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Abstract: Finding substrings of a text T that match a regular expression p is a fundamental problem.
Despite being the subject of extensive research, no solution with a time complexity significantly
better than O(|T||p|) has been found. Backurs and Indyk in FOCS 2016 established conditional
lower bounds for the algorithmic problem based on the Strong Exponential Time Hypothesis that
helps explain this difficulty. A natural question is whether we can improve the time complexity for
matching the regular expression by preprocessing the text T? We show that conditioned on the Online
Matrix–Vector Multiplication (OMv) conjecture, even with arbitrary polynomial preprocessing time,
a regular expression query on a text cannot be answered in strongly sublinear time, i.e., O(|T|1−ε) for
any ε > 0. Furthermore, if we extend the OMv conjecture to a plausible conjecture regarding Boolean
matrix multiplication with polynomial preprocessing time, which we call Online Matrix–Matrix
Multiplication (OMM), we can strengthen this hardness result to there being no solution with a query
time that is O(|T|3/2−ε). These results hold for alphabet sizes three or greater. We then provide data
structures that answer queries in O(

|T||p|
τ ) time where τ ∈ [1, |T|] is fixed at construction. These in-

clude a solution that works for all regular expressions with Exp(τ · |T|) preprocessing time and space.
For patterns containing only ‘concatenation’ and ‘or’ operators (the same type used in the hardness re-

sult), we provide (1) a deterministic solution which requires Exp
(

τ · |T|
log2 |T|

)
preprocessing time and

space, and (2) when |p| ≤ |T|z for z = 2o(
√

log |T|), a randomized solution with amortized query time
which answers queries correctly with high probability, requiring Exp

(
τ · |T|

2Ω
√

log |T|

)
preprocessing

time and space.

Keywords: regular expressions; text indexing; pattern matching

1. Introduction

The ability to search for substrings matching a regular expression in preprocessed text
is useful in countless applications. This is evident from the multitude of popular regular
expression engines that exist to facilitate this task. This list includes regular expression
engines built into software packages and programming languages [1–6], those used within
search engines for code repositories [7–9], and more generally, engines used for searching
through string fields in database systems like SQL and non-relational databases [10–12].
In many of these cases, the text that we wish to search over is available long before any
regular expression is provided. Based on this, one could hope that we could do much
better than an algorithmic solution that does not take advantage of preprocessing the text.
Despite a substantial effort, however, there has been little progress in finding solutions
with good theoretical worst-case guarantees, and most often heuristic solutions are used,
some of which are briefly described in Section 1.1. Let us now formalize the problem that
we wish to solve.

Problem 1. You are given a text T for polynomial-time preprocessing. Following preprocessing,
queries are given in the form of a regular expression p. The response to this query should be the
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set {(i, j) | T[i, j] is matched by regular expression p}. The existential version of this problem asks
whether this set is empty or not.

This paper approaches the problem from both sides of computational complexity. It
provides a data structure that takes advantage of our ability to preprocess the text. It also
establishes conditional lower bounds that help to explain the difficulty in deriving better
solutions. We will show that, conditioned on a popular conjecture, there does not exist a
O(|T|1−ε) query time solution for any ε > 0. Under a slightly stronger assumption, there
does not exist O(|T|3/2−ε) query time solution for any ε > 0. The proofs are presented in
Section 2.

We next discuss some of the problems used to prove the results stated above, along
with the related conjectures and background. These reductions will all use a similar theme,
that is, a connection between matching a regular expression to a text and the multiplication
of two Boolean vectors. This connection is simply that for the inner product of two Boolean
vectors to be 0, a 0 can be multiplied with a 0 or a 1, but a 1 cannot be multiplied with
another 1. We will see in Section 2 that this behavior can be easily modeled using the or
operator of a regular expression. These observations are evident in the original fine-grained
hardness results for regular expression pattern matching appearing in [13]. Two problems
based on the orthogonality of Boolean vectors are used in this work to manipulate the size
of the query input and obtain different hardness results.

The first of these problems is the Online Boolean Matrix–Vector Multiplication prob-
lem. In this problem, matrix multiplication is over the Boolean semiring where matrix
multiplication is defined as (Mv)i = ∨n

j=1(Mij ∧ vj). The formal definition is as follows:

Problem 2 (Online Boolean Matrix–Vector Multiplication Problem (OMv)). You are given
an n× n Boolean matrix M for polynomial-time preprocessing. Following preprocessing, n vectors
v1, . . . , vn each of dimension n× 1 are given in an online fashion. After each vector vi is given, the
vector Mvi (over the Boolean semiring) must be reported.

The following conjecture is used frequently in the field of fine-grained complexity.

Conjecture 1 (OMv Conjecture [14]). The Online Boolean Matrix–Vector Multiplication prob-
lem cannot be solved in strongly subcubic time, O(n3−ε) for any ε > 0, using purely combinatorial
methods, even with arbitrary polynomial-time preprocessing.

This conjecture was first introduced in [14] and has grown in popularity in recent
years. It has been used as the basis for results in dynamic graph problems among other
works [15–19]. The best-known algorithms that the authors are aware of for OMv can
be found in [20]. We now introduce a natural extension of the OMv problem and a
stronger conjecture.

Problem 3 (Online Boolean Matrix–Matrix Multiplication problem (OMM)). You are given
an n× n Boolean matrix A for polynomial-time preprocessing. Following preprocessing, an n× n
Boolean matrix B is given and the Boolean matrix AB must be reported.

Conjecture 2 (OMM Conjecture). The Online Boolean Matrix–Matrix Multiplication problem
cannot be solved in strongly subcubic time, O(n3−ε) for any ε > 0, even with arbitrary polynomial-
time preprocessing, using purely combinatorial methods.

Although OMM is very similar to Boolean Matrix Multiplication (BMM), where one
has n× n matrices A and B and seeks their product over the Boolean semiring, it differs
in that it allows for arbitrary polynomial-time preprocessing of one of the matrices. It,
therefore, forms something of a combination of BMM and OMv.

Note that a strongly subcubic time algorithm for OMM does not imply a strongly
subcubic time algorithm for OMv. Hence, the OMM conjecture being proven false would
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not tell us the validity of the OMv conjecture. However, a combinatorial subcubic time
algorithm for OMv would imply a subcubic time algorithm for OMM. Hence the OMv
conjecture being proven false (with a combinatorial subcubic time algorithm) would prove
the OMM conjecture false as well. This makes the OMv conjecture a favorable assumption
when it is possible to base results on it rather than OMM. In the case of the problems
addressed in [14], a single vector suffices in their reduction where individual updates to
the structure of interest are made, such as adding an edge or modifying an edge weight in
a graph. Dynamic problems with batch updates are less frequently addressed, but they
may be problems where the OMM conjecture is a better-suited conjecture. In particular, the
OMM conjecture may be useful when the input size of a query needs to be manipulated to
obtain stronger hardness results. To the best of our knowledge, research related to solving
OMM focuses on utilizing the sparsity of one of the matrices [21,22].

Returning to the problem of indexing a text for regular expression queries, from the
side of upper bounds, simple approaches like storing all precomputed solutions do not
work as the space required cannot be bounded in terms of |T|. This is since |p| can be larger
than |T|. To this end, we present three solutions to the existential version of the problem for
constant-sized alphabets. The first one is a general solution with O( |T||p|τ ) query time, and
Exp(τ|T|) space and preprocessing time (Exp( f (n))) means 2O( f (n))), where τ ∈ [1, |T|] is
a parameter fixed at construction time. To handle queries containing only concatenation

and or operators, we provide (i) a solution with O( |T||p|τ ) query time, and Exp
(

τ |T|
log2 |T|

)
space and preprocessing time, and (ii) a randomized solution for |p| ≤ |T|2o(

√
log |T|)

that
can answer queries correctly whp (With high probability (whp) means with probability
at least 1− 1/poly(|T|)) in amortized time O( |T||p|τ ). The preprocessing time and space is

Exp
(

τ |T|
2Ω
√

log |T|

)
.

Our solutions also provide all of the starting and ending locations of matches for p.
However, they do not give the correspondences between the two (which ending positions
are for a given starting position). Our approach is based on constructing graph-based
representations that map starting indices of substrings matched by the regular expression
to ending indices of the substrings matched by the regular expression. We preprocess
solutions to small regular expressions and provide a way in which these preprocessed
solutions can be merged to form the final query response.

1.1. Background and Related Work

A regular expression p as defined in this paper is one of the following: the or operator
‘|’ applied to two regular expressions p1 and p2, the concatenation operator ‘◦’ applied to
two regular expressions p1 and p2, the star operator ‘∗’ applied to a regular expression
p1, a symbol from the alphabet, the empty string, or the empty set. We call p1 and p2
subexpressions of p. We will not consider more advanced operators such as bracketed
expressions that allow for a range of characters to be denoted within a few symbols, or
captured groups that allow matched substrings to be recalled, or other added features that
can make the problem NP-complete [23]. When considering the length of p, denoted |p|,
one can view this as the number of vertices in the parse tree for p, as seen in Figure 1. The
precedence-setting braces in the regular expression do not contribute to its length as they
do not appear as any vertex in the parse tree. To avoid confusion, we will always refer to
the length of the text T as |T| and the length of the pattern as |p|, thereby reserving n for
the n× n matrices in Section 2. We will also always consider T as indexed from 1 to |T|.

As mentioned in the introduction, this problem has to be solved frequently in applica-
tions. As such, different heuristics have been proposed [24,25]. Most of these heuristics use
the idea of multi-grams. Multi-grams are small portions of text that will match some part
of a substring in the inputted expression. In practice, applications often use multi-grams.
Furthermore, to the author’s best knowledge, there are no solutions that preprocess the T
and have a guaranteed time complexity less than that of any algorithmic solution. In the
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case where the pattern is given for preprocessing (rather than the text) work by Bille shows
that after O(|p| log |p|) preprocessing time, each character in the text can be processed in
O(|p| log w

w + log |p|) time, where w is the word size [26].

Figure 1. The parse tree for the regular expression p = (a ◦ b∗) | (b ◦ a∗).

For the algorithmic problem without any preprocessing, there exists a large body of
research. The oldest and most fundamental solution is Thompson’s Method from 1968 [27].
This method locates substrings matching the regular expression p in O(|T||p|) time via
the simulation of a nondeterministic finite automaton equivalent to p. Results by Myers
improve this to O( |T||p|log |T| + (|T| + |p|) log |T|) time [28]. This was further improved to

O(
|T||p| log log |T|

log1.5 |T|
+ |T|+ |p|) time in [29]. Additionally, a result by Bille and Thorup says

that if p consists of k strings then the algorithmic problem can be solved in time O(|T|k +
|p| log k) [30]. In practice, for programming languages like Perl and Python, the simulation
of this NFA is typically done using a method called back-tracking, which can lead to
exponential time in the worst case. The main reason for this choice in implementation
appears to be its simplicity [31].

To help answer why there have not been more significant advancements on the
algorithmic problem, Backurs and Indyk established fine-grained lower bounds [13]. These
lower bounds use the Strong Exponential Time Hypothesis (SETH). The proofs use a
reduction from SETH to the problem of finding two orthogonal vectors, each from its
own set (the Orthogonal Vectors problem). This is then reduced to pattern matching on
regular expressions. The main idea in the final step is to use regular expressions to detect
orthogonality between two vectors. The same technique is used in this paper in Section 2,
although conditioned on a different conjecture. Both the work [13], as well as extensions of
this work [32], focus on classifying regular expressions based on which types make pattern
matching more difficult. We do not make such distinctions here.

2. Hardness of Creating an Index for Regular Expression Queries

The solution described in Section 3 requires exponential preprocessing and storage to
see significant improvements in the query complexity over complete recomputation. In this
section, we show that it is unlikely we will obtain a solution with polynomial preprocessing
time and query time significantly better than O(|T|3/2), and even more unlikely we obtain
one with query time significantly better than O(|T|). All of the hardness results in this
section hold for strings over an alphabet of size 3.

2.1. Hardness Based on OMv

The reduction here differs from the one in [13] in that the reduction here is from OMv
(see Section 1 for a description of OMv) rather than the Orthogonal Vectors problem. This
is done to add the notion of preprocessing. We adopt similar notation as was used there
and consider this as the warm-up to the reduction used in Section 2.2.

Suppose the matrix M has the rows from top to bottom r1, . . . rn, where each ri is an
1× n binary vector. We set the text T as the concatenation of the corresponding binary
strings using the character 2 as a delimiter, that is T = 2 ◦ r1 ◦ 2 ◦ r2 ◦ . . . ◦ 2 ◦ rn. Next we



Algorithms 2021, 14, 133 5 of 15

show how to process an input vector v into a regular expression p. The component gadget
is the same as the one from [13]. It is

CG(c) =

{
(0) if c = 1
(0 | 1) if c = 0

.

The definition CG(0) = (0 | 1) is motivated by the fact that in the inner product of
two vectors, 0 can be multiplied by either a 0 or 1 while maintaining that the inner product
is 0. The definition CG(1) = 0 is motivated by the fact that in the inner product of two
vectors, 1 can only be multiplied by 0 while maintaining that the inner product is 0.

Next, we define the vector gadget as VG(v) = 2 ◦ CG(v1) ◦ CG(v2) ◦ . . . ◦ CG(vn).
Observe that our regular expression query pattern p has a length which is O(n). For
example, VG(011) = 2 ◦ (0|1) ◦ (0) ◦ (0).

Lemma 1. For i ∈ [1, n], the pattern p matches a substring starting at index 1 + (i− 1)(n + 1)
in T if and only if ri · vs. = 0.

Proof. First assume ri · vs. = 0. If a component ri
j = 1, we must have vj = 0. By setting

CG(vj) = 1, we match this particular character. For all characters ri
k = 0 we set CG(vk) = 0,

thus all n characters in ri can be matched. This implies the substring for 2 ◦ ri that starts at
1 + (i− 1)(n + 1) can be matched with 2 ◦VG(v).

To prove the converse, assume ri · vs. 6= 0. Then there exists a component where ri
j = 1

and vj = 1. Because CG(vj) = 0, CG(vj) cannot be made to match the 1 character in T
corresponding to ri

j. Additionally, because of the leading 2 symbols, this is the only character

in the substring 2 ◦ ri with which CG(vj) could be matched. The two observations combined
imply the substring 2 ◦ ri that starts at 1 + (i− 1)(n + 1) cannot be matched with p.

Theorem 1. For all ε > 0, conditioned on the OMv conjecture, there does not exist an index that
can answer regular expression queries in O(|T|1−ε + (|p|+ occ)2−ε) time, where occ is the size of
the output. This holds even with arbitrary polynomial-time preprocessing.

Proof. The OMv conjecture is that for an n×n matrix M the OMv problem cannot be solved
in O(n3−ε) time, even with polynomial preprocessing time. The input string T is of length
Θ(n2), and we receive a total of n vectors that correspond to n regular expression queries.
If each of the regular expression queries could be solved in O(|T|1−ε + (|p|+ occ)2−ε) for
ε/2 > 0 time (note that |p| and the output size occ is at most n = O(

√
|T|)), then by

Lemma 1 we can solve OMv in time O(n(|T|1−ε + (|p|+ occ)2−ε)), which is O(n3−ε).

It is natural to ask if we are not using the full power of our hypothetical solution
for regular expression queries. After all, our solution can potentially report matching
substrings starting at every index. In the above reduction, if we removed the 2s acting as
delimiters, it would compute the orthogonality of the input vector v with every starting
position in the linearized M. This can be used to compute the cross-correlation between
two vectors with non-negative entries if one is only concerned with whether a resulting
entry is zero or non-zero. By reversing one of the vectors, the convolution can also be
computed. Specifically, we can modify our reduction to have T represent an 1× n binary
vector v1 and p the bottom-to-top reversal of a second n× 1 binary vector v2 (both padded
with at least n zeros on either side). This allows us to compute the convolution v1 ∗ v2.

By restricting the preprocessing time, we can obtain corollaries directly from the above
reduction and the 3SUM hardness results established for the partial convolution indexing
problem in [33]. Suppose along with the regular expression p we are given a set S of indices
where we wish to know if a match starts. Call this the Partial Regular Expression Query
problem. The following corollary is immediate from [33].
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Corollary 1. For all ε > 0, conditioned on the 3SUM conjecture being true, there is no algo-
rithm for the Partial Regular Expression Query problem with O(|T|2−ε) preprocessing time and
O(|T|1−ε) query time, even if |S| is O(|T|1−ε).

2.2. Hardness Based on OMM

We will now utilize the OMM conjecture to strengthen our results. The reduction in
this section requires only a single query pattern of size Θ(n2). This allows us to obtain a
lower bound stronger than those obtained under OMv or 3SUM, but still conditioned on a
plausible conjecture. See Section 1 for a description of the OMM conjecture.

Again, let r1, . . ., rn be the rows of the input matrix A that we can preprocess. We make
T = 2 ◦ r1 ◦ 1n ◦ 2 ◦ r2 ◦ 1n ◦ . . . ◦ 2 ◦ rn ◦ 1n. The substrings 1n will allow us to deduce from
each ending index of a match the vector vj used in the construction of p that is responsible
for that match. As we will see, this is since a subexpression in p built from a vector vj has
the suffix 1j. Note that |T| = Θ(n2).

From the matrix B supplied at run time, we construct a regular expression p. Let
B have the columns v1, . . ., vn from left to right. Using the same vector gadgets from
Section 2.1, we set p =

(
2 ◦VG(v1) ◦ 1

)∣∣(2 ◦VG(v2) ◦ 12)∣∣ . . .
∣∣(2 ◦VG(vn) ◦ 1n).

Lemma 2. For i, j ∈ [1, n] there exists a substring matched by regular expression p starting in T
at index (i− 1)(2n + 1) + 1 and a substring matched ending at index (i− 1)(2n + 1) + 1+ n + j
iff Cij = 0 where AB = C.

Proof. First assume Cij = 0. This implies that ri · vj = 0. By the argument given in the
proof for Lemma 1, this implies the subexpression 2 ◦VG(vj) matches the substring 2 ◦ ri of
T, which now starts at index (i− 1)(2n+ 1)+ 1. Moreover, we can match the subexpression
1j of 2 ◦VG(vj) ◦ 1j with the first j 1’s that follow 2 ◦ ri in T, giving the final index of the
match as (i− 1)(2n + 1) + 1 + n + j.

To prove the converse, assume Cij = 1. This implies ri · vj 6= 0. By the argument
given in Lemma 1, this implies that 2 ◦ ri cannot be matched with 2 ◦VG(vj). Furthermore,
for any k 6= j, if 2 ◦ VG(vk) matches 2 ◦ ri, then the final index of substring matching
2 ◦ VG(vk) ◦ 1k and starting at (i − 1)(2n + 1) + 1 will be at (i − 1)(2n + 1) + 1 + n + k,
rather than (i− 1)(2n + 1) + 1 + n + j. Hence, there can not be both a match starting at
(i− 1)(2n + 1) + 1 and a matching ending at (i− 1)(2n + 1) + 1 + n + j.

The output size of the query is bound by n2 since each of the n subexpressions of p of
form 2 ◦VG(vj) ◦ 1j match T in at most n places. Because the output size does not exceed
our desired lower bound we can apply Lemma 2 and the fact that |p| = Θ(n2) to obtain
Theorem 2.

Theorem 2. For all ε > 0, conditioned on the OMM conjecture, there does not exist an index that
can answer regular expression queries in O((|T|+ |p|+ occ)3/2−ε), where occ is the size of the
output. This holds even with arbitrary polynomial-time preprocessing.

3. A Regular Expression Index

Before discussing our graph-based representations for query solutions we make a
brief observation regarding the parse tree constructed from the regular expression. Within
this rooted tree, each vertex represents the regular expression obtained by applying the
operator labeling the vertex to the subexpressions represented by its children. The order in
which these operators are applied is defined by the structure of the tree (see Figure 1). The
leaves of the tree are either the empty string, the empty set, or symbols from the string’s
alphabet. The ideas we present next are based on being able to quickly merge the solutions
for each vertex of the tree.
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3.1. Solution Graphs: Pattern Matching via Reachability

We take a slightly unorthodox view of regular expressions in this section. This
viewpoint will make it easier to precompute solutions to small regular expression queries
and then merge them with other solutions to answer the query. Essentially, we will view
the solution for a regular expression query with regular expression p as a directed graph G
where we are mainly concerned with the reachability from vertices in a set V1 to vertices
in another set V2. A solution graph for a given text T and regular expression p is defined
as follows:

Definition 1 (Solution Graph). For a text T and regular expression p, a solution graph G
is a directed graph that contains two distinguished sets of vertices V1 = {v1

1, . . . , v1
|T|+1} and

V2 = {v2
1, . . . , v2

|T|+1}, called the start and end vertices, respectively. In G there exists a path from

v1
i ∈ V1 to a vertex v2

j+1 ∈ V2 if and only if the substring T[i, j] matches the regular expression
p. Correspondingly, we will say that the regular expression given by the empty string matches the
substring T[i, i− 1].

Solution graphs for a text and pattern are not unique. Moreover, there will typically
be many additional vertices lying on the paths between the V1 and V2, but we ultimately
only care about the reachability between these two sets. Note also that this representation
may require much more information than our final solution, which itself must only provide
a list of starting positions and ending positions. We will demonstrate how these graphs
can be merged together at every step while only using O(|T|) time for each vertex of the
parse tree.

Merging Solution Graphs

We now describe how solution graphs for subexpressions can be merged based on the
operators used. We use this procedure both in the construction and in the query phase. It
forms the key component of our technique. Illustrations are provided in Figures 2 and 3. If
the regular expression is only a single symbol, the solution graph is easily obtained as a
bipartite graph, e.g., the top row of Figure 2.

First we consider the or operator ‘|’. Let p1 be one regular expression with solution
graph G1 that has start and end vertex sets V1 and V2. Let p2 be a regular expression with
solution graph G2 that has start and end vertex sets U1 and U2. To compute the graph G
corresponding to p1|p2, do the following:

1. Graph G is initially equal to the two disconnected graphs G1 and G2.
2. Add two sets of new vertices W1 = {w1

1, . . . , w1
|T|+1} and W2 = {w2

1, . . . , w2
|T|+1}.

These will be the new start and end vertex sets, respectively, of G.
3. Add the directed edges: {(w1

i , v1
i ) | 1 ≤ i ≤ |T|+ 1}, {(w1

i , u1
i ) | 1 ≤ i ≤ |T|+ 1},

{(v2
i , w2

i ) | 1 ≤ i ≤ |T|+ 1}, and {(u2
i , w2

i ) | 1 ≤ i ≤ |T|+ 1}.
For the concatenation operator ‘◦’ we again take G1 as the solution graph for pattern

p1 with start and end vertex sets V1 and V2, respectively, and G2 as the solution graph for
pattern p2 with start and end vertex sets U1 = {u1

1, . . . , u1
|T|+1} and U2 = {u2

1, . . . , u2
|T|+1}.

To create the solution graph G for p1 ◦ p2, do the following:

1. Graph G is initially equal to the two disconnected graphs G1 and G2.
2. Make V1 the start vertex set of G and U2 the end vertex set of G.
3. Add the directed edges: {(v2

i , u1
i ) | 1 ≤ i < |T|+ 1}.
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Figure 2. Solution graphs for the text T = aabbab. (Top): solution graphs for regular expressions
a and b. Second from top: solution graphs for the regular expressions a∗ and b∗. Second from the
bottom: solution graph for a ◦ b∗. (Bottom): solution graph for b ◦ a∗.
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Figure 3. Solution graphs for the text T = aabbab. (Top): the solution graph for (a ◦ b∗) | (b ◦ a∗).
(Bottom): an equivalent, simpler solution graph for (a ◦ b∗) | (b ◦ a∗).

Lastly, we consider the star operator ‘∗’ operator. Again taking V1, V2 as the starting
and ending vertex sets of G1 for p1, construct the solution graph G for p∗1 as follows:

1. Graph G is initially equal to G1.
2. Add two sets of new vertices W1 = {w1

1, . . . , w1
|T|+1} and W2 = {w2

1, . . . , w2
|T|+1}.

These will be the start and end vertex sets, respectively, of G.
3. Add the directed edges: {(w1

i , w2
i ) | 1 ≤ i ≤ |T|+ 1}, {(w1

i , v1
i ) | 1 ≤ i ≤ |T|+ 1},

{(v2
i , v1

i ) | 1 ≤ i < |T|+ 1}, and {(v2
i , w2

i ) | 1 ≤ i ≤ |T|+ 1}.
In each step above Θ(|T|) edges are added to the resulting solution graph. Further-

more, any solution graphs that arise from matching a pattern consisting of only symbols
(the leaves of the parse tree) have only O(|T|) edges. Therefore, a regular expression of
length |p| results in a solution graph having O(|T||p|) edges.

Lemma 3. The constructions of G for the or (p2|p2), concatenation (p1 ◦ p2), and star (p∗1)
operators result in G being a solution graph for the corresponding regular expression.

Proof. The first two of these are straight forward, but we include them for completeness.
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(i) For the or operator, first consider when there exists a substring T[i, j] matched by
p1 | p2. Then the substring T[i, j] must be matched by p1 or p2. Say WLOG it is
matched by p1, then there exists a path from v1

i ∈ V1 to v2
j+1 ∈ V2, which implies a

path from w1
i ∈W1 to w2

j+1 ∈W2 in G due to the edges (w1
i , v1

i ) and (v2
j+1, w2

j+1).

In the other direction, if there exists a path from w1
i to w2

j+1, it must start with either

the edge (w1
i , v1

i ) or (w1
i , u1

i ). Say WLOG it starts with the edge (w1
i , v1

i ), then the final edge
must be (v2

j+1, w2
j+1) since there no edges between the graphs G1 and G2. This implies a

path through G1 from v1
i to v2

j+1 and hence the substring T[i, j] is matched by p1.

(ii) For concatenation, first consider when there exists a substring T[i, j] matched by
p1 ◦ p2. Then there exists some k such that i ≤ k ≤ j where T[i, k− 1] is matched by
p1 and T[k, j] is matched by p2. Hence, there exists a path from v1

i to v2
k in G1 and a

path from u1
k to u2

j+1 in G2. Connecting these paths using the edge (v2
k , u1

k) we obtain
the desired path.

In the other direction, if there exists a path from v1
i to u2

j+1 then there must exist a path

from v1
i to some v2

k and then a path from u1
k to u2

j+1, which implies T[i, k− 1] is matched by
p1 and T[k, j] is matched by p2.

(iii) For the star operator, Figure 2 is particularly helpfully in understanding the argument.
We will use induction on x to show that all substrings T[i, j] matched by x ≥ 1
concatenations of p1 correspond to a path from v1

i to v2
j+1. Suppose T[i, j] is matched

by px
1 . If x = 1, then by the definition of G1, there exists a path from v1

i to v2
j+1. For

x > 1, we assume our inductive hypothesis holds for all substrings of T matched by
x− 1 concatentations of p1. Since T[i, j] matches px

1 , there exists an index k < j such
that px−1

1 matches T[i, k]. Additionally, the substring T[k + 1, j] is matched by p1. By
our inductive hypothesis there exists a path from v1

i to v2
k+1 and a path from v1

k+1 to
v2

j+1. Adding the connecting edge (v2
k+1, v1

k+1) provides the path and proves that the
induction holds.

To show that px
1 matching T[i, j] implies a path from w1

i to w2
j+1, if x = 0 then T[i, i− 1]

(the empty string) is matched and the edge (w1
i , w2

i ) provides a path. If x > 0, then by the
preceding paragraph we can use the edge (w1

i , v1
i ), the path from v1

i to v2
j+1 and the edge

(v2
j+1, w2

j+1) to obtain the desired path.

In the other direction, if there exists a path from w1
i to w2

j+1, and j + 1 = i, then the
corresponding substring is T[i, i − 1] and so the substring is the empty string which is
matched by p∗1 . Otherwise j + 1 > i, in which case the design of G implies there must be a
path from v1

i to v2
j+1. Along this path any edges from V1 to V2 correspond to a substring of

T matched by p1, and any edges from V2 to V1 correspond to the concatenation of two of
these substrings. Putting these together we get that the substring T[i, j] is the concatenation
of substrings matched by p1, and is therefore matched by p∗1 .

3.2. Precomputed Solutions

Having established how the solutions to sub-problems can be merged and pushed up
to the root of our regular expression parse tree, we next describe how to use this fact to
create solutions with the desired preprocessing/query time trade-off.

Solution Graphs for the Leaves. Each leaf represents either the empty set, the empty
string, or an alphabet symbol. The empty set graph will have no edges, whereas the empty
string has the edges (v1

i , v2
i ) for 1 ≤ i ≤ |T|+ 1. For leaves with alphabet symbols, the

solution graphs have the edges (v1
i , v2

i+1) whenever T[i] matches the character labeling that
leaf vertex.

Sampling Subtrees. We start with the observation that the number of vertices in
the parse tree can be made linear in the number of leaves, despite vertices with the ‘∗’
label having only a single child. This is thanks to the property (p∗)∗ = p∗, which means
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that we can contract one of the star operator vertex if it appears as a child of another star
operator vertex.

For a given τ value we can consider all regular expressions of length τ. With constant
alphabet sizes, there are 2O(τ) such regular expressions. For each of these, we will compute
the solution graph for the root of its parse tree. For smaller patterns, this means that the
solution graph for the whole parse tree will already be computed and the query response
can be immediately given upon seeing the query. We store additional structures to deal
with larger patterns. We store a bipartite graph that captures the reachability of start to end
vertex sets in the solution graph and contains O(|T|2) edges. An example of this can be
seen in Figure 3. The bipartite graph is stored in the form of a Boolean adjacency matrix.

In more detail, suppose one has a bipartite graph G with vertex partitions W1 and W2,
each of size |T|. Then given a subset S of vertices in W1, determining which vertices in W2
are reachable from S can be done using the multiplication of a Boolean matrix M of size
|T|2 against a vector~s of size |T| × 1. The matrix M would have a 1 in entry (i, j) iff ui ∈W2
is reachable from vj ∈W1. The vector~s has a 1 for every entry in S and a 0 otherwise. The
resulting product M~s shows the reachable vertices in W2. The space required for storing all
of these matrices is O(|T|2 · 2O(τ)).

3.3. Constructing the Solution Graph at Query Time

A solution to a query is now a regular expression parse tree where every subtree
of size τ or less has been replaced with a single vertex whose solution graph has been
precomputed and is represented with a Boolean matrix. To obtain this final solution graph
we proceed as described in the last section, recursively computing the solution until we
obtain the graph at the root of the full parse tree. In doing so, we treat the precomputed
solution graphs as merely a set of start and end vertices.

The total time to do this merging and obtain the final solution graph is O( |T||p|τ ). The
precomputed solutions cut the number of leaves in the parse tree down by a factor of τ,
and hence, by the observation that the number of internal vertices is linear in the number
of leaves, it cuts the size of the parse tree down by a factor of τ as well. The parse tree now
consists of O( |p|τ ) vertex for non-precomputed solution graphs, each of which contributes

O(|T|) edges when constructed, and O( |p|τ ) Boolean matrices representing the reachability

information of precomputed solution graphs. There are O( |T||p|τ ) edges not represented by
Boolean matrices.

3.4. Querying Matches via Graph Traversal

Adding an additional start vertex s and edges {(s, v1
i ) | 1 ≤ i ≤ |T|+ 1} (see Figure 4),

the query from s to detect reachability to the final set of ending vertices can be done by a
graph traversal. During a traversal, when a subgraph represented by a Boolean matrix is
arrived at, matrix multiplication can be performed (when beneficial) to more efficiently
traverse the subgraph.

V V

s

1 2G V V1 2GR

t

Figure 4. On the (left), we have the querying strategy to find all ending vertices corresponding to
pattern matches. On the (right), we reverse the edges in G to form GR. The graph GR can be used to
find starting vertices that correspond to the starting indices of pattern matches.

For general regular expressions, the star operator allows for the same subgraph to
be visited multiple times. In the worst case, we return up to |T| times to a subgraph
where we may have the Boolean matrix representation. Rather than use the Boolean matrix
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multiplication, we take the adjacencies of each starting vertex. This results in a query time

of O( |T|
2|p|
τ ). We reparameterize by setting τ = Θ(τ′ · |T|). This makes the query time

complexity O
(
|T|·|p|

τ′

)
and changes the space from |T|22O(τ) to Exp(τ′|T|).

Theorem 3. There exists a solution to answer existential regular expression queries with query
time O( |T|·|p|τ ), requiring Exp(τ|T|) space and preprocessing time.

3.4.1. Restricted Regular Expressions

If we restrict ourselves to patterns with only concatenation and or operators (restricted
regular expressions), using breadth-first-search all ‘start’ vertices of a subgraph are reached
on the same level of the search. Hence for restricted regular expressions, we can better
utilize the Boolean matrix representations of subgraphs, taking advantage of techniques
developed for performing this multiplication more efficiently. Based on whether we desire
a deterministic solution or a solution that is correct whp we obtain different space and
preprocessing times.

Lemma 4 (Williams [34]). For all ε ∈ (0, 1/2), every n× n Boolean matrix A can be preprocessed
in O(n2+ε) time such that every subsequent multiplication of A with an arbitrary Boolean n-vector
x can be performed in O(n2/(ε log n)2) time, on a pointer machine or a (log n)-word RAM.

Applying Lemma 4 with ε = 1/4, the query time complexity becomes

|T||p|
τ

+
|p|
τ
· |T|

2

log2 |T|
= O

(
|T||p|

τ

(
1 +

|T|
log2 |T|

))
.

We again reparameterize, setting τ′ = Θ

(
τ

(
1 + |T|

log2 |T|

)−1
)

. The query time be-

comes O( |T||p|τ′ ). The space complexity goes from |T|22O(τ) to Exp
(

τ′ |T|
log2 |T|

)
and the

preprocessing time goes from |T|2+ε2O(τ) to Exp
(

τ′ |T|
log2 |T|

)
. The parameter τ′ ranges from

1 to |T|.

Theorem 4. For constant sized alphabets and some parameter τ ∈ [1, |T|] fixed at construction,
for patterns p containing only ‘concatenation’ and ‘or’ operators, there exists a data structure which

answers regular expression existential queries in time O
(
|T|·|p|

τ

)
requiring Exp

(
τ · |T|

log2 |T|

)
space

and preprocessing time.

The techniques of Larson and Williams in [20] yield a randomized solution with better
preprocessing time and space.

Lemma 5 ([20]). With no preprocessing of the matrix A ∈ {0, 1}n×n and for any sequence of

t = 2ω(
√

log n) vectors v1, ..., vt ∈ {0, 1}n, online matrix-vector multiplication of A and vi over the

Boolean semiring can be performed in n2/2Ω(
√

log n) amortized time, with a randomized algorithm
that succeeds whp.

Given a set of start vertices represented as a binary vector, this allows us to obtain

the reachable end vertices using a randomized algorithm running in |T|2/2Ω(
√

log |T|)

amortized time over 2ω(
√

log |T|) queries that succeeds whp. For each matrix constructed,

we apply |T| = 2ω(
√

log |T|) multiplications against random binary vectors in preprocessing.
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The added time complexity of this operation is O(|T|3) in total per matrix. This step is
necessary to ensure the amortization techniques used in [20] will work.

The traversal is done in the same way as in the deterministic solution, only that each
matrix-vector multiplication is repeated multiple times, and the most frequent of these
solutions is taken as the output vector. We will show that under the conditions of |P| ≤ |T|z

for some z = 2o(
√

log |T|), to maintain high probability of success of the overall algorithm it
is sufficient to perform z · log |T| repetitions of each matrix multiplication. Therefore, each

matrix during a query requires (z · |T|2 log |T|)/2Ω(
√

log |T|) time. That yields an amortized
query time of

|T||p|
τ

+
|p|
τ
· z · |T|2 log |T|

2Ω(
√

log |T|)
= O

(
|T||p|

τ

(
1 +

|T|
2Ω(
√

log |T|)

))

where queries succeed whp. We reparameterize, setting τ′ = Θ
(

τ ·
(

1 + |T|
2Ω(
√

log |T|)

)−1
)

.

Theorem 5. Let T be a text over a constant sized alphabet and τ a parameter in [1, |T|] fixed at
construction. For patterns p containing only concatenation and or operators, where |p| ≤ |T|z

for z = 2o(
√

log n), there exists a data structure which answers regular expression existential
queries correctly whp in amortized time O

(
|T|·|p|

τ

)
, requiring Exp

(
τ · |T|

2Ω(
√

log |T|)

)
space and

preprocessing time.

3.4.2. Preserving High Probability of Success

We know that our matrix-vector multiplication algorithm from [20] succeeds with
probability 1− 1

|T|ε for some ε > 0. Our algorithm performs matrix-vector multiplication up

to |p|τ ≤ |p| times. We assume the correctness of these matrix multiplications is independent.
In the worst case, each of these has to be correct for our final answer to be correct. The
probability that these are all correct is given by

(
1− 1
|T|ε

) |p|
τ

≥ 1− |p|
τ
· 1
|T|ε for

|p|
τ

> 1 and
1
|T|ε < 1.

Using the assumption that |p| ≤ |T|z, this is bound below by 1− 1
|T|ε−z . We will aim

to preserve success whp by ‘amplifying’ ε to some ε′ > z. The technique we will use to do
this is repeating each matrix multiplication a sufficient number (denoted by k) of times and
using the most frequently resulting vector (the mode) as the solution.

Let Xi be the random variable which is 1 if the multiplication on trial i is correct and 0
otherwise. Let 1− 1

|T|ε =: q > 1
2 be the probability with which the original matrix-vector

multiplication algorithm is correct. The probability that the mode is correct is greater or
equal to the probability that the correct solution is outputted at least k

2 times. We write
the latter quantity as one minus the probability that the correct answer gets outputted less
than half the time. Applying Chernoff bound, we get

1− Pr

(
k

∑
i=1

Xi ≤
⌊

k
2

⌋)
≥ 1− e−

k
2q (q−

1
2 )

2
.

Recall that we want our probability to be at least 1− 1
|T|ε′

for some ε′ > z. Therefore

we set the right-hand-side to 1− 1
|T|ε′

and solve for ε′ to obtain

ε′ =
k

2q ln |T|

(
q− 1

2

)2
.
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Since we want ε′ > z, it suffices then that we find the number of trials k such that

k
2q ln |T|

(
q− 1

2

)2
> z or, equivalently k >

2qz ln |T|(
q− 1

2

)2 .

For |T|ε > 2 we can easily bound q away from 1/2, making 2qz ln |T|/(q− 1/2)2 =
Θ(z log |T|). Hence, repeating each matrix multiplication k = Θ(z · log |T|) times and
taking the mode provides the desired 1− 1/poly(|T|) probability of success.

Obtaining Starting and Ending Positions. For each precomputed solution, we con-
sider the edges reversed and the corresponding adjacency matrix as being precomputed.
After constructing the final solution graph, we reverse all of its edges and add a single
source vertex t and edges {(v2

i , t) | 1 ≤ i ≤ |T|+ 1} (see Figure 4). We call this graph GR.
Using the same traversal techniques on GR as used on G yields the set of reachable starting
vertices in V1.

4. Discussion

This work contributes to the growing number of fine-grained hardness results for
string-related problems. The hardness results presented here belong to a narrower set of
hardness results for indexing problems. We also provide here a solution to the indexing
problem by utilizing recent innovations in Boolean matrix multiplication. Although requir-
ing an exponential amount of space in terms of the length of the text, this solution allows
for faster query times. A future research direction is to more elegantly incorporate the
star operator into the above ideas, allowing for more space-efficient indexes that answer
queries containing this operator.
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