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Abstract: The PID (proportional–integral–derivative) controller is the most widely used control
method in modern engineering control because it has the characteristics of a simple algorithm struc-
ture and easy implementation. The traditional PID controller, in the face of complex control objects,
has been unable to meet the expected requirements. The emergence of the intelligent algorithm
makes intelligent control widely usable. The Quasi-Affine Transformation Evolutionary (QUATRE)
algorithm is a new evolutionary algorithm. Compared with other intelligent algorithms, the QUATRE
algorithm has a strong global search ability. To improve the accuracy of the algorithm, the adaptive
mechanism of online adjusting control parameters was introduced and the linear population reduc-
tion strategy was adopted to improve the performance of the algorithm. The standard QUATRE
algorithm, particle swarm optimization algorithm and improved QUATRE algorithm were tested by
the test function. The experimental results verify the advantages of the improved QUATRE algorithm.
The improved QUATRE algorithm was combined with PID parameters, and the simulation results
were compared with the PID parameter tuning method based on the particle swarm optimization
algorithm and standard QUATRE algorithm. From the experimental results, the control effect of the
improved QUATRE algorithm is more effective.

Keywords: QUATRE algorithm; particle swarm optimization; PID control; optimization algorithm

1. Introduction

The PID controller’s function is to determine the steady-state error value of the
system from the actual given value and the actual output value of the control system.
The steady-state error is linearly calculated by proportion, integral, and differential to
form the control quantity. The control effect of the PID controller on the controlled object
can be changed by changing the values of three kinds of numbers. Due to this, in many
cases, PID controller parameter tuning is indispensable in the control system, as it is an
important control method to achieve the purpose of control. The traditional PID controller
parameter tuning method is manual tuning, through calculations to obtain PID controller
parameters, and then fine-tuning to achieve a more ideal control effect. The traditional PID
controller parameter tuning method has a good effect on the linear time-invariant system.
When facing the complex controlled object with nonlinear and time delay characteristics,
the artificial calculation is large and time-consuming and the parameter error is large.
Even if the parameter control system is fine-tuned, it is almost impossible to achieve the
desired control effect. With the continuous development of industrial control technology
and the large-scale use of power electronic devices, the control objects of actual industrial
control present high-order, time-delay, and nonlinear characteristics. It is difficult to
achieve the optimal tuning of P1D parameters with traditional PID parameter tuning
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methods. For complex control objects, many scholars apply swarm intelligence algorithms
to PID parameter tuning. The development of information and computing technology and
the penetration of other related disciplines promote the research of control science and
engineering, and intelligent control has become an important trend. To achieve a better
control effect of the PID controller in complex controlled objects, this paper proposes a
method of combining the new improved algorithm with PID parameters and proves its
feasibility and superiority.

Intelligent optimization algorithm is a general term for a large class of algorithms and
an important part of computational intelligence [1], including the evolutionary computing
method, the swarm intelligence algorithm based on biological group behavior, and a
random search algorithm based on physical process simulation [2]. For a long time, finding
solutions to a problem has been one of the goals of human production and life. There
are many fields that use an optimization algorithm in combination with, e.g., a control
system to find the best control scheme [3]; image processing; wireless sensor network [4,5];
information hiding [6,7]; and in real life, it can be applied to vehicle routing problems [8].
The optimization algorithm was applied in image and network segmentation in [5,7].
The algorithm was also used for sensor ontology meta-matching in [9]. When the problem
to be solved has a non-unique feasible solution, obtaining the optimal solution of a certain
performance index through optimization is essential. The process of obtaining the optimal
solution is the process of finding the best solution. In summary, an intelligent optimization
algorithm is an excellent and practical tool.

To combine the swarm intelligence optimization algorithm with PID control, we must
first determine the similarities between them. The algorithm must find the best solution to
the equation, and the uncertainty of the control is the reason why we need to determine
the best control state. Parameters also have a variety of scheme combinations. We need to
match the PID control parameters with the fitness function of the algorithm to find the best
control scheme. In the algorithm, all individuals are in parameter combination with the
PID controller. The fitness values of all individuals were calculated by using the perfor-
mance index function. The advantages and disadvantages of the PID controller parameter
combination were judged by comparing the fitness values, and then the individual with
the optimal fitness value was selected as the global optimal parameter combination at the
current iteration number. In this paper, the improved QUATRE algorithm was combined
with the parameter tuning of the PID controller:

• An improved QUATRE algorithm was proposed based on the original QUATRE algo-
rithm. We combined the linear population size reduction, continuously reduced the
population size according to the linear function, and adjusted the control parameters
online to achieve better algorithm performance.

• The improved QUATRE algorithm was used to optimize the PID parameters, and the
performance index function integral of time-weighted absolute error (ITAE) was used
as the fitness function to find the optimal value through the improved optimiza-
tion algorithm. At this time, the best individual was the global optimal parameter
combination to achieve the optimal control of the control system.

2. Related Work
2.1. PID Parameter Tuning Method

The PID controller is a widely used control method [10], whose control performance
depends on the parameter tuning of the PID controller, i.e., the combination and collocation
of controller parameters. In 1942, Ziegler and Nichlos proposed the earliest PID parameter
tuning method, namely the Z-N tuning method [11], by studying the PID parameter
tuning of the first-order inertial pure lag link. Later, scholars all over the world continued
to optimize and improve the Z-N tuning method and constantly proposed new tuning
methods, such as the Cohn–Coon tuning method [12], relay feedback tuning method [13],
internal mode PID parameter tuning method [14], RZN (refined Ziegler–Nichols) tuning
method [15], etc.
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In the context of the continuous development of industrial control technology and
the wide applications of power electronic devices, the actual industrial control object
presents the characteristics of a high order, time delay, nonlinear, etc.; whilst it is difficult to
achieve optimal PID parameter tuning with the traditional PID parameter tuning method.
For complex control objects, many scholars apply swarm intelligence algorithms to PID
parameter tuning, which is applied in various fields. In Reference [16], the rules of the
PID controller were derived by a method based on fuzzy logic; in Reference [17], a fuzzy
PID controller was designed. In Reference [18], neural network theory was applied to
parameter tuning and a parameter self-tuning method was proposed based on neural
network PID. Simulation experiments have verified that this method can reduce the work-
load of parameter identification and realize online closed-loop tuning. In Reference [19],
the authors introduced a genetic algorithm into PID parameter tuning and verified the
feasibility of the tuning method in the simulation system. In Reference [20], a fuzzy PID
controller based on a neural network was proposed, which has nonlinear control and self-
learning mapping. In Reference [21], the authors used an immune information processing
mechanism to optimize particle swarm optimization, solving the problem of algorithm
prematurity, and applying it to the parameter self-tuning of the PID controller. In Refer-
ence [22], the neural network training algorithm was applied to PID parameter tuning and
a PID neural network controller was designed. In Reference [23], the authors proposed a
PID parameter tuning method based on the improved biogeography algorithm. From the
simulation experiment, the classical test function was used to verify and compare with
other swarm intelligence algorithms. What is satisfying is that the controller error and
overshoot of the proposed method are smaller. In Reference [24], a nonlinear attenuation
particle swarm optimization algorithm combined with an improved dynamic learning
factor was proposed, and the algorithm was applied to the parameter tuning of the PID
governor of hydro generator sets. In Reference [25], the authors proposed a multi-objective
particle swarm optimization algorithm that only optimizes the overshoot and adjustment
time of the system and realized the self-tuning of PID parameters.

In Figure 1, the control system block diagram is a conventional PID controller used
in engineering. The system is mainly composed of a PID controller, actuator, and con-
trolled object. As a kind of linear controller, the linear control function of deviation is
composed of proportional, integral, and differential by linear combination. The output of
the control function is applied to the actuator by inputting the current deviation calculation,
to complete the control of the controlled object. The specific change process is given in
Equation (1).

Figure 1. PID control schematic diagram.

The specific formula:

u(t) = Kp[e(t) + 1
TI

∫ t
0 e(t)dτ + TD

d[e(t)]
dt ]

= KPe(t) + KP
TI

∫ t
0 e(t)dτ + KpTD

d[e(t)]
dt

= KPe(t) + KI
∫ t

0 e(t)dτ + KD
d[e(t)]

dt

(1)
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where r(t) is the expected output; y(t) is the actual output; e(t) is the difference between the
expected output and the actual output; u(t) is the output regulated by the controller; Kp is
the proportional coefficient; TI is the integrator time constant; and TD is the differentiator
time constant.

2.2. QUATRE Algorithm

QUATRE is an evolutionary algorithm put forward by Meng Zhenyu and others [26],
and the QUATRE algorithm is a novel evolutionary algorithm which uses a similar ge-
ometry mapping in the principle of transition function as well as random initialization
population particles, where each particle through the same mapping transformation func-
tion realizes their evolution; and then it searches and evaluates the fitness function of the
problem again, writes down the optimal value, and repeats the iteration until the termina-
tion condition is satisfied at the time of the current—solution which is the approximate
optimal solution. Particle evolution in the new algorithm can be written in a form similar
to affine transformation, so it is named after the quantum affine transformation formation
evolutionary algorithm. The QUATRE algorithm has only one parameter to be set in terms
of particle change and spatial expansion. Moreover, the QUATRE algorithm has significant
advantages in enhancing cooperation among particles, having strong global search ability,
and solving many difficult points in optimization. The specific change process is shown in
Equation (2): {

B = Xgbest + F× (Xr1 − Xr2)

X
∣∣→ M⊗ X + M⊗ B

(2)

Equation (2) shows the core idea of the QUATRE algorithm population evolution. Xr1
and Xr2 are two matrices obtained by the random permutation of row vectors. The first
line of the formula indicates that the particles of each population move a certain distance
in the random direction represented by Xr1 − Xr2 with the position Xbest of the global
optimal particle as the center, where F is the coefficient of the moving step, and the result is
stored in the matrix B. The second row indicates that the random perturbation represented
by B is randomly applied to the current particle coordinate matrix X in a form of affine
transformation, where the joint search matrix M is obtained in the manner shown in
Equation (3). In other words, the rows of the lower triangular matrix with the element
value of 1 are randomly exchanged, and then the 0 and 1 elements in each row are randomly
exchanged. This is obtained by taking the “logical negation” operation on all the binary
elements in transformed M_tmp.

M_tmp is a lower triangular matrix, in which each row is randomly arranged which
ensures that the elements of each row are unchanged, then the row vectors are randomly
arranged to obtain the scrambled collaborative search matrix M. The search matrix M was
used to update the position of the algorithm:

Mtmp =


1
1 1

. . .
1 1 . . . 1

 ∼


1 1
. . .

1 1 . . . 1
1 1

 = M (3)

2.3. Particle Swarm Optimization

Particle swarm optimization (PSO) was first proposed by two American scientists
based on the process of birds foraging to find the best foraging area [27]. As an intelligent
algorithm, PSO simulates the best decision-making process. Bird foraging is similar to the
human decision-making process. Think about whether you will be affected by your own
experience (local optimum) and the experience of people around you before you make a
choice (global optimum). In the same way, in the process of foraging, the initial position
of each bird is in a random state. Of course, we do not know where the best foraging
point is, and the flight direction of each bird is also random. It can be considered that
during the early stage of foraging, the trajectory of birds is disordered. Over time, birds in
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a random position learn from each other and share foraging information within the group.
In each foraging process, each bird estimates the value of finding food by combining its
own experience and information transmitted by peers. Based on this way of research,
particle swarm optimization (PSO) emerges as the times require.

In particle swarm optimization, the search for the objective function is solved by
using the motion of each particle. The motion direction of particles includes two parts: the
random part and definite part. That is to say, the possible motion direction of each particle
is not only towards the current global optimum and the optimum of the particle itself but
also random motion. Compared with genetic algorithm, it does not use an evolutionary
operator, but treats each individual as a particle in the optimization space and has a certain
speed. Particle motion is dynamically adjusted by individual trajectory and group historical
trajectory. The following is the algorithm process:

1. Determine the specific function equation to be optimized f(x);
2. Define initial value: velocity v and position x of N particles;
3. Start to search the global optimum and the fitness value of each individual was

calculated;
4. The fitness value of each particle’s current position is compared with the global best

and its own historical best to update the particle’s historical best and global best;
5. The updating formula of velocity and position is used to change the v and x;
6. Repeat steps 2–5 until the stop rule is met.

Update formula of v and x:

vd
i = wvd

i + c1r1(pd
i − xd

i ) + c2r2(pd
g − xd

i ) (4)

xd
i = xd

i + αvd
i (5)

where i = 1, 2, . . . , m denotes the ith particle (bird); d = 1, 2, . . . , D denotes the d dimension;
w is a non-negative number, which is called the inertia factor; r1 and r2 are random numbers
from 0 to 1; α is called constraint factor, which is to control the weight of speed.

3. The Proposed Algorithm

In this section, an improved QUATRE algorithm named L-EQUATRE is proposed,
which is based on the variant of QUATRE and adds the adaptive strategy of parameters and
a strategy of linear decreasing population. The specific process of the improved algorithm
is given below.

3.1. Mutation Method of B

To achieve a better convergence effect, Matrix B adopts the following strategy changes: Bi,G = Xi,G + F× (Xp
best,G − Xi,G) + F× (Xr1,G −

ˆ
Xr2,G)

B = [B1G,B2G, . . . , BN,G,]
T , i ∈ {1, 2, . . . , N}

(6)

where Xp
best,G denotes a chosen individual from the top 100P% individuals randomly in the

current population. Moreover, an optional external archive A was employed to store the

inferior individuals during the evolution. Additionally, the individual
ˆ
Xr2,G was chosen

from a combination of external archives and the current population. In addition, during
the early stage of the algorithm, the point is to perceive the whole search space, let the
population explore on a large scale, rather than be limited to a good solution. During the
late stage of the algorithm, our key is to find the best, so the local search becomes important.
In order to enable space perception during the initial stage of the algorithm, balance with
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the development search ability during the later stage, a new linear decreasing parameter P
was used in the improved algorithm to define the percentage of optimal individuals:

P = max
{

Pmin − Pmax

n f emax
× n f e + Pmax, 2

}
(7)

where Pmax = 0.2 and Pmin = 0.05 are the recommended values.

3.2. Adaptive Scale Factor F and M-Matrix Evolution Scheme

The scale factor F obeys Cauchy distribution C (XF, γF), and during the initial stage,
the position parameter XF = 0.5, while γ = 0.2. n f e means the number of function evalua-
tions. The dynamic rule is in Equation (6):

ωs =
std(∆loci)

∑
|SF |
s−1 std(∆loci)

∆loc i = loc(Ui,G − Xi,G)

meanWL(SF) =
∑
|SF |
s−1 ωs×S2

F(s)

∑
|SF |
s−1 ωs×SF(s)

XF,G+1 =

{
meanWL(SF), SF 6= ∅

XF,G, otherwise

(8)

where SF represents a collection of F values associated with success individuals and
loc(Ui,G − Xi,G) indicates the parameter of the positioning position difference Ui,G − Xi,G
and std() represents the operation of calculating standard deviation.

The key point of M-matrix generation lies in the number of kth vectors incorporated
into the initialization matrix in each generation of the lower triangular matrix. The number
of the kth vector can be calculated by probability P(A = K). The update formula of P is
given in Equation (9): 

ns =
D
∑

d=1
nsd

P(A = k) =

{
ns2

k
ns×(nsk+n fk)

, nsk > 0
ε

(9)

where ns is the size of the successful individuals of the recorded population, nsk is the
number of successful individuals inherited from the donor vector by k parameter and
ε = 0.01 is to avoid zero probability [28].

In addition, in the process of evolution, our algorithm has two groups. The selection
probability P(j) indicates the possibility of an individual being classified into the jth group.
Then, all the current individuals can be divided into different groups through random
universal selection. In the groups, P(j), j = 1, 2 dynamically change according to the success
rate of the individual in the evolution process, as in Equation (10):

rj =


ns2

j
ns×(nsj+n f j)

, nsj > 0

ε, otherwise

ns =
2
∑

j=1
nsj

P(j) =
rj

∑k
j=1 (rj)

(10)

where nsj represents the number of individuals who found a better solution in the jth group
and n f j refers to individuals who cannot find a better solution in the jth group. The upper
and lower selection probability of each group is fixed, so P(j) should satisfy P(j) ∈ [0.3, 0.7],
j = 1, 2, and only satisfy that the least selected group needs to update the probability for
each generation.



Algorithms 2021, 14, 173 7 of 14

3.3. Population Size Reduction Scheme

For the overall performance of the algorithm, the population reduction scheme is
effective and practical, and it is a simple scheme. Commonly, a population size reduction
scheme can achieve a balance between the diversity of trial vectors and the number of
generations. Accordingly, in this paper, we employed a simply linear population size
reduction strategy to improve the performance of the proposed algorithm. After each
generation G, the population size in the next generation NG+1 is computed according to
Equation (11):

NG+1 = round
[(

Nmin − Ninit

MAX_NFE

)
× NFE + Ninit

]
(11)

The population size of the first generation is Ninit, the population at the end of the
run is Nmin, Nmin set as the minimum possible value, NFE is the current number of fitness
evaluations. MAX_NFE is the maximum number of fitness evaluations. Whenever NG+1
< NG, the (NG − NG+1) are the worst ranked individuals which will be removed from the
population.

To show the improved QUATRE algorithm more intuitively, the following Algorithm 1
is the pseudo code of the improved QUATRE algorithm.

Algorithm 1 Pseudo Code of the L-EQUATRE Algorithm.

Input: Bound constraints [RD,min,RD,max], the fixed maximum number of function evolution nfemax;
Output: Best individual Xgbest, Best fitness value f (Xgbest), number of function evaluation nfe;
1. Initialize the population size ps, scale factor F, inheritance probability P, all individuals X = {X1, X2, . . . , Xps}, A = ∅, rarc = 1.6,
pmax = 0.2, pmin = 0.05, G = 1;
2. while nfe ≤ nfemax do
3. for i = 1; i ≤ ps; i ++ do

4. Generate Xp
best,G, Xr1,G and

_
Xr2,G;

5. if G > 2 then
6. Adjust the population size;
7. Adjust the size of storage A;
8. end if
9. Generate Fi for ith individual;
10. Readjust Fi into the bound constraints if necessary;
11. end for
12. Generate evolution matrix M according to the adopt scheme;
13. Generate B according to Equation (6);
14. Generate trial candidates by employing evolution matrix M;
15. Calculate fitness values of all Ui,G;
16. nfe = nfe + ps;
17. for i = 1; i ≤ ps; i ++ do
18. if f (Ui,G) ≤ f (Xi,G) then
19. Xi,G + 1 = Ui,G;
20. else
21. Xi,G + 1 = Xi,G;
22. end if
23. end for
24. if SF 6= ∅ then
25. Update XF;
26. Update P (A = k) (k = 1,2, . . . , D);
27. end if
28. G = G + 1;
29. Update storage A;
30. end while
31. f (Xgbest) = f (Xgbest,G), Xgbest = Xgbest,G;
32. Return Xgbest, and f (Xgbest);
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4. PID Controller Parameter Tuning Based on the Improved QUATRE Algorithm

The performance index of PID control is a set of standards for judging the quality of
the controlled object. The evaluation index has the function of guiding the field personnel
to adjust the PID parameters to establish a reasonable control system [29]. The selection
of control indicators has an important influence on the results of the control. Commonly
used performance indicators include dynamic performance indicators and error integral
performance indicators [30]. This article uses the absolute error multiplied by time (ITAE)
performance index:

ITAE =
∫ ∞

0
t |e(t)|dt (12)

In the improved QUATRE algorithm, all the particles can be regarded as a combination
of PID controller parameters. In a given search space, the particles are constantly iteratively
optimized, and the globally optimal individuals are constantly updated. The algorithm will
converge to the optimal solution, that is, the parameter combination with the best control
performance for the controlled object. Additionally, QUATRE algorithm is improved to
optimize PID parameters, especially the first set value range of PID parameters, namely
the particles under the different dimensions of search, then all particles and random
distribution patterns are initialized using the Sim function assigned to the PID controller
parameters, through the system performance index function to calculate all the particle’s
fitness, and the optimal adaptive value and position of particles are kept in the search space
with the constant iterative update, which obtains the global optimal particle of the optimal
PID controller parameters. The main steps are as follows:

1. Set the search space of PID parameters, initialize the position of the three parameters
of the particle, particle swarm size, number of iterations, and constant term C of the
difference matrix.

2. The position of each particle is transferred to the established PID control model PID
MODEL, and the SIMULINK program is called to simulate and calculate the ITAE
performance index of the controller as a fitness function which is then transmitted
back to the QUATRE algorithm.

3. Determine according to the ITAE performance index of the current particle swarm,
search all particles to determine the optimal position of all, and perform position
updates for individuals that meet the performance requirements.

4. Judge whether it is required according to the termination condition. If the current
situation meets the stop condition of the algorithm, exit the algorithm and take the
current optimal position as the optimal proportional, integral, and differential coeffi-
cients of the PID controller. If not, perform a speed and position update operation,
judge and limit particle update speed and optimization range, then execute Step 2.

5. Experiment Analysis
5.1. Analysis of Algorithm Experimental Results

In this paper, three algorithms were selected for testing: first, the improved QUATRE
algorithm where N_min = 4; N_ini = round[25 log(D)

√
D]; the dimension is 30; and

F = 0.7. The second and third were PSO and QUATRE, where: the population number
is 100; the number of iterations is 3000; and the dimension is 30. c1 = c2 = 2, w = 0.6
in PSO. F = 0.7. in QUATRE. The abscissa is nfe/100, the ordinate is the fitness value,
and the absolute error by time (ITAE) performance index is taken as the fitness function.
The implicit test of the test function of CEC2013 was adopted, and the experimental results
are shown in Figures 2–5.
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Figure 2. Rotated Schaffer’s F7 function.

Figure 3. Rotated Griewank function.

Figure 4. Rastrigrin function.
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Figure 5. Schaffer’s function.

In the rotated Schaffer’s function, the algorithm began to flatten before 500 generations,
and the convergence speed of the three algorithms was not much different. However,
the improved QUATRE algorithm determines that the optimal solution is smaller, i.e.,
that the value of convergence is smaller; so under the same conditions, the optimization
accuracy is higher, and the performance in this function is superior. In the rotated Griewank
function, the optimization results of the improved algorithm and the standard QUATRE
algorithm are evidently better than that of the PSO algorithm, and the optimization accuracy
is improved. In the Rastrigin function and the Schwefel function, the optimization accuracy
of the improved algorithm is improved by several orders of magnitude, and a very good
fitness value is obtained.

From the test function results—compared with the standard QUATRE algorithm
and particle swarm optimization algorithm—in terms of optimization accuracy, it can
be concluded from the curves of these test functions that the improved algorithm has
been greatly improved, with convergence and smaller values. This was also due to the
improvement of our strategies. When the particles start searching, they pay attention to the
perception of the whole search space, and take into account the search development ability
of the particles in the future. The result is that the particles can be closer to each other when
searching. It is close to finding the solution we need. The performance of the algorithm
has been enhanced. In the convergence rate of the algorithm, the improved algorithm is
not good enough in some functions. The experimental results verify the feasibility and
effectiveness of the improved QUATRE algorithm.

5.2. PID Parameter Tuning Experiment Results Analysis

MATLAB software was used to realize the simulation experiment. Two intelligent
algorithms, the PSO algorithm, and the improved QUATRE algorithm are combined with
PID parameters. The purpose of the intelligent algorithm is to find the combination of Ki,
Kp, and Kd with the best control effect for the control system through its optimization
ability. In the entire parameter tuning process, the value of the fitness is expressed by the
error, and generally, the ITAE of the error integration criterion of the control system is
adopted. The control objects are shown in Table 1.

Table 1. Control object model.

Mathematical Model Properties of the Model

e−12s

20s+1 First-order delay mode
e−s

(s+1)2 Second-order delay model
e−s

(s+1) 3 Third-order delay model
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After the original QUATRE algorithm is improved, it is combined with PID parameters,
and the improved QUATRE algorithm is feasible in PID parameter tuning. The abscissa
is the time (s), and the ordinate is the unit step response (amplitude). The experimental
results are shown in Figures 6–8.

Figure 6. The unit response curve of the first-order controlled object.

Figure 7. The unit response curve of the second-order controlled object.
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Figure 8. The unit response curve of the third-order controlled object.

The algorithm parameter settings included: the number of the initial population is
100; the maximum number of iterations is 500; the value range of Kp and Ki is [0,30]; and
Kd is [−20,20].

From the step response curve of the control object, it can be concluded that the PID
based on the improved QUATRE algorithm has less overshoot than that of the standard
QUATRE algorithm and particle swarm algorithm. The system has a small shock. On the
other hand, the adjustment time is relatively small. Therefore, on the one hand, the im-
proved PID parameter adjustment improves the stability of the control system; on the other
hand, it reduces the risk of large vibration. Therefore, the PID parameters of the improved
algorithm should be better for the control system. The experiment shows that the improved
QUATRE algorithm is feasible in the PID parameter setting.

6. Conclusions

In this paper, there is a lot of room to improve the accuracy of the original algorithm.
Therefore, an improved QUATRE algorithm was proposed. The idea is the adaptive
change of matrix B; scale factor F; matrix M; and the population size reduction scheme.
In general, programs to reduce population size can strike a balance between the diversity
of test vectors and the number of generations. Therefore, this paper used the linear
population reduction strategy to improve the overall ability of the algorithm. After tests
of the cec213 test function, through the comparison with PSO and the standard QUATRE
algorithm, the superiority of the improved algorithm was proven.

After the algorithm was improved, this paper proposed a PID parameter tuning
method based on an improved QUATRE algorithm, which used the excellent search
capability of the improved algorithm to determine the best parameter combination of the
PID controller. Through our experimental simulation, from the unit step response diagram,
it can be concluded that our new approach is better than the PID parameter tuning of
POS and the original QUATRE algorithm smaller overshoot and rise time make the whole
control more stable, which also shows that the PID parameter tuning method based on
improved QUATRE algorithm is more effective.
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