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Abstract: Cryptography is the science and study of protecting data in computer and communication
systems from unauthorized disclosure and modification. An ordinary difference equation (a map)
can be used in encryption–decryption algorithms. In particular, the Arnold’s cat and the sine-Gordon
linear maps can be used in cryptographic algorithms for encoding digital images. In this article, a
two-dimensional linear mKdV map derived from an ordinary difference mKdV equation will be
used in a cryptographic encoding algorithm. The proposed encoding algorithm will be compared
with those generated using sine-Gordon and Arnold’s cat maps via the correlations between adjacent
pixels in the encrypted image and the uniformity of the pixel distribution. Note that the mKdV
map is derived from the partial discrete mKdV equation with Consistency Around the Cube (CAC)
properties, whereas the sine-Gordon map is derived from the partial discrete sine-Gordon equation,
which does not have CAC properties.

Keywords: cryptography; digital image; linear mKdV map; linear sine-Gordon map; CAC properties

1. Introduction

The mathematical principles used in operating systems, database systems, and com-
puter networks play an important role in cryptography. There are many algorithms for
securing data that involve mathematics, two of which can be found in [1]. In addition to
mathematical principles, mapping concepts can be used in encryption–decryption algo-
rithms. A cryptographic encoding algorithm for digital images, namely, Arnold’s Cat Map
(ACM), was studied in [2], whereas the logistic map was outlined in [3], and the Nonlinear
Chaotic Algorithm (NCA) was investigated in [4]. Additional cryptographic encoding
algorithms can be found in [5], which outlines a chaotic cryptosystem based on a Hènon
map [6] and investigates an independent component analysis, and [7–9], which provide
algorithms for all data file types. Furthermore, in [10], the authors suggest a fast color
image encryption scheme containing both permutation and substitution key streams that
have been quantified from a sequence extracted from the orbit of Chen’s chaotic system.

Recently, several approaches used in various encryption algorithms have concerned
digital images. Two of the techniques were proposed in 2017 in [10,11]. In [11], the
authors proposed an algorithm that involves scrambling pixel positions and changing the
intensities of the pixels (see [12] for a different method in hiding an image using reference
point coding to embed data in the spatial domain). In this article, a two-dimensional
linear map derived from a partial discrete equation (partial discrete mKdV equation)
with Consistency Around the Cube (CAC) properties will be discussed (see [13,14] for
the construction of a generalized mKdV map and the investigation of its properties) and
applied in cryptographic encoding algorithms for digital image data (see [15] for digital
text data). This article consists of four Sections. In Section 1, previous research results
(related to the use of mathematical concepts and algorithms in cryptography) are provided.
In Section 2, the CAC properties of the partial discrete mKdV equation will be shown. In
addition, a two-dimensional mKdV map derived from a partial discrete mKdV equation
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is described. Section 3 details the construction of a two-dimensional linear mKdV map
and the application of the map in an encryption–decryption algorithm for image data. The
Mathematica programming language was used to implement the algorithm. In the last
section, the concluding remarks are provided.

2. Formulation of the Problem

Natural phenomena formulated through mathematical models have existed since the
17th century. For example, the phenomenon of waves and mathematical formulations
such as the sine-Gordon equation, the Korteweg de Vries equation (KdV), Schrödinger’s
nonlinear equation, the Kadomsetv–Petviashvili (KP) equation, and the Davey–Stewartson
equation [16,17]. Initially, the mKdV equation was a partial differential equation. The
mKdV equation is known to have soliton solutions. Therefore, it is known as the soliton
equation (see [18] for a nonlinear hyperbolic partial differential equation involving the
d’Alembert operator of the mKdV and [19] for a method for finding the solitary wave
solutions of the mKdV).

Discretization of the mKdV equation has been carried out in various ways [20–22]. By
following the compatible state requirements in the Lax pair’s vertical and horizontal inter-
changeability, a mapping called the mapping of generalized mKdV discrete equations can
be derived. In several pieces of literature related to discrete dynamical system integration,
attention has been devoted to studying the integrability of the mKdV equation and the
resulting geometry.

2.1. The CAC Properties of P∆E mKdV

The partial discrete mKdV equation (P∆E mKdV) can be studied through the quadri-
lateral equation. The quadrilateral equation is used to study the dependent variables
in discrete integrated systems via a two-dimensional regular lattice quadratic approach.
The method uses a four-sided planar graph (planar quadgraph) that represents the cell
decomposition of a surface (see Figure 1a). As shown in Figure 1b, a geometric shape
constructed with quadrilaterals is known as a simple cube. A quadrilateral equation is said
to have CAC properties if it has the properties of a tetrahedron.
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Figure 1. Simple quadrilateral (a) and simple cube (b).

Suppose that a point in a cell is referred to as up = u(iα1, jα2) = ui,j. Meanwhile,
suppose the other three points are u1 = ui+1,j,u2 = ui,j+1, and u12 = ui+1,j+1. A simple
quadrilateral (orange block in Figure 1) represents an equation that is expressed as

Ξ(u, u1, u2, u12; α1, α2) = 0 (1)
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In Equation (1), Ξ is affine-linear for all arguments. Thus, for a quadrilateral, as in
Figure 1a, Equation (1) is equivalent to

B(u, u2, α2, λ)B(2u, u12, α1, λ)B(u12, u1, α2, λ)B(u1, u, α1, λ) = I

or
B(u12, u1, α2, λ)B(u1, u, α1, λ) = B(u2, u, α2, λ)B(u12, u2, α1, λ) (2)

where B is a matrix depending on an arbitrary parameter λ.
In [23], the mathematicians Adler, Bobenko, and Suris (ABS) classified all quadrilateral

equations as having CAC properties (tetrahedron properties). For a simple cube, these
properties mean that variable u123 depends only on u1, u2, and u3. One of the quadrilateral
equations classified as having CAC properties by ABS classification is the P∆E mKdV. On
the other hand, the P∆E sine-Gordon is not classified as having CAC properties.

Consider the standard P∆E mKdV equation defined as in [24]:

p(Vl+1,mVl+1,m+1 −Vl,mVl,m+1) = q(Vl,m+1Vl+1,m+1 −Vl,mVl+1,m) (3)

for the fields Vl,m defined at the sites (l, m) of a two-dimensional lattice Z2. In Equation (3),
the subscripts denote the values of the independent variable, V is the dependent variable,
and p and q are arbitrary constants.

Suppose θ3 = θ4 = p and θ1 = θ2 = q. Then, Equation (3) can be written as follows:

θ1Vl,mVl,m+1 − θ2Vl+1,mVl+1,m+1 − θ3Vl,mVl+1,m + θ4Vl,m+1Vl+1,m+1 = 0 (4)

Let Vl,m = u, Vl+1,m = u1, Vl,m+1 = u2, and Vl+1,m+1 = u12. Then, Equation (3) can be
expressed with a quadrilateral equation—i.e.,

p(uu2 − u1u12)− q(uu1 − u2u12) = 0 (5)

According to the cube in Figure 1b, several quadrilateral equations can be derived
in terms of the down side

(
u12 = u(pu2−qu1)

pu1−qu2

)
, left side

(
u13 = u(pu3−ku1)

pu1−ku3

)
, back side(

u23 = u(qu3−ku2)
qu2−ku3

)
, top side u123 = u3(pu23−qu13)

pu13−qu23
, right side

(
u123 = u2(pu23−ku12)

pu12−ku23

)
, and

front side
(

u123 = u1(qu13−ku12)
qu12−ku13

)
. Substituting these quadrilateral equations into Equation (5)

and solving for the variable u123, we arrive at the same quadrilateral equation for the
right-top-back side lattices—i.e.,

u123 =
u1
(
qu3
(

p2 − k2)+ ku2
(
q2 − p2))+ pu2u3

(
k2 − q2)

qu2(p2 − k2) + pu1(k2 − q2) + ku3(q2 − p2)
(6)

In Equation (6), the variable u123 depends on u1, u2, and u3 only, which means that
the P∆E mKdV has CAC properties.

2.2. Traveling Wave Solution for P∆E mKdV (O∆E mKdV)

In [13,25], a four-parameter family of mappings derived from the generalized P∆E
mKdV in Equation (4) was studied. Note that a system of ordinary difference equations,
O∆E mKdV, can be derived from Equation (4) via the restriction of traveling wave solu-
tion with

Vl,m = Vn, n = z1l + z2m, (7)

where z1 and z2 are relatively prime integers (see [26,27] for other applications). Substitut-
ing Equation (7) into Equation (4), the following discrete mapping can be obtained:

θ1VnVn+z2 − θ2Vn+z1 Vn+z1+z2 − θ3VnVn+z1 + θ4Vn+z2 Vn+z1+z2 = 0 (8)
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The map in Equation (8) represents an infinite hierarchy of mappings labeled with z1
and z2. For fixed z1 and z2, Equation (8) is a mapping Rz1+z2 → Rz1+z2 . In [24], for z1 = 1
and z2 = 2, the map in Equation (8) has been found to possess several properties—for
example, the (anti)measure-preserving property.

Consider the discrete mapping in Equation (8). Let z1 = 1 and z2 = 2. This gives the
following relation:

Vn+3 =
Vn(θ3Vn+2 − θ1Vn+1)

(θ4Vn+1 − θ2Vn+2)
. (9)

The discrete Equation (9) can be written as follows:

V′n+2 = Vn(θ3Vn+2−θ1Vn+1)
(θ4Vn+1−θ2Vn+2)

V′n+1 = Vn+2
V′n = Vn+1

(10)

where the prime denotes the upshift.
If ζ0

n = Vn+2
Vn+1

and ζ1
n = Vn+1

Vn
, then Equation (10) can be written as

ζn+1 = hθ(ζn) (11)

where

hθ : R2 → R2

(x, y) 7→
(
−1
xy

(θ3x−θ1)
(θ2x−θ4)

, x
)

.

Let us assume that θ2 is not equal to zero. If α = θ1
θ2

, β = θ3
θ2

= 1, and λ = θ4
θ2

= 1, then
the following 2D map can be derived from Equation (11):

hα,1,1 : R2 → R2

(x, y) 7→
(

(α−x)
xy(x−1) , x

)
.

(12)

Furthermore, its integral normal form is (see [13] for other integral normal forms):

H(x, y : α) = α

(
1
x
+

1
y

)
+ (x + y) −

(
1

xy

)
− (xy) (13)

where α ∈ R. Thus, for all n ∈ N, the solution for Equation (12) lies in a level set of
H(x, y : α).

The mapping Equation (12) has several properties:

• Integrable: The mapping hα,1,1 has an integral Equation (13), H(x, y : α) = H( (α−x)
xy(x−1) ,

x : α). In other words, H(x, y : α) is evidently a constant of the mapping’s motion (the
orbits of all points in the plane lie on the level sets given by H(x, y : α) = C where for
any orbit is determined from the initial condition, i.e., C = H(x0, y0 : α).

• Measure-preserving: The mapping hα,1,1 is measure-preserving, i.e.,

|Dhα,1,1| =
ρ(x, y)

ρ
(

(α−x)
xy(x−1) , x

)
where

ρ(x, y) =
(x + y)

(xy)2 [∂αH(x, y : α)]−1 =
1

x y

• Reversible: There is exists a reversing symmetry G(x, y) = (y, x) such that
G◦hα,1,1

◦G−1 = h−1
α,1,1. It’s means that hα,1,1 is reversible (hα,1,1

◦G◦hα,1,1 = G). Note



Algorithms 2021, 14, 124 5 of 18

that the mapping G is an involution, i.e., G ◦ G = Id, and Id is identity mapping. The
reversibility property ensures that then mapping is invertible.

2.3. Construction of a Two-Dimensional Linear Map (Case Study: Sine-Gordon Map)

Consider a partial discrete sine-Gordon equation on a two-dimensional lattice Z2 is
defined as follows (see [25,26] for the construction of a generalized sine-Gordon map):

θ1(Vl,m+1Vl+1,m −Vl+1,m+1Vl,m) + θ2Vl+1,m+1Vl,m+1Vl+1,mVl,m = θ3 (14)

where V, θ1, θ2, θ3 ∈ R. A travelling wave solution of Equation (14) was obtained by the
ansatz equation (Equation (7)). Therefore, from Equation (14) we then obtained

θ1(Vn+z2 Vn+z1 −Vn+z1+z2 Vn) + θ2Vn+z1+z2 Vn+z2 Vn+z1 Vn = θ3 (15)

Let us take z1 = z2 = 1 and choose θ1 = µθ2 and θ3 = λθ2; we then have the
following equation

µ
(

V2
n+1 −Vn+2Vn

)
+
(

VnV2
n+1Vn+2

)
= λ (16)

Equation (16) is equivalent to the mapping

V′1 =
(λ−µV2

1 )
V0(V2

1−µ)
V′1 = V1

 (17)

According to Equation (17), we denote by x the sequence in R2, which is defined as
x = (x1 = V1, x2 = V0). Therefore, a general mapping of the plane f : R2 → R2 , which
assigns a point x = (x1, x2) and an image point x

′
=
(
x′1, x′2

)
, can be written as

x
′
= f(µ,λ)(x) (18)

where

f(µ,λ) : R2 → R2

(x1, x2) 7→
(
(λ−µx2

1)
x2(x2

1−µ)
, x
)

.

It is easy to check that the mapping (18) has such integrals as follows.

F(µ,λ)(x1, x2) = µ

(
x1

x2
+

x2

x1

)
−
(

x1x2 + λ
1

x1x2

)
. (19)

For all n ∈ N, the solution of Equation (16) is on a level set of F(µ,λ)(x1, x2).
Let us fix λ = 1 to obtain a special case of Equation (18)—namely,

fµ,1 : (x1, x2) 7→
( (

1− µx2
1
)

x2
(
x2

1 − µ
) , x1

)
(20)

It is easy to check that the mapping in Equation (20) has the integral:

F̂(x1, x2; µ) = µ

(
x1

x2
+

x2

x1

)
−
(

x1x2 +
1

x1x2

)
(21)

The mapping in Equation (20) has several properties:

• The mapping fµ,1 has an integral equation (Equation (21)).
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• fµ,1 is measure-preserving—i.e.,

∣∣Dfµ,1
∣∣ = ρ(x1, x2)

ρ

(
(1−µx2

1)
x2(x2

1−µ)
, x1

)
where

ρ(x1, x2) =
(x1 + x2)

(x1x2)
2

[
∂µ F̂(x1, x2; µ)

]−1
=

1
x1x2

• There is a reversing symmetry G(x1, x2) = (x2, x1) such that G◦fµ,1
◦G−1 = f−1

µ,1
(small circle denoting the symbol for composition). This means that fµ,1 is reversible
(fµ,1

◦G◦fµ,1 = G).

Note that one of the fixed points on the map is (1,1) [13,26]. Thus, a linear map can be
constructed based on the map form in Equation (20) at a closed fixed point (1,1) for which
the Jacobian matrix A is written as follows:

A =

 2(µ2−1)
(1−µ)2 −1

1 0

 (22)

From Equation (20) and Equation (22), for µ ∈ R\{1}, we have the following linear map:

(
x1
′

x2
′

)
=

 2(µ2−1)
(1−µ)2 −1

1 0

( x1
x2

)
(23)

Together with the two-dimensional ACM (2D ACM), Equation (23) becomes [2,4,5,9,28]:(
x1
′

x2
′

)
=

(
1 p
q pq + 1

)(
x1
x2

)
(24)

where p, q ∈ R.
The map described in Equation (23) and Equation (24) can be used for a cryptographic

algorithm for a digital image. The maps will be used to change the pixel position of an
image without eliminating any information from the image. Note that, due to the reversible
map, for the decryption process, we can use the inverse of Equation (24) and the preimage
of Equation (23).

2.4. Encryption Scheme for Image Cryptography Based on a Mapping: A Case Study Involving
ACM and a 2D Linear Sine-Gordon Map

After developing a mathematical tool, an experiment can be carried out to see how
different encryption results will differ using the previous sections mappings. In our
experiments, an original image was selected by the authors.

Let us consider Lena plain image in Figure 2. Assume that this image is a private
image that will be hidden.

An encryption–decryption scheme for this digital image based on the mappings of
(23) and (24) can be constructed as a flow chart in Figure 3.
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Based on the encryption algorithm (Figure 3a), the plain image in Figure 2 can be
hidden by the following Algorithm 1:

Algorithm 1: encryption algorithm

Input:
I: PlainImage (* Figure 2 *);
Procedure 2DPlanarMap (A1, A2, B1, B2: real, numits, dimimage: integer): real;
(* numits = number of iterations,

A1, A2, B1, and B2 are the entry of matrix coefficient described in Equation (24) *);
Begin

For i = 1 to numits do
For j = 1 to dimimage do

Begin

x
′ (i)

(x1(j), x2(j))← (A1x1(j) + A2x2(j)), (B1x1(j) + B2x2(j)) ;
(*x

′
is the map described in Equation (24) and

x
′ (i)

= x
′
(

x
′
(
· · · x′

(
x
′
(

x
′

}
numits times

((A1x1(j) + A2x2(j)), (B1x1(j) + B2x2(j))) *)

End {for j)
End {for i};

End{2DPlanarMap }
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Procedure Image_Transformation (2DPlanarMap:real, I: image): image;
Begin

Image_Transformation (I, 2DPlanarMap);
End{Image_Transformation }

{Main Program}
Begin
Read(I);
dimimage← Imagedimension(I);
Read (A1, A2, B1, B2, numits);
cipherby2DPlanarMap← Image_Transformation;
Write (cipherby2DPlanarMap);
End{Main}
Output:
chiperby2DPlanarMap: Cipher Image {Figures 4 and 8}

This encryption algorithm for hiding the plain image in Figure 2 in a cipher image
is shown in Figures 4 and 8. In Figure 4, the cipher images are the diagrams of the
results of the randomization of the original image pixels using a 2D ACM linear map
from Equation (24) (Figure 4a) and the 2D sine-Gordon linear map from Equation (23)
(Figure 4b). The key parameter values that must be kept secret are µ, p, q, and number
of iterations of the map (N). The decryption process requires the same key parameters
to retrieve the plain image. To obtain the cipher images based on 2D ACM, we used
Equation (24) for {p, q} = {0.75, 1.25} and Equation (23) for µ = 0.995, respectively.
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Figure 4. Cipher images after using Arnold’s Cat Map (ACM) (a) and sine-Gordon (b) map obtained
from encrypting the original image in Figure 2 with Equation (24) and Equation (23).

Note that the cipher images look similar, although they are actually different. To see
these differences, pixel data correlations and covariances can be calculated (see Table 1).

Table 1. The computation of the covariances and correlations of the image data based on the weighted data (gradient
orientation filter, gradient filter) for the images.

Covariance Correlation

Plain Image (Figure 2) 0.000919690 0.024302828
Cipher Image Generated by Equation (24) (Figure 4a) −0.000001413 −0.000078930
Cipher Image Generated by Equation (23) (Figure 4b) 0.000005278 0.000295260
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3. Results and Discussion
3.1. Dynamics and Bifurcation of the Two-Dimensional mKdV Nonlinear Map

In [26], the dynamics and the bifurcations of the 2D sine-Gordon map in (Equation (20))
were studied. We observed an interesting local bifurcation of critical point in the system—
namely, the period doubling bifurcation, where two period–2 points were created from a
critical point. For the mapping of all values of µ ∈ R, we have four critical points: (1, 1),
(−1,−1), (1,−1), and (−1, 1). When µ varies from positive to negative, these critical
points change from a saddle type to an elliptic type. Then, we focused on dynamics and
bifurcations of the 2-dimensional mKdV map.

Consider the two-dimensional mKdV map in Equation (12). The dynamics of mapping
hα,1,1 is contained in the level sets of H(x, y : α). In Figures 5–7, we have plotted a few of
the level sets the function H(x, y : α) for various values of parameter α. We obtained a
nonlocal bifurcation involving collision of homoclinic and heteroclinic connections between
saddle type critical points (see Figure 6). Additionally, we obtained a change in stability of
a critical point from a saddle type into an elliptic type.
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Figure 5. The level set of H(x, y : α) for α = −9.79. The fixed point (x6, x6) = (2.5571, 2.5571)
is stable.
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Figure 7. The level set of H(x, y : α) for α = 0.1249. The fixed point (x6, x6) = (1.34332, 1.34332)
is unstable.

Bifurcations. The word “bifurcation” refers to a sudden qualitative change in the nature
of solutions that occurs as the parameter is varied. The bifurcation diagram shows many
sudden qualitative changes in the attractor as well as in the periodic orbits [29].

Considering the level set diagrams in Figures 5–7, when α varies, the critical points
of H(x, y : α) change from an elliptic type to a saddle type. A known mechanism in the
literature, for integrable systems, is through a Saddle-Center bifurcation, where one saddle
point becomes degenerate, and breaks into three critical points: two saddles and one elliptic
(or also known as center) point [26]. In the case of H(x, y : α), the bifurcation diagram
with respect to varying of α is shown in Figure 8. Note that the blue dots that spread out
represent the chaotic region.
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Figure 8. A bifurcation diagram of H(x, y : α) for x ∈ [−3, 3] and α ∈ [−10, 10].

The Maximum Lyapunov Exponent: The chaotic behavior of a dynamical system is
defined by its sensitiveness to initial conditions and unpredictability. The Lyapunov
exponent (LE) is a quantitative measurement to determine the dynamical system’s chaotic
behavior [30]. LE measures the degree of divergence between any two nearby trajectories
of a dynamical system, stretching an orbit. The positive value of maximum LE shows
exponential stretching of an orbit. Every chaotic system has at least one positive Lyapunov
exponent to achieve chaotic behavior.

A multidimensional chaotic map with more than one LE, and if all the LEs are positive,
then the dynamical systems possess hyperchaotic behavior. The hyperchaotic behavior
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is good for image encryption and it is very difficult for the attacker to predict the secret
key [31]. For two-dimensional map (x′, y′) = ( f1(x, y), f2(x, y)), in Equation (12) for
example, we can calculate the maximum LE, λmax(x0, y0) at the point (x0, y0) by using the
following formula [29]:

λmax(x0, y0) ≈ log

√√√√√
η(x0, y0) +

√
4(κ(x0, y0))

2 + (ϑ(x0, y0))
2

2

 (25)

where

η = (∂x f1(x0, y0))
2 +

(
∂y f1(x0, y0)

)2
+ (∂x f2(x0, y0))

2 +
(
∂y f2(x0, y0)

)2,

κ = (∂x f1(x0, y0))
2 −

(
∂y f1(x0, y0)

)2
+ (∂x f2(x0, y0))

2 −
(
∂y f2(x0, y0)

)2,
ϑ = (∂x f1(x0, y0))

(
∂y f1(x0, y0)

)
+ (∂x f2(x0, y0))

(
∂y f2(x0, y0)

)
.

Now, we can use λmax(x0, y0) to acquire the maximum LE for 2D nonlinear mKdV
map in Equation (12). For α = −9.79 and the fixed point (x∗, y∗) = (2.5571, 2.5571),
we have

η = 1 +

(
− (−9.79− x)
(−1 + x)x2y

− (−9.79− x)

(−1 + x)2xy
− 1

(−1 + x)xy

)2

+
(−9.79− x)2

(−1 + x)2x2y4
,

κ = 1 +

(
− (−9.79− x)
(−1 + x)x2y

− (−9.79− x)

(−1 + x)2xy
− 1

(−1 + x)xy

)2

− (−9.79− x)2

(−1 + x)2x2y4
,

ϑ = −

 (−9.79− x)
(
− (−9.79−x)

(−1+x)x2y −
(−9.79−x)
(−1+x)2xy

− 1
(−1+x)xy

)
(−1 + x)xy2


Substituting (x, y) = (2.5571, 2.5571), we get η = 2.55876,κ = 2.1089, and ϑ = 0.547745.

Finally, we have the maximum LE number is λmax(x0 = x∗) ≈ 0.451625 . Thus, the orbit
of the mapping in Equation (12) is exponential stretching.

3.2. Two-Dimensional Linear Map Derived from a Nonlinear O∆E mKdV Map

An essential element in the construction of the linear system in Equation (12) is a fixed
point. A fixed point can be obtained by finding the critical point of the integral function.
The critical points of the integral in Equation (12) are the solutions of

1 + x2y− x2y2 − yα

x2y
= 0 (26)

and

1 + xy2 − x2y2 − xα

xy2 = 0 (27)

After taking the difference between the two equations, we have a line y = x. By
substituting these solutions into one of the equations, we have the following critical points
that depend on α:

(x∗, y∗) = {(xi, yi), i = 1, 2, 3, 4, 5, 6} (28)

where x1 = y1 = 1−α2−
√

1−2α2+4α3+α4

2α , x2 = y2 = 1−α2+
√

1−2α2+4α3+α4

2α , x3 = y3 =

1
4 −

1
2

√
1
4 −

3√2(−4+α)
τ1

− τ1
3 3√2
− 1

2

√√√√ 1
2 +

3√2(−4+α)
τ1

+ τ1
3 3√2
− 1−8α

4
√

1
4−

3√2(−4+α)
τ1

− τ1
3 3√2

, x4 = y4 =
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1
4 −

1
2

√
1
4 −

3√2(−4+α)
τ1

− τ1
3 3√2

+ 1
2

√√√√ 1
2 +

3√2(−4+α)
τ1

+ τ1
3 3√2
− 1−8α

4
√

1
4−

3√2(−4+α)
τ1

− τ1
3 3√2

, x5 = y5 =

1
4 + 1

2

√
1
4 −

3√2(−4+α)
τ1

− τ1
3 3√2
− 1

2

√√√√ 1
2 +

3√2(−4+α)
τ1

+ τ1
3 3√2
− 1−8α

4
√

1
4−

3√2(−4+α)
τ1

− τ1
3 3√2

, x6 = y6 =

1
4 + 1

2

√
1
4 −

3√2(−4+α)
τ1

− τ1
3 3√2

+ 1
2

√√√√ 1
2 +

3√2(−4+α)
τ1

+ τ1
3 3√2
− 1−8α

4
√

1
4−

3√2(−4+α)
τ1

− τ1
3 3√2

, where τ1 =

(
−9 + 9α2 +

√
3
√

283− 192α− 6α2 − 4α3 + 27α4
)1/3

.
Let I be an interval in R (finite). Assume that α ∈ I. For α = {9.79,−4.79, 0.1249}, we

then have some fixed point values, as seen in Table 2.

Table 2. The relationship between the parameter values and fixed points for three values of α.

No. α Fix Point Fixed Point Positions

1. α = −9.79


x1
x2
x5
x6

, y1 > 0
, y2 > 0
, y5 < 0
, y6 > 0




x1
x2
x5
x6

 =


y1
y2
y5
y6

 =


8.54172
1.14614
−0.102025

2.55707



2. α = −4.79


x1
x2
x5
x6

, y1 > 0
, y2 > 0
, y5 < 0
, y6 > 0




x1
x2
x5
x6

 =


y1
−y2
y5
y6

 =


2.96658
1.61466
−0.206549

2.14377



3. α = 0.1249


x1
x2
x5
x6

, y1 < 0
, y2 > 0
, y5 < 0
, y6 > 0




x1
x2
x5
x6

 =


y1
y2
y5
y6

 =


−0.0158155

7.89732
−0.843271

1.34332



To construct a linear map derived from the map in Equation (12) around a fixed point
(x∗, y∗), we can use the values of α in Table 2. Thus, a linear map can be constructed based
on the Jacobian matrix AmKdV as follows:

ϑ = −
(−9.79− x)

(
− −9.79−x

(−1+x)x2y −
−9.79−x

(−1+x)2xy
− 1

(−1+x)xy

)
(−1 + x)xy2 (29)

From Equation (12) and Equation (29), for (x∗)y∗(x∗ − 1) 6= 0, we have the following
linear map: (

x′

y′

)
=

(
1+x∗(αx∗−2)
(x∗)2y∗(x∗−1)2

(αx∗−1)
(y∗)2x∗(x∗−1)

1 0

)(
x
y

)
(30)

For example, at α = −9.79 and the point (x6, x6) = (2.5571, 2.5571), we have a linear
map—namely, (

x′

y′

)
=

(
−1.68064 −1

1 0

)(
x
y

)
(31)

Once more, based on the encryption algorithm in Figure 3a, we used 2D linear mKdV
map in Equation (31) to hide the plain image in Figure 2. Applying the linear map in
Equation (31), we obtained the cipher image shown in Figure 9.
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Once more, based on the encryption algorithm in Figure 3a, we used 2D linear mKdV 
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Figure 9. The cipher image obtained after using the 2D linear map in Equation (31) on the original
image in Figure 2.

Note that we used the values of α = −9.79, fixed point (x∗, y∗) = (x6, y6) =
(2.5571, 2.5571), and number of iterations N = 110 to obtain the cipher image shown
in Figure 9. They are key values that must be kept secret.

We have already seen that in Figures 6–8, different values of the parameter may yield
qualitatively different solutions. We are especially interested in the changing nature of so-
lutions as the parameter is varied. To investigate such changes, we shall use the bifurcation
diagram plot for all linear maps discussed in this article. Next, we will show the bifurcation
diagrams for the 2D linear ACM in Equation (24), sine-Gordon in Equation (23), and mKdV
map in Equation (31). These maps have (0, 0) as a fixed point. Using Mathematica, the
bifurcation diagrams around (0, 0) can be obtained and are shown in Figures 10–12.
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Figure 10. Two bifurcation diagrams and a Lyapunov exponent (LE) curve of the 2D ACM linear map
in Equation (24) around fixed point (x∗, y∗) = (0, 0). (a) Bifurcation diagram for plotting q ∈ [−9, 1].
(b) Bifurcation diagram for zooming around q ∈ [−0.13, − 0.117].
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Figure 12. Two bifurcation diagrams of the 2D mKdV linear map in Equation (22) around fixed
point (x∗, y∗) = (0, 0). (a) Bifurcation diagram for plotting µ∗ ∈ [−2, 2]. (b) Bifurcation diagram for
blowing up around µ∗ ∈ [−0.012, 0.012].

For the bifurcation diagram in Figure 10, we fixed p = 0.75 and use a parameter q in
bifurcation plots. First, we started with the bifurcation diagram where q ∈ [−9, 1], with
300 steps; 200 is the number of the first iteration shown, 150 is the maximum number of
iterations, and (0.01, 0.01) is the starting point of the iteration. The range in the vertical axis
is set to (−0.02, −0.02). Zooming in, we acquired an interesting “net pattern”. The bifurca-
tion values for the periodic solutions of periods 19 can be located precisely on this plot with
around q ∈ (−0.121,−0.118). In the same procedure, to produce the bifurcation diagrams
in Figure 11, we used the parameter values of µ ∈ [−2, 2] in bifurcation plots. Zooming in,
we acquired an interesting “net pattern”. The bifurcation values for the periodic solutions
of periods 21 can be located precisely on this plot with around µ ∈ (−0.1384,−0.1365). As
for the 2D sine-Gordon map, to produce the bifurcation diagrams for the 2D mKdV map, as

shown in Figure 12, we fixed a parameter µ∗ =
(αxp−2)xp+1

x2
p yp(xp−1)

2 ∈ [−2, 2] in bifurcation plots.

This gave us the same bifurcation diagrams as with the 2D sine-Gordon map.
Consider the LE λmax(x0) formula in Section 3.1. We can use the formula to obtain the

LEs for the 2D linear ACM map, sine-Gordon map, and mKdV map and also the Lyapunov
number LN(x0) that defined as the exponent of the LE, LN(x0) = eλmax(x0), as shown in
Table 3.
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Table 3. The LE number and LN number for the 2D linear ACM map (Equation (24)), the 2D linear
sine-Gordon map (Equation (23)), and the 2D linear mKdV map (Equation (31)) closed fixed points
(x∗, y∗) = (0, 0).

No. 2D Linear Map (x0,y0) LE: λmax(x0) LN: eλmax(x0)

1. ACM (0.001, 0.001) 0.9533117189 2.59428699560
2. sine-Gordon (0.001, 0.001) 6.6821101678 798.001253131
3. mKdV (0.001, 0.001) 0.7638455683 2.14651493883

Based on Table 3, the 2D linear sine-Gordon map and the 2D linear mKdV map are
chaotic systems.

3.3. Histogram, Covariance, and Correlation Computations Based on the Weighted Data in the
Image Pixels

When considering cryptographic image data processing, there are two important tools
used to analyze image processing—i.e., the gradient filter and the gradient orientation filter.
The gradient filter provides an image corresponding to the image gradient’s magnitude and
is computed using the discrete derivatives of a Gaussian of the pixel radius. Meanwhile,
the gradient orientation filter provides an image corresponding to the local orientation
that is parallel to the image gradient and is computed using the discrete derivatives of a
Gaussian of the pixel radius, thus returning values between −π

2 and π
2 [32].

The important analyses for image cryptography via encryption algorithms are the
histogram, covariance, and correlation analyses. Histogram analysis is conducted to
determine the pixel distribution. The distribution of an image’s pixel values prior to
encryption is usually concentrated on the pixels’ highest space value. Therefore, the best
encryption spreads the pixel values out over the pixel space. Another tool, the adjacent
pixel correlation, was used to test the correlations between pairs of adjacent pixels.

Mathematica was used to produce the histogram distributions for the ACM encryption
in Equation (24), 2D linear map in Equation (23), and 2D linear map in Equation (31). Four
histogram distributions of the weighted data for the images shown in Figures 2, 4 and 9
are shown in Figure 13. There are clear differences between the histograms for the plain
image and those for the cipher images.

Generally, the histograms generated by the cipher images have flat distributions
(uniform). In contrast, the histogram generated by the plain image focuses on some space
pixel values. The covariances and correlations for the image data for N = 110 iterations are
shown in Table 4.

Table 4. The covariances and correlations of the image data based on the weighted data
(gradient orientation filter, gradient filter) of the image for N = 110 iterations.

Covariance Correlation

Plain Image 0.001048070 0.01704610
Cipher Image Generated by Equation (24) 0.000202934 0.00928261
Cipher Image Generated by Equation (23) 0.000042265 0.00187458
Cipher Image Generated by Equation (31) −0.00000098 −0.00041965
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4. Conclusions

A 2D linear map derived from an O∆E mKdV equation was constructed. The 2D
mKdV linear map can be used for the cryptographic encoding of an image. Based on
the implementation of the encoding algorithm, a linear map derived from generalized
sine-Gordon mapping can be used to secure a digital image. We compared three linear
mappings—namely, the 2D Arnold’s cat map, 2D sine-Gordon linear map, and 2D mKdV
linear map—in terms of their abilities to conceal an image. The comparison showed that
the 2D mKdV linear map provided a very low correlation value compared to the other
two mappings, which means that the 2D mKdV linear map provides a higher level of
encryption. Nevertheless, we cannot conclude that the 2D mKdV linear map provides
the best results under all conditions. However, this mapping’s decryption results can
be tested using the concept of dilation and erosion operation, which is a crucial image
processing algorithm. One method used in dilation and erosion operations is the quantum
method (see [33] for details). Other than that, in the process of restoring the original image
(decryption), we recommend that our proposed mappings be tested for resisting a certain
degree of source noise pollution and effectively recover the original signal (see [9,34] for
details). Further investigation is necessary.
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