
algorithms

Article

Automatic Calibration of Piezoelectric Bed-Leaving Sensor
Signals Using Genetic Network Programming Algorithms

Hirokazu Madokoro 1,*,† , Stephanie Nix 2,† and Kazuhito Sato 2

����������
�������

Citation: Madokoro, H.; Nix, S.;

Sato, K. Automatic Calibration of

Piezoelectric Bed-Leaving Sensor

Signals Using Genetic Network

Programming Algorithms. Algorithms

2021, 14, 117. https://doi.org/

10.3390/a14040117

Academic Editor: Conor Ryan

Received: 8 March 2021

Accepted: 2 April 2021

Published: 4 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Software and Information Science, Iwate Prefectural University, Takizawa City 020-0693, Japan
2 Faculty of Systems Science and Technology, Akita Prefectural University, Yurihonjo City 015-0055, Japan;

snix@akita-pu.ac.jp (S.N.); ksato@akita-pu.ac.jp (K.S.)
* Correspondence: hirokazu_h@iwate-pu.ac.jp; Tel.: +81-019-694-2500
† These authors contributed equally to this work.

Abstract: This paper presents a filter generating method that modifies sensor signals using genetic
network programming (GNP) for automatic calibration to absorb individual differences. For our
earlier study, we developed a prototype that incorporates bed-leaving detection sensors using piezo-
electric films and a machine-learning-based behavior recognition method using counter-propagation
networks (CPNs). Our method learns topology and relations between input features and teaching
signals. Nevertheless, CPNs have been insufficient to address individual differences in parameters
such as weight and height used for bed-learning behavior recognition. For this study, we actualize
automatic calibration of sensor signals for invariance relative to these body parameters. This paper
presents two experimentally obtained results from our earlier study. They were obtained using
low-accuracy sensor signals. For the preliminary experiment, we optimized the original sensor
signals to approximate high-accuracy ideal sensor signals using generated filters. We used fitness
to assess differences between the original signal patterns and ideal signal patterns. For application
experiments, we used fitness calculated from the recognition accuracy obtained using CPNs. The ex-
perimentally obtained results reveal that our method improved the mean accuracies for three datasets.

Keywords: automatic calibration; bed-leaving detection; counter-propagation networks; genetic
network programming; piezoelectric films

1. Introduction

The progression of longevity is forcing humanity to confront various unprecedented
social problems. In hyper-aged societies, both healthy and unhealthy life expectancy
lifespans are increasing year by year [1]. Elderly people with longevity invariably spend
longer periods of their second life outside their homes because they are living longer
without severe disability [2]. Hospitals and nursing-care facilities are now confronting
daunting labor shortages in terms of medical doctors, nurses and caretakers. Especially
during nighttime, labor shortages can lead to accidents of various types, particularly
related to numerous fall and tumble risks. According to a report by Mita et al. [3], fall
accidents occurred as approximately half the total number of accidents that occur among
elderly people at nursing-care facilities. Most fall accidents occurred when patients left
their own bed.

Providing suitable solutions with assessment primarily requires fall accident pre-
vention. Recently, bed-leaving sensors have come to be used widely at hospitals and
nursing-care facilities to prevent fall-related behaviors in advance. A method of detecting
abnormal behavior patterns has been proposed for monitoring sleeping elderly people [4].
One can imagine that in a psychiatric ward, however, it would be unrealistic to use a cam-
era without some special justification. Especially for hospitals and nursing-care facilities,
the use of cameras for monitoring patients is limited for reasons of privacy and morality,

Algorithms 2021, 14, 117. https://doi.org/10.3390/a14040117 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-5485-2928
https://doi.org/10.3390/a14040117
https://doi.org/10.3390/a14040117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14040117
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/14/4/117?type=check_update&version=2


Algorithms 2021, 14, 117 2 of 18

except for intensive care units or special wards for infectious diseases. To assess privacy
considerations, a fall detection method using radio-frequency identification devices (RFIDs)
has been proposed to detect changes of electrical intensity [5]. Nevertheless, detection
using that method is limited to a person’s status after a fall. For the development of
bed-leaving sensors, various factors exist for consideration in terms of system reliability,
stability, durability, initial and maintenance cost, detection speed, privacy, and quality of
life (QoL) for patients.

We proposed a bed-leaving sensor system [6] using piezoelectric films bound with
acrylic resin boards to detect pressure. An important benefit of this approach is that it
can be installed in off-the-shelf beds. Sensors installed between a bed and a cover can
detect a person’s behaviors. We evaluated basic sensor characteristics and the relation
between accuracy and body parameters such as the weight and height of subjects [6]. More-
over, we evaluated our originally developed sensor system using discontinuous datasets
that comprised random behavior patterns [6]. However, counter-propagation networks
(CPNs) [7] used for bed-leaving behavior recognition are insufficient to incorporate in-
dividual differences in physique such as weight and height. Especially for low-weight
subjects, recognition accuracies were dramatically lower. To address this difficulty, we
propose a method for automatically generating a filter set for shaping sensor signals
based on evolutionary learning (EL) to demonstrate automatic sensor calibration according
to subjects.

The remainder of the paper is structured as follows—in Section 2, related studies of
EL-based calibration methods are reviewed for improving classification and recognition
accuracy. Sections 3 and 4 respectively present our proposed method and our original
sensor signal datasets. Subsequently, Sections 5 and 6 present a preliminary experiment
result obtained using a dataset obtained from a particular sensor, in addition to application
experiment results obtained using three datasets obtained from one person for whom
low initial recognition accuracy was obtained compared to those of other experiment
participants. Section 7 presents our analyses of the properties of parameters and node
changes for additional optimization. Finally, Section 8 concludes our presentation of the
present work and highlights future work. As described herein, we use our proposed
fundamental method with originally developed sensors of two types [8]. To explain our
present study, we have included additional details in Sections 2, 6 and 7.

2. Related Studies

As a framework for resolving difficulties combined with learning, inferring, and opti-
mizing, EL-based methods are used widely in numerous applications [9]. Song et al. [10]
proposed a method to generate filters used for electrocardiogram signals based on a genetic
algorithm (GA) [11]. The limitation of GAs is that they are merely applicable to parameter
optimization. Koza [12] proposed genetic programming (GP) for use as a unified method
to evolve programs affected by living things. To apply program generation, learning,
reasoning, and conceptual formation, GP can be extended to accommodate a structural
representation of GA genotypes. Moreover, GP can express data structures and programs
as trees and graphs. For an extension to graph structures, genetic network programming
(GNP) was proposed for efficient searching while avoiding tree bloat.

As pioneer work, Katagiri et al. [13,14] and Hirasawa et al. [15] have proposed original
frameworks of GNP that obtained intelligent behavior sequences for evolutionary robotics.
Furthermore, they automatically designed complex systems based on evolutionary op-
timization techniques such as GA and GP. They [16] evaluated GNP using the partially
observable Markov decision process (POMDP) problem developed by Goldman et al. [17].
The experimentally obtained simulation results elucidated that GNP evolved more effec-
tively than GP. Especially, premature convergence occurs only rarely in GNP compared
to its more common occurrence in GP. Moreover, the fitness of GNP has been reported as
higher than that of GP from the initial generation.



Algorithms 2021, 14, 117 3 of 18

Mabu et al. [18] combined GNP with reinforcement learning [19] to create dynamic
graph structures. They also used the POMDP problem [17] for benchmarking. The ex-
perimentally obtained results demonstrated that their method presents advantages over
conventional methods based on GP and EP. Moreover, Chen et al. [20] combined GNP
with Sarsa learning [21] for stock market trading to judge the timing of buying and selling.
The experimentally obtained simulation results obtained using stock price datasets of 16
brands during four years clarified that the fitness and profits of their composed method
were higher than the existing stock prediction methods.

Li et al. [22] combined GNP with distributed estimation algorithms to solve traffic
prediction problems based on class association rule mining. They used a probabilistic model
that enhanced ultimate objective evolution. The experimentally obtained simulation results
revealed that their method extracted class rules more effectively, especially for a case of an
increased number of class association candidate rules. Moreover, the classification accuracy
of their method achieved sufficient results for traffic prediction systems. Li et al. [23] also
combined GNP with a hybrid probabilistic model-building algorithm to avoid premature
convergence and local optima while maintaining population diversity. Their experimentally
obtained simulation results, evaluated using a small autonomous robot, demonstrated that
their method achieved better performance than any conventional algorithm.

Wedashwara et al. [24] combined GNP with standard dynamic programming to solve
knapsack problems [25]. Their method explored suitable combinations of attributes to
create clustering and distributed rules. The experimentally obtained simulation results
obtained using six benchmark datasets obtained from machine-learning (ML) repositories
clarified that their method presents advantages over the use of conventional clustering al-
gorithms such as k-means, hierarchical clustering, fuzzy C means, and affinity propagation.
Moreover, their method was found to be suitable for offline processing that specifically
emphasizes optimal results rather than short processing time.

Mabu et al. [26] combined GNP with fuzzy set theory [27] for the detection of network
intrusions. Experimentally obtained results using two benchmark datasets revealed that
their method provided competitively high detection rates when compared with other ML
techniques and GNP with the approach of a current cross-industry standard processing for
data mining [28]. As the latest study, Mabe et al. [29] combined GNP with a semisupervised
learning framework to extract class association rules from a small number of labeled data
and from numerous unlabeled data. The experimentally obtained results obtained using
several benchmark datasets revealed the classification accuracy of their method as superior
to that of conventional methods.

As a graphical model that optimizes parameters and processing structures, GNP is
highly independent of classifiers and recognizers. For those reasons, GNP is suitable for
combining various existing methods to improve accuracy, especially in practical problems.

3. Proposed Method
3.1. Overall System Structure

This study was conducted to improve the recognition accuracy of our originally de-
veloped bed-leaving detection and behavior pattern recognition system [6]. Our proposed
method comprises CPNs combined with GNP that absorbs sensor signal differences as
an automatic calibration module. Figure 1 depicts the overall structure of our proposed
method, including our originally developed sensor. Sensor signals are obtained from the
sensor without an electric power supply because piezoelectric films are used [30]. Subse-
quently, the obtained sensor signals are modified using GNP. Herein, GNP is optimized in
advance using original signals and ideal signals obtained from other datasets that provide
superior recognition accuracy. We used CPNs to recognize bed-leaving behavior patterns.
The modified sensor signals are presented to CPNs for the training mode of a supervised
manner. After training, the network weights on CPNs are fixed. The operation mode of
CPNs is then switched from training to validation. Behavior patterns are recognized by
CPNs for input sensor signals. For this mode, GNPs are used as a filter. Herein, both GNP



Algorithms 2021, 14, 117 4 of 18

and CPNs run rapidly in real time because updating of network structures and weights are
terminated for the validation mode.

Figure 1. Overall structure of our proposed method including our originally developed sensor.

3.2. Design of GNP Nodes

Figure 2a depicts an example of GNP. As an original population, the initial set of
nodes is randomly generated. Although GP and GNP use different genotypes such as a
tree structure and a graph network structure, the GP tree depth grows infinitely, which is
an important benefit for searching when combined with mutation and crossover for an
optimal solution. However, an important shortcoming is that it has low searching efficiency
if search ranges are expanded. The fitness of nodes near the root is greater than that of
nodes near terminals if mutation or crossover occurs near the root. In the early stage of
evolution, convergence to a local minimum occurs if a node near the root is unselected. The
number of GNP nodes is invariable during the evolution process because it uses a network
structure genotype. The influence of fitness for changing nodes is extremely different in
the respective nodes.

Figure 2. Example of genetic network programming (GNP).

Figure 2b depicts a crossover example that is applied between two sets of nodes as
the following.

1. Two sets of nodes are selected randomly.
2. Each set of nodes is switched while the connections are maintained.
3. New fitness values are calculated.



Algorithms 2021, 14, 117 5 of 18

Figure 2c depicts a mutation example that is applied to a particular node like
the following.

1. A node is selected randomly.
2. A new node is produced randomly.
3. The existing node is switched to the new node.
4. A new fitness value is calculated.

Throughout the evolutionary process, GNP automatically generates programs as
nodes of two types: a branch node and a processing node that respectively comprise a
nonterminal symbol and a terminal symbol of GP. We designed 5 branch nodes and 15
processing nodes for filtering original output sensor signals. Table 1 denotes the branch
nodes. Each branch node includes three branches compared with two values. Let a(t) be
an input signal, which is discretized as a 8-bit discrete value versus time t, to a branch node.
Herein, d in N5 is defined as

a =
a(t− 1) + a(t) + a(t + 1)

3
(1)

and d(a) in N5 is defined as

d(a) = a(t + 1)− 2a(t) + a(t− 1). (2)

Table 1. Originally designed branch nodes of five types.

Node Index First Branch Second Branch Third Branch

N1 a(t) > a(t− 1) a(t) = a(t− 1) a(t) < a(t− 1)
N2 a(t) > a(t + 1) a(t) = a(t + 1) a(t) < a(t + 1)
N3 a(t− 1) > a(t + 1) a(t− 1) = a(t + 1) a(t− 1) < a(t + 1)
N4 a(t) > a a(t) = a a(t) < a
N5 d(a) > 0 d(a) = 0 d(a) < 0

Table 2 presents processing nodes. Let s(t) be an input signal, which is discretized as
an 8-bit discrete value versus time t, to a processing node. The processing formulas in each
node are the following.

s(t) = αs(t− 1) (3)

s(t) =
1
2
{s(t− 1) + s(t)} (4)

s(t) =
1
2
{s(t) + s(t + 1)} (5)

s(t) =
1
3
{s(t− 1) + s(t) + s(t + 1)} (6)

s(t) = −1
3
{s(t− 1)− 2s(t) + s(t + 1)} (7)

s(t) = βs(t− 1) + γs(t) + βs(t + 1) (8)

s(t) = −{βs(t− 1) + (1− γ)s(t) + βs(t + 1)} (9)

s(t) = s(t− 1), (10)

where α, β, and γ are gains that adjust the signal strength.



Algorithms 2021, 14, 117 6 of 18

Table 2. Originally designed processing nodes of 15 types.

Node Number Formula Index α β γ

N6 (3) 0.50 – –
N7 (3) 0.80 – –
N8 (3) 0.90 – –
N9 (3) 1.10 – –

N10 (3) 1.20 – –
N11 (3) 1.50 – –
N12 (4) – – –
N13 (5) – – –
N14 (6) – – –
N15 (7) – – –
N16 (8) – 0.25 0.50
N17 (8) – 0.10 0.80
N18 (9) – 0.25 0.50
N19 (9) – 0.10 0.80
N20 (10) – – –

3.3. Counter-Propagation Networks

The rapid progress and development of deep learning (DL) [31] technologies in recent
years has contributed remarkably to the classification [32], recognition [33], understand-
ing [34], and prediction [35] of diverse and numerous tasks. With the advent of very deep
multilayered backbones such as Inception [36], Xception [37], ResNet [38], ResNeXt [39],
and Res2Net [40], the performance and accuracy of DL-based methods significantly out-
perform those of classical ML-based methods. However, to achieve their full performance,
DL-based methods require the combination of large amounts of training and validation
data combined with high-dimensional features. Therefore, DL-based methods mainly
target large image datasets obtained from various cameras, including depth sensors [41].
For low-dimensional features and low-volume datasets, DL-based methods are unsuitable
for training and validation because of the complexity of their networks and their numerous
parameters. We infer that conventional DL-based methods have an important role and that
they can make a meaningful contribution in this application range.

For this study, we used CPNs [7], which are a conventional ML-based method, to clas-
sify and to recognize bed-leaving behavior patterns. Input features from the sensors to the
input layer unit i (1 ≤ i ≤ I) at time t are xi(t). A weight from i to Kohonen layer unit
j (1 ≤ j ≤ J) at time t is wij(t). Also, a weight from Grossberg layer unit k (1 ≤ k ≤ K)
to Kohonen layer unit j at time t is wjk(t). Herein, I, J, and K respectively denote the
total numbers of input layer units, Kohonen layer units, and Grossberg layer units. Before
learning, wij(t) are initialized randomly. Using the Euclidean distance between xi(t) and
wij(t), a winner unit c(t) is sought for the following:

c(t) = argmin
1≤j≤J

√√√√ I

∑
i=1

(xi(t)− wij(t))2. (11)

A neighborhood region N(t) is set from the center of c is

N(t) = bN(0) · J ·
(

1− t
L

)
+ 0.5c, (12)

where L stands for the maximum learning iteration. Teaching signals to the Grossberg
layer units at time t are yk(t). For supervised learning, wij and wjk in N(t) are updated as

wij(t + 1) = wij(t) + α(xi(t)− wij(t)), (13)



Algorithms 2021, 14, 117 7 of 18

wjk(t + 1) = wjk(t) + β(yk(t)− wjk(t)), (14)

where α and β are learning coefficients that decrease along with learning progress.

4. Bed-Leaving Behavior Datasets
4.1. Sensor and Assignment

Numerous bed sensors [42] and smart bed systems [43] of various types have been
proposed. We proposed the bed-leaving detection system [6] based on ML methods
obtained using piezoelectric film-type sensors, as depicted in Figure 3a installed on an
off-the-shelf bed. The feature of our sensor system is non-restrictive, invisible, cost-effective,
and independent of sensor-driven power. For our latest sensor system, we use only five
sensors as the minimum assignment structure, as depicted in Figure 3d. Herein, S1–S5
denote labels of the sensor installation positions. To obtain signals from respective sensors,
subjects assumed face-up sleeping, right sleeping, left sleeping, longitudinal sitting, lateral
sitting, terminal sitting, and left the bed of seven positions as a single pattern switched
at 20 s intervals. We built benchmark datasets used for comparative experiments of bed-
leaving detection.

Figure 3. Bed-monitoring sensor system [6].

4.2. Target Behavior Patterns

The target behavior patterns for bed-leaving prediction comprise three groups—
sleeping, sitting, and leaving [6]. For this study, we attempt to classify detailed behavior
patterns from the responses of six sensors. Sleeping can be of three patterns—face-up sleep-
ing, left sleeping, and right sleeping. Sitting can be of three patterns—longitudinal sitting,
lateral sitting, and terminal sitting [44]. The total prediction target is to produce seven
patterns including leaving. The following are features and estimated sensor responses in
each pattern.

Face-up Sleeping A subject is sleeping on the bed normally to the upper side of the
body.Moreover, the person is rolling over on the bed to the right or left side. All the
sensors give outputs.
Longitudinal Sitting A subject is sitting longitudinally on the bed after rising. The
sensor response is mainly the output of S5, which is installed on the hip of the subject.
Lateral Sitting A subject is sitting laterally on the bed after turning the body from
longitudinal sitting. The sensor response is that S3 and S4 give outputs. They are
installed in the right side of the bed.
Terminal Sitting A subject is sitting in the terminal position on the bed trying to leave
the bed. The sensor response is that none of S1, S2, or S5 gives any output. Moreover,
the sensor response is that S3 and S4 give outputs. They are installed near the exit part
of the bed. Rapid and correct detection is necessary because of the terminal situation
for leaving the bed.



Algorithms 2021, 14, 117 8 of 18

Left the Bed A subject is leaving the bed. The sensor response is that no sensor gives
any output.

Longitudinal sitting is a behavior pattern by which a subject sits up. In numerous
cases, a person will return to sleeping. In lateral sitting, a person will move to leave from
their bed because they move to turn the body to the terminal. Therefore, our system must
determine lateral sitting immediately to predict instances in which a person leaves the bed.
Moreover, rapid and correct detection is necessary because of the terminal situation for
leaving the bed if a subject moves to longitudinal sitting. We consider that our system
can protect patients from injury or accidents caused by falling from the bed because it can
detect such phenomena before a subject leaves completely.

4.3. Output Signals and Preprocessing

To demonstrate the usefulness of our method, we selected a subject for which the
accuracy was 31.9 percentage points lower than those of other subjects in our earlier
study [6]. Figure 4 portrays the original sensor signals of the subject. Herein, we set the
sampling rate to 50 Hz for recording of the sensor signals. We obtained 7000 signals in each
dataset during 140 s. The vertical and horizontal axes in the figures respectively depict the
sensor output voltage and signals. From the 6000th to 7000th signals, we can infer that
the subject left the bed completely. Sensor signals show no output in this range because
there is no load to the sensors. Therefore, we removed this range from the processing target
as filtering.

Figure 4. Output signals in respective sensors.



Algorithms 2021, 14, 117 9 of 18

Table 3 presents recognition accuracies obtained from one person whose body weight
is the lowest among ten subjects. The mean recognition accuracy is 41.4%. We used Datasets
4, 5 and 6 for the application experiment, as described in Section 6.

Table 3. Recognition accuracy in respective datasets. The underlines indicate used datasets.

Dataset 1 2 3 4 5 6 Mean

Accuracy [%] 43.28 43.39 41.23 39.64 40.81 40.35 41.45

5. Preliminary Experiment
5.1. Setup and Evaluation Criteria

We applied GNP to low-accuracy sensor signals for the correction of high-accuracy
sensor signals as ideal sensor signals. This optimization is based on evolutionary image
processing [45]. The optimization goal of this image processing was set to ideal images
that were selected from ground-truth image datasets. Although ideal sensor signals differ
among subjects, we inferred that accuracy had improved if low-accuracy sensor signals
were approximated to high-accuracy sensor signals. We set high-accuracy and low-accuracy
sensor signals from benchmark datasets in our earlier study [6] as ideal sensor signals and
target sensor signals for this optimization experiment. We used a single channel from five
sensor signals.

For this experiment, we evaluated the hypothesis that accuracy of bed-leaving detec-
tion will improve filtering with a suitable combination. We defined lower fitness values
as approximated ideal sensor signals that approximate low-accuracy sensor signals to
high-accuracy sensor signals. Let sideal and stest respectively denote an ideal sensor signal
and a test sensor signal at time t. Fitness fa(t) at time t is defined as

fa(t) =
N

∑
t=0

sideal(t)− stest(t)
N

, (15)

where N represents the total number of sensor signals.

5.2. Parameters

Table 4 presents the initial setting of GNP parameters. The parameters OD, OP, OG,
OC, OM, OE, PC and PM respectively represent the number of branch nodes, the number
of processing nodes, the maximum generation, the number of crossovers, the number of
mutation individuals, the number of elite individuals, crossover probability and mutation
probability. We set them empirically through several trials based on an earlier report of the
relevant literature [18]. Parameter optimization using methods such as GA persists as an
important future task.

Table 4. Initial setting of GNP parameters.

Parameters OD OP OG OC OM OE PC PM

Setting value 5 15 300 100 60 1 0.5 0.05

5.3. Results and Discussion

Figure 5 exhibits a generated graph network that comprises one branch node and six
processing nodes. Numbers 1–4 and Numbers 5–20 respectively represent branch nodes
and processing nodes. Figure 6 depicts the original sensor signals and filtered sensor
signals after application of the graph network.

Results demonstrate that the fitness at the 150th epoch was 13.56% higher than that
of the 300th epoch. However, the fitness at the 170th epoch and later epochs was almost
unchanged until the definitive epoch. Therefore, we infer that the optimal value was
reached at approximately the 170th epoch. However, the fitness converged insufficiently.



Algorithms 2021, 14, 117 10 of 18

We consider that this convergence is attributable to the wide feature difference between the
high-accuracy sensor signals and the low-accuracy sensor signals.

Figure 5. Experimentally obtained results of optimizing sensor signals to approximate high-accuracy
ideal signals.

Figure 6. Original and filtered sensor signals.

6. Application Experiment
6.1. Setup and Evaluation Criteria

As the evaluation criterion for the results of this experiment, we used recognition
accuracy obtained from CPNs as a measure of fitness for optimizing sensor signals. In a
report of our earlier study [6], original sensor signals were presented to CPNs to measure
the recognition accuracy. This study was conducted to improve the overall system accuracy
using GNP as an evolutionary learning approach. From 10 subjects who participated in
our earlier study, we selected evaluation targets for this study: six datasets of people for



Algorithms 2021, 14, 117 11 of 18

whom the recognition accuracy was the lowest [6]. We used leave-one-out cross-validation
to evaluate our method when used along with ML and evolutional learning approaches.

For this experiment, we set fb as

fb =
N

∑
t=0

y(i)
N
× 100. (16)

Intermediate output y(i) comprises a binary function as

y(i) =
{

1 if g(t) = l(t),
0 if g(t) 6= l(t),

(17)

where g(t) is a ground-truth signal at time t.
For this experiment, we infer that our method can correct original signal features,

which include noise for negative effects on accuracy, with preservation of salient features
for the recognition of bed-leaving behavior patterns. From six datasets, we used the third,
fourth and sixth datasets, which had low accuracies.

6.2. Parameters

Table 5 presents parameters that were set based on results of a preliminary experiment.
We reduced the maximum generation, individual and mutation to mitigate computational
costs for various signal patterns. We used the same setting values for the number of elites,
crossover probabilities and mutation probabilities.

Table 5. Setting parameters.

Parameters OD OP OG OC OM OE PC PM

Setting value 5 15 50 200 10 1 0.5 0.05

6.3. Results and Discussion

Figures 7a, 8a and 9a respectively portray time series fitness changes of the applied
filter sets obtained using GNP for Datasets 4, 5, and 6. In the first half of the transitions
up to the tenth epoch, the fitness of our method was lower than the original recognition
accuracy. Subsequently, fitness retained high scores with variation. For this experiment,
the maximum generation is set to 50 epochs for the iteration of evolutionary learning.
Fitness improved slightly in the last half of the transition. Figures 7b, 8b and 9b portray
the generated graph networks. Graph networks generated from Datasets 4, 5, and 6
respectively comprise 2, 4, and 4 branch nodes and 8, 9, and 12 processing nodes.

Table 6 presents results obtained from comparison of recognition accuracies from fb
for original signals and filtered signals. As optimization results, the improved accuracies
for Datasets 4, 5, and 6 are, respectively, 27.22%, 11.49% and 17.94%. The mean improved
accuracy was 18.88% for the three datasets using our method.

Table 6. Improved recognition accuracies obtained from fb.

Dataset Before [%] After [%] Improvement [%]

4 39.64 50.43 27.22
5 40.81 45.50 11.49
6 40.35 47.59 17.94



Algorithms 2021, 14, 117 12 of 18

Figure 7. Results of time series fitness changes and generated graph networks for Dataset 4.

Figure 8. Results of time series fitness changes and generated graph networks for Dataset 5.

Figure 9. Results of time series fitness changes and generated graph networks for Dataset 6.

7. Detailed Analysis of Parameters and Nodes

This experiment was designed to improve recognition accuracy obtained from fb
based on improved GNP parameters. For parameter optimization, a high burden of
computational cost is necessary if all parameters are targeted. We specifically examined
two parameters: OM, which controls the number of mutation; and OC, which controls the
number of crossovers. Moreover, we examined the optimization of filter sets and the node
selection calculated from the utilization frequency.



Algorithms 2021, 14, 117 13 of 18

7.1. Parameter of Mutation

We optimized OM for Datasets 4, 5 and 6. Table 7 presents recognition accuracies with
five intervals from 10 to 50. The maximum accuracies of Datasets 4, 5 and 6 were obtained
respectively in OM = 45, 40, and 40. Nevertheless, these results demonstrated, respectively,
that the mean improved accuracies for Datasets 4, 5 and 6 were 0.36%, 0.92% and 0.97%.
These results addressed that the effects of accuracy for this parameter were tiny when
considering improved accuracy.

Table 7. Optimization experimentally obtained results for OM.

OM Dataset 4 Dataset 5 Dataset 6

10 50.43 45.50 17.94
15 50.53 45.50 48.01
20 50.53 45.50 47.39
25 50.53 45.50 48.07
30 50.53 46.17 48.46
35 50.53 45.44 48.13
40 50.79 46.80 49.97
45 51.09 46.31 46.87
50 50.53 46.59 47.97

Mean 50.61 45.92 48.05

7.2. Parameter of Crossover

For optimization of OC, we targeted only Dataset 6 in consideration of the compu-
tational costs. Table 8 shows recognition accuracies of 100–400 with 100 intervals. The
improved accuracies presented in the third column were increased according to the number
of OC. However, the fourth column shows the sharply increased computational time. Re-
garding the relation between accuracy and computational cost, we inferred that OM = 200
is the most suitable for our sensor system.

Table 8. Optimization experimentally obtained results for OC.

OC Accuracy [%] Improvement [%] Computational time [h]

100 47.59 17.94 40.75
200 49.56 22.78 78.90
300 49.21 21.96 114.85
400 50.52 25.20 151.58

7.3. Branch Node

Numerous derivatives of branch nodes can be designed. However, we have designed
branch nodes manually. Automatic generation of branch nodes has not yet been achieved.
For this experiment, we tested the property that the number of derivatives is limited. We
added four branched nodes, N21–N24, to the existing branch nodes as shown in Table 9.
The definitions of the two formulas are presented below:

d2(a) = a(t + 2) + a(t + 1)− 4a(t) + a(t− 1) + a(t− 2), (18)

d3(a) = a(t + 2)− 2a(t) + a(t− 2). (19)



Algorithms 2021, 14, 117 14 of 18

Table 9. Optimization experimentally obtained results for OC.

Node Left Center RIGHT

N21 a(t) > a(t− 2) a(t) = a(t− 2) a(t) < a(t− 2)
N22 a(t) > a(t + 2) a(t) = a(t + 2) a(t) < a(t + 2)
N23 d2(a) > 0 d2(a) = 0 d2(a) < 0
N24 d3(a) > 0 d3(a) = 0 d3(a) < 0

Table 10 denotes the top five recognition accuracies of the added branch nodes for
Dataset 6. The maximum recognition accuracy of 50.00% was obtained in the additional
case of N22 and N24. The recognition accuracy was 4.05% higher than that of 48.05% before
the addition.

Table 10. Top five recognition accuracies of the added branch nodes.

Ranking N21 N22 N23 N24 Accuracy [%]

1 X X 50.00
2 X 48.83
3 X 48.70
4 X 48.61
5 X X 48.49

Table 11 presents the combination of the respective branch nodes and the number of
branch nodes used for the application experiment in the previous section. As a utilization
tendency, N1 and N2, which compare closed neighbor sensor signals, are used up to one
time. By contrast, N3, N4, and N5, which compare wide sensor signals, are used two or
three times.

Table 11. Number of branch nodes used.

N1 N2 N3 N4 N5

1 1 2 2 3

Table 12 shows the top five recognition accuracies after changing N1 and N2 to the
new branch nodes, as denoted in Table 10. The maximum recognition accuracy of 50.50%
was obtained in the case which exchanged N2 and N24. The recognition accuracy was
5.10% higher than that before the exchange.

Table 12. Top five recognition accuracies after changing branch nodes.

Ranking N1 N2 Accuracy [%]

1 same N24 50.50
2 N21 N22 49.93
3 N23 same 48.26
4 N21 same 47.67
5 N23 N24 47.31

7.4. Processing Node

As with branch nodes, we examined the properties of a limited number of derivatives
of processing nodes. For this experiment, we added five processing nodes, N25–N29, to the
existing processing nodes as shown in Table 13. Below is the definition.

s(t) = s(t)− αs(t− 2) + βs(t− 1) + γs(t) + βs(t + 1) + αs(t + 2) (20)

s(t) =
1
5
{s(t− 2) + s(t− 1) + s(t) + s(t + 1) + s(t + 2))} (21)



Algorithms 2021, 14, 117 15 of 18

s(t) = αs(t− 2) + βs(t− 1) + γs(t) + βs(t + 1) + αs(t + 2) (22)

s(t) = s(t)− αs(t− 2) + βs(t− 1) + γs(t) + βs(t + 1) + αs(t + 2) (23)

s(t) = αs(t− 2) + βs(t− 1) + γs(t) + βs(t + 1) + αs(t + 2). (24)

Table 13. Additional processing nodes of five types.

Node Formula Index α β γ

N25 (20) −0.10 0.20 0.40
N26 (21)
N27 (22) 0.10 0.20 0.40
N28 (23) 0.05 0.15 0.60
N29 (24) 0.05 0.15 0.60

Table 14 shows the top five recognition accuracies of the added processing nodes for
Dataset 6. The maximum recognition accuracy of 50.41% was obtained in the additional case
of N25 and N26. The recognition accuracy was 4.91% higher than that before the addition.

Table 14. Top five recognition accuracies of the added processing nodes.

Ranking N25 N26 N27 N28 N29 Accuracy [%]

1 X X – – – 50.41
2 X – – – – 49.26
3 X X – X – 48.96
4 – X – X X 48.90
5 – X – – X 48.54

Table 15 presents the number of used processing nodes. As a utilization tendency,
N7, N8, and N9 process slight signal changes used only one time. In contrast, N15, N18,
and N19 process signal changes applied for neighbor sensor signals, used three times.
Other nodes were used twice.

Table 15. Number of processing nodes used.

No. of Used Nodes Index of Nodes

1 N7, N8, N9
2 N6, N10, N11, N12, N13, N14, N16, N17, N20
3 N15, N18, N19

Table 16 shows the top five recognition accuracies after changing N7, N8, and N29 to
the new processing nodes, as denoted in Table 14. The maximum recognition accuracy of
50.36% was obtained in the case which exchanged N7 and N28, N8 and N26, and N9 and
N29. The recognition accuracy was 4.81% higher than that before the exchange.

Table 16. Top five recognition accuracies after changing processing nodes.

Ranking N7 N8 N9 Accuracy [%]

1 N28 N26 N29 50.36
2 N28 N26 – 50.13
3 N25 N26 – 49.71
4 N25 – – 49.43
5 N25 N26 N27 48.77



Algorithms 2021, 14, 117 16 of 18

8. Conclusions

This paper presented a method to generate filters and their optimum sensor signal
combination using GNP for improving the recognition accuracy of bed-leaving behavior
patterns. We conducted two experiments to demonstrate the basic properties of our method
for filtering sensor signals. As the preliminary experiment, we optimized original sensor
signals using filters generated using GNP to approximate high-accuracy sensor signals to
minimize the fitness-defined difference between them. The experimentally obtained results
presented herein reveal that our method provided a filter set that approximates the original
signals to ideal signals. For the application experiment, we used the recognition accuracy
obtained from CPNs as fitness for evolutional learning. We used three datasets with low
accuracy for the evaluation target using leave-one-out cross-validation. Experimentally
obtained results reveal that the mean accuracy was improved by 18.88% after applying the
generated filters.

Future work shall include an examination of a greater number of target subjects,
customizing branch nodes and processing nodes, optimization GNP parameters, verifying
the combination with other machine-learning methods, validation of long-term datasets,
and the various applications of our method.

Author Contributions: Conceptualization, H.M. and K.S.; methodology, H.M.; software, H.M.;
validation, S.N. and K.S.; formal analysis, H.M.; investigation, H.M.; resources, S.N.; data curation,
H.M.; writing—original draft preparation, H.M.; writing—review and editing, H.M.; visualization,
S.N.; supervision, S.N.; project administration, K.S.; funding acquisition, H.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by Japan Society for the Promotion of Science (JSPS) KAKENHI
Grant Number 17K00384.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available on request.

Conflicts of Interest: The authors declare that they have no conflict of interest. The funders had no
role in the design of the study, in the collection, analyses, or interpretation of data, in the writing of
the manuscript, or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

CPN Counter-propagation network
DL Deep learning
EL Evolutionary learning
GA Genetic algorithm
GNP Genetic network programming
GP genetic programming
ML Machine learning
POMDP Partially observable Markov decision process
QoL Quality of life
RFID Radio-frequency identification device
2D Two-Dimensional

References
1. Blagosklonny, M.V. Why Human Lifespan is Rapidly Increasing: Solving “Longevity Riddle” with “Revealed-Slow-Aging”

Hypothesis. Aging 2010, 2, 177–182. [CrossRef]
2. Christensen, K.; Doblhammer, G.; Rau, R.; Vaupel, J.W. Aging Populations: The Challenges Ahead. Lancet 2009, 374, 1196–1208.

[CrossRef]
3. Mitadera, Y.; Akazawa, K. Analysis of Incidents Occurring in Long-Term Care Insurance Facilities. Bull. Soc. Med. 2013, 30, 123–130.

http://doi.org/10.18632/aging.100139
http://dx.doi.org/10.1016/S0140-6736(09)61460-4


Algorithms 2021, 14, 117 17 of 18

4. Seki, H.; Hori, Y. Detection of Abnormal Action Using Image Sequence for Monitoring System of Aged People. Trans. Inst. Electr.
Eng. Jpn. Part D 2002, 122, 1–7. [CrossRef]

5. Kaji, R.; Hirota, K.; Nishimura, T. Proposal of Detection Method of the State of Fall in Closed Space with RFID Tag System. J. Inf.
Process. 2010, 51, 1129–1140.

6. Madokoro, H.; Nakasho, K.; Shimoi, N.; Woo, H.; Sato, K. Development of Invisible Sensors and a Machine-Learning-Based
Recognition System Used for Early Prediction of Discontinuous Bed-Leaving Behavior Patterns. Sensors 2020, 20, 1415. [CrossRef]

7. Nielsen, R.H. Counterpropagation Networks. Appl. Opt. 1987, 26, 4979–4983. [CrossRef]
8. Hiramatsu, D.; Madokoro, H.; Sato, K.; Nakasho, K.; Shimoi, N. Automatic Calibration of Bed-Leaving Sensor Signals Based

on Genetic Evolutionary Learning. In Proceedings of the 18th International Conference on Control, Automation and Systems,
GangWon, Korea, 17–20 October 2018.

9. Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A Survey on Evolutionary Computation Approaches to Feature Selection. IEEE Trans.
Evol. Comput. 2016, 20, 606–626. [CrossRef]

10. Song, X.; Yang, Z.; Zhao, J. Preliminary Research of a Medical Sensor Design by Evolution. In Proceedings of the 2008 International
Seminar on Future Information Technology and Management Engineering, Leicestershire, UK, 20–20 November 2008; pp. 300–303.

11. Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975.
12. Koza J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA,

USA, 1992.
13. Katagiri, H.; Hirasama, K.; Hu, J. Genetic network programming—Application to intelligent agents. In Proceedings of the IEEE

International Conference on Systems, Man and Cybernetics, Nashville, TN, USA, 8–11 October 2000; pp. 3829–3834.
14. Katagiri, H.; Hirasama K.; Hu, J.; Murata, J. Network Structure Oriented Evolutionary Model—Genetic Network Programming—

and Its Comparison with Genetic, In Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA,
USA, 7–11 July 2001; pp. 219–226.

15. Hirasawa, K.; Okubo, M.; Katagiri, H.; Hu, J.; Murata, J. Comparison between Genetic Network Programming (GNP) and Genetic
Programming (GP). In Proceedings of the Congress on Evolutionary Computation, Seoul, Korea, 27–31 May 2001; pp. 1276–1282.

16. Katagiri, H.; Hirasawa, K.; Hu, J.; Murata, J.; Kosaka, M. Network Structure Oriented Evolutionary Model: Genetic Network
Programming—Its Comparison with Genetic Programming. Trans. Soc. Instrum. Control Eng. 2002, 38, 485–494. [CrossRef]

17. Goldman, C.V.; Rosenschein, J.S. Emergent Coordination Through the Use of Cooperative State-changing Rules. In Proceedings of
the Twelfth National Conference on Artificial Intelligence, Seattle, WA, USA, 31 July–4 August 1994; pp. 408–413.

18. Mabu, S.; Hirasawa, K.; Hu, J. A Graph-Based Evolutionary Algorithm: Genetic Network Programming (GNP) and Its Extension
Using Reinforcement Learning. Evol. Comput. 2007, 15, 369–398. [CrossRef]

19. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. 1996, 4, 237–285. [CrossRef]
20. Chen, Y.; Mabu, S.; Hirasawa, K.; Hu, J. Genetic network programming with SARSA learning and its application to creating stock

trading rules. In Proceedings of the IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 220–227.
21. Mabu, S.; Hatakeyama, H.; Thu, M.T.; Hirasawa, K.; Hu, J. Genetic Network Programming with Reinforcement Learning and Its

Application to Making Mobile Robot Behavior. IEEJ Trans. EIS 2006, 126, 1009–1015. [CrossRef]
22. Li, X.; Mabu, S.; Zhou, H.; Shimada, K.; Hirasawa, K. Genetic Network Programming with Estimation of Distribution Algorithms

for class association rule mining in traffic prediction. In Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona,
Spain, 18–23 July 2010; pp. 1–8.

23. Li, X.; Mabu, S.; Hirasawa, K. Towards the Maintenance of Population Diversity: A Hybrid Probabilistic Model Building Genetic
Network Programming. Trans. Jpn. Soc. Evol. Comput. 2010, 1, 89–101.

24. Wedashwara, W.; Mabu, S.; Obayashi, M.; Kuremoto, T. Combination of genetic network programming and knapsack problem to
support record clustering on distributed databases. Expert Syst. Appl. 2016, 46, 15–23. [CrossRef]

25. Singh, R.P. Solving 0-1 Knapsack problem using Genetic Algorithms. In Proceedings of the IEEE 3rd International Conference on
Communication Software and Networks, Xi’an, China, 27–29 May 2011; pp. 591–595.

26. Mabu, S.; Chen, C.; Lu, N.; Shimada K.; Hirasawa, K. An Intrusion-Detection Model Based on Fuzzy Class-Association-Rule
Mining Using Genetic Network Programming. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2010, 41, 130–139. [CrossRef]

27. Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [CrossRef]
28. Shearer, C. The CRISP-DM Model: The New Blueprint for Data Mining. J. Data Warehous. 2000, 5, 13–22.
29. Mabu, S.; Higuchi, T.; Kuremoto, T. Semi-Supervised Learning for Class Association Rule Mining Using Genetic Network

Programming. IEEJ Trans. Electr. Electron. Eng. 2020, 15, 733–740. [CrossRef]
30. Henry, A.S.; Daniel, J.I.; Gyuhae, P. A Review of Power Harvesting from Vibration using Piezoelectric Materials. Shock Vib. Dig.

2004, 36, 197–205.
31. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436. [CrossRef] [PubMed]
32. Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Comput.

2017, 29, 2352–2449. [CrossRef]
33. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the

International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.
34. Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M. Deep Learning for Visual Understanding: A Review. Neurocomputing 2016,

187, 27–48. [CrossRef]

http://dx.doi.org/10.1541/ieejias.122.182
http://dx.doi.org/10.3390/s20051415
http://dx.doi.org/10.1364/AO.26.004979
http://dx.doi.org/10.1109/TEVC.2015.2504420
http://dx.doi.org/10.9746/sicetr1965.38.485
http://dx.doi.org/10.1162/evco.2007.15.3.369
http://dx.doi.org/10.1613/jair.301
http://dx.doi.org/10.1541/ieejeiss.126.1009
http://dx.doi.org/10.1016/j.eswa.2015.10.006
http://dx.doi.org/10.1109/TSMCC.2010.2050685
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1002/tee.23109
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1162/neco_a_00990
http://dx.doi.org/10.1016/j.neucom.2015.09.116


Algorithms 2021, 14, 117 18 of 18

35. Chong, E.; Han, C.; Park, F.C. Deep Learning Networks for Stock Market Analysis and Prediction: Methodology, Data Representa-
tions, and Case Studies. Expert Syst. Appl. 2017, 83, 187–205. [CrossRef]

36. Xia, X.; Xu, C.; Nan, B. Inception-v3 for Flower Classification. In Proceedings of the 2nd International Conference on Image, Vision
and Computing, Chengdu, China, 2–4 June 2017; pp. 783–787.

37. Chollet, F. Xception: Deep Learning With Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

38. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

39. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of
the IEEE Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995.

40. Gao, S.; Cheng, M.; Zhao, K.; Zhang, X.; Yang, M.; Torr, P. Res2Net: A New Multi-Scale Backbone Architecture. IEEE Trans. Pattern
Anal. Mach. Intell. 2021, 43, 652–662. [CrossRef]

41. Beckman, G.H.; Polyzois, D.; Cha, Y.J. Deep Learning-Based Automatic Volumetric Damage Quantification Using Depth Camera.
Autom. Constr. 2019, 99, 114–124. [CrossRef]

42. Carbonaro, N.; Laurino, M.; Arcarisi, L.; Menicucci, D.; Gemignani, A.; Tognetti, A. Textile-Based Pressure Sensing Matrix for
In-Bed Monitoring of Subject Sleeping Posture and Breathing Activity. Appl. Sci. 2021, 11, 2552. [CrossRef]

43. Gaddam, A.; Mukhopadhyay, S.C.; Gupta, G.S. Intelligent Bed Sensor System: Design, Experimentation and Results. In Proceedings
of the IEEE Sensors Applications Symposium, Limerick, Ireland, 23–25 February 2010; pp. 220–225.

44. Motegi, M.; Matsumura, N.; Yamada, T.; Muto, N.; Kanamaru, N.; Shimokura, K.; Abe, K.; Morita, Y.; Katsunishi, K. Analyzing
Rising Patterns of Patients to Prevent Bed-related Falls (Second Report). Trans. Jpn. Soc. Health Care Manag. 2011, 12, 25–29.

45. Liu, J.; Tang, Y.Y. Evolutionary Image Processing. In Proceedings of the IEEE World Congress on Computational Intelligence
Anchorage, AK, USA, 4–9 May 1998; pp. 283–288.

http://dx.doi.org/10.1016/j.eswa.2017.04.030
http://dx.doi.org/10.1109/TPAMI.2019.2938758
http://dx.doi.org/10.1016/j.autcon.2018.12.006
http://dx.doi.org/10.3390/app11062552

	Introduction
	Related Studies
	Proposed Method
	Overall System Structure
	Design of GNP Nodes
	Counter-Propagation Networks

	Bed-Leaving Behavior Datasets
	Sensor and Assignment
	Target Behavior Patterns
	Output Signals and Preprocessing

	Preliminary Experiment
	Setup and Evaluation Criteria
	Parameters
	Results and Discussion

	Application Experiment
	Setup and Evaluation Criteria
	Parameters
	Results and Discussion

	Detailed Analysis of Parameters and Nodes
	Parameter of Mutation
	Parameter of Crossover
	Branch Node
	Processing Node

	Conclusions
	References

