.00 3.00
12 ta111–ta120 1.00 2.00 3.00

For a more fine-grained analysis, an instance-by-instance performance comparison is
presented in Tables 6 and 7. In these tables, the performance of the RDIS on these instances
is shown and compared with that of the NEGAVNS presented in [43]. The NEGAVNS, which
is a genetic algorithm (GA) and uses the variable neighborhood search (VNS) employs the
NEH heuristic presented in [26] for constructing its initial solutions, and that is why it has
been named as NEGAVNS. The NEH has also been named as the initial of its authors and is
a famous algorithm. As further information, the performance of the NEH has also been
provided in the table.

In line with [43] (Zobolas, Tarantilis et al. 2009), we have set the running time of the
RDIS to (n ∗m)/10 seconds for each run. Moreover, for removing the effect of the random
seed and in line with other algorithms, the RDIS has been run 10 times for each instance,
with different random seeds.

In Tables 6 and 7, columns 2 and 3 represent the number of jobs and machines,
respectively, and columns 4 and 5 show the lower and upper bound of each instance. The
value of the upper bound is the best available makespan for the corresponding instance in
the literature, and in the cases where upper and lower bounds are equal, the best available
makespan in the literature is equal to the optimal solution.
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Table 6. Comparing the performance of the RDIS with that of NEGAVNS for all individual instances.

RDIS NEGAVNS

Instance n m LB UB NEH Best %DEVavg Tbest Best %DEVavg Tbest

ta001 20 5 1278 1278 1286 1278 0.00 0 1278 0.00 1
ta002 20 5 1359 1359 1365 1359 0.00 0 1359 0.00 2
ta003 20 5 1081 1081 1159 1081 0.00 0 1081 0.00 2
ta004 20 5 1293 1293 1325 1293 0.00 0 1293 0.00 2
ta005 20 5 1235 1235 1305 1235 0.00 0 1235 0.00 2
ta006 20 5 1195 1195 1228 1195 0.00 0 1195 0.00 3
ta007 20 5 1239 1239 1278 1239 0.00 0 1239 0.00 3
ta008 20 5 1206 1206 1223 1206 0.00 0 1206 0.00 2
ta009 20 5 1230 1230 1291 1230 0.00 0 1230 0.00 1
ta010 20 5 1108 1108 1151 1108 0.00 0 1108 0.00 4
ta011 20 10 1582 1582 1680 1582 0.00 0 1582 0.00 10
ta012 20 10 1659 1659 1729 1659 0.00 0 1659 0.02 9
ta013 20 10 1496 1496 1557 1496 0.02 2 1496 0.00 12
ta014 20 10 1377 1377 1439 1377 0.04 0 1377 0.05 17
ta015 20 10 1419 1419 1502 1419 0.00 0 1419 0.00 11
ta016 20 10 1397 1397 1453 1397 0.00 0 1397 0.00 15
ta017 20 10 1484 1484 1562 1484 0.00 0 1484 0.00 11
ta018 20 10 1538 1538 1609 1538 0.24 0 1538 0.00 10
ta019 20 10 1593 1593 1647 1593 0.00 0 1593 0.00 13
ta020 20 10 1591 1591 1653 1591 0.00 1 1591 0.00 14
ta021 20 20 2297 2297 2410 2297 0.05 14 2297 0.00 26
ta022 20 20 2099 2099 2150 2099 0.06 36 2099 0.01 33
ta023 20 20 2326 2326 2411 2326 0.09 24 2326 0.02 32
ta024 20 20 2223 2223 2262 2223 0.03 2 2223 0.00 22
ta025 20 20 2291 2291 2397 2291 0.10 34 2291 0.04 21
ta026 20 20 2226 2226 2349 2226 0.09 18 2226 0.03 35
ta027 20 20 2273 2273 2362 2273 0.00 2 2273 0.07 36
ta028 20 20 2200 2200 2249 2200 0.00 3 2200 0.00 25
ta029 20 20 2237 2237 2320 2237 0.00 0 2237 0.00 23
ta030 20 20 2178 2178 2277 2178 0.01 1 2178 0.02 39
ta031 50 5 2724 2724 2733 2724 0.00 0 2724 0.00 6
ta032 50 5 2834 2834 2843 2836 0.09 0 2834 0.00 5
ta033 50 5 2621 2621 2640 2621 0.00 0 2621 0.00 1
ta034 50 5 2751 2751 2782 2751 0.00 0 2751 0.00 11
ta035 50 5 2863 2863 2868 2863 0.01 1 2863 0.00 8
ta036 50 5 2829 2829 2850 2829 0.00 0 2829 0.00 5
ta037 50 5 2725 2725 2758 2725 0.00 0 2725 0.00 7
ta038 50 5 2683 2683 2721 2683 0.00 0 2683 0.00 6
ta039 50 5 2552 2552 2576 2552 0.00 0 2552 0.00 12
ta040 50 5 2782 2782 2790 2782 0.00 0 2782 0.00 21
ta041 50 10 2991 2991 3135 3025 1.34 21 3021 1.03 38
ta042 50 10 2867 2867 3032 2911 1.67 2 2902 1.28 41
ta043 50 10 2839 2839 2986 2871 1.25 5 2871 1.14 36
ta044 50 10 3063 3063 3198 3064 0.09 5 3070 0.28 29
ta045 50 10 2976 2976 3160 3005 1.18 23 2998 0.81 25
ta046 50 10 3006 3006 3178 3012 0.68 23 3024 0.68 32
ta047 50 10 3093 3093 3277 3126 1.23 43 3122 0.98 19
ta048 50 10 3037 3037 3123 3042 0.28 25 3063 0.93 29
ta049 50 10 2897 2897 3002 2905 0.43 8 2914 0.65 39
ta050 50 10 3065 3065 3257 3099 1.37 43 3076 0.44 35
ta051 50 20 3771 3850 4082 3917 1.92 73 3874 0.77 22
ta052 50 20 3668 3704 3921 3757 1.77 70 3734 1.02 87
ta053 50 20 3591 3640 3927 3699 2.26 11 3688 1.39 56
ta054 50 20 3635 3720 3969 3781 1.86 1 3759 1.14 39
ta055 50 20 3553 3610 3835 3673 2.08 8 3644 1.03 48
ta056 50 20 3667 3681 3914 3716 1.35 60 3717 1.07 74
ta057 50 20 3672 3704 3952 3769 1.83 39 3728 0.79 42
ta058 50 20 3627 3691 3938 3759 2.25 40 3730 1.18 28
ta059 50 20 3645 3743 3952 3790 1.76 5 3779 1.10 90
ta060 50 20 3696 3756 4079 3809 1.72 36 3801 1.35 64
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Table 7. (continued) Comparing the performance of the RDIS with that of NEGAVNS for all individual
instances.

RDIS NEGAVNS

Instance n m LB UB NEH Best %DEVavg Tbest Best %DEVavg Tbest

ta061 100 5 5493 5493 5519 5493 0.00 0 5493 0.00 34
ta062 100 5 5268 5268 5348 5268 0.04 13 5268 0.00 26
ta063 100 5 5175 5175 5219 5175 0.00 0 5175 0.00 36
ta064 100 5 5014 5014 5023 5014 0.03 1 5014 0.00 33
ta065 100 5 5250 5250 5266 5250 0.00 0 5250 0.00 12
ta066 100 5 5135 5135 5139 5135 0.00 0 5135 0.00 42
ta067 100 5 5246 5246 5259 5246 0.00 0 5246 0.00 50
ta068 100 5 5094 5094 5120 5094 0.00 0 5094 0.00 31
ta069 100 5 5448 5448 5489 5448 0.00 0 5448 0.00 25
ta070 100 5 5322 5322 5341 5322 0.03 1 5322 0.00 19
ta071 100 10 5770 5770 5846 5779 0.21 19 5770 0.04 49
ta072 100 10 5349 5349 5453 5353 0.22 99 5358 0.23 78
ta073 100 10 5676 5676 5824 5679 0.05 0 5676 0.09 65
ta074 100 10 5781 5781 5929 5808 0.63 65 5792 0.23 22
ta075 100 10 5467 5467 5679 5483 0.62 71 5467 0.06 81
ta076 100 10 5303 5303 5375 5308 0.09 1 5311 0.20 72
ta077 100 10 5595 5595 5704 5599 0.08 4 5605 0.22 54
ta078 100 10 5617 5617 5760 5646 0.71 72 5617 0.05 64
ta079 100 10 5871 5871 6032 5918 0.90 57 5877 0.19 29
ta080 100 10 5845 5845 5918 5850 0.30 5 5845 0.09 73
ta081 100 20 6106 6202 6541 6369 2.85 25 6303 1.69 85
ta082 100 20 6183 6183 6523 6303 2.09 14 6266 1.45 75
ta083 100 20 6252 6271 6639 6385 2.02 4 6351 1.32 145
ta084 100 20 6254 6269 6557 6364 1.79 63 6360 1.49 129
ta085 100 20 6262 6314 6695 6463 2.64 30 6408 1.57 163
ta086 100 20 6302 6364 6664 6487 2.17 16 6453 1.50 108
ta087 100 20 6184 6268 6632 6419 2.57 174 6332 1.10 94
ta088 100 20 6315 6401 6739 6551 2.81 201 6482 1.49 112
ta089 100 20 6204 6275 6677 6402 2.35 83 6343 1.15 169
ta090 100 20 6404 6434 6677 6562 2.22 141 6506 1.26 147
ta091 200 10 10,862 10,862 10,942 10,885 0.25 30 10,885 0.24 89
ta092 200 10 10,480 10,480 10,716 10,503 0.45 76 10,495 0.19 125
ta093 200 10 10,922 10,922 11,025 10,965 0.49 135 10,941 0.21 169
ta094 200 10 10,889 10,889 11,057 10,893 0.09 27 10,889 0.04 158
ta095 200 10 10,524 10,524 10,645 10,528 0.11 30 10,524 0.03 192
ta096 200 10 10,329 10,329 10,458 10,337 0.16 31 10,346 0.21 91
ta097 200 10 10,854 10,854 10,989 10,883 0.43 22 10,866 0.17 124
ta098 200 10 10,730 10,730 10,829 10,769 0.44 12 10,741 0.15 112
ta099 200 10 10,438 10,438 10,574 10,465 0.26 9 10,451 0.19 138
ta100 200 10 10,675 10,675 10,807 10,722 0.48 125 10,684 0.14 147
ta101 200 20 11,152 11,195 11,594 11,399 2.05 224 11,339 1.52 222
ta102 200 20 11,143 11,203 11,675 11,482 2.73 302 11,344 1.47 268
ta103 200 20 11,281 11,281 11,852 11,535 2.52 165 11,445 1.45 385
ta104 200 20 11,275 11,275 11,803 11,501 2.27 118 11,434 1.49 154
ta105 200 20 11,259 11,259 11,685 11,449 1.81 130 11,369 1.06 300
ta106 200 20 11,176 11,176 11,629 11,413 2.40 148 11,292 1.01 254
ta107 200 20 11,337 11,360 11,833 11,555 2.09 114 11,481 1.11 269
ta108 200 20 11,301 11,334 11,913 11,554 2.12 49 11,442 1.03 311
ta109 200 20 11,145 11,192 11,673 11,473 2.64 342 11,313 1.22 326
ta110 200 20 11,284 11,288 11,869 11,517 2.34 109 11,424 1.14 228
ta111 500 20 26,040 26,059 26,670 26,448 1.60 344 26,228 0.73 311
ta112 500 20 26,500 26,520 27,232 26,938 1.70 453 26,688 0.77 552
ta113 500 20 26,371 26,371 26,848 26,730 1.47 348 26,522 0.71 448
ta114 500 20 26,456 26,456 27,055 26,721 1.16 600 26,586 0.54 269
ta115 500 20 26,334 26,334 26,727 26,606 1.14 220 26,541 0.82 396
ta116 500 20 26,469 26,477 26,992 26,729 1.14 284 26,582 0.49 682
ta117 500 20 26,389 26,389 26,797 26,643 1.10 759 26,660 1.12 559
ta118 500 20 26,560 26,560 27,138 26,858 1.32 970 26,711 0.61 814
ta119 500 20 26,005 26,005 26,631 26,348 1.49 36 26,148 0.61 592
ta120 500 20 26,457 26,457 26,984 26,698 1.08 808 26,611 0.67 611
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Columns 6, 7, and 10 provide the values of the makespan produced by NEH, RDIS,
and NEGAVNS, respectively. The value of Tbest shows the shortest time taken for the best
solution to be obtained in seconds, and the value of %DEVavg shows the average of the
percentage deviation from the best available makespan. The percentage deviation from
the best available makespan has been calculated based on the formula of (s−UB)/UB,
in which s and UB show the corresponding makespan calculated and the best available
makespan, which is also an upper bound for the corresponding instance. The wide spec-
trum information provided in Tables 6 and 7, based on 120 benchmark instances, indicates
that the RDIS is highly competitive and produces comparatively high-quality solutions.

In all 120 instances, the RDIS has obtained a better solution value than the NEH
heuristic. In terms of best solution value, the RDIS has obtained equal or better value in 61
out of 120 problems. Moreover, in 46 out of 120 instances the average percentage deviation
has been smaller than or equal to that of the NEGAVNS, and in 100 out of 120 instances, the
average shortest time to find the best solution is less than or equal to that of the NEGAVNS.
Moreover, the total average running times to reach the best solution of RDIS is more than
44 times faster than that of NEGAVNS.

6. Concluding Remarks

In the area of algorithm design, the notion of decomposition is an umbrella term for
obtaining a solution to a problem through its break-down into subproblems, with all these
subproblems being handled with the same procedure. The RDIS is a stochastic algorithm
based on such notion, in the sense that it translates non-tractable problems to tractable
subproblems and obtains optimal solutions of these tractable subproblems.

The integration of the optimal sub-solutions provided for these subproblems, ex-
pectedly does not lead to the overall optimal solution, except for small-sized problems.
However, computational experiments have shown that the RDIS is able to produce solu-
tions with the accuracy of one percent from the best-known solutions in the literature. This
success is not the result of one factor but that of three major factors.

First, the combination of small and large neighborhood schemes is able to create
a delicate balance between speed and quality. With this respect, it should be noticed
that although in local searches multi-exchanges usually lead to better results than that of
pair-exchanges, nevertheless, multi-exchanges require outsized execution times.

In other words, in the RDIS, the size of k-exchange neighborhood is not O
(
(n

k)
)
, as it is

the case with other k-exchange neighborhoods, but only a tiny fraction of it. The reason is
that in the RDIS, the computational burden has been placed on the small neighborhood
scheme and the large neighborhood scheme is used only for promising partitions, taking
an immense bulk of possible k-exchanges out of considerations and contributing to the
efficiency of the stochastic algorithm.

Second, the RJP, as a construction method, is able to successively rearrange jobs
through informed revisions, and this makes the quality of initial solutions for the local
searches high. To further emphasize the role of such informed decisions in increasing
solution quality, we can mention similar algorithms like the ant colony optimization, which
have simply built upon construction methods but can even compete with local searches.

Third, varying the initial permutation through randomly swapping the neighboring
jobs, with the chance of SwapProb, not only has diversified the search but it has led to the
feature of not losing the accumulated knowledge regarding the best permutation of jobs
initially obtained by the RJP. With respect to this feature, the issue is not simply that the
random swapping of jobs diversifies the permutation initially obtained by the RJP and
allows different starting points to be generated. The deeper issue is that since the RJP does
not care about the position of two neighboring jobs and mainly concentrates on grouping
the jobs in two partitions, these random swaps, despite their contribution to diversification,
cannot significantly degrade the quality of the original permutation proposed by the RJP.

The RDIS can be improved in several directions as outlined in the following:

• Trivial as well as sophisticated implementation of parallelization techniques;
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• Efficient estimation, instead of exact evaluation, of the makespan; and
• Integration with population-based techniques.

For enhancing the algorithm through the concept of parallelization, it is possible to
employ this concept in a range from its trivial implementation to its most sophisticated
structure. In its trivial implementation, several threads of the same procedure can start on
a number of processors with different initial solutions.

In its sophisticated structure, however, parallelization can be employed for the entire
algorithm as an integrated entity. In this case, two groups of threads need to be developed.
In the first group, each thread can calculate the makespan of one neighbor on a separate
processor, regardless of whether a small or large neighborhood is in place.

On the other hand, in the second group, each thread can be assigned to solving a
two-machine problem. Since nearly the entire time of local searches is spent on calculating
the values of makespan and the entire time of the RJP is spent on solving the two-machine
problems, this form of parallelization speeds up the algorithm and enables the enhanced
procedure to tackle larger instances more efficiently.

The other promising direction for further enhancing the RDIS is the development of
novel evaluation functions. Considering the fact that a large percentage of computation
time in a typical local search is spent on calculating the exact values of the makespan, the
development of novel evaluation functions, which with significant precision can efficiently
estimate such values, can decrease the search effort and work towards search efficiency.
Based on such ease of calculation, which is obtained at the loss of insignificant precision,
the local search can probe larger parts of the search space and, if conducted properly, can
obtain high-quality solutions.

The final suggestion for enhancing the RDIS is the development of a population-based
mechanism that can work with the current point-based local searches employed. Such a
mechanism can govern how computation time is devoted to manipulating solutions with
higher quality, and in this way, it can prevent solutions with lower quality from seizing
computational resources. The proposed population-based mechanism can also spread the
characteristics of high-quality solutions in other individuals of the population. Since, as the
population is evolved, the genetic diversity among the individuals of the population de-
clines and the population becomes homogeneous, the design of proper mutation operators
exploiting the structure of the PFSP is of key importance in implementing such a possible
population-based mechanism.
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