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Abstract: All-optical networks transmit messages along lightpaths in which the signal is transmitted
using the same wavelength in all the relevant links. We consider the problem of switching cost
minimization in these networks. Specifically, the input to the problem under consideration is an
optical network modeled by a graph G, a set of lightpaths modeled by paths on G, and an integer g
termed the grooming factor. One has to assign a wavelength (modeled by a color) to every lightpath,
so that every edge of the graph is used by at most g paths of the same color. A lightpath operating
at some wavelength λ uses one Add/Drop multiplexer (ADM) at both endpoints and one Optical
Add/Drop multiplexer (OADM) at every intermediate node, all operating at a wavelength of λ.
Two lightpaths, both operating at the same wavelength λ, share the ADMs and OADMs in their
common nodes. Therefore, the total switching cost due to the usage of ADMs and OADMs depends
on the wavelength assignment. We consider networks of ring and path topology and a cost function
that is a convex combination α · |OADMs|+ (1− α)|ADMs| of the number of ADMs and the number
of OADMs deployed in the network. We showed that the problem of minimizing this cost function is
NP-complete for every convex combination, even in a path topology network with g = 2. On the
positive side, we present a polynomial-time approximation algorithm for the problem.

Keywords: optical networks; wavelength division multiplexing (WDM); Add-Drop
Multiplexer (ADM); Optical Add-Drop Multiplexer (OADM); traffic grooming; path and
ring networks

1. Introduction
1.1. Background

All-optical networks are used in scientific visualization, real-time medical imaging,
video conferencing, high-speed supercomputing, distributed computing, in data centers
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and between them [1,2]. This is due to the data rates offered by these networks which are
several orders of magnitudes higher than those offered by other networks [2–4].

Wavelength division multiplexing: To achieve these high data rates, all-optical net-
works maintain the signal in optical form. In other words, they avoid the optical–electronic–
optical conversion overhead at the intermediate nodes which would otherwise have an
adverse effect on the transmission rate. One of the main underlying technologies is
wavelength-division multiplexing, which allows for the simultaneous transmission of signals
over the same link, as long as they are transmitted on different wavelengths.

Switching cost: The focus of early research on all-optical networks was to obtain
efficient topologies and wavelength allocation schemes/algorithms to minimize the total
number of used wavelengths. The work in [5] is an excellent survey of the main results in
this direction. More recent research on these networks considers switching cost minimiza-
tion as a major design goal. These works consider the capital expenses (CAPEX) and/or
operational expenses (OPEX) (expenses that are independent of usage and depend on
usage, respectively) incurred in all-optical networks by the basic electronic switching units,
the most prominent of them being Add-Drop multiplexers (ADMs) and optical Add-Drop
multiplexers (OADMs). Every lightpath is terminated by two ADMs. If two lightpaths
with a common endpoint are assigned the same wavelength, they can share the ADM
operating at this wavelength at the common endpoint. Similarly, two lightpaths sharing a
common intermediate node that are assigned the same wavelength can share the OADM
operating at that wavelength at the common node.

Grooming: Typically, the transmission rates supported by a lightpath in an all-optical
network is higher than the low-capacity demands. Consequently, a network operator puts
together several low-capacity demands into one lightpath. This action of putting together
is termed grooming, and the number g of communication requests that can be put together
in a lightpath is termed the grooming factor. The grooming problem is the problem of
assigning colors (wavelengths) to a given set of paths (communication requests) so that
at every edge there are at most g of them assigned the same color. If a set of (at most g)
lightpaths of the same wavelength have the same terminal node and terminal edge, they
can share the ADM operating at that wavelength at that node (thus saving g− 1 ADMs).
In addition, in a way similar to the non-grooming case (g = 1), a second set of paths with
the same terminal node but a different terminal edge can share the same ADM. As for
OADMs, at most g lightpaths that are assigned the same wavelength share an OADM in a
common intermediate node (thus saving g− 1 OADMs). The goal is to minimize the convex
combination α · |OADMs|+ (1− α) · |ADMs| of the number of ADMs and OADMs, for a
fixed value α ∈ [0, 1]. Clearly, our setting generalizes the well-studied ADM minimization
problem (corresponding to the case of α = 0), as well as the OADM minimization one
(corresponding to the case of α = 1).

1.2. Related Work

The ADM minimization problem is defined in [6] for ring topology and g = 1. It is
proven to be NP-complete in [7], and an 3/2-approximation algorithm was presented in
the study [8]. This result is improved in [9,10] to 10/7 + ε and 10/7, respectively. The
current best result is a 47

34 + ε-approximation [11] which states that for every ε > 0 there
exists a 47

34 + ε-approximation algorithm whose running time is a polynomial the degree of
which depends on ε.

The studies [7,12] consider the ADM minimization problem for general topology, and
present the approximation algorithms with an approximation ratio of 8/5 and 3/2 + ε,
respectively. The study [13] considers non-cooperative games in which users are selfish
agents sharing the cost of the ADMs they use. This study presents games that converge
in a polynomial number of steps to solutions with an approximation ratio between 3

2 and
3
2 + 1

k where k is the maximum size of a coalition formed by the agents.
The traffic grooming problem is introduced in [14] and studied in the context of ring

topologies. The study in [15] shows that the ADM minimization problem is NP-complete
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for this topology when g is part of the input instance. In [16], it is shown that the same
hardness result also holds for path and star networks, thus generalizing the result in [15].
In [17], the authors prove the NP-completeness of the problem in the strong sense, which
implies the NP-completeness for bounded degree trees and directed trees.

For ring topology, a 2 ln g-approximation algorithm for the ADM minimization prob-
lem is presented in [18]. The running time of this algorithm, being exponential in g, yields a
polynomial-time algorithm when g is fixed, i.e., not part of the input. In [19], this algorithm
is extended to directed trees, and undirected trees with the bounded degree. The problem
has also been studied in [20], where it is shown to be APX-complete for fixed values of g.
Namely, for each of these values of g, there exists a constant cg > 1 such that there is
no cg-approximation algorithm for the problem unless P = NP. The same study also
presents an O(n1/3 log2 n)-approximation algorithm, where n is the number of nodes of
the network. The paper [15] studies the special case of all-to-all traffic, in which there is a
demand between every pair of nodes.

The minimization of hardware components in optical networks using grooming has
been studied in [21] for ring networks and in [22] for star networks, in a different scenario.

1.3. Our Contribution

In this paper, we show that for every fixed α ∈ [0, 1], the problem of minimizing the
convex combination f (α) = α|OADMs|+ (1− α)|ADMs| of the total number of ADMs
and OADMs is NP-complete. This hardness result holds even for chains and g = 2.
Note that for g = 1, i.e., when there is no grooming, and the network is a chain, the
problem can be easily solved in polynomial time. We then present an (polynomial-time)
approximation algorithm for ring and chain topologies, with an approximation ratio of
2
√

g dlog ne. Our algorithm is the first one achieving such an approximation ratio in the
time polynomial in g, even for the special case of minimizing the number of ADMs. Our
model allows for multisets of requests (i.e., multiple requests using the same path between
the same couple of nodes).

Finally, it is worth remarking that the optimization of the network cost due to expen-
sive hardware components (e.g., ADMs) has been widely investigated in the context of
optical networks, also in papers published after the preliminary version of this one (see for
instance [11,23–25]). Furthermore, special cases of this problem have been investigated in
the context of busy time scheduling [26–30].

In Section 2, we formally describe the problem and introduce definitions that will be
used through the paper. In Section 3, the proof of the aforementioned NP-completeness
result is presented. We present and analyze the algorithms in Section 4. Section 5 is devoted
to concluding comments and the discussion of some further research directions.

2. Problem Definition

Let G = (V, E) be an undirected graph with n = |V| nodes, modeling the optical network.
A coloring (or wavelength assignment) w of a set P of simple paths in a graph is a function

w : P → N+ = {1, 2, . . .}. A coloring w of P is g-proper if for every edge e ∈ E and every
color λ ∈ N+, the number of paths p ∈ P such that w(p) = λ and e is an edge of p is at
most g.

A path p of length l(p) between two nodes u and v uses an ADM operating at
wavelength w(p) at each of its endpoints, namely at u and v. Moreover, such a path uses
an OADM operating at wavelength w(p) at each of its intermediate nodes. Overall, such a
path uses two ADMs and l(p)− 1 OADMs.

Given a g-proper coloring w of a set of paths P, an ADM operating at a wavelength λ
at some node v may serve all the paths terminating at v and colored λ, provided that they
enter v via at most two edges. Therefore, an ADM may serve at most 2g paths.

Similarly, an OADM operating at a wavelength λ at some node v with two incident
edges serves all the paths having v as an internal node and colored λ. In general, i.e., when
the degree of such a node v is at least three, such an OADM may serve a set of paths having
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v as an internal node and colored λ, provided that they enter and leave v via the same pair
of edges. Therefore, an OADM may serve at most g paths.

Summarizing, in a path or ring topology, the number ADMw
v,λ of ADMs operating

at wavelength λ at node v is one if there is a path colored λ terminating at v, and zero
otherwise. The number OADMw

v,λ of OADMs operating at wavelength λ at node v is one
if there is a path colored λ having v as an internal node, and zero otherwise. See Figure 1
for an example.

In a general network, if the number of edges incident to v that are used by paths
ending at v and colored λ is d, then the number ADMw

v,λ of ADMs operating at wavelength
λ at node v is d d

2 e. Similarly, the number OADMw
v,λ of OADMs operating at wavelength λ

at node v is equal to the number of edge pairs incident to v that are used by paths crossing v
and colored λ. ADMsw (resp. OADMsw) is the number of ADMs (resp. OADMs) needed
by a g-proper coloring w, i.e., the sum of ADMw

v,λ (resp. OADMw
v,λ) over all nodes v and

all colors λ.
We are now ready to formally define the problem under consideration.

COMBINEDTRAFFICGROOMING

Input: (G, P, g, α) where G is a graph, P is a multiset of paths on G, g is a positive
integer and α ∈ [0, 1].
Output: A g-proper coloring of P.
Objective: Minimize COST(w) = α×OADMsw + (1− α)× ADMsw.

The paths of an input instance

λ = 2

λ = 1

λ = 1

λ = 2

Coloring 1

Coloring 2

1110987654321 1312

12 131 2 3 4 5 6 7 8 9 10 11

12 131 2 3 4 5 6 7 8 9 10 11

12 131 2 3 4 5 6 7 8 9 10 11

12 131 2 3 4 5 6 7 8 9 10 11

Nodes with an ADM Nodes with an OADM Nodes with an ADM and an OADM

Figure 1. An input example on a chain network with 13 nodes and g = 3 at the top. Below are two possible colorings of the
input paths. Both colorings use two colors. In the first coloring, the paths colored with λ = 1 use 5 ADMs (at nodes 1, 5, 8, 9
and 11) and 9 OADMs (at nodes 2, 3, 4, 5, 6, 7, 8, 9 and 10). The paths colored λ = 2 use 6 ADMs and 11 OADMs. This
coloring uses 11 ADMs and 20 OADMs in total. On the other hand, the second coloring uses 10 ADMs and 18 OADMs
in total.
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3. NP-Completeness

We note that Theorem 1 of [25] implies that the problem is APX-hard for α = 1.
Furthermore, in this section, we prove that the decision version of COMBINEDTRAFFIC-
GROOMING is NP-complete even on a chain network with g = 2 and for every α > 0.
Moreover, for α = 0, i.e., for the case of ADM minimization, the problem is already known
to be NP-complete (see [31]). In the following theorem, we consider the case of α > 0.

Theorem 1. Given an instance (G, P, 2, α) of COMBINEDTRAFFICGROOMING for chain topol-
ogy and a real number x, the problem of deciding whether there exists a solution with a cost of at
most x is NP-complete for every α > 0.

Proof. Since it can be trivially verified that the decision problem belongs to the complexity
class NP, in order to prove the NP-completeness it is sufficient to provide a polynomial
reduction from the TRIPART problem, known to be NP-complete (see [32]).

TRIPART

Input: An undirected graph G′ = (V′, E′) with V′ = {v′1, v′2, . . . , v′σ} and E′

= {e′1, e′2, . . . , e′3β}
Output: “YES” if there exists a partition of E(G) into triangles, “NO” otherwise.

The TRIPART problem is the problem of deciding whether for a given simple graph
G, there exists a partition of its edge set into triangles. Let V′ = {v′1, v′2, . . . , v′σ} and
E′ = {e′1, e′2, . . . , e′3β} be the vertex and edge sets of G′. Note that we can assume that the
number of edges of G′ is a multiple of 3, because otherwise a partition does not exist and
the answer is trivially “NO”.

From the above instance G′ = (V′, E′) of TRIPART, we build the following instance I =
(G = (V, E), P, 2, α) of COMBINEDTRAFFICGROOMING. For each v′i ∈ V′, we add 6β + 2∆
nodes to chain G, with ∆ = 36β2σ + 1. More precisely, we consider a subchain of nodes
Ci = {l1

i , . . . , l3β
i , a1

i , . . . , a∆
i , r1

i , . . . , r3β
i , b1

i , . . . , b∆
i } (see Figure 2); it is worth emphasizing

that ∆ is chosen to be sufficiently big to force optimal solutions to prefer triangular sets
over others, as it will be proven in the sequel. The chain G of our instance is obtained
by concatenating all the subchains Ci, 1 ≤ i ≤ σ (see Figure 3). Finally, we have to
define the path set P. Let (u, v) ∈ V ×V denote the path between u and v in G. For each
e′i = {v′hi

, v′ki
} ∈ E′ with hi < ki, we add the path pi = (ri

hi
, li

ki
) to P.

∆-block
b1

ia1
il3β

il1i b∆
ir3β

ir1
ia∆

i
∆-block

Figure 2. The subchain Ci associated to node v′i in Theorem 1.

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
C1 C2 C3 C4 C5 Cσ

· · ·

Figure 3. The chain G with three paths corresponding to the edges of the triangle v′1, v′2, v′4 in the
graph G′ being the instance of TRIPART in Theorem 1.

Since each node of G is an endpoint of at most one request in P, it holds that each
solution uses exactly 6β ADMs. Therefore, in the following, we focus only on the mini-
mization of OADMs. In fact, let x = α× K + (1− α)× 6β (the value of K will be chosen
later). It can be noticed that there exists a solution of cost at most x if and only if there is a
solution which uses a number of OADMs at most K.

Define a t-solution (where t is an integer value) as a solution using ∆× t OADMs
located at blocks of ∆ nodes, (i.e., the a and b nodes), in the following called ∆-blocks. Recall
that ∆ = 36β2σ + 1: notice that (i) it is polynomial in the size of the instance and (ii) it
is sufficiently high so that the cost of a solution is mainly determined by the number of
OADMs located at ∆-blocks, that is, every t-solution uses a total number of OADMs lower
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than the one used by any (t + 1)-solution. We can conclude that a t-solution uses a total
number of OADMs between ∆× t and ∆× t + ∆− 1.

For each pi = (ri
hi

, li
ki
) ∈ P, hi < ki, the number of crossed ∆-blocks (i.e., those blocks

that are completely contained in pi) is blocks(i) = 2(ki − hi)− 1. Let B = ∑
3β
i=1

blocks(i)
2 + β

2
and K = ∆B + ∆− 1.

We complete the proof by showing that a solution using at most K OADMs exists for
I if and only if it is possible to partition the edge set of G′ into triangles.

We first show that, if it is possible to partition the edge set of G′ into triangles, then a
solution using at most K OADMs exists for I. For every triangle in G′ composed of edges
e′i , e′j, e′k, we consider the set of paths {pi, pj, pk}. Assign these paths the same color and
without loss of generality, assume that pk is the longest path among the three. Since g = 2,
it can be easily checked that such a set is 1-colorable. Moreover, the number of OADMs
used at ∆-blocks is ∆ · blocks(k) = ∆

2 (blocks(i) + blocks(j) + blocks(k) + 1). By summing
over the sets induced by all the triangles, we obtain that the total number of OADMs used
at ∆-blocks is ∆

2 ∑
3β
i=1 blocks(i) + β = ∆ · B; thus, we have a B-solution that can use at most

K OADMs.
Conversely, we now show that, if there exists a solution for I using at most K OADMs,

then it is possible to partition the edge set of G′ into triangles. Define a component as a set
of paths colored with the same color. We now show that S is a B-solution and that in a
B-solution, every component is of the form {(rγ1

i , lγ1
j ), (rγ2

j , lγ2
k ), (rγ3

i , lγ3
k )} with i < j < k.

Let us assume without loss of generality that S is using the maximum possible number
of colors, that is, no set of paths colored with the same color exists, such that it can be
split in two sets using two different colors without increasing the number of used OADMs.
Since g = 2, each component is composed of at most two levels of requests, i.e., two sets
of paths where in each set the paths are pairwise disjoint, and every OADM can be used
by at most two requests. For each component C using s ∆-blocks of OADMs, we want to
distribute s among the requests belonging to C such that each request γ ∈ C is charged

with blocks(γ)
2 + f (C), with f (C) =

s−∑γ′∈C
blocks(γ′)

2
|C| being the surplus of component C. First

of all, notice that a component C of the desired form {(rγ1
i , lγ1

j ), (rγ2
j , lγ2

k ), (rγ3
i , lγ3

k )} with

i < j < k, uses blocks(γ1)+blocks(γ2)+blocks(γ3)+1
2 ∆-blocks, and thus f (C) = 1

6 . The proof now
proceeds by cases, considering all the possible components C not being of the desired form,
and for any of them, we show that f (C) > 1

6 .

• Let us assume that three requests belong to a component, γ1 on the first level and
γ2 and γ3 on the second one. If the ones on the second level do not correspond to
consecutive edges in G, or γ1 corresponds to an edge of G that is not consecutive
to both edges corresponding to the requests on the second level, C uses at least
blocks(γ1)

2 + blocks(γ2)
2 + blocks(γ3)

2 + 3
2 ∆-blocks. Therefore, f (C) ≥ 1

2 .
• If a component uses only one level of requests (for our assumption about the maxi-

mality of colors, in this case it can contain only a request γ), it is using blocks(γ) ≥ 1
∆-blocks. Therefore, f (C) ≥ 1

2 .
• If two different requests γ1 and γ2 belong to a component C, one for each level, C uses

at least blocks(γ1)
2 + blocks(γ2)

2 + 1 ∆-blocks. Thus, f (C) ≥ 1
2 .

• If |C| ≥ 4 requests belong to a component, at least |C|−2
2 + ∑γ∈C

blocks(γ)
2 ∆-blocks are

needed. Therefore, we obtain that f (C) ≥ |C|−2
2|C| ≥

1
4 .

Given that S uses at most K OADMs, by recalling the definitions of B and K, S is a
t-solution with t ≤ B. Moreover, if there exists a component C such that f (C) > 1

6 , it
is trivial to verify that S would be an t-solution with t > B: we obtain a contradiction.
Therefore, we have that every component is such that f (C) = 1

6 and thus is of the form
{(rγ1

i , lγ1
j ), (rγ2

j , lγ2
k ), (rγ3

i , lγ3
k )} with i < j < k.
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4. Approximation Algorithms

In this section, we present and analyze the approximation algorithms for chain and
ring topologies. An algorithm ALG is a ρ-approximation algorithm for a minimization
problem Π if, for every instance I of Π, its running time is polynomial in the size of I and
ALG(I) ≤ ρ ·OPT(I). Here, ALG(I) denotes the value of the solution returned by ALG
on input I and OPT(I) denotes the optimum of instance I. The approximation ratio of ALG
is the smallest ρ such that ALG is a ρ-approximation algorithm.

We first present a meta algorithm that, given an r-approximation algorithm for edge
instances in which all the requests share a common edge of the chain or the ring, builds an
rdlog ne-approximation algorithm for general instances. In what remains of the section, we
present two edge algorithms: the first is a two-approximation algorithm for the OADM
minimization problem, and the second one works for any linear combination of ADMs
and OADMs, guaranteeing an approximation ratio of 2

√
g dlog ne.

4.1. The MERGE Meta Algorithm

Consider the following meta algorithm MERGE whose pseudo-code is given in Algo-
rithm 1. It receives an r-approximation algorithm EA for edge instances of COMBINED-
TRAFFICGROOMING and acts on an arbitrary instance (G, P, g, α) of COMBINEDTRAFFIC-
GROOMING. At the first step, the set P of all requests sharing the median edge of the chain
are given as input to EA to obtain a coloring W of these requests. The algorithm then splits
the chain G into two sub-chains G1 and G2 by removing the median edge and recursively
proceeds on these sub-chains. The colorings returned from the recursive invocations are
modified so that they do not use the colors of W.

Algorithm 1 MERGE.

Require: EA is an r-approximation algorithm for edge instances of COMBINEDTRAFFIC-

GROOMING.

Require: (G, P, g, α) an instance of COMBINEDTRAFFICGROOMING.

Require: G is a chain with vertices i, i + 1, . . . , j.

Ensure: Return an rdlog ne-approximate solution of (G, P, g, α)

1: k← b i+j
2 c.

2: P← {p ∈ P | p contains the edge {k, k + 1}.
3: W ← EA(G, P, g, α).

4: G1 ← the sub-chain of G with vertices i, . . . , k.

5: G2 ← the sub-chain of G with vertices k + 1, . . . , j.

6: for ` ∈ {1, 2} do

7: if P` 6= ∅ then

8: P` ← {p ∈ P | p is completely in G`}.
9: W` ← MERGE(EA, G`, P`, g, α).

10: Add
∣∣W∣∣ to every color of W`.

11: else

12: W` ← ∅.

13: end if

14: end for

15: return W ∪W1 ∪W2.

In ring networks, we add an initial invocation of EA on all the requests sharing some
arbitrary edge of the ring and then proceed on the remaining chain instance.
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The following theorem shows the correctness and the approximation ratio guaranteed
by MERGE.

Theorem 2. If EA is an r-approximation algorithm for edge instances, then MERGE and its modifi-
cation for ring topologies guarantee approximation ratios rdlog ne and r(dlog ne+ 1), respectively.

Proof. We prove by induction on the depth of the recursion. Correctness and running
time: If there are no recursive invocations, the correctness of MERGE directly follows from
the one of EA. Otherwise, by the inductive hypothesis and by the correctness of EA,
the colorings W1 and W2 are valid. The paths in P1 and P2 do not overlap and they are
colored with colors different than those of W. Therefore, the returned coloring W ∪W1 ∪W2
is valid. We observe that algorithm EA is invoked at most n times, and thus MERGE is a
polynomial-time algorithm.

Approximation ratio: Since the depth of the recursion is at most dlog ne, it is sufficient
to prove by induction on the depth d of the recursion that MERGE is a d× r-approximation
algorithm. If d = 1, then the execution consists of one invocation of EA and the result
follows. Otherwise, consider an execution where the depth of the recursion is d > 1. Let m∗

be the cost of an optimal solution, and let m∗1 , m∗2 and m∗ be the cost of optimal solutions of
P1, P2 and P, respectively. Clearly, m∗ ≥ m∗. Furthermore, m∗ ≥ m∗1 + m∗2 since the sets P1
and P2 do not overlap, thus no ADM sharing or OADM sharing is possible between the
instances. As for the solution of the algorithm, let m be the cost of the solution returned by
MERGE, and let m1, m2 and m be the costs of W1, W2 and W, respectively. Since EA is an
r-approximation, we have:

w ≤ r× w∗ ≤ r× w∗.

By the inductive hypothesis, we have w∗` ≤ (d− 1)rw∗i for ` ∈ {1, 2}. Summing up
the inequalities, we conclude:

w = w1 + w2 + w ≤ (d− 1)rw∗1 + (d− 1)rw∗2 + r× w∗

= (d− 1)r(w∗1 + w∗2) + r× w∗ ≤ (d− 1)rw∗ + r× w∗ = d× r× w∗.

For ring topologies, we add an additional term of r× w∗ due to the initial invocation
of EA.

4.2. GROOM-OADM: An Algorithm for the Minimization of OADMs in Edge Instances

Algorithm GROOM-OADM, whose pseudo-code is given in Algorithm 2, processes
the requests in the non-increasing order of their lengths and partitions the ordered requests
into dm

g e sets of g requests with the possible exception of the last set that may contain less
than g requests. Each such set is colored with a unique color.

Lemma 1. GROOM-OADM is a two-approximation edge-algorithm for the minimization
of OADMs.

Proof. Correctness and running time: The algorithm produces a valid output since every
color λ is assigned to at most g requests. The running time of the algorithm is dominated by
the the running time of the sorting phase and is thus polynomial in the size of the instance
which, in our case, is dominated by the number |P| of requests in the instance.

Approximation ratio: Let k = dm
g e be the number of colors used by the algorithm. Since

all the requests share an edge of the chain, any one-colorable set contains at most g of
them. Therefore, any solution, in particular an optimal one, uses at least k colors. Denote
by pλ the longest path of the set Pλ of the paths colored λ by GROOM-OADM. Consider
an optimal coloring, and rename its colors in the following way. The color assigned to
the longest path is 0. The color assigned to the longest path that is not assigned the color
0 is 1, the color assigned to the longest path that is not assigned the colors 0 or 1 is 2,
and so on. It it easy to show by induction on λ that for every λ, there is at least one path
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whose length is at least the length `(pλ) of λ. Therefore, an optimal solution uses at least
`(pλ)− 1 OADMs operating at color λ. On the other hand, GROOM-OADM uses at most
2(`(pλ)− 1) OADMs since all the paths have an edge in common. Summing up, with all
colors λ ∈ [k], we conclude the proof.

In the following, we exploit the result of Lemma 1 in order to obtain an approximation
algorithm for the COMBINEDTRAFFICGROOMING problem. By combining Lemma 1 with
Theorem 2, we are also able to derive the following theorem providing an approximation
algorithm for the case α = 1; moreover, it is worth noticing that a better approximation
ratio of 4 is given in [28] for this particular case.

Algorithm 2 GROOM-OADM.

Require: (G, P, g, 1) is an edge instance of COMBINEDTRAFFICGROOMING.
Ensure: Return an two-approximate solution of (G, P, g, 1):

1: P′ ← the paths of P sorted in non-increasing order of their lengths.
2: λ = 0.
3: while P′ 6= ∅ do
4: Pλ the first min{|P′|, g} paths of P′.
5: P′ ← P \ Pλ.
6: Color the paths of Pλ with color λ.
7: λ ++;
8: end while

Theorem 3. MERGE(GROOM-OADM) is a 2dlog ne (and, respectively, 2(dlog ne+ 1)) ap-
proximation algorithm for COMBINEDTRAFFICGROOMING in a chain (and, respectively, ring)
topology with α = 1, (i.e., for the problem of minimizing the number of OADMs).

4.3. GROOM: An Algorithm for Edge Instance of COMBINEDTRAFFICGROOMING

Algorithm GROOM is obtained from GROOM-OADM with a slight modification. In the
sort phase in which the paths are sorted by their lengths, GROOM keeps sets of identical
paths together.

Lemma 2. GROOM is a 2
√

g-approximation edge-algorithm for COMBINEDTRAFFICGROOMING.

Proof. Clearly, every execution of GROOM is an execution of GROOM-OADM. Therefore,
by Lemma 1, GROOM is a two-approximation edge-algorithm for the OADM minimization
problem. In the following, we show that GROOM is a 2

√
g-approximation algorithm for the

ADM minimization problem. As the combined cost is a convex combination of ADM and
OADM costs, this implies the Lemma.

Let W∗ be the number of colors used by some optimal solution. For 1 ≤ λ ≤ W∗,
let P∗λ be the set of paths colored λ by this solution. Notice that P = ]W∗

λ=1P∗λ (where ] is
the union operation on multisets). Let P∗λ ⊆ P∗λ be such that from every set of identical
paths of P∗λ , exactly one is in P∗λ . Let also: P∗ = ]W∗

λ=1P∗λ .
Recall that we consider edge instances, in which all the paths share a common edge e.

Every path has one endpoint at each side of e. Then, any subset of paths can be considered
as the edge set of a bipartite graph (U, V, E). Specifically, U (resp. V) is the set of nodes
on the left (resp. right) of e (including one endpoint of e). Every path of P with endpoints
u ∈ U and v ∈ V corresponds to an edge {u, v} ∈ E. As P∗λ does not contain identical
paths, it induces a simple bipartite graph. A simple bipartite graph (U, V, E) satisfies
|E| ≤ |U||V|. For fixed |U ∪V| this is maximized when |U| = |V| = |U∪V|

2 . Therefore,

the number ADM∗λ of ADMs colored λ used by this solution satisfies
∣∣P∗λ ∣∣ ≤ ( ADM∗λ

2

)2
.

Then, ADM∗λ ≥ 2
√∣∣P∗λ ∣∣ = 2 |P

∗
λ |√
|P∗λ |
≥ 2 |P

∗
λ |√
g .
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By summing up over all colors, we obtain ADM∗ ≥ 2|P∗|√
g .

Let W be the number of colors used by the solution returned by GROOM. For 1 ≤
λ ≤ W, let Pλ be the set of paths colored λ by this solution. Notice that, also in this case,
it clearly holds that P = ]W

λ=1Pλ. Let Pλ ⊆ Pλ be such that from each (maximal) set of
identical paths, exactly one path is in Pλ. Let also P = ]W

λ=1Pλ.
Consider a maximal nonempty set X of identical paths. Any solution must use at least⌈

|X|
g

⌉
different colors for these paths. In particular, this holds for our optimal solution. In

other words,
∣∣X ∩ P∗

∣∣ ≥ ⌈ |X|g

⌉
. GROOM divides X into subsets of size g, except possibly

the first and last sets. Therefore,
∣∣X ∩ P

∣∣ ≤ ⌈ |X|g

⌉
+ 1 ≤ 2

⌈
|X|
g

⌉
≤ 2

∣∣X ∩ P∗
∣∣. Summing

up for all such sets X, we obtain
∣∣P∣∣ ≤ 2

∣∣P∗∣∣. On the other hand, a solution returned
by GROOM, uses at most 2 ADMs per each path in P. The remaining paths use these
ADMs at no additional cost. Therefore, the number of ADMs used by GROOM satisfy
ADM ≤ 2

∣∣P∣∣ ≤ 4
∣∣P∗∣∣ ≤ 2

√
gADM∗.

The following theorem is a direct consequence of the previous Lemma and Theorem 2.

Theorem 4. MERGE(GROOM) is a 2
√

gdlog ne (and, respectively 2
√

g(dlog ne+ 1)) approxi-
mation algorithm for COMBINEDTRAFFICGROOMING in chain (and, respectively, ring) topology.

5. Summary

In this paper, we investigated the problem of minimizing hardware cost in optical
networks in the scenario in which at most g (g is the grooming factor) lightpaths can share
the same color on any network edge. It is worth noticing that, while most previous work
takes into account only the cost due to electronic components (i.e., ADMs), we focused
on the combined cost due to ADMs and optical components (OADMs). In particular, we
considered the cost function of f (α) = α|OADMs|+ (1− α)|ADMs|, where 0 ≤ α ≤ 1,
and we have studied the fundamental topologies of ring and chain networks.

We showed that finding an optimal coloring, i.e., a coloring minimizing the considered
cost function, is NP-complete even on chains and when the grooming factor is g = 2, for any
value of α > 0. We then presented a general technique that, given an r-approximation
algorithm working on particular instances of our problem (i.e., instances in which all
requests share a same edge of the network), builds a new algorithm for general instances
having an approximation ratio O(r log n). We exploited this technique in order to obtain
an O(

√
g log n)-approximation algorithms for our problem.

It is worth noticing that our approximation ratio of 2
√

g (dlog ne+ 1) is better than
the trivial one (which has a 2g factor) in case g > (dlog ne+ 1)2. Moreover, our algorithm
has the following interesting property: the returned solution simultaneously achieves the
claimed approximation ratio with respect to every fixed value of α.

There are several interesting left open problems:

• Strengthening the NP-completeness result, either towards the direction of proving
an APX-hardness result or towards an impossibility of a sub-exponential algorithm
under the exponential time hypothesis (ETH, introduced in [33]). In this respect,
it is worth noting that the current reduction cannot be exploited in order to obtain
these extensions. In particular, with respect to the former direction, the considered
TRIPART problem is a decision problem and it is worth investigating whether a
related optimization problem could be exploited in order to prove the APX-hardness.
On the other hand, with respect to the latter direction, even if TRIPART were to
be proven to admit no sub-exponential algorithm under the ETH, our reduction
builds an instance of COMBINEDTRAFFICGROOMING of quadratic size with respect
to the one of TRIPART and therefore would not be able to provide a similar result for
COMBINEDTRAFFICGROOMING.

• Improving the achieved approximation ratio for the considered topologies of ring and
chain networks.
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• Extending the algorithm and the analysis to other network topologies.
• Considering the online version of the problem in which lightpath requests are not

given in advance but arrive over time.
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