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Abstract: The locating-chromatic number of a graph combines two graph concepts, namely coloring
vertices and partition dimension of a graph. The locating-chromatic number is the smallest k such
that G has a locating k-coloring, denoted by χL(G). This article proposes a procedure for obtaining a
locating-chromatic number for an origami graph and its subdivision (one vertex on an outer edge)
through two theorems with proofs.
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1. Introduction

The study of the partition dimension of connected graphs was introduced by
Chartrand et al. [1,2] with the aim of finding a new method for attacking the problem
of determining the metric dimension in graphs. The application of these metric dimen-
sions can be seen in the navigation of a robot modeled by a graph [3,4], solving the problem
of chemical data classification, and determining how to represent a set of chemical com-
pounds in such a way that different compounds have different representations [5,6]. The
concept of the locating-chromatic number was first introduced by Chartrand et al. in 2002,
with two obtained graph concepts, namely coloring vertices and partition dimensions of a
graph [7]. Finding the locating-chromatic number of a graph is one of the interesting (and
un-completely solved) problems of graph theory. Let G = (V, E) be a connected graph; the
distance d(x, y) between two of its vertices x and y is the length of the shortest path between
them. Let c be a proper k-coloring of G with color {1, 2, ..., k}, and Π = {C1, C2, ..., Ck}
be a partition of V(G) that is induced by the coloring c. The color code cΠ(v) of v is the
ordered k-tuple (d(v, C1), d(v, C2), ..., d(v, Ck))), where d(v, Ci) = min {d(v, x) : x ∈ Ci}
for any i ∈ {1, 2, 3, ..., k}. If all distinct vertices of G have distinct color codes, then c is
called a k-locating coloring of G. The locating-chromatic number denoted by χL(G) is the
smallest k such that G has a locating k-coloring. Let c be a locating k-coloring on graph
G(V, E). Furthermore, the locating-chromatic number has been determined for a few graph
classes; for example, if Pn is a path of order n ≥ 3 then the locating-chromatic number is
3; for a cycle Cn if n ≥ 3 is odd, χL(Cn) = 3 was obtained, and if n is even, χL(Cn) = 4
was obtained; for a double star graph (Sa,b), 1 ≤ a ≤ b and b ≥ 2, χL(Sa,b) = b + 1 was
obtained. Let Π = {S1, S2, ..., Sk} be the partition of V(G) induced by c. A vertex v ∈ G is
called a dominant vertex if d(v, Si) = 1, where v /∈ Si. Chartrand et al. characterized all
graphs of order n with the locating-chromatic number n− 1 [8].

The problem of determining the locating-chromatic number of any general graph is
an NP-hard problem [9]. This means that to determine the locating-chromatic number of
any given graph, we need a specific algorithm. In 2012, Baskoro and Purwasih proposed a
procedure to obtain the locating-chromatic number of corona products of two graphs [9]. In
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2014, Asmiati obtained the locating-chromatic number of a non-homogeneous amalgamation
of stars [10]. Moreover, to determine the locating-chromatic number of disconnected graphs,
graphs with dominant vertices and graphs of two components have been discussed in [11–13].
In 2019, the characterization of the locating chromatic number of powers of paths and a
condition (sharp upper and lower bounds) for the locating chromatic number of powers of
cycles were discussed [14] (see [15] for a discussion of the necessary and sufficient conditions
for a pair of two specific start graphs to be an odd mean graph). Asmiati et al. determined
the locating-chromatic number of some Petersen graphs; P(n, 1) four for odd n ≥ 3 or five
for even n ≥ 4 were obtained [16], and in [17] results were obtained for certain barbell graphs.
Syofyan et al. have succeed in determined the locating-chromatic number of homogeneous
lobsters [18]. In [19], Asmiati obtained the locating-chromatic number for non-homogeneous
caterpillar graphs and non-homogeneous firecracker graphs. Next, Irawan and Asmiati in
2018 determined the locating-chromatic number of subdivision firecrackers graphs [20] and
in [21] obtained the certain operation of generalized Petersen graphs sP(n, 1). In 2014, Behtoei
and Anbarloei determined the locating-chromatic number of the joining of two arbitrary
graphs [22]. In addition to that, in this article we propose a procedure for obtaining the
locating-chromatic number for an origami graph and its subdivision (one vertex on an outer
edge). The following definition of an origami graph is taken from [23]. Let n ∈ N with n ≥ 3.
An origami graph On is a graph with V(On) = {ui, vi, wi : i ∈ {1, ..., n}} and E(On) =
{uiwi, uivi, viwi : i ∈ {1, ..., n}} ∪ {uiui+1, wiui+1 : i ∈ {1, ..., n− 1}} ∪ {unu1, wnu1} (see
Figure 1 for an example). Meanwhile, a subdivision of an origami graph O∗n is a graph with
V(O∗n) = {ui, vi, xi, wi : i ∈ {1, ..., n}} and E(O∗n) = {uiwi, uivi, vixi, xiwi : i ∈ {1, ..., n}} ∪
{uiui+1, wiui+1 : i ∈ {1, ..., n− 1}} ∪ {unu1, wnu1}} (see Figure 2 for an example).

Figure 1. An origami graph O5.

Figure 2. A subdivision of an origami graph O∗5 .
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2. Results and Discussions

Let c be a locating coloring in a connected graph G and N(q) denote the set of neighbor
of a vertex q in G. If p and q are distinct vertices of G such that d(p, w) = d(q, w) for all
w ∈ V(G)− {p, q}, then c(p) 6= c(q). In particular, if p and q are non-adjacent vertices
such that N(p) = N(q), then c(p) 6= c(q) [7].

In the following subsection, the locating-chromatic number of origami graphs On and
their subdivisions called O∗n is described.

2.1. Locating-Chromatic Number of Origami Graphs

Theorem 1. Let On be an origami graph for n ≥ 3. Then, the locating-chromatic number of On,

χL(On) =

{
4, for n = 3
5, otherwise .

Proof. Let n ∈ N with n ≥ 3. An origami graph On is a graph with V(On) = {ui, vi, wi :
i ∈ {1, ..., n}} and E(On) = {uiwi, uivi, viwi : i ∈ {1, ..., n}} ∪ {uiui+1, wiui+1 : i ∈
{1, ..., n − 1}} ∪ {unu1, wnu1}. Next, to prove the theorem, we consider the following
two cases:

Case 1. χL(O3) = 4

First, we determine the lower bound of χL(O3). In the origami graphs On for n ≥ 3,
there are three adjacent vertices (complete graph with three vertices, denoted by K3); we
then need at least 3-locating coloring. Without loss of generality, we assign three colors for
any K3 in On for n ≥ 3, and then the three vertices are dominant vertices. As a result, if
we use three colors it is not enough because there are more than one K3 in On for n ≥ 3.
Therefore, χL(O3) ≥ 4.

Next, we determine the upper bound of χL(O3) ≤ 4. To show that 4 is an upper
bound for the locating-chromatic number for the origami graph O3 we describe a locating
coloring c using four colors as follows:

c(ui) = i, i = 1, 2, 3.

c(vi) =

{
2, for i = 1, 3
3, for i = 2.

c(wi) = 4, i = 1, 2, 3.

The coloring c will create the partition Π on V(O3). We shall show that the color codes
of all vertices in O3 are different. We have: cΠ(u1) = (0, 1, 1, 1); cΠ(u2) = (1, 0, 1, 1);
cΠ(u3) = (1, 1, 0, 1); cΠ(v1) = (1, 0, 2, 1); cΠ(v2) = (2, 1, 0, 1); cΠ(v3) = (2, 0, 1, 1);
cΠ(w1) = (1, 1, 2, 0); cΠ(w2) = (2, 1, 1, 0); cΠ(w3) = (1, 1, 1, 0). Since the color codes
of all vertices O3 are different, c is a locating-chromatic coloring. Thus, χL(O3) ≤ 4.

Case 2. χL(On) = 5, for n ≥ 4

To determine the lower bound, we will show that four colors are not enough. For
a contradiction, assume that there exists a 4-locating coloring c on On for n ≥ 4. We
assign {c(ui), c(vi), c(wi), c(ui+1)} = {1, 2, 3, 4}, where c(vi) 6= c(ui+1) because d(vi, x) =
d(ui+1, x), x ∈ {ui, vi}. Observe that, on On for n ≥ 4, there are n vertices ui whose degree
is 5. As a result, at least two vertices wk, wl , k 6= l have the same color codes, which is a
contradiction. Therefore, χL(On) ≥ 5, for n ≥ 4.

To show the upper bound for the locating-chromatic number of origami graphs On for
n ≥ 4, let us differentiate some subcases.

Subcase 1. (Odd n), for
⌈ n

2
⌉

odd, n ≥ 5
Let c be a coloring of origami graph On,

⌈ n
2
⌉

odd, and n ≥ 5; we make the partition Π
of V(On):
C1 = {wi|1 ≤ i ≤ n};
C2 = {ui| for odd i, 3 ≤ i ≤ n} ∪ {vi| for even i, 2 ≤ i ≤ n− 1};
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C3 = {ui| for even i, 2 ≤ i ≤
⌈ n

2
⌉
− 1} ∪ {ui| for even i,

⌈ n
2
⌉
+ 3 ≤ i ≤ n− 1} ∪ {vi| for

odd i, 1 ≤ i ≤ n};
C4 = {u1};
C5 = {ud n

2 e+1}.

For
⌈ n

2
⌉

odd, the color codes of all the vertices of V(On) are:
C1 = {wi|1 ≤ i ≤ n}.

For i = 1, we have:

cΠ(wi) = (0, 2, 1, i,
⌈ n

2
⌉
− i + 1).

For 2 ≤ i ≤
⌈ n

2
⌉
, n ≥ 5 we have:

cΠ(wi) = (0, 1, 1, i,
⌈ n

2
⌉
− i + 1).

For i =
⌈ n

2
⌉
+ 1 we have:

cΠ(wi) = (0, 1, 2, n− i + 1, i−
⌈ n

2
⌉
).

For
⌈ n

2
⌉
+ 2 ≤ i ≤ n, n ≥ 5 we have:

cΠ(wi) = (0, 1, 1, n− i + 1, i−
⌈ n

2
⌉
).

C2 = {ui| for odd i, 3 ≤ i ≤ n} ∪ {vi| for even i, 2 ≤ i ≤ n− 1}.
For i odd, 3 ≤ i ≤

⌈ n
2
⌉
, n ≥ 5 we have:

cΠ(ui) = (1, 0, 1, i− 1,
⌈ n

2
⌉
− i + 1).

For i odd,
⌈ n

2
⌉
+ 2 ≤ i ≤ n, n ≥ 5 we have:

cΠ(ui) = (1, 0, 1, n− i + 1, i−
⌈ n

2
⌉
− 1).

For i even, 2 ≤ i ≤
⌈ n

2
⌉
− 1, n ≥ 5 we have:

cΠ(vi) = (1, 0, 1, i,
⌈ n

2
⌉
− i + 2).

For i =
⌈ n

2
⌉
+ 1, we have:

cΠ(vi) = (1, 0, 3, n− i + 2, 1).

For i even,
⌈ n

2
⌉
+ 3 ≤ i ≤ n− 1, n ≥ 9 we have:

cΠ(vi) = (1, 0, 1, n− i + 2, i−
⌈ n

2
⌉
).

C3 = {ui| for even i, 2 ≤ i ≤
⌈ n

2
⌉
− 1} ∪ {ui| for even i,

⌈ n
2
⌉
+ 3 ≤ i ≤ n− 1} ∪ {vi| for

odd i, 1 ≤ i ≤ n}.
For i = 1, we have:

cΠ(vi) = (1, 2, 0, i,
⌈ n

2
⌉
).

For i odd, 3 ≤ i ≤
⌈ n

2
⌉
, n ≥ 5 we have:

cΠ(vi) = (1, 1, 0, i,
⌈ n

2
⌉
− i + 2).

For i odd,
⌈ n

2
⌉
+ 2 ≤ i ≤ n, n ≥ 9 we have:

cΠ(vi) = (1, 1, 0, n− i + 2, i−
⌈ n

2
⌉
).

For i even, 2 ≤ i ≤
⌈ n

2
⌉
− 1, n ≥ 5 we have:

cΠ(ui) = (1, 1, 0, i− 1,
⌈ n

2
⌉
− i + 1).

For i even,
⌈ n

2
⌉
+ 3 ≤ i ≤ n− 1, n ≥ 9 we have:

cΠ(ui) = (1, 1, 0, n− i + 1, i−
⌈ n

2
⌉
− 1).
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For C4 = {u1}, we have:

cΠ(u1) = (1, 1, 1, 0,
⌈ n

2
⌉
− 1).

For C5 = {ud n
2 e+1}, we have:

cΠ(ud n
2 e+1) = (1, 1, 2,

⌈ n
2
⌉
− 1, 0).

Since for n odd all vertices have different color codes, c is a locating coloring of origami
graphs On, so that χL(On) ≤ 5, for

⌈ n
2
⌉

odd, n ≥ 5.

Subcase 2. (Odd n), for
⌈ n

2
⌉

even, n ≥ 7.
Let c be a coloring of origami graph On,

⌈ n
2
⌉

even, and n ≥ 7; we make the partition Π of
V(On) as follows:
C1 = {wi|1 ≤ i ≤ n};
C2 = {ui| for odd i, 3 ≤ i ≤ n} ∪ {vi| for even i, 2 ≤ i ≤ n− 1};
C3 = {ui| for even i, 2 ≤ i ≤

⌈ n
2
⌉
− 2} ∪ {ui| for even i,

⌈ n
2
⌉
+ 2 ≤ i ≤ n− 1} ∪ {vi| for

odd i, 1 ≤ i ≤ n};
C4 = {u1};
C5 = {ud n

2 e}.

For
⌈ n

2
⌉

even, the color codes of all the vertices of V(On) are:
C1 = {wi|1 ≤ i ≤ n}.

For i = 1, we have:

cΠ(wi) = (0, 2, 1, i,
⌈ n

2
⌉
− i).

For 2 ≤ i ≤
⌈ n

2
⌉
− 1, n ≥ 7 we have:

cΠ(wi) = (0, 1, 1, i,
⌈ n

2
⌉
− i).

For i =
⌈ n

2
⌉
, we have:

cΠ(wi) = (0, 1, 2, n− i + 1, i−
⌈ n

2
⌉
+ 1).

For
⌈ n

2
⌉
+ 1 ≤ i ≤ n, n ≥ 7 we have:

cΠ(wi) = (0, 1, 1, n− i + 1, i−
⌈ n

2
⌉
+ 1).

C2 = {ui| for odd i, 3 ≤ i ≤ n} ∪ {vi| for even i, 2 ≤ i ≤ n− 1}.
For i odd, 3 ≤ i ≤

⌈ n
2
⌉
− 1, n ≥ 7 we have:

cΠ(ui) = (1, 0, 1, i− 1,
⌈ n

2
⌉
− i).

For i odd,
⌈ n

2
⌉
+ 1 ≤ i ≤ n, n ≥ 7 we have:

cΠ(ui) = (1, 0, 1, n− i + 1, i−
⌈ n

2
⌉
).

For i even, 2 ≤ i ≤
⌈ n

2
⌉
− 2, n ≥ 7 we have:

cΠ(vi) = (1, 0, 1, i,
⌈ n

2
⌉
− i + 1).

For i =
⌈ n

2
⌉
, we have:

cΠ(vi) = (1, 0, 3, i, i−
⌈ n

2
⌉
+ 1).

For i even,
⌈ n

2
⌉
+ 3 ≤ i ≤ n− 1, n ≥ 7 we have:

cΠ(vi) = (1, 0, 1, n− i + 2, i−
⌈ n

2
⌉
+ 1).
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C3 = {ui| for even i, 2 ≤ i ≤
⌈ n

2
⌉
− 2} ∪ {ui| for even i,

⌈ n
2
⌉
+ 2 ≤ i ≤ n− 1} ∪ {vi| for

odd i, 1 ≤ i ≤ n}.
For i = 1 we have:

cΠ(vi) = (1, 2, 0, i,
⌈ n

2
⌉
− i + 1).

For i odd, 3 ≤ i ≤
⌈ n

2
⌉
− 1, n ≥ 7 we have:

cΠ(vi) = (1, 1, 0, i,
⌈ n

2
⌉
− i + 1).

For i odd,
⌈ n

2
⌉
+ 1 ≤ i ≤ n, n ≥ 7 we have:

cΠ(vi) = (1, 1, 0, n− i + 2, i−
⌈ n

2
⌉
+ 1).

For i even, 2 ≤ i ≤
⌈ n

2
⌉
− 2, n ≥ 7 we have:

cΠ(ui) = (1, 1, 0, i− 1,
⌈ n

2
⌉
− i).

For i even,
⌈ n

2
⌉
+ 2 ≤ i ≤ n, n ≥ 7 we have:

cΠ(ui) = (1, 1, 0, n− i + 1, i−
⌈ n

2
⌉
).

C4 = {u1}, we have:

cΠ(u1) = (1, 1, 1, 0,
⌈ n

2
⌉
− 1).

C5 = {ud n
2 e}, we have:

cΠ(ud n
2 e) = (1, 1, 2,

⌈ n
2
⌉
− 1, 0).

Since for n odd all vertices have different color codes, c is a locating coloring of origami
graphs On, so that χL(On) ≤ 5, for

⌈ n
2
⌉

even, n ≥ 7.

Subcase 3. (even n), for n
2 odd, n ≥ 6.

Let c be a coloring of origami graph On, n
2 odd, and n ≥ 6; we make the partition Π of

V(On):
C1 = {wi|1 ≤ i ≤ n

2 − 1} ∪ {wi| n2 + 1 ≤ i ≤ n};
C2 = {ui| for odd i, 3 ≤ i ≤ n− 1} ∪ {vi| for even i, 2 ≤ i ≤ n};
C3 = {ui| for even i, 2 ≤ i ≤ n} ∪ {vi| for odd i, 1 ≤ i ≤ n− 1};
C4 = {u1};
C5 = {w n

2
}.

For n
2 odd, the color codes of all the vertices of V(On) are:

C1 = {wi|1 ≤ i ≤ n
2 − 1} ∪ {wi| n2 + 1 ≤ i ≤ n}.

For i = 1, we have:

cΠ(wi) = (0, 2, 1, i, n
2 − i + 1).

For 2 ≤ i ≤ n
2 − 1, n ≥ 6 we have:

cΠ(wi) = (0, 1, 1, i, n
2 − i + 1).

For n
2 + 1 ≤ i ≤ n, n ≥ 6 we have:

cΠ(wi) = (0, 1, 1, n− i + 1, i− n
2 + 1).

C2 = {ui| for odd i, 3 ≤ i ≤ n− 1} ∪ {vi| for even i, 2 ≤ i ≤ n}.
For i odd, 3 ≤ i ≤ n

2 , n ≥ 6 we have:

cΠ(ui) = (1, 0, 1, i− 1, n
2 − i + 1).



Algorithms 2021, 14, 167 7 of 15

For i odd, n
2 + 2 ≤ i ≤ n− 1, n ≥ 6 we have:

cΠ(ui) = (1, 0, 1, n− i + 1, i− n
2 ).

For i even, 2 ≤ i ≤ n
2 − 1, n ≥ 6 we have:

cΠ(vi) = (1, 0, 1, i, n
2 − i + 2).

For i even, n
2 + 1 ≤ i ≤ n− 1, n ≥ 6 we have:

cΠ(vi) = (1, 0, 1, n− i + 2, i− n
2 + 1).

C3 = {ui| for even i, 2 ≤ i ≤ n} ∪ {vi| for odd i, 1 ≤ i ≤ n− 1}.
For i = 1, we have:

cΠ(vi) = (1, 3, 0, i, n
2 − i + 2).

For i odd, 3 ≤ i ≤ n
2 − 2, n ≥ 10 we have:

cΠ(vi) = (1, 1, 0, i, n
2 − i + 2)

For i = n
2 , we have:

cΠ(vi) = (2, 1, 0, i, 1).

For i odd, n
2 + 2 ≤ i ≤ n− 1, n ≥ 6 we have:

cΠ(vi) = (1, 1, 0, n− i + 2, i− n
2 + 1).

For i even, 2 ≤ i ≤ n
2 − 1, n ≥ 6 we have:

cΠ(ui) = (1, 1, 0, i− 1, n
2 − i + 1).

For i even, n
2 + 1 ≤ i ≤ n, n ≥ 6 we have:

cΠ(ui) = (1, 1, 0, n− i + 1, i− n
2 ).

For C4 = {u1}, we have:

cΠ(u1) = (1, 2, 1, 0, n
2 − i + 1).

For C5 = {w n
2
}, we have:

cΠ(w n
2
) = (2, 1, 1, n

2 , 0).

Since for n even all vertices have different color codes, c is a locating coloring of
origami graphs On, so that χL(On) ≤ 5, for n

2 odd, n ≥ 6.

Subcase 4. (even n), for n
2 even, n ≥ 4.

Let c be a coloring of origami graph On, n
2 even, and n ≥ 4; we make the partition Π of

V(On) as follows:
C1 = {wi|1 ≤ i ≤ n

2 } ∪ {wi| n2 + 2 ≤ i ≤ n};
C2 = {ui| for odd i, 3 ≤ i ≤ n− 1} ∪ {vi| for even i, 2 ≤ i ≤ n};
C3 = {ui| for even i, 2 ≤ i ≤ n} ∪ {vi| for odd i, 1 ≤ i ≤ n− 1};
C4 = {u1};
C5 = {w n

2 +1}.

For n
2 even, the color codes of all the vertices of V(On) are:

C1 = {wi|1 ≤ i ≤ n
2 } ∪ {wi| n2 + 2 ≤ i ≤ n}.

For i = 1 we have:

cΠ(wi) = (0, 2, 1, i, n
2 − i + 2).

For 2 ≤ i ≤ n
2 , n ≥ 4 we have:

cΠ(wi) = (0, 1, 1, i, n
2 − i + 2).
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For n
2 + 2 ≤ i ≤ n, n ≥ 4 we have:

cΠ(wi) = (0, 1, 1, n− i + 1, i− n
2 ).

C2 = {ui| for odd i, 3 ≤ i ≤ n− 1} ∪ {vi| for even i, 2 ≤ i ≤ n}.
For i odd, 3 ≤ i ≤ n

2 + 1, n ≥ 8 we have:

cΠ(ui) = (1, 0, 1, i− 1, n
2 − i + 2).

For i odd, n
2 + 3 ≤ i ≤ n− 1, n ≥ 8 we have:

cΠ(ui) = (1, 0, 1, n− i + 1, i− n
2 − 1).

For i even, 2 ≤ i ≤ n
2 , n ≥ 4 we have:

cΠ(vi) = (1, 0, 1, i, n
2 − i + 3).

For i even, n
2 + 2 ≤ i ≤ n, n ≥ 8 we have:

cΠ(vi) = (1, 0, 1, n− i + 2, i− n
2 ).

C3 = {ui| for even i, 2 ≤ i ≤ n} ∪ {vi| for odd i, 1 ≤ i ≤ n− 1}.
For i = 1, we have:

cΠ(vi) = (1, 3, 0, 1, n
2 + 1).

For i odd, 3 ≤ i ≤ n
2 − 1, n ≥ 8 we have:

cΠ(vi) = (1, 1, 0, i, n
2 − i + 3).

For i = n
2 + 1, we have:

cΠ(vi) = (2, 1, 0, i, 1).

For i odd, n
2 + 3 ≤ i ≤ n− 1, n ≥ 8 we have:

cΠ(vi) = (1, 1, 0, n− i + 2, i− n
2 ).

For i even, 2 ≤ i ≤ n
2 , n ≥ 4 we have:

cΠ(ui) = (1, 1, 0, i− 1, n
2 ).

For i even, n
2 + 2 ≤ i ≤ n, n ≥ 8 we have:

cΠ(ui) = (1, 1, 0, n− i + 1, i− n
2 − 1).

For C4 = {u1}, we have:

cΠ(u1) = (1, 2, 1, 0, n
2 ).

For C5 = {w n
2
}, we have:

cΠ(w n
2
) = (2, 1, 1, n

2 , 0).

Since for n even all vertices have different color codes, c is a locating coloring of
origami graphs On, so that χL(On) ≤ 5, for n

2 even, n ≥ 4. this completes the proof of
Theorem 1.

Note that Figure 1 is an example locating coloring for origami graph O5.
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2.2. Locating-Chromatic Number for Subdivision Outer Edge of Origami Graphs

Theorem 2. Let O∗n be a subdivision outer edge of origami graphs for n ≥ 3. Then the locating-

chromatic number of O∗n, χL(O∗n) =

{
4, for n = 3
5, otherwise .

Proof. Let O∗n, n ≥ 3 be a subdivision of an origami graph; O∗n is a graph with V(O∗n) =
{ui, vi, xi, wi : i ∈ {1, ..., n}} and E(O∗n) = {uiwi, uivi, vixi, xiwi : i ∈ {1, ..., n}} ∪
{uiui+1, wiui+1 : i ∈ {1, ..., n − 1}} ∪ {unu1, wnu1}}. Next, to prove the theorem, we
consider the following two cases:

Case A. χL(O∗3) = 4
First, we determine the lower bound of χL(O∗3).

Without loss of generality, we assign A = {c(ui), c(vi), c(xi), c(wi), c(ui+1)} = {1, 2, 3}.
Then, there are three dominant vertices in A, while we still have vertices on other A that
must be colored. As a result, there will be two vertices with the same color codes. Thus,
χL(O∗3) ≥ 4.

Next, we determine the upper bound of χL(O∗3) ≤ 4. To show that 4 is an upper
bound for the locating-chromatic number for a subdivision outer edge of origami graph
O∗3 , we describe a locating coloring c using four colors as follows:

c(ui) = i, i = 1, 2, 3.

c(vi) =

{
2, for i = 1, 3
3, for i = 2.

c(wi) = 4, i = 1, 2, 3.
c(xi) = i, i = 1, 2, 3.

The coloring c will create the partition Π on V(O∗3). We shall show that the color codes
of all vertices in O∗3 are different. We have: cΠ(u1) = (0, 1, 1, 1); cΠ(u2) = (1, 0, 1, 1);
cΠ(u3) = (1, 1, 0, 1); cΠ(v1) = (1, 0, 2, 2); cΠ(v2) = (2, 1, 0, 2); cΠ(v3) = (2, 0, 1, 2);
cΠ(w1) = (1, 1, 2, 0); cΠ(w2) = (2, 1, 1, 0); cΠ(w3) = (1, 2, 1, 0). cΠ(x1) = (0, 1, 3, 1);
cΠ(x2) = (3, 0, 1, 1); cΠ(x3) = (2, 1, 0, 1). Since the color codes of all vertices O∗3 are
different, c is a locating-chromatic coloring. Thus, χL(O∗3) ≤ 4.

Case B. χL(O∗n) = 5 for n ≥ 4
Since a subdivision of origami graphs O∗n for n ≥ 4 is obtained by origami graph On with
one added vertex in edge viwi, we have χL(O∗n) ≥ 5 for n ≥ 4. The addition of one vertex
on the outside does not reduce the number of colors needed because the number of the sets
B = {c(ui), c(vi), c(wi), c(ui+1)} is the same.

To show the upper bound for the locating-chromatic number for a subdivision outer
edge of origami graph O∗n for n ≥ 4, let us consider different subcases.

Subcase a. (odd n), for
⌈ n

2
⌉

odd, n ≥ 5.
Let c be a coloring for a subdivision outer edge of origami graph O∗n, for

⌈ n
2
⌉

odd, and
n ≥ 5; we make the partition Π of V(O∗n):
C1 = {wi|1 ≤ i ≤ n};
C2 = {ui| for odd i, 3 ≤ i ≤ n} ∪ {vi| for even i, 2 ≤ i ≤ n− 1} ∪ {xi| for odd i, 1 ≤ i ≤ n};
C3 = {ui| for even i, 2 ≤ i ≤

⌈ n
2
⌉
− 1} ∪ {ui| for even i,

⌈ n
2
⌉
+ 3 ≤ i ≤ n− 1} ∪ {vi| for

odd i, 1 ≤ i ≤ n} ∪ {xi| for even i, 2 ≤ i ≤ n− 1};
C4 = {u1};
C5 = {ud n

2 e+1}.

For for
⌈ n

2
⌉

odd the color codes of all the vertices of V(O∗n) are:
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cΠ(ui) =



0, for the second component, odd i, 3 ≤ i ≤ n , n ≥ 5
for the third component, even i, 2 ≤ i ≤

⌈ n
2
⌉
− 1, n ≥ 5

for the third component, even i,
⌈ n

2
⌉
+ 3 ≤ i ≤ n− 1, n ≥ 9

for the fourth component, i = 1
for the fifth component, i =

⌈ n
2
⌉
+ 1

2, for the third component, i =
⌈ n

2
⌉
+ 1

i− 1, for the fourth component, 2 ≤ i ≤
⌈ n

2
⌉
, n ≥ 5

n− i + 1 for the fourth component,
⌈ n

2
⌉
+ 1 ≤ i ≤ n, n ≥ 5⌈ n

2
⌉
− i, for the fifth component, i = 1

i−
⌈ n

2
⌉
− 1, for the fifth component,

⌈ n
2
⌉
+ 1 ≤ i ≤ n, n ≥ 5⌈ n

2
⌉
− i + 1, for the fifth component, 2 ≤ i ≤

⌈ n
2
⌉
, n ≥ 5

1, otherwise .

cΠ(vi) =



2, for the first component, 1 ≤ i ≤ n, n ≥ 5
0, for the second component, odd i, 1 ≤ i ≤ n, n ≥ 5

for the third component, even i, 2 ≤ i ≤ n− 1, n ≥ 5
i, for the fourth component, 1 ≤ i ≤

⌈ n
2
⌉
, n ≥ 5

n− i + 2, for the fourth component,
⌈ n

2
⌉
+ 1 ≤ i ≤ n, n ≥ 5⌈ n

2
⌉
, for the fifth component, i = 1⌈ n

2
⌉
− i + 2, for the fifth component, 2 ≤ i ≤

⌈ n
2
⌉
, n ≥ 5

i−
⌈ n

2
⌉
, for the fifth component,

⌈ n
2
⌉
+ 1 ≤ i ≤ n, n ≥ 5

1, otherwise .

cΠ(wi) =



0, for the first component, 1 ≤ i ≤ n, n ≥ 5
2, for the third component, i =

⌈ n
2
⌉

and i = n⌈ n
2
⌉
− i + 1, for the fifth component, 1 ≤ i ≤

⌈ n
2
⌉
, n ≥ 5

i−
⌈ n

2
⌉
, for the fifth component,

⌈ n
2
⌉
+ 1 ≤ i ≤ n, n ≥ 5

i, for the fourth component, 1 ≤ i ≤
⌈ n

2
⌉
, n ≥ 5

n− i + 1, for the fourth component,
⌈ n

2
⌉
+ 1 ≤ i ≤ n, n ≥ 5

1, otherwise .

cΠ(xi) =



0, for the second component, odd i, 1 ≤ i ≤ n, n ≥ 5
for the third component, even i, 2 ≤ i ≤ n− 1, n ≥ 5

i + 1, for the fourth component, 1 ≤ i ≤
⌈ n

2
⌉
, n ≥ 5

n− i + 2, for the fourth component,
⌈ n

2
⌉
+ 1 ≤ i ≤ n, n ≥ 5⌈ n

2
⌉
− i + 2, for the fifth component, 1 ≤ i ≤

⌈ n
2
⌉
, n ≥ 5

i−
⌈ n

2
⌉
+ 1, for the fifth component,

⌈ n
2
⌉
+ 1 ≤ i ≤ n, n ≥ 5

1, otherwise .

Since for n odd all vertices have different color codes, c is a locating coloring for
subdivision of origami graph O∗n, so that χL(O∗n) ≤ 5, for

⌈ n
2
⌉

odd, n ≥ 5.

Subcase b. (odd n), for
⌈ n

2
⌉

even, n ≥ 7.
Let c be a coloring for a subdivision outer edge of origami graph O∗n, for

⌈ n
2
⌉

even, and
n ≥ 7; we make the partition Π of V(O∗n):
C1 = {wi|1 ≤ i ≤ n};
C2 = {ui| for odd i, 3 ≤ i ≤ n} ∪ {vi| for even i, 2 ≤ i ≤ n− 1} ∪ {xi| for odd i, 1 ≤ i ≤ n};
C3 = {ui| for even i, 2 ≤ i ≤

⌈ n
2
⌉
− 2} ∪ {ui| for even i,

⌈ n
2
⌉
+ 2 ≤ i ≤ n− 1} ∪ {vi| for
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odd i, 1 ≤ i ≤ n} ∪ {xi| for even i, 2 ≤ i ≤ n− 1};
C4 = {u1};
C5 = {ud n

2 e}.

For
⌈ n

2
⌉

even, the color codes of all the vertices of V(O∗n) are:

cΠ(ui) =



0, for the second component, odd i, 3 ≤ i ≤ n, n ≥ 7
for the third component, even i, 2 ≤ i ≤

⌈ n
2
⌉
− 2, n ≥ 7

for the third component, even i,
⌈ n

2
⌉
+ 2 ≤ i ≤ n− 1, n ≥ 7

for the fourth component, i = 1
for the fifth component, i =

⌈ n
2
⌉

2, for the third component, i =
⌈ n

2
⌉

i− 1, for the fourth component, 2 ≤ i ≤
⌈ n

2
⌉
− 1, n ≥ 7

n− i + 1, for the fourth component, odd i,
⌈ n

2
⌉
+ 1 ≤ i ≤ n, n ≥ 7⌈ n

2
⌉
− 1, for the fourth component, i =

⌈ n
2
⌉⌈ n

2
⌉
− i, for the fifth component, 1 ≤ i ≤

⌈ n
2
⌉
− 1, n ≥ 7

i−
⌈ n

2
⌉
, for the fifth component,

⌈ n
2
⌉
+ 1 ≤ i ≤ n, n ≥ 7

1, otherwise .

cΠ(vi) =



0, for the second component, even i, 2 ≤ i ≤ n− 1, n ≥ 7
for the third component, odd i, 1 ≤ i ≤ n, n ≥ 7

2, for the first component, 1 ≤ i ≤ n, n ≥ 7
i, for the fourth component, 1 ≤ i ≤

⌈ n
2
⌉
, n ≥ 7

n− i + 2 for the fourth component,
⌈ n

2
⌉
+ 1 ≤ i ≤ n, n ≥ 7⌈ n

2
⌉
− i + 1 for the fifth component, 1 ≤ i ≤

⌈ n
2
⌉
, n ≥ 7

i−
⌈ n

2
⌉
+ 1 for the fifth component,

⌈ n
2
⌉
+ 1 ≤ i ≤ n, n ≥ 7

1, otherwise .

cΠ(wi) =



0, for the first component, 1 ≤ i ≤ n, n ≥ 7
2, for the third component, i =

⌈ n
2
⌉
− 1 and i = n

i, for the fourth component, 1 ≤ i ≤
⌈ n

2
⌉
, n ≥ 7

n− i + 1, for the fourth component,
⌈ n

2
⌉
+ 1 ≤ i ≤ n, n ≥ 7⌈ n

2
⌉
− i, for the fifth component, 1 ≤ i ≤

⌈ n
2
⌉
− 1, n ≥ 7

i−
⌈ n

2
⌉
+ 1, for the fifth component,

⌈ n
2
⌉
≤ i ≤ n, n ≥ 7

1, otherwise .

cΠ(xi) =



0, for the second component, odd i, 1 ≤ i ≤ n, n ≥ 7
for the third component, even i, 2 ≤ i ≤ n− 1, n ≥ 7

i + 1, for the fourth component, 1 ≤ i ≤
⌈ n

2
⌉
− 1, n ≥ 7

n− i + 2, for the fourth component,
⌈ n

2
⌉
≤ i ≤ n, n ≥ 7⌈ n

2
⌉
− i + 2, for the fifth component, 1 ≤ i ≤

⌈ n
2
⌉
, n ≥ 7

i−
⌈ n

2
⌉
+ 2, for the fifth component,

⌈ n
2
⌉
+ 1 ≤ i ≤ n, n ≥ 7

1, otherwise .

Since for n odd all vertices have different color codes, c is a locating coloring for a
subdivision of the outer edge of origami graph O∗n, so that χL(O∗n) ≤ 5, for

⌈ n
2
⌉

even, n ≥ 7.
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Subcase c. (even n), for n
2 odd, n ≥ 6.

Let c be a coloring for a subdivision outer edge of origami graph O∗n, for n
2 odd, and n ≥ 6;

we make the partition Π of V(O∗n) :
C1 = {wi|1 ≤ i ≤ n

2 − 1} ∪ {wi| n2 + 1 ≤ i ≤ n};
C2 = {ui| for odd i, 3 ≤ i ≤ n− 1} ∪ {vi| for even i, 2 ≤ i ≤ n} ∪ {xi| for odd i, 1 ≤ i ≤
n− 1};
C3 = {ui| for even i, 2 ≤ i ≤ n} ∪ {vi| for odd i, 1 ≤ i ≤ n− 1} ∪ {xi| for even i, 2 ≤ i ≤ n};
C4 = {u1};
C5 = {w n

2
}.

For n
2 odd, the color codes of all the vertices of V(O∗n) are:

cΠ(ui) =



0, for the second component, odd i, 3 ≤ i ≤ n− 1, n ≥ 6
for the third component, even i, 2 ≤ i ≤ n, n ≥ 6
for the fourth component, i = 1

2, for the second component, i = 1
i− 1, for the fourth component, 2 ≤ i ≤ n

2 , n ≥ 6
n− i + 1, for the fourth component, n

2 + 1 ≤ i ≤ n, n ≥ 6
n
2 − i + 1, for the fifth component, 1 ≤ i ≤ n

2 , n ≥ 6
i− n

2 , for the fifth component, n
2 + 1 ≤ i ≤ n, n ≥ 6

1, otherwise .

cΠ(vi) =



2, for the first component, 1 ≤ i ≤ n, n ≥ 6
0, for the second component, even i, 2 ≤ i ≤ n, n ≥ 6

for the third component, odd i, 1 ≤ i ≤ n− 1, n ≥ 6
i, for the fourth component, 1 ≤ i ≤ n

2 , n ≥ 6
n− i + 2, for the fourth component, n

2 + 1 ≤ i ≤ n, n ≥ 6
n
2 − i + 2, for the fifth component, 1 ≤ i ≤ n

2 , n ≥ 6
i− n

2 + 1, for component, fifth component, n
2 + 1 ≤ i ≤ n, n ≥ 6

1, otherwise .

cΠ(wi) =



0, for the first component, 1 ≤ i ≤ n
2 − 1, n ≥ 6

for the first component, n
2 + 1 ≤ i ≤ n, n ≥ 6

for the fifth component, i = n
2

2, for the first component, i = n
2

for the second component, i = n
i, for the fourth component, 1 ≤ i ≤ n

2 , n ≥ 6
n− i + 1, for the fourth component, n

2 + 1 ≤ i ≤ n, n ≥ 6
n
2 − i + 1, for the fifth component, 1 ≤ i ≤ n

2 , n ≥ 6
i− n

2 + 1, for the fifth component, n
2 + 1 ≤ i ≤ n, n ≥ 6

1, otherwise .
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cΠ(xi) =



0, for the second component, odd i, 1 ≤ i ≤ n− 1, n ≥ 6
for the third component, even i, 2 ≤ i ≤ n, n ≥ 6

i + 1, for the fourth component, 1 ≤ i ≤ n
2 , n ≥ 6

n− i + 2, for the fourth component, n
2 + 1 ≤ i ≤ n, n ≥ 6

n
2 − i + 2, for the fifth component, 1 ≤ i ≤ n

2 − 1, n ≥ 6
i− n

2 + 2, for the fifth component, n
2 + 1 ≤ i ≤ n, n ≥ 6

1, otherwise.

Since for n even all vertices have different color codes, c is a locating coloring for a
subdivision of the outer edge of origami graph O∗n, so that χL(O∗n) ≤ 5, for n

2 odd, n ≥ 6.

Subcase d. (even n), for n
2 even, n ≥ 4.

Let c be a coloring of subdivision origami graph O∗n, for n
2 even, and n ≥ 4; we make the

partition Π of V(O∗n):
C1 = {wi|1 ≤ i ≤ n

2 } ∪ {wi| n2 + 2 ≤ i ≤ n};
C2 = {ui| for odd i, 3 ≤ i ≤ n− 1} ∪ {vi| for even i, 2 ≤ i ≤ n} ∪ {xi| for odd i, 1 ≤ i ≤
n− 1};
C3 = {ui| for even i, 2 ≤ i ≤ n} ∪ {vi| for odd i, 1 ≤ i ≤ n− 1} ∪ {xi| for even i, 2 ≤ i ≤ n};
C4 = {u1};
C5 = {w n

2 +1}.

For n
2 even the color codes of all the vertices of V(O∗n) are:

cΠ(ui) =



0, for the second component, odd i, 3 ≤ i ≤ n− 1, n ≥ 4
for the third component, even i, 2 ≤ i ≤ n, n ≥ 4
for the fourth component, i = 1

2, for the second component, i = 1
i− 1, for the fourth component, 2 ≤ i ≤ n

2 + 1, n ≥ 4
n− i + 1, for the fourth component, n

2 + 2 ≤ i ≤ n, n ≥ 4
n
2 , for the fifth component, i = 1
n
2 − i + 2, for the fifth component, 2 ≤ i ≤ n

2 + 1, n ≥ 4
i− n

2 − 1, for the fifth component, n
2 + 2 ≤ i ≤ n, n ≥ 4

1, otherwise .

cΠ(vi) =



2, for the first component, 1 ≤ i ≤ n, n ≥ 4
0, for the second component, even i, 2 ≤ i ≤ n, n ≥ 4

for the third component, odd i, 1 ≤ i ≤ n− 1, n ≥ 4
i, for the fourth component, 1 ≤ i ≤ n

2 , n ≥ 4
n− i + 2, for the fourth component, n

2 + 1 ≤ i ≤ n, n ≥ 4
n
2 + i, for the fifth component, i = 1
n
2 − i + 3, for the fifth component, 2 ≤ i ≤ n

2 + 1, n ≥ 4
i− n

2 , for the fifth component, n
2 + 2 ≤ i ≤ n, n ≥ 4

1, otherwise .
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cΠ(wi) =



0, for the first component, 1 ≤ i ≤ n
2 , n ≥ 4

for the first component, n
2 + 2 ≤ i ≤ n, n ≥ 4

for the fifth component, i = n
2 + 1

2, for the first component, i = n
2 + 1

for the second component, i = n
i, for the fourth component, 1 ≤ i ≤ n

2 , n ≥ 4
n− i + 1, for the fourth component, n

2 + 1 ≤ i ≤ n, n ≥ 4
n
2 − i + 2, for the fifth component, 1 ≤ i ≤ n

2 , n ≥ 4
i− n

2 , for the fifth component, n
2 + 2 ≤ i ≤ n, n ≥ 4

1, otherwise .

cΠ(xi) =



0, for the second component, odd i, 1 ≤ i ≤ n− 1, n ≥ 4
for the third component, even i, 2 ≤ i ≤ n, n ≥ 4

i + 1, for the fourth component, 1 ≤ i ≤ n
2 , n ≥ 6

n− i + 2, for the fourth component, n
2 + 1 ≤ i ≤ n, n ≥ 4

n
2 − i + 3, for the fifth component, 1 ≤ i ≤ n

2 , n ≥ 4
i− n

2 + 1, for the fifth component, n
2 + 2 ≤ i ≤ n, n ≥ 4

1, otherwise.

Since for n even all vertices have different color codes, c is a locating coloring for a
subdivision outer edge of origami graph O∗n, so that χL(O∗n) ≤ 5, for n

2 even, n ≥ 4. This
completes the proof of Theorem 2.

Note that Figure 2 is an example locating coloring for a subdivision of the outer edge
of origami graph O∗5 .

3. Conclusions

The proving steps of the two theorems we gave earlier show that the locating-
chromatic number of origami graphs On, χL(On) is 4 for n = 3 and 5 for n ≥ 4; the
same result holds for a subdivision of the outer edge of origami graph O∗n. This research
can be continued so as to determine the locating-chromatic number for some certain
operations of origami graphs.
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