
algorithms

Article

Energy-Efficient Power Allocation in Non-Linear Energy
Harvesting Multiple Relay Systems

Huifang Pan 1 and Qi Zhu 2,*

����������
�������

Citation: Pan, H.; Zhu, Q.

Energy-Efficient Power Allocation in

Non-Linear Energy Harvesting

Multiple Relay Systems. Algorithms

2021, 14, 155. https://doi.org/

10.3390/a14050155

Academic Editor: Jean-charles Billaut

Received: 18 April 2021

Accepted: 12 May 2021

Published: 17 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Jiangsu Key Laboratory of Wireless Communications, Nanjing University of Posts and Telecommunications,
Nanjing 210003, China; panhuifang97@163.com

2 Engineering Research Center of Health Service System Based on Ubiquitous Wireless Networks,
Nanjing University of Posts and Telecommunications, Nanjing 210003, China

* Correspondence: zhuqi@njupt.edu.cn

Abstract: In this paper, to maximize the energy efficiency (EE) in the two-hop multi-relay cooperative
decoding and forwarding (DF) system for simultaneous wireless information and power transmission
(SWIPT), an optimal power allocation algorithm is proposed, in which the relay energy harvesting
(EH) adopts a nonlinear model. Under the constraints, including energy causality, the minimum
transmission quality of information and the total transmission power at the relays, an optimization
problem is constructed to jointly optimize the transmit power and power-splitting (PS) ratios of
multiple relays. Although this problem is a nonlinear fractional programming problem, an iterative
algorithm is developed to obtain the optimal power allocation. In particular, the joint power allocation
at multiple relays is first decoupled into a single relay power allocation, and then single-relay power
allocation is performed by the Dinkelbach iteration algorithm, which can be proven that it is a convex
programming problem. Its closed form solutions for different polylines of EH models are obtained
by using mathematical methods, such as monotonicity, Lagrange multipliers, the KKT condition and
the Cardan formula. The simulation results show the superiority of the power allocation algorithm
proposed in this paper in terms of EE.

Keywords: SWIPT; multi-relay; nonlinear EH; energy efficiency; power allocation

1. Introduction

According to statistics, the average annual energy consumption of the information
and communications industry accounts for 3% of the global total energy consumption,
and carbon emissions exceed 2% of the global total [1,2]. Collaborative relay technology
and energy harvesting technology have emerged to meet the quality of communication
while reducing energy consumption. In the post-5G era, because wireless networks are
becoming more and more complex, how to design appropriate energy allocation strategies
to improve system performance is a problem that needs further research [3].

Collaborative relay technology based on the energy harvesting (EH) model has been
studied. In [4], the throughput maximization problem was solved via a successive convex
approximation approach, in which the relay harvests energy in the natural environment.
In [5], the authors analyzed the difference between an EH relay and a normal collaborative
relay. The authors in [6] presented a power allocation algorithm in which the relay could
switch between amplify and forward (AF) and decoding and forwarding (DF) modes to
obtain the optimal transmit power and operational mode of the relay in order to maximize
the energy efficiency (EE). The power allocation problem for a two-hop two-way single-
relay system to maximize the EE was studied in [7]. Both source nodes and relay nodes use
EH technology, and it was the aim of the authors to maximize the system capacity in [8].
The authors of [9] mainly analyzed and compared the advantages and disadvantages of
the two schemes of simultaneous wireless information and power transmission (SWIPT).
However, the above EH model assumes a linear EH model, in which the power conversion
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efficiency from the radio frequency (RF) to the direct current (DC) is a fixed constant. In
fact, because the diodes, inductors and capacitors in the actual energy harvester [10] are
nonlinear, the power conversion efficiency from the RF to the DC will vary with the input
power of the energy harvester circuit.

There are also preliminary studies on the application of nonlinear EH models in relay
systems. In [11], a power allocation algorithm for a nonlinear EH model that maximized the
total harvesting power of the energy harvester was presented. The problem of maximizing
the EE of a two-way DF single-relay network was studied in [12]. The simulation results
in [13] show that the power allocation based on the nonlinear EH model has higher
throughput than that based on the existing linear model. In [14], the authors investigated
the interrupt performance of nonlinear EH relay networks with a PS scheme. However,
the above works only studied power allocation for single-relay systems and not for multi-
relay systems.

This paper presents a power allocation algorithm based on the nonlinear EH model
for maximizing the EE in a two-hop multi-relay cooperative forwarding system. For clarity,
we have listed the contributions as follows:

• In this paper, a piecewise linear EH model is used to approximate the nonlinear
EH model. Based on that, the EE maximization problem with quality of service
(QoS) guaranteed is a complex, nondeterministic polynomial (NP) problem and can
be decoupled into a single-relay power allocation problem. It is optimized based
on the Dinkelbach iteration algorithm, and the optimization problem after iteration
simplification is proven to be a convex programming problem.

• Because the optimization problem is a maximum–minimum function problem, it
is decomposed into two maximization problems to obtain the optimal solution by
adding the corresponding constraints. For each maximization problem, simplified
expressions are obtained according to the different polylines of EH models, whose
closed-form solutions of the optimal relay transmit power and optimal power-splitting
(PS) ratio are obtained by using mathematical methods such as monotonicity, Lagrange
multipliers, the KKT condition and the Cardan formula.

• The simulation results show that the piecewise linear EH model performs better than
the traditional linear EH model, and the EE of the multi-relay system is better than
that of the single-relay system.

The rest of this paper is organized as follows. In Section 2, the multi-relay cooper-
ative DF system based on nonlinear EH is described, and the optimization problem is
formulated to maximize the EE. In Section 3, the joint optimization algorithm of the relay
transmit power and PS ratio is proposed. In Section 4, the algorithm is simulated, and its
performance is analyzed. Finally, this paper is summarized in Section 5.

2. System Model and Optimization Problem
2.1. System Model

As shown in Figure 1, we considered the two-hop multi-relay cooperative forward-
ing system, including a source node S, a destination node D and N relay nodes Ri for
i = 1, 2, . . . , N. All the Ri can harvest energy, while S and D cannot harvest energy. As-
suming that there is no direct link between S and D, the corresponding channel of each
relay is independent of each other, where hi represents the channel gain from S to Ri and gi
represents the channel gain from Ri to D.
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Figure 1. The system model.

Compared with PS, time switching (TS) cannot obtain a better trade-off between the
transmission rate and the RF energy, and it was proven that the PS scheme achieves higher
throughput than the TS scheme in [11]. Therefore, we assumed that Ri could only harvest
energy from the signal sent by S, and each transmission block period was divided into two
time slots in the PS scheme of [13]. In the first time slot, Ri receives the signal sent by S and
divides the received signal power into two parts, according to the ratio of 1− ρi : ρi. One
part enters the information processing module to decode the information, expressed as

yID
Ri
(k) =

√
1− ρi ·

(√
PShi · s(k) + na

i (k)
)
+ nID

i (k) (1)

where E
[
|s(k)|2

]
= 1; PS is the transmit power of S, ρi is the PS ratio of Ri,

na
i (k) ∼ CN

(
0, σ2

ai

)
is the additive white Gaussian noise of the relay receiving antenna and

nID
i (k) ∼ CN

(
0, σ2

IDi

)
is the additive baseband Gaussian noise. Therefore, the SNR of the

receiver of Ri can be expressed as γi
r =

(1−ρi)·PShi
(1−ρi)·σ2

ai+σ2
IDi

.

The other part enters the EH module to provide energy for the information decoding
of this time slot and the information forwarding of the next time slot. The received RF
signal at Ri used for energy harvesting is

yEH
Ri

(k) =
√

ρi ·
(√

PShi · s(k) + na
i (k)

)
(2)

Because of PShi � σ2
ai

, the power used by Ri for EH is Pi
RF(ρi) = ρiPShi.

In many cases, because of the nonlinearity of the EH model, the problems studied
are often too complex to be solved, so the piecewise linear model can not only keep the
nonlinearity of the original model to a maximum extent but also solve the problem well [15].
For EH, we used a piecewise linear model, which can be expressed as

Pi
H(ρi) =


0, Pi

RF(ρi) < P1
th

al · Pi
RF(ρi) + bl , Pi

RF(ρi) ∈
[

Pl
th, Pl+1

th

]
, l = 1, 2, . . . , L− 1

Pm, Pi
RF(ρi) > PL

th
= al · ρiPShi + bl , Pi

RF(ρi) ∈
[

Pl
th, Pl+1

th

]
, l = 0, 1, 2, . . . , L

(3)

where Pi
RF is the receiving power of the EH circuit, Pth =

{
Pl

th

∣∣∣0 ≤ l ≤ L + 1
}

is the

dividing point separating Pi
RF into L + 1 segments, satisfying P0

th = 0, PL+1
th = +∞, al

and bl are the slope and intercept of the linear function in the l − th(0 ≤ l ≤ L) segment,
respectively, satisfying a0 = b0 = aL = 0,bL = Pm, and Pm denotes the maximum harvesting
power.

When it has enough segments, it can be approximated to the nonlinear EH model,
but this will also increase its complexity. Therefore, the real measurement data [16] of the
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energy harvester can be fitted by the piecewise linear function to replace the nonlinear EH
model [10]. Figure 2 compares the harvested power in different EH models.
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Because the transmission performance of DF is better than AF in most instances, the
relay uses DF in the second time slot, which is to say that Ri uses the harvested energy to
forward the decoded information to D. Assuming that Ri sends the signal xi(k) to D, the
received RF signal at D is

yi
D(k) =

√
Pigi · xi(k) + nD(k) (4)

where E
[
|xi(k)|2

]
= 1, Pi is the transmit power of Ri and nD(k) ∼ CN

(
0, σ2

D
)

is the
additive white Gaussian noise caused by the antenna reception and radio frequency to
baseband conversion at the destination node. Therefore, the signal-to-noise ratio (SNR) of
the receiver of D can be expressed as γi

d = Pi gi
σ2

D
.

According to the maximum merge ratio criterion [17], the total SNR of all the links

participating in the communication is γ =
N
∑

i=1
γi =

N
∑

i=1
min

(
γi

r, γi
d
)
. Therefore, by using the

Shannon formula, the total information transmission rate of S− R− D is

RSD =
1
2

log2(1 + γ) =
1
2

log2

(
1 +

N

∑
i=1

γi

)
(5)

In addition, the total power consumption during the transmission of S− R− D is

P = PS + 2PC +
N

∑
i=1

(
Pi + PQ − Pi

H(ρi)
)

(6)

where PC is the consumption of power of the S and D decoding circuits and PQ is the
consumption of power of the Ri circuit.

2.2. Optimization Problem

EE is defined as the ratio of the total information transmission rate to the total power
consumption for all links, expressed as

η =
RSD

P
=

1
2 log2

(
1 +

N
∑

i=1
γi

)
PS + 2PC +

N
∑

i=1

(
Pi + PQ − Pi

H(ρi)
) (7)
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This paper studies how to jointly optimize the relay transmit power and the PS ratio
to maximize the EE. The optimization problem can be expressed as

(P1) max
Pi ,ρi

η

s.t.C1 : 0 ≤ ρi ≤ 1
C2 : 0 ≤ Pi + PQ ≤ Pi

H(ρi)
C3 : γi ≥ γmin
C4 : Pl

th ≤ ρiPShi ≤ Pl+1
th , l = 0, 1, 2, . . . , L

C5 :
N
∑

i=1
Pi ≤ Pmax

(8)

where γmin = 2Rmin − 1 and Rmin is the minimum required rate for S− R− D, Pmax is the
threshold of the relay nodes’ total transmit power, constraint C2 means the energy causality,
C3 is the constraint of the quality of information transmission, C4 is the constraint that
the energy harvester works in the l − th linear regions and C5 is the constraint of the total
transmit power of all relays, and it is a requirement to consider interference across the
network [18].

3. Joint Optimization Algorithm for the Relay Transmit Power and PS Ratio

The optimization problem (P1) is a multi-variable joint optimization problem and a
complex NP problem. Because of the piecewise linear EH model, the optimization problem
has different results for its different polyline segments.

In order to solve (P1), there are two main steps as follows. In the first step, the
power allocation problem of multiple relays is decoupled into a single-relay power al-
location problem by using the fixed-point iteration algorithm, which assumes that only
the power of this relay is to be allocated and that the power allocation of other relays is

known. For convenience, some iteration variables ψi =
N
∑

w=1,w 6=i
γw, ϕi =

N
∑

w=1,w 6=i
Pw and

φi =
N
∑

w=1,w 6=i

(
Pw + PQ − Pw

H(ρw)
)

are introduced. In the second step, we assume ρi = 1

and calculate the maximum number of segments which Pi
RF(ρi) may belong to, expressed

as Si(si ∈ {0, 1, . . . , Si}, i = 1, 2, . . . , N). In a given number of segments si, we transform
this non-convex problem into a convex problem by subtraction and find a closed-form
solution.

According to the Dinkelbach method [19], the maximum EE x∗ = max
Pi ,ρi

η =

1
2 log2(1+ψi+γi(P∗i ,ρ∗i ))

PS+2PC+φi+P∗i +PQ−Pi
H(ρ∗i )

is achieved if and only if the following equation is satisfied:

max
Pi ,ρi

1
2

log2(1 + ψi + γi(Pi, ρi))− x∗ ·
(

PS + 2PC + φi + Pi + PQ − Pi
H(ρi)

)
= 0 (9)

Therefore, we convert the fractional objective function to subtraction for a given
segment si, and (P1) can be rewritten as

(P2) max
Pi ,ρi

1
2 log2

(
1 + ψi + γi

(
Pi, ρi

))
− x∗ ·

(
PS + 2PC + φi + Pi + PQ − Pi

H
(
ρi
))

s.t.C1− C5
(10)

However, (P2) is still a non-convex problem. In order to convert this problem into a
convex one, we let ti = 1− ρi and introduce an auxiliary variable ri, expressed as

ri =
1
2

log2

(
1 +

N

∑
i=1

γi

)
= min

(
1
2

log2(1 + ψi + γi
r),

1
2

log2(1 + ψi + γi
d)

)
(11)
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The optimization problem (P2) can be rewritten as

(P3) max
Pi ,ti

f (Pi, ti, ri) = ri − x∗ ·
(

PS + 2PC + φi + Pi + PQ − asi · (1− ti)PShi − bsi

)
s.t.C1 :tmin ≤ ti ≤ tmax

C2 :0 ≤ Pi ≤ asi · (1− ti)PShi + bsi − PQ

C3 :ri ≥
1
2

log2(1 + γmin)

C4 :
1
2

log2

(
1 + ψi +

ti · PShi

ti · σ2
ai
+ σ2

IDi

)
≥ ri

C5 :
1
2

log2

(
1 + ψi +

Pigi

σ2
D

)
≥ ri

C6 :Pi ≤ Pmax − ϕi

(12)

where tmin = 1− P
si+1
th

PShi
and tmax = 1− P

si
th

PShi
.

Theorem 1. The optimization problem (P3) is a convex programming problem.

Proof of Theorem 1. The objective function of (P3) regarding Pi, ti and ri is a linear func-
tion, and constraints C1, C2, C3 and C6 are linear constraints, while constraints C4 and C5
are nonlinear constraints, so (P2) is a nonlinear programming problem. Because linear functions
are both convex and concave, the objective function f (Pi, ti, ri) is convex, and constraints C1,

C2, C3 and C6 are concave constraints. By letting f1(ti) = 1
2 log2

(
1 + ψi +

ti ·PShi
ti ·σ2

ai+σ2
IDi

)
and

f2(Pi) = 1
2 log2

(
1 + ψi +

Pi gi
σ2

D

)
, then we have ∂2 f1(ti)

∂ti
2 =

−PShiσ
2
IDi
·(2at ·ti+bt)

(at ·t2
i +bt ·ti+ct)

2·2 ln(2)
< 0,∂2 f2(Pi)

∂Pi
2 =

−g2
i

(Pi gi+(1+ψi)·σ2
D)

2·2 ln(2)
< 0,where at =

(
PShi + (1 + ψi) · σ2

ai

)
·σ2

ai
, bt =

(
PShi + 2(1 + ψi)σ

2
ai

)
· σ2

IDi
and ct = (1 + ψi) · σ4

IDi
. Therefore, f1(ti) is a concave function for ti, and f2(Pi) is

also a concave function for Pi ( i.e., the constraints C4 and C5 are concave constraints).
From the definition of convex programming, the optimization problem (P3) is a convex
programming problem. �

As Equation (11) is composed of two formulas, (P3) is a maximum–minimum function
problem and can be decomposed into two maximization problems to obtain the optimal
solution by adding the corresponding constraints, for generality, we assume that all noise
variances are equal (i.e., σ2

ai
= σ2

IDi
= σ2

D = σ2).

1. If γi
r ≥ γi

d (i.e., Pi ≤ ti PShi
(ti+1)gi

), we have ri = 1
2 log2

(
1 + ψi + γi

d
)

= 1
2 log2

(
1 + ψi +

Pigi
σ2

)
. The optimization problem can be expressed as

(P4) max
Pi ,ti

y1(Pi, ti) =
1
2 log2

(
1 + ψi +

Pigi
σ2

)
−x∗ ·

(
PS + 2PC + φi + Pi + PQ − asi · (1− ti)PShi − bsi

)
s.t.C1 : tmin ≤ ti ≤ tmax
C2 : 0 ≤ Pi ≤ asi · (1− ti)PShi + bsi − PQ

C3 : Pigi
σ2 ≥ γmin − ψi

C4 : Pi ≤ ti PShi
(ti+1)gi

C5 : Pi ≤ Pmax − ϕi

(13)
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2. If γi
r ≤ γi

d (i.e., Pi ≥ ti PShi
(ti+1)gi

), we have ri = 1
2 log2

(
1 + ψi + γi

r
)

= 1
2 log2(

1 + ψi +
ti PShi

(ti+1)σ2

)
. The optimization problem can be expressed as

(P5) max
Pi ,ti

y2(Pi, ti) =
1
2 log2

(
1 + ψi +

ti PShi
(ti+1)σ2

)
−x∗ ·

(
PS + 2PC + φi + Pi + PQ − asi · (1− ti)PShi − bsi

)
s.t.C1 : tmin ≤ ti ≤ tmax
C2 : 0 ≤ Pi ≤ asi · (1− ti)PShi + bsi − PQ

C3 : ti PShi
(ti+1)σ2 ≥ γmin − ψi

C4 : Pi ≥ ti PShi
(ti+1)gi

C5 : Pi ≤ Pmax − ϕi

(14)

Due to the uncertainty of Pi
RF, according to the EH model in Equation (3), (P4) and

(P5) are divided into three cases: Case 1, Pi
RF(ti) < P1

th; Case 2, Pi
RF(ti) > PL

th; and Case 3,

Pi
RF(ti) ∈

[
Pl

th, Pl+1
th

]
,l = 1, 2, . . . , L− 1.

3.1. Case 1

When Pi
RF(ti) < P1

th (i.e., si = 0), we have Pi
H = 0 and Pi = 0, leading to a communica-

tion outage between Ri and D. As a result, the EE is zero.

3.2. Case 2

When Pi
RF(ti) > PL

th (i.e., si = L), we have Pi
H(ti) = Pm, tmin = min

(
0, 1− PL+1

th
PShi

)
= 0

and tmax = 1− PL
th

PShi
.

Considering the constraints of (P4) and (P5), the optimization problem can be rewritten
as three simplification scenarios:

• Scenario I: When ti PShi
(ti+1)gi

≥ P2, we have ti ≥ t2, and (P4) can be rewritten as

max
Pi ,ti

y1(Pi) =
1
2 log2

(
1 + ψi +

Pigi
σ2

)
− x∗ ·

(
Pi + PQ − Pm

)
s.t.P1 ≤ Pi ≤ P2
tmin ≤ ti ≤ tmax

ti ≥ t2

(15)

There is a solution to Equation (15) if and only if t2 ≤ tmax is satisfied. The objective

function is independent of ti, so we usually let t∗i = tmax. Due to ∂2y1
∂Pi

2 < 0, y1(Pi) is a

convex function with respect to Pi, and it can be solved by derivation. Let dy1
dPi

= 0 and have

P0 = 1
x∗ ·2 ln 2 −

(1+ψi)·σ2

gi
. The solution I can be expressed as

{
PI∗

i = [P0]P2
P1

ρI∗
i = 1− tI∗

i = 1− tmax
(16)

where t2 = P2·gi
PShi−P2·gi

, P1 = max(0, (γmin−ψi)·σ2

gi
), P2 = min

(
Pmax − ϕi, Pm − PQ

)
and [x]ba

denotes max(a, min(x, b)).

• Scenario II: When ti PShi
(ti+1)gi

≤ P2, we have ti ≤ t2, and (P4) can be rewritten as

max
Pi ,ti

y1(Pi) =
1
2 log2

(
1 + ψi +

Pigi
σ2

)
− x∗ ·

(
Pi + PQ − Pm

)
s.t.P1 ≤ Pi ≤ ti PShi

(ti+1)gi
tmin ≤ ti ≤ tmax
ti ≤ t2

(17)
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There is a solution to Equation (17) if and only if tmin ≤ t2 is satisfied. The ob-
jective function is related to ti, so we use the Lagrange multiplier method to convert a
constrained problem to an unconstrained problem max

Pi ,ti
L(Pi, ti) =

1
2 log2

(
1 + ψi +

Pigi
σ2

)
−

x∗ ·
(

Pi + PQ − Pm
)
+ λi

(
ti PShi

(ti+1)gi
− Pi

)
, where λi is the Lagrange multiplier. Since ∂2L

∂Pi
2 < 0

and ∂2L
∂ti

2 < 0, we use the KKT condition for the solution. Solution II can be expressed as

 PI I∗
i = [P0]

tI I∗
i PShi

(tI I∗
i +1)gi

P1
ρI I∗

i = 1− tI I∗
i = 1−min(t2, tmax)

(18)

where t2 = P2·gi
PShi−P2·gi

, P0 = 1
x∗ ·2 ln 2 −

(1+ψi)·σ2

gi
and P1 = max(0, (γmin−ψi)·σ2

gi
).

• Scenario III: Considering the constraints of (P5), the optimization problem can be
rewritten as

max
Pi ,ti

y2(Pi, ti) =
1
2 log2

(
1 + ψi +

ti PShi
(ti+1)σ2

)
− x∗ ·

(
Pi + PQ − Pm

)
s.t. ti PShi

(ti+1)gi
≤ Pi ≤ P2

tmin ≤ ti ≤ tmax
t1 ≤ ti ≤ t2

(19)

There is a solution to Equation (19) if and only if D = [t1, t2] ∩ [tmin, tmax] 6= ∅ is sat-
isfied and we let D = [ta, tb]. First, because Equation (19) is a linear programming problem

for Pi and ∂y2
∂Pi

< 0, the optimal solution P∗i =
t∗i PShi

(t∗i +1)gi
can be obtained according to mono-

tonicity. Then, the binary objective function is transformed into a one-variable objective
function y2(ti) = 1

2 log2

(
1 + ψi +

ti PShi
(ti+1)σ2

)
− x∗ ·

(
ti PShi

(ti+1)gi
+ PQ − Pm

)
, which is only re-

lated to ti by the substitution of P∗i . We let dy2
dti

= 0 and have t0 = gi−x∗ ·2 ln 2·(1+ψi)·σ2

x∗ ·2 ln 2·(PShi+(1+ψi)·σ2)−gi
.

Because d2y2
dti

2 can be positive or negative, we have t∗i ∈
{

ta, tb, [t0]tb
ta

}
, and t∗i is determined

by the value of y2(t∗i ). Solution III can be expressed as
PI I I∗

i =
tI I I∗
i PShi

(tI I I∗
i +1)gi

ρI I I∗
i = 1− tI I I∗

i = 1− argmax
t∗i ∈{ta ,tb ,[t0]

tb
ta }

(
1
2 log2

(
1 + ψi +

t∗i PShi

(t∗i +1)σ2

)
− x∗ · t∗i PShi

(t∗i +1)gi

)
(20)

where t1 = (γmin−ψi)·σ2

PShi−(γmin−ψi)·σ2 , t2 = P2·gi
PShi−P2·gi

and P2 = min
(

Pmax − ϕi, Pm − PQ
)
.

3.3. Case 3

When Pi
RF(ti) ∈

[
Pl

th, Pl+1
th

]
, l = 1, 2, . . . , L − 1 (i.e., si = l), we have Pi

H(ti) =

al ·(1− ti)Pshi + bl , tmin = 1− Pl+1
th

PShi
and tmax = 1− Pl

th
PShi

.
Considering the constraints of (P4) and (P5), the optimization problem can be rewritten

as four simplification scenarios:

• Scenario I: When al · (1− ti)PShi + bl − PQ ≤ ti PShi
(ti+1)gi

and al · (1− ti)PShi + bl − PQ ≤
Pmax − ϕi, (P4) can be rewritten as

max
Pi ,ti

y1(Pi, ti) =
1
2 log2

(
1 + ψi +

Pigi
σ2

)
− x∗ ·

(
Pi + PQ − al · (1− ti)PShi − bl

)
s.t.P1 ≤ Pi ≤ al · (1− ti)PShi + bl − PQ
tmin ≤ ti ≤ tmax
ti ≥ max(t2, t3)

(21)
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There is a solution to Equation (21) if and only if max(t2, t3) ≤ tmax is satisfied.
First, because Equation (21) is a linear programming problem for ti and ∂y1

∂ti
< 0, t∗i =

max(t2, t3, tmin) can be obtained according to monotonicity. Then, since ∂2y1
∂Pi

2 < 0, y1(Pi) is
a convex function with respect to Pi, and it can be solved by derivation. Solution I can be
expressed as {

PI∗
i = [P0]

al ·(1−tI∗
i )PShi+bl−PQ

P1
ρI∗

i = 1− tI∗
i = 1−max(t2, t3, tmin)

(22)

where t2 = −b+
√

b2−4ac
2a is the positive root of the quadratic equation a · t2

i + b · ti +
c = 0, a = al giPShi > 0, b = PShi −

(
bl − PQ

)
gi, c = −(al PShi + bl − PQ)gi, t3 =

al PShi+bl−PQ−(Pmax−ϕi)
al PShi

, P0 = 1
x∗ ·2 ln 2 −

(1+ψi)·σ2

gi
and P1 = max(0, (γmin−ψi)·σ2

gi
).

• Scenario II: When Pmax− ϕi ≤ al · (1− ti)PShi + bl − PQ and Pmax− ϕi ≤ ti PShi
(ti+1)gi

, (P4)
can be rewritten as

max
Pi ,ti

y1(Pi, ti) =
1
2 log2

(
1 + ψi +

Pigi
σ2

)
− x∗ ·

(
Pi + PQ − al · (1− ti)PShi − bl

)
s.t.P1 ≤ Pi ≤ Pmax − ϕi
tmin ≤ ti ≤ tmax
t4 ≤ ti ≤ t3

(23)

There is a solution to Equation (23) if and only if D = [t4, t3] ∩ [tmin, tmax] 6= ∅ is
satisfied and we let D = [ta, tb]. Solved as in Equation (21), solution II can be expressed as{

PI I∗
i = [P0]Pmax−ϕi

P1
ρI I∗

i = 1− tI I∗
i = 1− ta

(24)

where P0, P1 and t3 are the same as in Scenario I: t4 = (Pmax−ϕi)·gi
PShi−(Pmax−ϕi)·gi

.

• Scenario III: When ti PShi
(ti+1)gi

≤ al · (1− ti)PShi + bl − PQ and ti PShi
(ti+1)gi

≤ Pmax − ϕi, (P4)
can be rewritten as

max
Pi ,ti

y1(Pi, ti) =
1
2 log2

(
1 + ψi +

Pigi
σ2

)
− x∗ ·

(
Pi + PQ − al · (1− ti)PShi − bl

)
s.t.P1 ≤ Pi ≤ ti PShi

(ti+1)gi
tmin ≤ ti ≤ tmax
ti ≤ min(t2, t4)

(25)

There is a solution to Equation (25) if and only if tmin ≤ min(t2, t4) is satisfied. Using
the Lagrange multiplier method to convert a constrained problem to an unconstrained
problem max

Pi ,ti
L(Pi, ti) = 1

2 log2

(
1 + ψi +

Pigi
σ2

)
− x∗ ·

(
Pi + PQ − al · (1− ti)PShi − bl

)
+ λi(

ti PShi
(ti+1)gi

− Pi

)
, where λi is the Lagrange multiplier, since ∂2L

∂Pi
2 < 0 and ∂2L

∂ti
2 < 0, the optimal

solution can be obtained by the KKT condition as follows PI I I∗
i = max(P1, tI I I∗

i PShi

(tI I I∗
i +1)gi

)

ρI I I∗
i = 1− tI I I∗

i = 1− [t0]min(t2,t4,tmax)
tmin

(26)

where t0 is the real root of the univariate cubic equation a · (t0)3 + b · (t0)2 + c · t0 + d = 0,
a = x∗ · 2 ln 2 · al gi ·

(
PShi + (1 + ψi) · σ2), b = x∗ · 2 ln 2 · al gi ·

(
2PShi + 3(1 + ψi) · σ2),

c = x∗ · 2 ln 2 · (al gi + 1) ·
(

PShi + (1 + ψi) · σ2) + 4x∗ ln 2 · al gi · (1 + ψi) · σ2 − gi,
d = x∗ · 2 ln 2 · (al gi + 1) · (1 + ψi) · σ2 − gi, t2 and P1 are the same as in Scenario I and t4
is the same as in Scenario II.

In order to solve this univariate cubic equation, we use Girolamo Cardan’s formula.
We let t0 = Y− b

3a and change it into a standard univariate cubic equation Y3 + pY + q = 0,
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where p = c
a −

b2

3a2 and q = d
a −

bc
3a2 +

2b3

27a3 . The discriminant is ∆ =
( q

2
)2

+
( p

3
)3 and can

be divided into three cases: when ∆ > 0, there is a real root Y1 = u + v; when ∆ = 0,
there are two real roots Y1 = u + v and Y2 = w·u + w2 and when ∆ < 0, there are three

real roots Y1 = u + v, Y2 = w · u + w2 · v and Y3 = w2 · u + w · v, where u = 3
√
− q

2 −
√

∆,

v = 3
√
− q

2 +
√

∆ and w = −1+
√

3i
2 .

• Scenario IV: Considering the constraints of (P5), the optimization problem can be
rewritten as

max
Pi ,ti

y2(Pi, ti) =
1
2 log2

(
1 + ψi +

ti PShi
(ti+1)σ2

)
− x∗ ·

(
Pi + PQ − al · (1− ti)PShi − bl

)
s.t. ti PShi

(ti+1)gi
≤ Pi ≤ min

(
al · (1− ti)PShi + bl − PQ, Pmax − ϕi

)
tmin ≤ ti ≤ tmax
t1 ≤ ti ≤ min(t2, t4)

(27)

There is a solution to Equation (27) if and only if D = [t1, min(t2, t4)] ∩ [tmin, tmax] 6= ∅
is satisfied and we let D = [ta, tb]. Solved as in Equation (19), solution IV can be expressed as

PIV∗
i =

tIV∗
i PShi

(tIV∗
i +1)gi

ρIV∗
i = 1− tIV∗

i = 1− argmax
t∗i ∈{ta ,tb ,[t0]

tb
ta }

y2(t∗i )
(28)

where y2(ti) = 1
2 log2

(
1 + ψi +

ti PShi
(ti+1)σ2

)
− x∗ ·

(
ti PShi

(ti+1)gi
+ PQ − al · (1− ti)PShi − bl

)
,

t1 = (γmin−ψi)·σ2

PShi−(γmin−ψi)·σ2 and t0, t2 and t4 are the same as in Scenario III.
The power allocation algorithm in this paper consists of an outer loop algorithm and

an inner loop algorithm. Since only single-relay power is assumed to be allocated and
other relay power allocations are known in the solution, a fixed-point iteration algorithm is
needed to obtain joint power optimization for all relays (i.e., an outer loop algorithm based
on a fixed-point iteration, given by Algorithm 1). In the single-relay power allocation, given
the initial optimal EE x∗ and the segment si of the EH model, the Dinkelbach iteration
algorithm is used to obtain the optimal relay transmit power, the optimal PS ratio and the
optimal EE of Ri (i.e., the inner loop algorithm based on the Dinkelbach iteration, given by
Algorithm 2). The workflow of this power allocation algorithm is shown in Figure 3.

In the inner loop algorithm, in the worst case, the Dinkelbach iteration is Imax2, and it
needs to be performed (L+ 1) times. The outer loop algorithm contains the Imax1 inner loop
algorithm, where the fixed-point iteration is N in the worst case. Therefore, the complexity
is O((L + 1)NImax1 Imax2).
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Algorithm 1. Outer loop algorithm based on a fixed-point iteration.

1: Initialize the maximum iterations Imax1 and the maximum error tolerance δ. Set the
iteration index m = 0, the optimal relay transmission power P0

i and the optimal PS ratio
ρ0

i , (i = 1, ..., N).
2: repeat
3: For fixed Pw

m and ρw
m, solve (P3) by Algorithm 2 to get Pw

m+1, ρw
m+1 and η∗, i = 1, ..., N

4: if
∣∣∣Pm+1

i − Pm
i

∣∣∣ < δ and
∣∣∣ρm+1

i − ρm
i

∣∣∣ < δ then

5: Convergence = true
6: return P∗i = Pm+1

i , ρ∗i = ρm+1
i

7: else
8: m = m + 1 and Convergence = false
9: end if
10: until Convergence = true or m = Imax1

Algorithm 2. Inner loop algorithm based on the Dinkelbach iteration.

1: We set ρi = 1 and Calculate maximum number of segments Si.
2: for si = 1 : Si.
3: Initialize the maximum iterations Imax2, the maximum error tolerance δ and the optimal
energy efficiency x∗. Set iteration index k = 0.
4: repeat

5: ψi =
N
∑

w=1,w 6=i
γw, ϕi =

N
∑

w=1,w 6=i
Pw, φi =

N
∑

w=1,w 6=i

(
Pw + PQ − Pw

H(ρw)
)

6: if si = L then
7: Solve the power allocation by using (16), (18), (20) to get Pi, ρi.
8: else
9: Solve the power allocation by using (22), (24), (26), (28) to get Pi, ρi.
10: end if
11: Update x∗k+1.

12: if
∣∣∣x∗k+1 − x∗k

∣∣∣ < δ then

13: Convergence = true
14: return Psi

i = Pi, ρsi
i = ρi, ηsi = x∗k+1

15: else
16: k = k + 1 and Convergence = false
17: end if
18: until Convergence = true or k = Imax2
19: end for
20: [η∗, si] = max(ηsi )

21: return Pm+1
i = Psi

i (si), Pm+1
i = Psi

i (si), η∗
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4. Simulations

In this section, the simulation results will be analyzed, and the effectiveness of the
proposed algorithm will be proven. The simulation scenario is shown in Figure 1, where
the distance between S and D is d = 10 m and the relay is randomly distributed in the circle
with the midpoint of S and D as the center and radius, expressed as r = 2 m. Like [12],
all the channels are Rayleigh fading channels, where the path loss exponent α is α = 3
and the small-scale fading is Rayleigh fading with a mean value of 0 and variance of 1.
In accordance with [12,20,21], we set the simulation parameters as follows: PS = 30 dBm,
PC = 10 mW, PQ = 0.1 mW, σ2 = −70 dBm and Rmin = 3 bps/Hz. The parameters of the
EH model in Figure 2 are shown in Table 1.
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Table 1. Parameters of the EH model.

Linear EH model Pth = [0, 60] mW, a = [0 .3957, 0], b = [0, 23 .742] mW

Piecewise linear EH
model (L = 4) Pth = [0, 5, 15, 60] mW, a = [0.4, 0.88, 0.2877, 0], b = [0,−2.4, 6.4845, 23.7465] mW

Piecewise linear EH
model (L = 5) Pth = [0, 5, 15, 25, 60] mW, a = [0.4, 0.88, 0.896, 0.1139, 0], b = [0,−2.4,−2.64, 16.9125, 23.7465] mW

Piecewise linear EH
model (L = 6) Pth = [0, 5, 15, 25, 40, 60] mW,a = [0 .4, 0.88, 0.896, 0.2406, 0 .018625, 0],b = [0,−2 .4,−2.64, 13.745, 22.629, 23 .7465] mW

Figure 4 shows the variation of the EE in different EH models under the same relay
total transmit power threshold. It can be seen that the EE increased as the number of relays
increased. This is because, compared with a single relay, multiple relays can improve the
information transmission rate. Since the relay uses the harvested energy for DF without
consuming fixed energy, the increase in the number of relays can also improve the EE of
the system. In addition, it can also be observed that the performance of the piecewise
linear EH model was better than that of the linear EH model in [7]. This is because the
piecewise linear EH model improves the accuracy of the traditional linear EH one. The
more segments, the better the performance, but its growth rate will decrease with the
increase in the segment number. Therefore, the piecewise linear EH model with L = 5 was
selected for simulation analysis in this paper.
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Figure 4. Energy efficiency versus number of relays under different EH models.

Figure 5 shows that the EE changed with the total transmit power threshold of relays
Pmax, and the number of relays was N = 4. It can be seen that the EE increased with the
increase of Pmax, and the increase gradually decreased until it no longer increased. This
was because the energy harvested by the EH model was limited. When Pmax exceeds the
total power that can be used after EH, the EE will not increase with the increase of Pmax. In
this simulation scenario, when Pmax > 40 mW, the EE would not change significantly with
the increase in Pmax.
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Figure 5. Energy efficiency versus the threshold of the relays’ total transmit power Pmax.

Figure 6 shows that the EE varied with the different transmit powers of source PS. It
can be seen that the EE first increased with the increase of PS and then decreased with the
increase of PS. This is because when PS is very small, the energy harvested by the relay may
not be enough to complete the information transmission, which makes the EE relatively
low. With the increase of PS, the relay can harvest more sufficient energy to complete the
information transmission, so the EE correspondingly increases. However, when PS exceeds
a certain value, the energy consumption is too high, and the EE will decrease with the
increase of PS. In this simulation scenario, when PS= 18 dBm, the EE is the highest. In
addition, compared with the single-relay in [13], multi-relay cooperation can effectively
improve performance.
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Figure 6. Energy efficiency versus the transmit power of source PS.

Figure 7 shows the change in EE with the noise power σ2. The lower the noise power,
the higher the energy efficiency. This is because the reduction of noise power can effectively
improve the information transmission rate. Figure 8 shows the change in EE with a different
path loss exponent α. The larger the path loss exponent α, the smaller the channel gain,
the smaller the information transmission rate, the smaller the harvested energy and the
smaller the energy efficiency. Figure 9 shows the change in EE with the distance d between
S and D. The larger the distance d, the smaller the information transmission rate and the
smaller the energy efficiency. Figure 10 shows the change in EE with the position of relays.
The closer the relay is to the source node, the higher the energy efficiency.
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5. Conclusions

In this paper, a power allocation algorithm based on a nonlinear EH model is proposed
for a two-hop half-duplex multiple cooperative forwarding relays system. The fixed-point
iterative algorithm and Dinkelbach iterative algorithm are used to solve the optimization
problem by jointly optimizing the transmit power and PS ratios of multiple relays to
maximize the EE. The simulation results show that, compared with the conventional linear
EH model, the designed EH model had better performance in terms of EE. Meanwhile, the
superior EE performance of the multi-relay system was also verified by comparison with
different numbers of relays. Compared with the linear model, when the piecewise linear
model (n = 5) was used, the energy efficiency increased by 2%. Compared with a single
relay, when four relays were used for cooperation, the energy efficiency increased by 26%.
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