
algorithms

Article

Approximation Algorithms for Sorting λ-Permutations
by λ-Operations

Guilherme Henrique Santos Miranda 1 , Alexsandro Oliveira Alexandrino 1,* , Carla Negri Lintzmayer 2

and Zanoni Dias 1

����������
�������

Citation: Miranda, G.H.S.;

Alexandrino, A.O.; Lintzmayer, C.N.;

Dias, Z. Approximation Algorithms

for Sorting λ-Permutations

by λ-Operations. Algorithms 2021, 14,

175. https://doi.org/10.3390/

a14060175

Academic Editor: Evangelos Kranakis

Received: 30 April 2021

Accepted: 31 May 2021

Published: 1 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Computing, University of Campinas, Campinas SP 13083-970, Brazil;
guilherme.miranda@students.ic.unicamp.br (G.H.S.M.); zanoni@ic.unicamp.br (Z.D.)

2 Center for Mathematics, Computation and Cognition, Federal University of ABC,
Santo André SP 09210-580, Brazil; carla.negri@ufabc.edu.br

* Correspondence: alexsandro@ic.unicamp.br

Abstract: Understanding how different two organisms are is one question addressed by the compar-
ative genomics field. A well-accepted way to estimate the evolutionary distance between genomes of
two organisms is finding the rearrangement distance, which is the smallest number of rearrangements
needed to transform one genome into another. By representing genomes as permutations, one of
them can be represented as the identity permutation, and, so, we reduce the problem of transforming
one permutation into another to the problem of sorting a permutation using the minimum number
of rearrangements. This work investigates the problems of sorting permutations using reversals
and/or transpositions, with some additional restrictions of biological relevance. Given a value λ,
the problem now is how to sort a λ-permutation, which is a permutation whose elements are less
than λ positions away from their correct places (regarding the identity), by applying the minimum
number of rearrangements. Each λ-rearrangement must have size, at most, λ, and, when applied to a
λ-permutation, the result should also be a λ-permutation. We present algorithms with approximation
factors of O(λ2), O(λ), and O(1) for the problems of Sorting λ-Permutations by λ-Reversals, by
λ-Transpositions, and by both operations.

Keywords: genome rearrangements; approximation algorithms; sorting permutations

1. Introduction

One challenge in biology is to understand how species evolve, considering that new
organisms arise from mutations that occurred in others. Using the principle of parsimony,
the minimum number of rearrangements that transform one genome into another, called
rearrangement distance, is a widely adopted way to estimate the evolutionary distance
between two genomes. A genome rearrangement is a global mutation that alters the order
and the orientation of the genes in a genome.

Depending on the genomic information available and the problems considered,
a genome can be modeled in different ways. Considering that a genome has no repeated
genes, we can model it as a permutation, with each element representing a gene. Each
gene has an orientation inside the genome. Gene orientation is represented by a plus or
minus sign in each element of the permutation. In this case, we say that the permutation is
signed. Due to mapping problems in the genome, orientation information could not be
available. In this scenario, we use unsigned permutations to represent the genomes. By
representing one of the genomes as the identity permutation, we reduce the problem of
transforming one permutation into another to the problem of sorting a permutation with
the minimum number of rearrangements, which is called sorting rearrangement distance
or simply distance.

A rearrangement model M is the set of valid rearrangements used to calculate the
distance. A reversal rearrangement inverts a segment of the genome, and a transposition

Algorithms 2021, 14, 175. https://doi.org/10.3390/a14060175 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-5643-4527
https://orcid.org/0000-0002-6320-9747
https://orcid.org/0000-0003-0602-6298
https://orcid.org/0000-0003-3333-6822
https://doi.org/10.3390/a14060175
https://doi.org/10.3390/a14060175
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14060175
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14060175?type=check_update&version=2

Algorithms 2021, 14, 175 2 of 18

rearrangement swaps two adjacent segments of the genome. Genome rearrangements are
also sometimes called operations.

The problems of Sorting Permutations by Transpositions and Sorting Unsigned Per-
mutations by Reversals are NP-Hard [1,2]. The best known results for both problems are
approximation algorithms with factor 1.375 [3,4]. Despite that, the problem of Sorting
Signed Permutations by Reversals is solvable in polynomial time [5]. The variation in
which the rearrangement model contains both (signed or unsigned) reversals and transpo-
sitions is NP-Hard [6]. For signed permutations, there are 2-approximation algorithms [7,8].
For unsigned permutations, the best approximation factor is 2k [7], where k is the approxi-
mation factor of an algorithm used for cycle decomposition of the breakpoint graph [9].
Given the best known value for k [9], this algorithm guarantees an approximation factor of
2.8334 + ε, where ε > 0.

Extra restrictions can be added to these sorting problems, such as applying operations
that only affect specific parts of a genome [10,11]. Other variants of the sorting problems
emerged from the assumption that operations which affect large portions of a genome
are less likely to occur [12]. Most of these variants add a constraint that limits the size
of a valid operation [13–15]. The size of an operation is equal to the number of elements
affected by it. Considering a size limit of 2, the problems of Sorting Unsigned Permutations
by Reversals and/or Transpositions are solvable in polynomial time [13]. Considering a
size limit of 3, the best known approximation factors for Sorting Unsigned Permutations
by Reversals, by Transpositions, and by Reversals and Transpositions are 2 [13], 5/4 [14],
and 2 [15], respectively. For Sorting Signed Permutations by Reversals and by Reversals
and Transpositions, the best known approximation factors are 5 [16] and 3 [16], respectively.
Recently, Zhang et al. [17] presented polynomial algorithms to decide if a permutation can
be sorted using a number of short operations equal to the lower bound for the distance,
which are based on the number of inversions and entropy of the permutation (these
concepts are described in Sections 3 and 4).

The problem of Sorting (Unsigned or Signed) Permutations by λ-Operations is a gen-
eralization of the size limited variants in which an operation is valid if its size is less than or
equal to λ. There are O(λ2)-approximation algorithms for Sorting Unsigned Permutations
by λ-Reversals, by λ-Transpositions, and by λ-Reversals and λ-Transpositions [18]. The
study of λ-operations is motivated by the observation that the rearrangements occurred
in some species do not act on very large segments of the genome [12,19]. Using size
limited operations makes more sense when one knows that the elements are not so far
away from their original positions, so we introduce the study of Sorting λ-Permutations by
λ-Operations. A permutation π is a λ-permutation if all elements of π are at a distance less
than λ from their correct positions considering the identity permutation.

We consider the problems of sorting (unsigned or signed) λ-permutations by λ-
reversals, by λ-transpositions, and by λ-reversals and λ-transpositions. Some of the
results for the problems of sorting unsigned λ-permutations were previously presented
by us [20], but, to the best of our knowledge, there were no results for the sorting signed
λ-permutations problems.

The paper is organized as follows. In Section 2, we present all concepts used in
this paper and an NP-hardness proof for the sorting λ-permutations by λ-operations
problems, considering four rearrangement models. In Sections 3 and 4, we present O(λ2)-
approximation algorithms for the sorting unsigned and signed λ-permutation problems,
respectively. In Section 5, we present algorithms with approximation factors of O(λ)
and O(1) for Sorting λ-Permutations by λ-Reversals and the other problems addressed,
respectively. In Section 6, we show experimental results which compare the algorithms
presented in Sections 3–5. We conclude the paper in Section 7.

Algorithms 2021, 14, 175 3 of 18

2. Preliminaries and Basic Facts

We denote a signed permutation by π = (π1 π2 . . . πn), where πi ∈ {−n,−(n −
1), . . . ,−2,−1,+1,+2, . . . ,+(n− 1),+n} and |πi| 6= |πj|, for all 1 ≤ i < j ≤ n. We denote
an unsigned permutation similarly but neglect the signs of the elements.

We assume that there are two extra elements π0 = 0 and πn+1 = n + 1 in π, but,
for convenience, they are omitted from the permutation’s representation. Given an integer
λ ≥ 2 as input, we say that π is a λ-permutation if we have ||πi| − i| < λ for all 1 ≤ i ≤ n.
We define the size of a permutation as the number of elements in it, without counting π0
and πn+1.

Given two permutations π and σ, the composition of π and σ is equal to π · σ =
(α1 α2 . . . αn), such that αi = −π|σi |, if σi < 0, and αi = π|σi |, otherwise. The inverse
permutation of π, denoted by π−1, is the permutation such that π · π−1 = (1 2 . . . n).
For example, given π = (+2 + 4 − 5 − 1 + 3), we have that π−1 = (−4 + 1 + 5 + 2 − 3).

An unsigned reversal is denoted by ρ(i, j), with 1 ≤ i < j ≤ n, and it transforms an
unsigned permutation π = (π1 π2 . . . πn) into π · ρ(i, j) = (π1 . . . πi−1 πj . . . πi πj+1

. . . πn). A signed reversal is denoted by ρ̄(i, j), with 1 ≤ i ≤ j ≤ n, and when applied on
a signed permutation π = (π1 π2 . . . πn), the resulting permutation is π · ρ̄(i, j) = (π1
. . . πi−1 −πj . . . − πi πj+1 . . . πn−1 πn). The size of a (signed or unsigned) reversal is
given by j− i + 1. For example, given the signed permutation π = (−1 −4 +3 −2 +5), we
have π · ρ̄(2, 4) = (−1 +2 −3 +4 +5), and the size of such operation is 4− 2 + 1 = 3. We
say that ρ(i, j) or ¯ρ(i, j) is a λ-reversal if j− i + 1 ≤ λ.

An operation of transposition is denoted by τ(i, j, k), with 1 ≤ i < j < k ≤ n + 1,
and when applied on a (unsigned or signed) permutation π = (π1 π2 . . . πn), the result
is the permutation π · τ(i, j, k) = (π1 π2 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn). The
size of a transposition is given by k− i. For example, given the unsigned permutation π =
(4 5 6 1 2 3), we have π · τ(1, 4, 7) = (1 2 3 4 5 6) and the size of such operation is 7− 1 = 6.
We say that τ(i, j, k) is a λ-transposition if k− i ≤ λ.

The goal of these problems is to transform a λ-permutation π into the identity permu-
tation ι = (1 2 . . . n) by applying the minimum number of λ-operations, which defines
the sorting distance, such that each permutation generated during the process is also a
λ-permutation.

We denote by dλ
r (π), dλ

t (π), and dλ
rt(π) the sorting distance for the sorting unsigned

λ-permutation problems when we only have λ-reversals, λ-transpositions, and when we
have both operations, respectively. Similarly, we denote by dλ

r̄ (π) and dλ
r̄t(π) the sorting

distance for the sorting signed λ-permutation problems when we only have λ-reversals
and when we have both operations, respectively.

2.1. Complexity of Sorting λ-Permutations by λ-Operations

Next, we show an NP-Hardness proof for the sorting distance problem considering
some rearrangement models. For this purpose, we define the following decision problems:

• Sorting λ-Permutations by λ-Operations: given a positive integer λ, a rearrangement
modelM containing only λ-operations, a λ-permutation π, and a non-negative integer
k, decide if it is possible to sort π using, at most, k operations that belong toM.

• Sorting Permutations by Rearrangements: given a rearrangement modelM, a permu-
tation π, and a non-negative integer k, decide if it possible to sort π using, at most, k
operations that belong toM.

When λ = n, the problems of Sorting λ-Permutations by λ-Operations are NP-Hard
(except for signed reversals), since they are equivalent to the sorting problems without
restrictions in the size of operations. Next, we show that the problem is NP-Hard for a
wide range of λ values. When the rearrangement model is clear from the context, it is
omitted from the instance.

Algorithms 2021, 14, 175 4 of 18

Theorem 1. The problem of Sorting λ-Permutations by λ-Operations is NP-Hard when λ =
cnd, for positive constants c and 0 < d ≤ 1, considering unsigned reversals, transpositions,
transpositions and unsigned reversals, and transpositions and signed reversals.

Proof. Consider the model containing only unsigned reversals. The problem of Sorting
Permutations by Unsigned Reversals is NP-Hard [2]. Now, we show a reduction from this
problem to the problem of Sorting λ-Permutations by Unsigned λ-Reversals when λ = cnd,
for positive constants c and 0 < d ≤ 1.

Given an instance (π, k), where π has size n, for Sorting Permutations by Unsigned
Reversals, we create an instance (λ,M, π′, k), where λ = n,M is a model with unsigned
λ-reversals, and π′ = (π1 π2 . . . πn (n + 1) . . . n′), such that λ = n = cn′d, which is a λ-
permutation. We note that, since c and d are constants, this is a polynomial-time reduction.

Now, we show that the instance (π, k) is satisfied for Sorting Permutations by Un-
signed Reversals iff dλ

r (π
′) ≤ k.

(⇒) Suppose that there exists a sorting sequence S of reversals for π with k reversals or
less. Note that π has size n, and all reversals in S are λ-reversals, since λ = n. The sequence
S can sort the λ-permutation π′; therefore, dλ

r (π
′) ≤ k.

(⇐) Suppose that there exists a sorting sequence S′ of λ-reversals for π′ with k opera-
tions or less. We now construct a sorting sequence S for π with k or less reversals. If all
operations of S′ affect only elements between the positions 1 and n of π′, then S = S′ is also
a sorting sequence for π. Otherwise, there exists operations in S′ which affect the elements
in the interval [n + 1, n′]. Let S′ = ρ′1, ρ′2, . . . , ρ′`, where ` is the length of S′. We construct
S = ρ1, ρ2, . . . , ρ`, where ρi starts at the first element of ρ′i, from left to right, which is in π,
and it ends at the last element of ρ′i which is in π. Since S inverts the elements of π in the
same order as they are inverted in π′ by S′, this sequence sorts π. Note that the length of S
is less than or equal to ` because S′ may have reversals which do not affect elements that
are in π, which corresponds to an empty reversal in S that can be ignored.

The proof is analogous for the other three models.

2.2. Inversions

An inversion is defined as a pair of elements (πi, πj) such that i < j and |πi| > |πj|.
The number of inversions in π is denoted by Inv(π).

For example, the permutation π = (1 5 4 3 2) has 6 inversions. The 3-reversal ρ(3, 5)
transforms π into π′ = (1 5 2 3 4) that has 3 inversions.

Lemma 1. For all λ-permutations π 6= ι and all λ ≥ 2, we have dλ
r (π) ≥ Inv(π)

λ(λ−1)/2 , dλ
t (π) ≥

Inv(π)
λ2/4 , and dλ

rt(π) ≥ Inv(π)
λ(λ−1)/2 .

Proof. A λ-reversal of length k can only change the inversions between elements of the
segment affected by it. Therefore, the maximum number of inversions that a reversal
of length k can remove is equal to (k

2), since this is the maximum number of inversions
between the elements of a segment of length k. By definition, the length of a λ-reversal
is less than or equal to λ, so a λ-reversal can remove, at most, (λ

2) inversions. Since the
identity permutation is the only one with Inv(π) = 0, any sorting sequence has to remove
all inversions of the permutation, which results in the lower bound dλ

r (π) ≥ Inv(π)
λ(λ−1)/2 .

A λ-transposition τ(i, j, k) of length k′ also affects only the inversions between ele-
ments affected by it. Moreover, the inversions between elements on the segment πi, . . . , πj−1
are not changed. The same is valid for inversions between elements of the segment
πj, . . . , πk−1. So, if an inversion (πx, πy), with x < y, is removed, then πx is in πi, . . . , πj−1
and πy is in πj, . . . , πk−1. Therefore, the maximum number of inversions that a transposi-
tion can remove is equal to (j− i)(k− j) ≤ (k′/2)2, since (j− i) + (k− j) = k′. This bound
is maximum when k′ = λ, which results in λ2/4. As before, this results in the lower bound
dλ

t (π) ≥ Inv(π)
λ2/4 .

Algorithms 2021, 14, 175 5 of 18

Using a similar argument, we have dλ
rt(π) ≥ Inv(π)

λ(λ−1)/2 .

2.3. Breakpoints

An unsigned reversal breakpoint is defined as a pair of elements (πi, πi+1) such that
|πi+1 − πi| 6= 1, for all 0 ≤ i ≤ n, in the problems of Sorting Unsigned λ-Permutations by
λ-Reversals and Sorting Unsigned λ-Permutations by λ-Reversals and λ-Transpositions. A
transposition breakpoint or signed reversal breakpoint is defined as a pair of elements (πi, πi+1)
such that πi+1 − πi 6= 1, for all 0 ≤ i ≤ n, in the problems of Sorting Unsigned λ-
Permutations by Transpositions, Sorting Signed λ-Permutations by λ-Reversals, and Sort-
ing Signed λ-Permutations by λ-Reversals and λ-Transpositions. Considering a specific
type of breakpoint, the number of breakpoints in π is denoted by b(π).

Fact 1. [21,22] For all λ-permutations π 6= ι and all λ ≥ 2, we have dλ
r (π) ≥ b(π)

2 , dλ
t (π) ≥

b(π)
3 , dλ

rt(π) ≥ b(π)
3 , dλ

r̄ (π) ≥ b(π)
2 , and dλ

r̄t(π) ≥ b(π)
3 .

2.4. Strips

A maximal subsequence (πi πi+1 . . . πj) without any breakpoints (πk, πk+1), for all
i ≤ k < j, is called a strip.

For the problems of sorting unsigned λ-permutations, if the strip’s elements are in
ascending (resp. descending) order, then we call it an increasing (resp. decreasing) strip.
Strips containing only one element are considered to be increasing ones. For example,
considering sorting unsigned λ-permutations by both operations and π = (6 4 5 3 2 1), we
have two increasing strips (6) and (4 5), and a decreasing strip (3 2 1). Note, however,
that segment (3 2 1) is not a decreasing strip for the problem of Sorting λ-Permutations by
λ-Transpositions. This is because, direct from the definition of strips and breakpoints, there
are no decreasing strips when this problem is being considered.

For the problems of sorting signed λ-permutations, if the strip’s elements are positive,
then we call it an increasing strip. Otherwise, the strip is called a decreasing strip. Strips
containing only one element are considered to be increasing ones if such an element is
positive. Otherwise, they are considered to be decreasing strips. For example, considering
sorting signed λ-permutations and π = (+6 − 5 − 4 + 1 + 2 − 3), we have two increasing
strips, (+6) and (+1 + 2), and two decreasing strips, (−5 − 4) and (−3). Note that,
despite the elements of strip (−5 − 4) are in ascending order, it still is a decreasing strip,
according to our definition.

The number of elements in a strip S of a λ-permutation π is denoted by |S|. We say
that an element πi is out-of-place if |πi| 6= i.

Lemma 2. Let π be a λ-permutation, and let |πj| = i be the smallest element out-of-place in π
(i.e., |πj| is minimum and πj 6= j). The strip S that contains πj is such that |S| ≤ λ− 1.

Proof. First, suppose we have the increasing strip S = (πj . . . πk). Let R = (πi . . . πj−1)
be the segment of elements to the left of S. Note that the absolute value of any element in
R is greater than any element in S. Therefore, |πi| ≥ |πk|+ 1 = |πj|+ k− j + 1 = i + |S|,
and then |S| ≤ |πi| − i < λ.

When we have πj in a decreasing strip, the proof is analogous.

3. Inversions-Based Approximation Algorithms for Unsigned Permutations

In this section, we present approximation algorithms based on the concept of inver-
sions for the sorting unsigned λ-permutations problems we are addressing.

The next lemma shows that it is always possible to remove at least one inversion from
a λ-permutation by applying one λ-operation which results in a λ-permutation.

Algorithms 2021, 14, 175 6 of 18

Lemma 3. For any λ-permutation π 6= ι, we can apply a 2-reversal or a 2-transposition to obtain
a λ-permutation with Inv(π)− 1 inversions.

Proof. Let πj = i be the smallest element out-of-place in π. Initially, note we have inversion
(πj−1, πj), since πj−1 > πj and j− 1 < j. Let σ be a 2-operation that swaps elements πj−1
and πj, and let π′ = π · σ. It is easy to see that Inv(π′) = Inv(π)− 1, since such inversion
was removed, and note that there always exists a λ-reversal or a λ-transposition equivalent
to σ, because the elements are adjacent, and, so, both only swap two elements.

Observe that, in π′, element πj is closer to its correct position, since it was moved to
the left. Hence, we follow by showing that π′ is a λ-permutation by considering two cases
according to the values of πj−1 = π′j.

If πj−1 ≥ j, then πj−1 is also closer to its correct position, in π′. Otherwise, πj−1 < j.
Thus, element πj−1 will be, in π′, one position away from its correct position. Then, note
that |j− πj|+ 1 = (j− i) + 1 ≤ λ because π is a λ-permutation. In addition, observe that
we have |j− π′j| = j− π′j because π′j = πj−1 < j, and j− π′j < j− i because π′j > i, and,
so, j− i ≤ λ− 1. Therefore, π′ is a λ-permutation, and the result follows.

A generic greedy approximation algorithm for the three problems we are addressing
in this section is presented in the next theorem. It receives an integer λ ≥ 2 and a λ-
permutation π 6= ι as input. It is greedy because it always tries to decrease the largest
amount of inversions in π. Since an unsorted permutation always contains inversions,
the algorithm will finally sort π.

Theorem 2. There exist O(λ2)-approximation algorithms for the problems of Sorting Unsigned
λ-Permutations by λ-Reversals, by λ-Transpositions, and by λ-Reversals and λ-Transpositions.

Proof. Let λ ≥ 2 be an integer, and let π 6= ι be a λ-permutation. Consider an algorithm
which chooses a λ-operation σ, such that π · σ is a λ-permutation and Inv(π · σ) is as small
as possible, and then it applies such operation over π. The algorithm repeats the same
process over the resulting permutation until it reaches the identity permutation.

In the worst case, we always have one λ-operation reducing the number of inversions
by one unit, as shown in Lemma 3. Therefore, the number of operations of such greedy
algorithm is, at most, Inv(π), and the approximation factor follows immediately from
Lemma 1.

Note that the distance is O(n2) because any unsigned permutation can be sorted with
O(n2) λ-reversals or λ-transpositions. For Sorting Unsigned Permutations by λ-Reversals,
at each step the algorithm considers O(λ2) possible reversals that can be chosen. Since
the variation in the number of inversions caused by an operation can be calculated in
O(λ

√
log λ) time [23], the algorithm has total time complexity O(n2λ3√log λ). Using the

same analysis, we conclude that the algorithms involving transpositions have total time
complexity O(n2λ4√log λ).

4. Algorithms Based on Inversions and Entropy for Signed λ-Permutations

The entropy of an element πi from a permutation π is given by ent(πi) = ||πi| − i|,
that is, the distance between πi and its position in ι. We denote by Eeven−

π the set of
negative elements in π such that ent(πi) is even, for all 1 ≤ i ≤ n. Similarly, we denote
by Eodd+

π the set of positive elements in π such that ent(πi) is odd. For example, given
π = (−4 + 3 − 1 − 2 + 5), we have Eeven−

π = {−1,−2} and Eodd+
π = {+3}, since −1

and −2 are negative elements with even entropy (ent(−1) = ent(−2) = 2), and +3 is a
positive element with odd entropy (ent(+3) = 1), respectively.

Fact 2. [16] Let π be a signed permutation, and let σ be a 2-reversal. We have |Eeven−
π |+ |Eodd+

π | =
|Eeven−

π·σ |+ |Eodd+
π·σ |.

Algorithms 2021, 14, 175 7 of 18

Fact 3. [24] Let π be a signed permutation, and let σ be a λ-operation. We have (|Eeven−
π |

+|Eodd+
π |)− (|Eeven−

π·σ |+ |Eodd+
π·σ |) ≤ λ.

The score of a λ-operation σ over a signed permutation π is given by score(π, σ) =

(Inv(π) + |Eeven−
π |+ |Eodd+

π |)− (|Inv(π · σ)|+ |Eeven−
π·σ |+ |Eodd+

π·σ |).
Combining Fact 3 with the fact that a λ-reversal and a λ-transposition can remove,

at most, λ(λ−1)
2 inversions, we have an upper bound for the score of a permutation in

Lemma 4. This upper bound implies Corollary 1.

Lemma 4. Let π be a signed permutation. We have score(π, σ) ≤ λ(λ− 1)/2 + λ.

Corollary 1. For any signed λ-permutation π 6= ι, λ ≥ 2, and β ∈ {r̄, r̄t}, we have dλ
β(π) ≥

Inv(π)+|Eeven−
π |+|Eodd+

π |
λ(λ−1)/2+λ

.

We follow by showing in Lemma 5 that there always exists a λ-operation with score
at least 1. Having this in mind, a generic greedy approximation algorithm for the two
sorting signed permutations problems we are addressing is presented in next theorem.
It receives an integer λ ≥ 2 and a λ-permutation π 6= ι as input. It is greedy because
it always chooses a λ-operation with the largest score. Since the only permutation with
Inv(π) = |Eeven−

π | = |Eodd+
π | = 0 is the identity, it will, eventually, sort π.

Lemma 5. For any signed permutation π 6= ι and λ ≥ 2, there always exists a λ-operation σ such
that π · σ is a λ-permutation and score(π, σ) ≥ 1.

Proof. The proof is divided into two cases, according to Inv(π).
First, consider Inv(π) = 0. Note that, in this case, we only have zero entropy elements

in π, implying that |Eodd+
π | = 0. So, by applying an unitary λ-reversal σ over a negative

element, we get a λ-permutation π · σ such that |Eeven−
π·σ | = |Eeven−

π | − 1. Since such an
operation holds Inv(π · σ) = |Eodd+

π·σ | = 0, we have score(π, σ) = 1.
For Inv(π) > 0, Lemma 3 shows how to decrease the amount of inversions by

applying one 2-reversal σ and, since Fact 2 shows that (|Eeven−
π |+ |Eodd+

π |) = (|Eeven−
π·σ |+

|Eodd+
π·σ |), we have score(π, σ) = 1.

Note that, in both cases, the resulting permutation is also a λ-permutation.

Theorem 3. There exist (λ(λ−1)
2 + λ)-approximation algorithms for the problems of Sorting

Signed λ-Permutations by λ-Reversals and Sorting Signed λ-Permutations by λ-Reversals and
λ-Transpositions.

Proof. Let λ ≥ 2 be an integer, and let π 6= ι be a λ-permutation. Consider an algorithm
which chooses the λ-operation σ such that π · σ is a λ-permutation and score(π · σ) is as
great as possible and then it applies such operation over π. The algorithm repeats the same
process in the resulting permutation until it reaches the identity permutation.

In the worst case, as shown in Lemma 5, we always have one λ-reversal with score
1. Therefore, the number of operations of such greedy algorithm is, at most, Inv(π) +

|Eeven−
π |+ |Eodd+

π |, and the approximation factor follows immediately from Corollary 1.

Since Inv(π) + |Eeven−
π |+ |Eodd+

π | is O(n2) and the time to calculate the variation in
the number of |Eeven−

π |+ |Eodd+
π | is O(λ), the analysis of time complexity is analogous to

the algorithms previously presented for the sorting unsigned permutation problems.

5. Breakpoints-Based Approximation Algorithms

In this section, we present approximation algorithms based on the concept of break-
points for the five problems we are addressing.

Algorithms 2021, 14, 175 8 of 18

In the next lemma, we suppose that the smallest element out-of-place is in an increas-
ing strip of a λ-permutation π 6= ι. We show how to reduce the number of breakpoints
of π by moving this strip to its correct position using an operation that may not be a λ
-operation, but assuring that the resulting permutation is also a λ-permutation.

Lemma 6. Let π be a λ-permutation. Let |πj| = i be the smallest element out-of-place in
π. Suppose that πj is in an increasing strip S = (πj . . . πk). Then, π · τ(i, j, k + 1) is a
λ-permutation, b(π · τ(i, j, k + 1)) ≤ b(π)− 1, and (k + 1− i) ≤ 2(λ− 1).

Proof. Let R = (πi . . . πj−1) be the segment of elements in π that will be transposed with
S. Observe that the absolute value of any element in R is greater than any element in S,
so π · τ(i, j, k + 1) is a λ-permutation, since greater elements (in their absolute values) are
moved to the right and smaller elements to the left. In addition, observe that, in π, we have
the three breakpoints (πi−1, πi), (πj, πj+1), and (πk−1, πk), where the first one is because
πi−1 = πj − 1 = i− 1 and |πi| > i = πj, and the second and third ones are because the
strip’s start and strip’s end are at positions j and k, respectively. Transposition τ(i, j, k + 1)
moves the elements of S to their correct positions by transposing them with elements of R,
thus removing at least breakpoint (πi−1, πi). Since a transposition can add, at most, three
breakpoints, but we already had all of them and we removed at least (πi−1, πi), we have
b(π · τ(i, j, k + 1)) ≤ b(π)− 1.

By Lemma 2, we have |S| ≤ λ− 1; thus, k + 1− j ≤ λ− 1. Since π is a λ-permutation,
we have ||πj| − j| ≤ λ− 1, and, by construction, πj = i; thus, |i− j|+ 1 = j− i + 1 ≤ λ− 1.
Therefore, k + 1− i ≤ 2(λ− 1).

For a λ-permutation π with only increasing strips, the next lemma shows that it is pos-
sible to find a sequence with, at most, 4 transpositions that decreases the number of break-
points in π, assuring that all permutations generated in the process are λ-permutations.
Using these operations, we can create an algorithm that sorts π using, at most, 4b(π)
λ-transpositions.

Lemma 7. Let π be a λ-permutation. Let |πj| = i be the smallest element out-of-place in π.
Suppose that πj is in an increasing strip S = (πj . . . πk). It is always possible to obtain a
λ-permutation π · τ(i, j, k + 1) with, at most, b(π) − 1 breakpoints by applying, at most, 4
λ-transpositions such that all intermediary permutations are λ-permutations.

Proof. Let R = (πi . . . πj−1) be the segment that will be moved to the right in τ(i, j, k + 1).
Note that |S| ≤ λ− 1, by Lemma 2, and |R| ≤ λ− 1, because π is a λ-permutation.

The idea is to apply a sequence with, at most, four λ-transpositions that divide both
segments R = (πi . . . πj−1) and S = (πj . . . πk) into, at most, two parts each, where each
part has, at most, bλ/2c elements, and then exchange each part of S, at most, twice (and
at least once), with the (possible) two parts of R. If we had exactly λ− 1 elements in each
of S and R, such sequence would be τ(i + bλ/2c, j, j + bλ/2c), τ(i, i + bλ/2c, j), τ(j, j +
bλ/2c, k + 1), τ(i + bλ/2c, j, j + bλ/2c).

Now, we have to show that, after each of the, at most, four operations is applied, we
have a λ-permutation as result.

Observe that the absolute value of any element in R is greater than any element in S.
Since each λ-transposition puts elements of S closer to their correct positions by transposing
them with greater elements (in their absolute values) of R, we have a λ-permutation after
each λ-operation applied. After all λ-transpositions are applied, the elements of S are at
positions from i to i + k− j, and the elements of R are at positions from i + k− j + 1 to k,
resulting in π · τ(i, j, k + 1), which is a λ-permutation with at least b(π)− 1 breakpoints,
as shown in Lemma 6.

For a λ-permutation π with only increasing strips, the next lemma shows how to
decrease the number of breakpoints in π using only λ-reversals, also assuring that all
permutations generated in the process are λ-permutations.

Algorithms 2021, 14, 175 9 of 18

Lemma 8. Let π be a λ-permutation. Let |πj| = i be the smallest element out-of-place in π.
Suppose that π only has increasing strips and that πj is in a strip S = (πj . . . πk). It is always
possible to obtain a λ-permutation π · τ(i, j, k + 1) with, at most, b(π)− 1 breakpoints by applying,
at most, 5 + λ− 1 λ-reversals such that all intermediary permutations are λ-permutations.

Proof. Let R = (πi . . . πj−1) be the segment that will be moved to the right in τ(i, j, k + 1).
Note that |S| ≤ λ− 1, by Lemma 2, and |R| ≤ λ− 1, because π is a λ-permutation.

The idea is to move elements from S to their correct positions by applying, at most,
two sequences of pairs of λ-reversals, where each one puts, at most, bλ/2c elements of S in
their correct positions at a time.

In the first sequence of λ-reversals, there are two possibilities. If |S| ≤ bλ/2c, then the
first operation of each pair reverses |S| elements contained in both S and R. If |S| > bλ/2c,
then it reverses bλ/2c elements contained in both S and R. In any case, the second operation
of each pair reverses back the elements of R affected by the first one, in order to leave π
with only increasing strips again (except for the elements of S which were affected by the
first operation).

After the sequence is applied, we have, at most, bλ/2c elements of S from positions
i to i + min(bλ/2c, |S|), and, maybe, they are in a decreasing strip. If this is the case,
then one more λ-reversal has to be applied to put these elements in their correct places,
by reversing such decreasing strip.

The second sequence of λ-reversals puts the (at most) bλ/2c remaining elements of S
in their correct positions, following the same idea, and, also, maybe one extra λ-reversal
will be necessary after it is applied. Note that, if there are no remaining elements (in case of
|S| ≤ bλ/2c), this sequence is not necessary.

The largest amount of operations needed in the process described above happens
when we have bλ/2c+ 1 elements in S. Since |S| > bλ/2c, our process starts by moving the
first bλ/2c elements of S to their correct positions. Observe that, for each pair of reversals
applied in the first sequence, one of them moves bλ/2c elements bλ/2c positions to the left
(except, maybe, by the last pair), and then the other one reverses again the elements of R
affected by the first reversal. Besides that, by the definition of λ-permutations, the elements
of S are, at most, λ− 1 positions away from their correct positions, and, so, at most, 2 pairs
of reversals are needed to put them at position i. As we have told before, maybe such
elements of S ended up in reversed order and, in order to fix it, one more reversal is needed.
Hence, we already have a total of, at most, 5 reversals applied.

To move the remaining element of S to its correct position, all the λ-reversals of the
second sequence will have size 2 (note that, in this case, we do not need the second
operation of each pair), which means such element will be moved only 1 position to the
left per operation, giving an extra amount of λ− 1 λ-reversals. Therefore, the number of
λ-reversals to move S to its correct position is, at most, 5 + λ− 1.

Now, we have to show that, after applying each operation, we have a λ-permutation
as result and, after the last operation is applied, we have π · τ(i, j, k + 1).

Observe that any element in R is greater than any element in S. Then, since the first
operation of each pair moves elements of R to the right and elements of S to the left, all
elements affected will be closer to their correct positions, resulting in a λ-permutation. The
second operation of each pair reverses elements of R to ascending order again, so it also
results in a λ-permutation. After both sequences of λ-reversals are applied, all elements of
S are at positions from i to i + k− j and all elements of R are at positions from i + k− 1 to
k, resulting in π · τ(i, j, k + 1), which is a λ-permutation with at least one less breakpoint
than π, as shown in Lemma 6.

Lemma 9 shows how to decrease the number of breakpoints of a λ-permutation π,
considering that the smallest element out-of-place of π is in a decreasing strip. Since
Lemma 8 deals with the case where π has no decreasing strips, we can use these two
lemmas together to develop an algorithm to sort a λ-permutation π using only λ-reversals.

Algorithms 2021, 14, 175 10 of 18

Lemma 9. Let |πk| = i be the smallest element out-of-place in a λ-permutation π. Suppose that
πk is in a decreasing strip S = (πj . . . πk). It is always possible to obtain a λ-permutation with,
at most, b(π)− 1 breakpoints by applying, at most, one λ-transposition and one λ-reversal.

Proof. When j = i, one reversal ρ(j, k) put elements of S in their correct positions. It is easy
to see that π · ρ(j, k) is a λ-permutation and, since |S| = k− j + 1 ≤ λ− 1 by Lemma 2, we
have that ρ(j, k) is a λ-reversal.

Now, assume j > i. Note that, in this case, we have the three breakpoints (πi−1, πi),
(πj, πj+1), and (πk−1, πk), where the first one is because πi−1 = |πk| − 1 = i− 1 and |πi| >
i = |πk|, and the second and third ones are because the strip’s start and strip’s end are at
positions k and j, respectively. Thus, we can apply the λ-transposition τ(i, j, k + 1) followed
by the λ-reversal ρ(i, i + (k− j)) to obtain b(π · τ(i, j, k + 1) · ρ(i, i + (k− j))) ≤ b(π)− 1,
since a λ-transposition can add, at most, three breakpoints but we already had (πi−1, πi),
(πj−1, πj), and (πk, πk+1), and the second λ-reversal can add, at most, two breakpoints,
but we already had (πi−1, πj) and (πk, πi) and we removed the first one, since all elements
of S will be in their correct positions in π · τ(i, j, k + 1) · ρ(i, i + (k− j)).

Now, we have to show that, after each operation is applied, we have a λ-permutation
as result.

Let R = (πi . . . πj−1) be the segment of elements that should be moved in order
to put S in its correct position. Observe that the absolute value of any element in R is
greater than any element in S. The first operation, a λ-transposition, transposes S only
with greater elements (in their absolute values); thus, the result is a λ-permutation. The
second operation, a λ-reversal, just reverses a decreasing strip to put the elements of S in
their correct positions; thus, it also results in a λ-permutation. Hence, we have as result a
λ-permutation with at least one less breakpoint.

The next theorems describe approximation algorithms for the problems we are ad-
dressing. Lemma 10 is auxiliary to Theorem 4. The algorithms receive an integer λ ≥ 2 and
a λ-permutation π 6= ι as input. The goal is to decrease at least one unit on the number of
breakpoints in π by moving elements to their correct positions (applying Lemmas 7 and 9).
Since the only permutation with no breakpoints is the identity, they will, eventually, sort π.

Lemma 10. Let π be a λ-permutation. Let S = (j . . . i) be a decreasing strip in π (thus, i < j).
Let π′ = π · ρ(π−1

|j| , π−1
|i|) be the resulting permutation after reversing S in π. Then, π′ is a

λ-permutation.

Proof. First, note that element πj is to the right of element πi. We show that the lemma
follows by considering four cases, according to the positions of elements i and j in relation
with the elements π|i| and π|j|.

Case (i), |i| < |j| < π−1
|j| < π−1

|i| : note that both π|i| and π|j| are to the left of S. Then,
after reversing S, element i is closer to its correct position, while element j is moved away
from its correct position. Despite this, the distance between π|j| and j in π′ is smaller
than the distance between π|i| and i in π, and, so, if π is a λ-permutation, π′ is also a
λ-permutation.

Case (ii), |i| < π−1
|j| ≤ |j| < π−1

|i| : note that π|i| is to the left of S, and π|j| is in S. Then,
after reversing S, the element i is closer to its correct position and the distance of j to its
correct position will still be less than λ, since the size of S is, at most, λ, as Lemma 2 shows.

Case (iii), π−1
|j| ≤ |i| < π−1

|i| ≤ |j|: similar to (ii).

Case (iv), π−1
|j| < π−1

|i| ≤ |i| < |j|: similar to (i).

Theorem 4. The problems of Sorting (Unsigned or Signed) λ-Permutations by λ-Reversals have
(10 + 2λ)-approximation algorithms.

Algorithms 2021, 14, 175 11 of 18

Proof. Let λ ≥ 2 be an integer and π 6= ι be a λ-permutation. Consider an algorithm which
first applies one λ-reversal over each decreasing strip of π in order to get a λ-permutation
with only increasing strips. By Lemma 10, we guarantee that all intermediary permutations
generated by these λ-reversals are λ-permutations.

Then, the algorithm will repeatedly take the smallest element out-of-place and move
the increasing strip that contains it to its correct position, obtaining a λ-permutation with
at least one less breakpoint, until it reaches the identity permutation.

As shown in Lemma 8, at most 5 + λ− 1 λ-reversals are needed to move each strip
to its correct position. Since, maybe, one extra λ-reversal could have been applied in the
beginning of the algorithm to transform such strip into an increasing one, we have that,
at most, 6 + λ− 1 λ-reversals can be applied to remove at least one breakpoint. Therefore,
the number of operations of our algorithm is, at most,

(6 + λ− 1)b(π) ≤ 2(6 + λ− 1)dλ
β(π) = (10 + 2λ)dλ

β(π) ,

for β ∈ {r, r̄}, and the inequality follows from Fact 1.

Theorem 5. The problem of Sorting λ-Permutations by λ-Transpositions has a 12-approximation
algorithm.

Proof. Let λ ≥ 2 be an integer, and let π 6= ι be a λ-permutation. The algorithm will
repeatedly take the smallest element out-of-place and move the increasing strip that
contains such element to its correct position, obtaining a λ-permutation with at least one
less breakpoint, until it reaches the identity permutation.

As shown in Lemma 7, at most, 4 λ-transpositions are needed to move each strip to its
correct position. Then, in the worst case, we remove 1 breakpoint every 4 λ-transpositions
applied. With this and Fact 1, the number of operations of our algorithm is, at most,
4b(π) ≤ 12dλ

t (π).

Theorem 6. The problems of Sorting (Unsigned or Signed) λ-Permutations by λ-Reversals and
λ-Transpositions have 12-approximation algorithms.

Proof. Let λ ≥ 2 be an integer, and let π 6= ι be a λ-permutation. Let πj = i be the smallest
element out-of-place in π.

We have two cases to consider: when the strip which contains πj is decreasing or
not. In both cases, we can at least remove breakpoint (πi−1, πi) from π without adding
other ones by applying, at most, 4 λ-transpositions (if the strip is increasing) or, at most, 2
λ-operations (if the strip is decreasing), as shown in Lemmas 7 and 9, respectively.

Then, considering both cases described, the algorithm will repeatedly take the smallest
element out-of-place and move the strip that contains it to its correct position, decreasing
at least one breakpoint at a time, until it reaches the identity permutation.

Note that, in the worst case, we remove 1 breakpoint every 4 λ-transpositions, and, so,
the result is analogous to Theorem 5.

Note that b(π) is O(n) and the time complexity to find the strip with the smallest
element out-of-place in π is O(n). So, we conclude that the time complexity for the O(1)-
approximation algorithms and the O(λ)-approximation algorithm are O(n(n + λ)) and
O(n(n + λ2)), respectively.

6. Experimental Results

In order to analyze how the proposed algorithms work from a practical perspective,
we have implemented the inversions-based (Theorems 2 and 3) and the breakpoints-based
(Theorems 4–6) greedy algorithms.

We can also achieve an approximation factor of O(λ2) with algorithms that always
apply an operation of size 2 according to Lemma 3, for unsigned permutations, or Lemma 5,

Algorithms 2021, 14, 175 12 of 18

for signed permutations. There exists a way to implement such algorithms so that they
have time complexity of O(n log n) [25]. We also implemented these algorithms, which
we named super short algorithms, for comparison purposes. The difference between the
super short algorithms and the inversions-based algorithms from Theorems 2 and 3 is
that the super short algorithms only use operations of size 2, while the algorithms from
Theorems 2 and 3 use, at each iteration, the operation that most decrease the number of
inversions, which can have size, at most, λ.

We performed experiments considering a total of 1000 signed and unsigned
λ-permutations, with size equal to 100 and values of λ ∈ {5, 10, 15, . . . , 100}, as input
for the algorithms. The considered λ-permutations were generated in two different ways:
(i) totally random, and (ii) by applying 20 random λ-operations (according to the rear-
rangement model of each problem) over the identity. We reinforce that all generated
permutations in both cases, including the intermediary ones of case (ii), are λ-permutations.
For (i), the λ-permutations tend to have a high amount of breakpoints, and for (ii) they tend
to have a high amount of strips and, moreover, we know the distance is, at most, 20. Then,
we compared the results according to the average and maximum approximation factors
obtained for all permutations. For each permutation, we calculated the approximation
factor by dividing the size of the sorting sequence by the maximum value of lower bound
between the ones shown in Lemma 1 and Fact 1.

We show the results for totally random λ-permutations in Figures 1 and 2, and for
λ-permutations generated from the identity in Figures 3 and 4.

0 10 20 30 40 50 60 70 80 90 100

λ

1.0

2.0

5.0

10.0

20.0

50.0

100.0

A
p

p
ro

xi
m

at
io

n
F

ac
to

rs

Super Short Alg. (Avg)

Super Short Alg. (Max)

Inversions-based Alg. (Avg)

Inversions-based Alg. (Max)

Breakpoints-based Alg. (Avg)

Breakpoints-based Alg. (Max)

(a) Sorting Signed λ-Permutations by λ-Reversals.

0 10 20 30 40 50 60 70 80 90 100

λ

1.0

2.0

5.0

10.0

20.0

50.0

100.0

A
p

p
ro

xi
m

at
io

n
F

ac
to

rs

Super Short Alg. (Avg)

Super Short Alg. (Max)

Inversions-based Alg. (Avg)

Inversions-based Alg. (Max)

Breakpoints-based Alg. (Avg)

Breakpoints-based Alg. (Max)

(b) Sorting Signed λ-Permutations by λ-Reversals and λ-Transpositions.

Figure 1. Average and maximum approximation factors of the algorithms for Sorting Signed λ-
Permutations by λ-Operations, with totally random λ-permutations of size 100 as inputs. Note that a
logarithmic scale is used in the y-axis of each graph.

Algorithms 2021, 14, 175 13 of 18

0 10 20 30 40 50 60 70 80 90 100

λ

1.0

2.0

5.0

10.0

20.0

50.0

100.0

A
p

p
ro

xi
m

at
io

n
F

ac
to

rs

Super Short Alg. (Avg)

Super Short Alg. (Max)

Inversions-based Alg. (Avg)

Inversions-based Alg. (Max)

Breakpoints-based Alg. (Avg)

Breakpoints-based Alg. (Max)

(a) Sorting Unsigned λ-Permutations by λ-Reversals.

0 10 20 30 40 50 60 70 80 90 100

λ

1.0

2.0

5.0

10.0

20.0

50.0

100.0

A
p

p
ro

xi
m

at
io

n
F

ac
to

rs

Super Short Alg. (Avg)

Super Short Alg. (Max)

Inversions-based Alg. (Avg)

Inversions-based Alg. (Max)

Breakpoints-based Alg. (Avg)

Breakpoints-based Alg. (Max)

(b) Sorting Unsigned λ-Permutations by λ-Transpositions.

0 10 20 30 40 50 60 70 80 90 100

λ

1.0

2.0

5.0

10.0

20.0

50.0

100.0

A
p

p
ro

xi
m

at
io

n
F

ac
to

rs

Super Short Alg. (Avg)

Super Short Alg. (Max)

Inversions-based Alg. (Avg)

Inversions-based Alg. (Max)

Breakpoints-based Alg. (Avg)

Breakpoints-based Alg. (Max)

(c) Sorting Unsigned λ-Permutations by λ-Reversals and λ-Transpositions.

Figure 2. Average and maximum approximation factors of the algorithms for Sorting Unsigned
λ-Permutations by λ-Operations, with totally random λ-permutations of size 100 as inputs. Note
that a logarithmic scale is used in the y-axis of each graph.

Algorithms 2021, 14, 175 14 of 18

0 10 20 30 40 50 60 70 80 90 100

λ

1.0

2.0

5.0

10.0

20.0

50.0

100.0

A
p

p
ro

xi
m

at
io

n
F

ac
to

rs

Super Short Alg. (Avg)

Super Short Alg. (Max)

Inversions-based Alg. (Avg)

Inversions-based Alg. (Max)

Breakpoints-based Alg. (Avg)

Breakpoints-based Alg. (Max)

(a) Sorting Signed λ-Permutations by λ-Reversals.

0 10 20 30 40 50 60 70 80 90 100

λ

1.0

2.0

5.0

10.0

20.0

50.0

100.0

A
p

p
ro

xi
m

at
io

n
F

ac
to

rs

Super Short Alg. (Avg)

Super Short Alg. (Max)

Inversions-based Alg. (Avg)

Inversions-based Alg. (Max)

Breakpoints-based Alg. (Avg)

Breakpoints-based Alg. (Max)

(b) Sorting Signed λ-Permutations by λ-Reversals and λ-Transpositions.

Figure 3. Average and maximum approximation factors of the algorithms for Sorting Signed λ-
Permutations by λ-Operations, with random λ-permutations generated from ι of size 100 as inputs.
Note that a logarithmic scale is used in the y-axis of each graph.

0 10 20 30 40 50 60 70 80 90 100

λ

1.0

2.0

5.0

10.0

20.0

50.0

100.0

A
p

p
ro

xi
m

at
io

n
F

ac
to

rs

Super Short Alg. (Avg)

Super Short Alg. (Max)

Inversions-based Alg. (Avg)

Inversions-based Alg. (Max)

Breakpoints-based Alg. (Avg)

Breakpoints-based Alg. (Max)

(a) Sorting Unsigned λ-Permutations by λ-Reversals.

Figure 4. Cont.

Algorithms 2021, 14, 175 15 of 18

0 10 20 30 40 50 60 70 80 90 100

λ

1.0

2.0

5.0

10.0

20.0

50.0

100.0

A
p

p
ro

xi
m

at
io

n
F

ac
to

rs
Super Short Alg. (Avg)

Super Short Alg. (Max)

Inversions-based Alg. (Avg)

Inversions-based Alg. (Max)

Breakpoints-based Alg. (Avg)

Breakpoints-based Alg. (Max)

(b) Sorting Unsigned λ-Permutations by λ-Transpositions.

0 10 20 30 40 50 60 70 80 90 100

λ

1.0

2.0

5.0

10.0

20.0

50.0

100.0

A
p

p
ro

xi
m

at
io

n
F

ac
to

rs

Super Short Alg. (Avg)

Super Short Alg. (Max)

Inversions-based Alg. (Avg)

Inversions-based Alg. (Max)

Breakpoints-based Alg. (Avg)

Breakpoints-based Alg. (Max)

(c) Sorting Unsigned λ-Permutations by λ-Reversals and λ-Transpositions.

Figure 4. Average and maximum approximation factors of the algorithms for Sorting Unsigned
λ-Permutations by λ-Operations, with random λ-permutations generated from ι of size 100 as inputs.
Note that a logarithmic scale is used in the y-axis of each graph.

Even though the inversions-based and the super short algorithms have the same theo-
retical approximation factor, the experiments show that the inversions-based algorithms
are much better in practice. Hence, for the rest of this analysis, we only compare the results
of the inversions-based and breakpoints-based algorithms. Considering the results for
totally random λ-permutations, we observed that the maximum approximation factors for
sorting unsigned λ-permutations problems were 5.38 and 7.04 for λ-reversals, 2.91 and 3.06
for λ-transpositions, and 3.00 and 3.15 for when both λ-operations are allowed, considering
the breakpoints-based and the inversions-based algorithms, respectively. For the sorting
signed λ-permutations problems, the maximum approximation factors were 7.78 and 7.54
for λ-reversals and 4.74 and 5.21 for when both λ-operations are allowed, considering the
breakpoints-based and the inversions-based algorithms, respectively.

Another observation is that, for totally random λ-permutations, the average approxi-
mation factor of the inversions-based algorithm and the breakpoints-based algorithm were
similar (except for Sorting Signed λ-Permutations by λ-Reversals), even with the relevant
difference among their theoretical approximation factors.

Regarding the results for random λ-permutations generated from the identity, the max-
imum approximation factors for sorting unsigned λ-permutations problems were 6.08 and
18.5 for λ-reversals, 2.83 and 2.64 for λ-transpositions, and 4.33 and 3.58 for when both
λ-operations are allowed, considering the breakpoints-based and the inversions-based
algorithm, respectively. For the sorting signed λ-permutations problems, the maximum
approximation factors were 7.13 and 22.85 for λ-reversals and 5.00 and 11.56 for when both

Algorithms 2021, 14, 175 16 of 18

λ-operations are allowed, considering the breakpoints-based and the inversions-based
algorithm, respectively.

Furthermore, for this second type of λ-permutations, the maximum approximation
factors of the inversions-based algorithm for the sorting signed λ-permutations problems and
for the Sorting Unsigned λ-Permutations by λ-Reversals were considerably greater when
compared with their average approximation factors. Despite that, the average and maximum
factors given by the inversions-based algorithm were better for the two sorting unsigned
λ-permutations problems which allow λ-transpositions. For both problems which allow only
λ-reversals, the breakpoints-based algorithm had better average and maximum approxima-
tion factors. For Sorting Signed λ-Permutations by λ-Reversals and λ-Transpositions, both
algorithms had similar average approximation factor, but the breakpoints-based algorithm
had a better and more constant maximum approximation factor.

Our experiments reveal that the average approximation factor for the breakpoint-based
algorithms slight increases for the interval λ ∈ [30..100], while the average approximation
for the inversion-based algorithms has a greater increase in the same interval. This occurred
because there are more λ-reversals that decreases a breakpoint, when using bigger values
of λ, since the strips tend to get smaller compared to the value of λ, which is a crucial point
in Lemmas 8 and 9. A similar relation is not so common for inversions, since extending the
segment to be inverted may lead to inversions being added.

7. Conclusions

In this work, we introduced the problems of Sorting λ-Permutations by λ-Operations,
considering reversals and transpositions on signed and unsigned permutations.

We presented an NP-hardness proof for the models containing unsigned reversals,
transpositions, and the combination of (signed or unsigned) reversals and transpositions,
when λ = cnd for positive constants c and 0 < d ≤ 1. We developed algorithms with
approximation factors of O(λ2), O(λ), and O(1) for all problems studied. Besides that,
experiments were also performed in order to see their performance on simulated data.
Tables 1 and 2 summarize these results.

For future work, we intend to develop approximation algorithms with better approx-
imation factors for the problems of Sorting λ-Permutations by λ-Operations. Another
direction of future work is to study the complexity for the model containing only signed
reversals and other values of λ.

Table 1. Summary of the approximation results for the problems considering signed permutations.
The columns “Approx.” and “Time” refer to the theoretical approximation factor and the worst-case
complexity time, respectively.

Reversals Reversals and Transpositions

Approx. Time Approx. Time

Breakpoints-based 10 + 2λ O(n(n + λ2)) 12 O(n(n + λ))

Inversions-based λ(λ−1)
2 + λ O(n2λ3√log λ) λ(λ−1)

2 + λ O(n2λ4√log λ)

Table 2. Summary of the approximation results for the problems considering unsigned permutations.
The columns “Approx.” and “Time” refer to the theoretical approximation factor and the worst-case
complexity time, respectively.

Reversals Transpositions Reversals and Transpositions

Approx. Time Approx. Time Approx. Time

Breakpoints-
based 10 + 2λ O(n(n + λ2)) 12 O(n(n + λ)) 12 O(n(n + λ))

Inversions-
based O(λ2) O(n2λ3

√
log λ) O(λ2) O(n2λ4

√
log λ) O(λ2) O(n2λ4

√
log λ)

Algorithms 2021, 14, 175 17 of 18

Author Contributions: Conceptualization, G.H.S.M., A.O.A., C.N.L. and Z.D.; Data curation, G.H.S.M.;
Formal analysis, G.H.S.M., A.O.A. and C.N.L.; Funding acquisition, Z.D.; Investigation, G.H.S.M.,
A.O.A., C.N.L. and Z.D.; Writing—original draft, G.H.S.M. and A.O.A.; Writing—review & editing,
A.O.A., C.N.L and Z.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Brazilian Federal Agency for the Support and Evaluation
of Graduate Education, CAPES, the National Counsel of Technological and Scientific Development,
CNPq (grants 400487/2016-0, 425340/2016-3, and 304380/2018-0), and the São Paulo Research Foun-
dation, FAPESP (grants 2013/08293-7, 2015/11937-9, 2017/12646-3, 2017/16246-0, and 2017/16871-1).

Data Availability Statement: All algorithms were implemented and they are available at https:
//github.com/compbiogroup/lambda-permutations, alongside the instances used in the experi-
ments.(accessed on 29 April 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bulteau, L.; Fertin, G.; Rusu, I. Sorting by Transpositions is Difficult. SIAM J. Comput. 2012, 26, 1148–1180. [CrossRef]
2. Caprara, A. Sorting Permutations by Reversals and Eulerian Cycle Decompositions. SIAM J. Discret. Math. 1999, 12, 91–110.

[CrossRef]
3. Berman, P.; Hannenhalli, S.; Karpinski, M. 1.375-Approximation Algorithm for Sorting by Reversals. In Lecture Notes in Computer

Science, Proceedings of the 10th Annual European Symposium on Algorithms (ESA’2002), Rome, Italy, 17–21 September 2002; Möhring,
R., Raman, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2461, pp. 200–210.

4. Elias, I.; Hartman, T. A 1.375-Approximation Algorithm for Sorting by Transpositions. IEEE/ACM Trans. Comput. Biol. Bioinform.
2006, 3, 369–379. [CrossRef] [PubMed]

5. Hannenhalli, S.; Pevzner, P.A. Transforming Cabbage into Turnip: Polynomial Algorithm for Sorting Signed Permutations by
Reversals. J. ACM 1999, 46, 1–27. [CrossRef]

6. Oliveira, A.R.; Brito, K.L.; Dias, U.; Dias, Z. On the Complexity of Sorting by Reversals and Transpositions Problems. J. Comput.
Biol. 2019. [CrossRef] [PubMed]

7. Rahman, A.; Shatabda, S.; Hasan, M. An Approximation Algorithm for Sorting by Reversals and Transpositions. J. Discret.
Algorithms 2008, 6, 449–457. [CrossRef]

8. Walter, M.E.M.T.; Dias, Z.; Meidanis, J. Reversal and Transposition Distance of Linear Chromosomes. In Proceedings of the 5th
International Symposium on String Processing and Information Retrieval (SPIRE’1998), Santa Cruz, Bolivia, 9–11 September 1998;
IEEE Computer Society: Los Alamitos, CA, USA, 1998; pp. 96–102.

9. Chen, X. On Sorting Unsigned Permutations by Double-Cut-and-Joins. J. Comb. Optim. 2013, 25, 339–351. [CrossRef]
10. Dias, Z.; Meidanis, J. Sorting by Prefix Transpositions. In Lecture Notes in Computer Science, Proceedings of the 9th International

Symposium on String Processing and Information Retrieval (SPIRE’2002), Lisbon, Portugal, 11–13 September 2002; Laender, A.H.F.,
Oliveira, A.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2476, pp. 65–76.

11. Lintzmayer, C.N.; Fertin, G.; Dias, Z. Sorting Permutations by Prefix and Suffix Rearrangements. J. Bioinform. Comput. Biol. 2017,
15, 1750002. [CrossRef] [PubMed]

12. Lefebvre, J.F.; El-Mabrouk, N.; Tillier, E.R.M.; Sankoff, D. Detection and validation of single gene inversions. Bioinformatics 2003,
19, i190–i196. [CrossRef] [PubMed]

13. Heath, L.S.; Vergara, J.P.C. Sorting by Short Swaps. J. Comput. Biol. 2003, 10, 775–789. [CrossRef] [PubMed]
14. Jiang, H.; Feng, H.; Zhu, D. An 5/4-Approximation Algorithm for Sorting Permutations by Short Block Moves. In Lecture Notes in

Computer Science, Proceedings of the 25th International Symposium on Algorithms and Computation (ISAAC’2014), Jeonju, Korea, 15–17
December 2014; Ahn, H., Shin, C., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2014, Volume 8889, pp.
491–503.

15. Vergara, J.P.C. Sorting by Bounded Permutations. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg,
VA, USA, 1998.

16. Galvão, G.R.; Lee, O.; Dias, Z. Sorting Signed Permutations by Short Operations. Algorithms Mol. Biol. 2015, 10, 1–17. [CrossRef]
[PubMed]

17. Zhang, S.; Zhu, D.; Jiang, H.; Guo, J.; Feng, H.; Liu, X. Sorting a Permutation by Best Short Swaps. Algorithmica 2021, 1–27.
[CrossRef]

18. Miranda, G.H.S.; Lintzmayer, C.N.; Dias, Z. Sorting Permutations by Limited-Size Operations. In Algorithms for Computational
Biology; Springer International Publishing: Heidelberg, Germany, 2018; Volume 10849, pp. 76–87.

19. Blanchette, M.; Kunisawa, T.; Sankoff, D. Parametric Genome Rearrangement. Gene 1996, 172, GC11–GC17. [CrossRef]
20. Miranda, G.H.S.; Alexandrino, A.O.; Lintzmayer, C.N.; Dias, Z. Sorting λ-Permutations by λ-Operations. In Proceedings of the 11th

Brazilian Symposium on Bioinformatics (BSB’2018), Niterói, Brazil, 30 October–1 November 2018; Springer International Publishing:
Heidelberg, Germany, 2018; pp. 1–13.

21. Bafna, V.; Pevzner, P.A. Genome Rearrangements and Sorting by Reversals. SIAM J. Comput. 1996, 25, 272–289. [CrossRef]

https://github.com/compbiogroup/lambda-permutations
https://github.com/compbiogroup/lambda-permutations
http://doi.org/10.1137/110851390
http://dx.doi.org/10.1137/S089548019731994X
http://dx.doi.org/10.1109/TCBB.2006.44
http://www.ncbi.nlm.nih.gov/pubmed/17085846
http://dx.doi.org/10.1145/300515.300516
http://dx.doi.org/10.1089/cmb.2019.0078
http://www.ncbi.nlm.nih.gov/pubmed/31120331
http://dx.doi.org/10.1016/j.jda.2007.09.002
http://dx.doi.org/10.1007/s10878-010-9369-8
http://dx.doi.org/10.1142/S0219720017500020
http://www.ncbi.nlm.nih.gov/pubmed/28201946
http://dx.doi.org/10.1093/bioinformatics/btg1025
http://www.ncbi.nlm.nih.gov/pubmed/12855457
http://dx.doi.org/10.1089/106652703322539097
http://www.ncbi.nlm.nih.gov/pubmed/14633399
http://dx.doi.org/10.1186/s13015-015-0040-x
http://www.ncbi.nlm.nih.gov/pubmed/25838839
http://dx.doi.org/10.1007/s00453-021-00814-x
http://dx.doi.org/10.1016/0378-1119(95)00878-0
http://dx.doi.org/10.1137/S0097539793250627

Algorithms 2021, 14, 175 18 of 18

22. Bafna, V.; Pevzner, P.A. Sorting by Transpositions. SIAM J. Discret. Math. 1998, 11, 224–240. [CrossRef]
23. Chan, T.M.; Pătraşcu, M. Counting inversions, offline orthogonal range counting, and related problems. In Proceedings of

the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, TX, USA, 17–19 January 2010; Society for
Industrial and Applied Mathematics: Philadelphia, PA, USA, 2010; pp. 161–173.

24. Alexandrino, A.O.; Miranda, G.H.S.; Lintzmayer, C.N.; Dias, Z. Length-weighted λ-rearrangement distance. J. Comb. Optim.
2021, 41, 579–602. [CrossRef]

25. Swenson, K.M.; Rajan, V.; Lin, Y.; Moret, B.M.E. Sorting Signed Permutations by Inversions in O(n log n) time. J. Comput. Biol.
2010, 17, 489–501. [CrossRef] [PubMed]

http://dx.doi.org/10.1137/S089548019528280X
http://dx.doi.org/10.1007/s10878-020-00673-2
http://dx.doi.org/10.1089/cmb.2009.0184
http://www.ncbi.nlm.nih.gov/pubmed/20377459

	Introduction
	redPreliminaries and Basic Facts
	Complexity of Sorting -Permutations by -Operations
	Inversions
	Breakpoints
	Strips

	Inversions-Based Approximation Algorithms for Unsigned Permutations
	Algorithms Based on Inversions and Entropy for Signed -Permutations
	Breakpoints-Based Approximation Algorithms
	Experimental Results
	Conclusions
	References

