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Abstract: This paper presents the parameter optimisation of the flight control system of a single-
rotor medium-scale rotorcraft. The six degrees-of-freedom (DOF) nonlinear mathematical model of
the rotorcraft is developed. This model is then used to develop proportional–integral–derivative
(PID)-based controllers. Since the majority of PID controllers installed in industry are poorly tuned,
this paper presents a comparison of the optimised tuning of the flight controller parameters using
particle swarm optimisation (PSO), genetic algorithm (GA), ant colony optimisation (ACO) and
cuckoo search (CS) optimisation algorithms. The aim is to find the best PID parameters that minimise
the specified objective function. Two trim conditions are investigated, i.e., hover and 10 m/s forward
flight. The four algorithms performed better than manual tuning of the PID controllers. It was found,
through numerical simulation, that the ACO algorithm converges the fastest and finds the best gains
for the selected objective function in hover trim conditions. However, for 10 m/s forward flight trim,
the GA algorithm was found to be the best. Both the tuned flight controllers managed to reject a gust
wind of up to 5 m/s in the lateral axis in hover and in forward flight.

Keywords: rotorcraft UAV; optimisation; dynamic modelling; ant colony optimisation; cuckoo search;
genetic algorithm; particle swarm optimisation

1. Introduction

One of the four fundamental principles of the Fourth Industrial Revolution (4IR) is
the decentralisation of decisions for machines. This means increased autonomy of systems
to make their own decisions in order to perform specific tasks without human intervention
or supervision, especially in the presence of uncertainty and external disturbances [1].
Unmanned aerial vehicles (UAVs) have been at the forefront of autonomous systems,
with specific applications already demonstrated in the military environment, such as
surveillance, reconnaissance, evacuation and payload delivery, and civil applications such
as filming, crop dusting, parcels and medical aid delivery [2]. These tasks require the
employment of a rotorcraft UAV, because rotorcraft have the capacity for vertical takeoff
and landing, hovering in place, flying backwards and side-slip. They are useful in situations
where fixed-wing aircraft fail to perform, such as cluttered areas, overgrown fields and
dangerous industrial areas including nuclear plants and offshore oil rigs [3].

However, a rotorcraft is a highly nonlinear, multi-input, multi-output system. It is
also characterised by high coupling with a larger number of dynamics that cannot be
modelled explicitly. This system is also inherently unstable, meaning that, once disturbed
from equilibrium, it does not return unless an external force is introduced. This makes the
achievement of the demanded autonomy a daunting challenge [4].

This performance specification for autonomy has resulted in high complexity in the
rotorcraft flight control system. Significant effort has been devoted to improving the
performance and reliability of flight control systems in the past two decades [1], and the
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increase in computational power and communication bandwidth has made possible some
of the improvements that have eluded control engineers in recent years [5].

As such, a number of control strategies have been presented for the control of rotorcraft,
including a proportional–integral–derivative (PID) controller and its gain scheduling
counterpart [6,7]. This design methodology, also referred to as classical, requires linear
approximation of the rotorcraft around a selected operating region. This is due to the
fact that PID controllers are normally single-input single-output (SISO). However, these
methods only work well under the simplifying assumptions of a linear system. Despite this,
PID controllers have been successfully implemented in rotorcraft flight control systems.

Following the advances in the development of computer systems for flight control,
there was a rise in the application of “modern control” systems such as the linear quadratic
regulator (LQR) [8,9] and H∞ [10]. These methods are difficult to implement practically [6].
Other methods, such as nonlinear inverse dynamics [9], including feedback linearisa-
tion [11], adaptive control [12] and sliding mode controllers [13], have also been applied
with moderate success.

The problem with PID has been identified as poor tuning, which means that most
of the controllers currently in operation have been poorly tuned. This results in biased
judgment against the PID controllers themselves. The best known method for tuning PID
controllers is Ziegler–Nichols, based on empirical rules. This method does not work well
for multi-loop systems such as rotorcraft. Significant effort has recently been invested in
optimal tuning of PID controllers [14–16] and other controllers in general [17].

Zhao et al. [18] applied cuckoo search to optimise PID parameters on a semi-active
suspension system with the objective of operating at a desired damping force. For this,
they conducted numerical simulations and experimental study on a quarter-car rig and
found that the CS-PID does improve ride comfort. Hill et al. [19] investigated the appli-
cation of GA to optimise a PID controller and a pseudo-derivative controller (PDF) to
control a tall building elevator. The optimised controllers showed improved performance
when compared to the manually tuned ones, which were not able to meet the settling
time requirement.

In the aircraft industry, the selection of controller gains is conducted by a committee
comprising the flight control designers and the test pilots making reference to the Cooper–
Harper rating scale and/or the ADS-33E. This results in sub-optimal gains for the aircraft.

George et al. [20] presented an autopilot system based on optimised PID controllers to
reduce the pilot workload. The performance criteria were derived from DEF-STAN 00-0970
and the ADS-33E version of settling time. Simulations were conducted on a linearised
model and showed convergence back to trim condition in both roll and pitch. Yin et al. [21]
also presented a linear model of a rotorcraft and applied a two-loop PID control system.
The controller was tested on a test rotorcraft platform and was found to correctly stabilise
the aircraft attitude, which is the function of the inner loop. No outer-loop test results were
presented. Dai et al. [22] developed a three-loop PID control system containing the attitude,
velocity and position loops. On a linearised model, the PID gains were optimised using PSO.
The optimisation was only conducted on the outer loop and the other loops were tuned
manually, thereby reducing the number of optimisation parameters. The methods for flight
control of single-rotor helicopters presented in the literature do not include optimisation in
general. If they do, they are based on linearised models. However, linearised models have
explicit optimal points, which defeats the purpose of using optimisation algorithms.

Nonlinear optimisation has been applied to quadrotors. Noordin et al. [23] presented
a nonlinear quadrotor model and used PSO to optimise PID controllers for roll, pitch, yaw
and height. The PID controllers were then able to stabilise the quadrotor. Moreso, the
investigation revealed that the SAE fitness function gave the best aircraft performance.
Abduo et al. [24] investigated the PID control of a nonlinear quadrotor tuned with nature-
inspired algorithms. These were then compared in numerical simulations to show the
differences between the algorithms. This study used the ISE perfomance function, which
was proven to give an acceptable rise time and overshoot. In another similar study,
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Cedro et al. [25] used an SAE performance function including the input signals scaled by a
penalty factor ρ.

However, single-rotor helicopters are highly coupled and more dynamically complex
than quadrotors. This could be the reason that this type of optimisation has not been
attempted so far.

In this paper, we propose that the flying and control objectives of the aircraft be
defined analytically in an objective function and then optimisation algorithms be used
to minimise the cost to find the best PID controller parameters applied directly onto a
nonlinear helicopter. Therefore, the contributions of this paper are: (1) to design a closed-
loop flight control system for the rotorcraft that closely relates to the pilot control based on
six concurrent PID controllers; (2) and to develop a comparative study of computational
intelligence optimisation algorithms to find the best PID controller parameters for the given
flight regimes, also showing robustness to external disturbances. Even though related work
has been presented for other types of aircraft, to the best of the authors’ knowledge, this
has not been investigated for a single-rotor helicopter.

The rest of the paper is arranged as follows: Section 2 provides an overview of
the system and the development of the 6-DOF rotorcraft model. The proposed flight
controller and the optimisation algorithms are presented in Section 3. Section 4 presents
controller validation through simulations and monitoring of the model of the rotorcraft
and comparison of the different optimisation algorithms. Section 5 concludes the paper
and offers recommendations for possible future investigations.

2. System Overview and Mathematical Modelling

An accurate mathematical model is required for the development of model-based
controllers. Assumptions simplifying the model development processes are as follows:

• The rotorcraft is considered as a six-DOF rigid body;
• Variations in the properties of the air in which the rotorcraft is flying are negligible;
• Variations in available rotor force due to air channel interaction are negligible;
• Variations in inflow velocity across the rotorcraft rotor disc are negligible;
• Locations for the rotorcraft centre of mass and centre of gravity are coincident.

2.1. Notation and Preliminaries

In order to understand the derivations that follow, it might be useful to recall the
following symbols:

σ: rotor solidity; a: lift curve slope;
µ: advance ratio; λ: inflow ratio;
v: induced velocity; and ρ: air density.

2.2. Reference Frames

The rotorcraft dynamics are obtained using the Newton–Euler approach. To make
this possible, two reference frames are essential. An Earth-fixed reference frame FE =
{RO, x, y, z} is used to represent an inertial reference frame. The second frame of reference
is a body-fixed reference frame FB = {RBOB, xB, yB, zB}. The centre of this reference
frame OB is assigned to coincide with the rotorcraft’s centre of gravity (CG). In this case,
ξ = [x y z]T is the position of the rotorcraft’s CG with respect to the Earth-fixed reference
frame. The rotational angles (i.e., Euler angles) are η = [φ θ ψ]T of the body-fixed reference
frame with respect to the Earth-fixed reference frame. The translational and rotational
(angular) velocities of the moving body-fixed reference frame are given by vB = [u v w]T

and ωB = [p q r], respectively.
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2.3. Kinematics

To transform from the body-fixed reference frame to the Earth-fixed reference frame
and vice versa, we define R, the transformation matrix represented in Euler angles,
as follows:

R(η) = Rψ(ψ)Rθ(θ)Rφ(φ) (1)

R(η) =

cos ψ cos θ cos ψ sin θ sin φ− sin ψ cos φ cos ψ sin θ cos φ + sin ψ sin φ
sin ψ cos θ sin ψ sin θ sin φ + cos ψ cos φ sin ψ sin θ cos φ− cos ψ sin φ
− sin θ cos θ sin φ cos θ cos φ

 (2)

The position and the velocity in the body-fixed reference frame relate to the inertial
reference frame in the following:

ξ̇ = RvB (3)

This is a special orthogonal group matrix SO3 with interesting properties. For more
about the SO3 properties, consult [4]. For orientation, we define T, the differential transfor-
mation matrix, as follows:

T =

1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ/ cos θ cos φ/ cos θ

 (4)

The orientation velocity vector is transformed as follows:

η̇ = TωB (5)

This transformation matrix exposes one of the drawbacks of using Euler angles: the
fact that T has a singularity at ±90◦. This is not a problem in this investigation as the
manoeuvres of interest are not too aggressive. For the design of aggressive and acrobatic
rotorcraft, it is better to use Quaternions (see [26,27] for more information).

2.4. Dynamics

The force of gravity acting at the CG of the rotorcraft, Fg = mg, does not act along the
z-axis of the body-fixed reference frame and has to be transformed from the Earth-fixed
reference frame FE = {RO, x, y, z} to the body-fixed reference frame using R in Equation (2).
The total sum of forces acting on the rotorcraft within the body-fixed reference frame
FB = {RBOB, xB, yB, zB} may thus be expressed in the Newton–Euler rigid-body equations
of motions for a rotorcraft with mass m and the moment of inertia I as follows:

m
dvB

dt
+ m(ωB × vB) = F (6)

I
dωB

dt
+ (ωB × IωB) = M (7)

The sum of all external forces and moments that act on the rotorcraft is combined in
the triple F = [X Y Z] and M = [L M N], respectively. In the following, we discuss the
contributions of the different rotorcraft subsystems to the force and the moment vectors.
The contributing subsystems are the main rotor, tail rotor, fuselage, horizontal and vertical
stabilisers. The force of gravity is transformed into the body-fixed reference frame using
RT . These forces are illustrated in Figure 1.
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Figure 1. Forces and moments acting on the rotorcraft with reference to the body-fixed refer-
ence frame.

2.5. Thrust Forces

The external forces acting on the rotorcraft can be summarised as the sum of combina-
tions from different subsystems as follows:

X = XM + XT + XF (8)

Y = YM + YT + YF + YV (9)

Z = ZM + ZT + ZF + ZH (10)

where the subscripts M, T, H, V and F are the main rotor, tail rotor, horizontal stabilizer,
vertical stabiliser and fuselage, respectively. The simplified thrust produced by the main
rotor is given by [28]:

TM = CTρA(ΩR)2 (11)

CT =
σa
2

(
(

1
3
+

µ2
z

2
)θ0 −

µ− λ

2

)
(12)

where TM, CT , A, R, Ω and θ0 are the developed rotor thrust, the thrust coefficient, the area
of the rotor disc, the radius of the rotors, the rotor speed and the collective pitch of the
blades, respectively. The other symbols are as defined in Section 2.1. In a similar procedure
used for main rotor, the tail rotor thrust, TT , is derived.

The total forces generated by the main rotor and the tail rotor are described as fol-
lows [4]:

XM = −TM sin alc (13)

YM = TM sin bls (14)

ZM = −TM cos alc cos bls (15)

YT = −TT (16)

where alc and blc are the flapping angles in the horizontal and lateral direction, respectively.
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2.6. Rolling and Pitching Moments

The external moments acting about the rotorcraft CG are summarised as follows:

L = LM + YMhM + ZMyM + YThT + YVhV + LF (17)

M = MM − XMhM + ZMlM + MT − ZH lH − XVhV + MF (18)

N = NM −YMlM −YT lT −YV lV + NF (19)

where the subscripts M, T, H, V and F are as described above. The main rotor torque is a
result of the blade stiffness at the root. The equation for the main rotor torque is [28]:

CQM =
QM

ρ(RΩ)2πR3 (20)

In a similar procedure used for main rotor thrust, the main rotor torque coefficient
CQM is found to be:

CQM =

[
CT(λ0 − µz) +

CD0σ

8

(
1 +

7
3

µ2
)]

(21)

where CD0 is the drag zero-lift coefficient. The total moments generated by the main rotor
and the tail rotor are described as follows [29]:

LM =

(
∂LM
∂b

)
bls −QM sin alc (22)

MM =

(
∂MM

∂a

)
alc −QM sin, MT = −QTbls (23)

NM = −QM cos alc cos bls (24)

MT is the tail rotor contribution to the pitching moment.

2.7. System Performance Specifications

The goal of the present paper is focused on the development and investigation of an
efficient controller for the rotorcraft. Five different controllers are developed, analysed
and compared—that is, one manually tuned PID controller and four other PID controllers
tuned using optimisation algorithms, as detailed in the next subsection. The manually
tuned PID controller is used for benchmarking purposes. A successful controller must
meet the following performance specifications [4]:

1. The controller must exhibit general stability;
2. Overshoot should be kept at less than 5%;
3. Settling time should be less than 10 s;
4. Steady-state error should be within ±1× 10−2 rad and ±1× 10−1 m.

In order to develop the best PID controller, the following objective function based on
the integral of squared error (ISE) is used:

J =
1
T

∫ T

0

[(
xd − x
xmax

)2
+

(
yd − y
ymax

)2
+

(
zd − z
zmax

)2
(25)

+

(
θd − θ

θmax

)2
+

(
φd − φ

φmax

)2
+

(
ψd − ψ

ψmax

)2

+

(
δcol

δcolmax

)2
+

(
δlon

δlonmax

)2
+

(
δlat

δlatmax

)2
+

(
δped

δpedmax

)2]
dt,

where xd, yd and zd are the desired positions of the rotorcraft with respect to the Earth-
fixed reference frame, θd, φd and ψd are the desired Euler angles of the rotorcraft, δcol , δlon,
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δlat and δped are the collective, longitudinal cyclic, lateral cyclic and tail rotor collective
inputs, respectively.

3. PID Control Development

The PID control of the rotorcraft is developed, coupling the roll and pitch angles with
the horizontal translation of the rotorcraft. This involves developing an inner loop for the
faster dynamics and an outer control loop for the slower dynamics. Preferably, the tuning
process for the controller should start in the inner loop, in order to ensure that the rotorcraft
is rotationally stable, before proceeding to the outer loop. The outer loop is responsible for
the control of the position of the rotorcraft with respect to the Earth-fixed reference frame.
The xd, yd and zd reference signals are passed into the outer loop transformation, R, which
then passes these signals to the inner control loop. As such, these outer loop signals must
be tuned to represent the desired roll and pitch angles in the body-fixed reference frame of
the rotorcraft as shown in Figure 2.

The structure of the PID controller is described as follows:

ui(t) = Kpi e1(t) + Kii

∫
e1(t)dt + Kdi

de1(t)
dt

. (26)

where the error signal, e1(t) = yd1 − y1, is the difference between the desired response, yd1,
and the actual output, y1. The signal ui(t) is used to drive the corresponding actuators in
the swashplate.

Figure 2. PID closed-loop system showing the inner loop for pitch(θ) and roll(φ), and the outer loop of x, y, z and yaw(ψ).

The first PID controller parameters are found using the manual tuning method. Al-
though this method is effective and has been proven in applications, for the system with
multiple loops and a larger number of gains, 18, it becomes tedious and time consum-
ing [30]. The rest of the controllers are tuned using computational intelligence optimisation
techniques. The simulation results based on these controllers are given in the next section.
The controller optimisation algorithms are also discussed in the next section.

3.1. Controller Optimisation Strategies

In order to improve the tuning of controller parameters, computational intelligence
techniques are employed. These techniques include particle swarm optimisation (PSO),
genetic algorithm (GA), ant colony optimisation (ACO) and cuckoo search (CS), which are
the focus of this paper. These techniques are used to find the parameters Kp, Kd, Ki for each
PID controller. Figure 3 shows the system architecture used for tuning the PID gains using
optimisation techniques.

An optimisation problem is designed to satisfy the following equation:

P = (S, f ), (27)
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where S ∈ <n is the set of infinite solutions called the solution space and f is an n-
dimensional real function [31] such that:

f : S→ <. (28)

The goal of each optimisation strategy is to find s ∈ S such that it minimises the
objective function given in Equation (25). This is given mathematically as finding the
solution ∀s ∈ S : f (ś) ≤ f (s) in finite time.

Each optimisation technique is used to find si = {Kp, Kd, Ki, } and s = {s1 ∪ s2 ∪ s3 ∪
s4 ∪ s5 ∪ s6}, called the candidate solution, iteratively. At each iteration, the candidate
solution is evaluated with respect to the objective function in Equation (25). Since the
optimisation is done after the initial tuning via trial and error, this solution is used to
initialise the search algorithms, which means that even when optimisation tools outperform
manual tuning, this result is still useful towards the final optimisation outcome.

Figure 3. PID closed-loop system showing the objective function and the optimisation algorithm used to update the PID
controller gains.

3.2. Particle Swarm Optimisation

Particle swarm optimisation (PSO) is an optimisation algorithm that mimics the social
behaviour of a group of animals as a unit system, such as a flock of birds, swarm of insects,
school of fish, to name a few. The ideas of PSO was first propounded by Eberhart and
Kennedy in 1995 and it has been very popular among evolutionary algorithms, only second
to GA [15]. PSO uses a population of particles that are flying through the solution space at
a given velocity. The best solution is found by following the optimal particle in the solution
space. Following a particle is in the true sense, since each PSO particle has velocity and
position. The velocity of each particle is defined as follows:

vi(k + 1) = mvi(k) + c1.r1(pbesti(k)− pi(k)) + c2.r2.(gbest− pi(k)) (29)

where vi is the i-th particle velocity, pi is the current particle position, pbest is the best
particle solution so far, gbest is the best solution in the global set of the particles. The
parameter m is the velocity gain used for changing exploration into exploitation.

The velocity of the particle moves in the direction of pbest and eventually towards
gbest. The particle moves to the next position according to the following equation:

pi(k + 1) = pi(k) + vi(k + 1) (30)
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The iteration is completed after all particles have moved. The stopping criterion
is when the optimal solution has been found or the maximum number of iterations has
been reached.

Fan and Jen [32] compare the traditional PSO with a newly developed Enhanced
Particle Search (EPS) PSO with co-swarms that are able to share information between
particles. For this study, however, the PSO algorithm used can be found in [33]. In the
setup of the PSO, the parameters that are used are shown in Table 1.

Table 1. PSO setup parameters for optimisation.

Parameters Value

Number of particles, N 250
Crossover factor, F 0.5
Crossover probability, CR 0.5
Maximum iteration, i 100

3.3. Genetic Algorithm

GA is a computational technique developed to mimic evolution in a natural environ-
ment by natural selection and is based on Darwin’s theory of “survival of the fittest.” GA
is a heuristic optimisation tool used to find the most optimal solution in a solution space
S of complex problems in a relatively short time. Candidate solutions s ∈ S are called
chromosomes and are represented as binary-coded or real-coded strings. At each generation,
new offspring chromosomes are created through the parent reproduction and mutation.
The process is repeated until termination conditions are met.

Each of the GA processes is described as follows (Algorithm 1) [14,30]:

Algorithm 1: Genetic algorithm optimisation.

1. Initialising a new population;
2. Set Gen = 0;

while (Gen < Genmax)||(stop criteria) do

1. Evaluate the fitness of the population;
2. Generating off-springs;

• Selection: select the chromosomes with high fitness value to participate
in the reproduction. We use Roulette search to pair suitable mates in
the present paper.

• Crossover: reproduce new chromosomes by crossover of suitable
parents with a probability Pc.

• Mutation: a percentage of the offspring is subject to mutation for
adaptation. The selection of mutation probability Pm influences the
convergence of the population.

3. Update generation Gen = Gen + 1.

end
Save File← data

The best GA parameters for the present problem were found by numerical experimen-
tation and are listed in Table 2.
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Table 2. GA setup parameters.

Parameters Value

Population size, N 500
Maximum generation, Genmax 100
Crossover point, Pc 0.8
Mutation probability, Pm 0.05

3.4. Ant Colony Optimisation

ACO is a population-based meta-heuristic optimisation method falling into the swarm
intelligence category [33]. It was first proposed by Dorigo [34], from observing the be-
haviour of real ants. Mathematically, in ACO, a number of concurrent artificial ants, m, is
defined. The current state of the ant, i, is a partial solution of the problem of discourse. An
ant evaluates its next state move, j, based on the pheromone trails to the adjacent solutions.
Once an ant has completed each jth solution search, the solution is evaluated, and then the
pheromone trails are updated based on the best solution so far. This process is repeated
until the termination conditions are met.

We present ACO for parameter optimisation. Since the parameters cover a continuous
space, the algorithm used to search this space must be continuous as well. In [31], an ACO
for continuous domains called ACO< is presented. The traditional ACO search space is
given by vi ∈ Di = {v1

i , ..., v|Di |
i }, while the ACO< search space is vi ∈ Di ⊆ <. The basics

of the algorithms are maintained, but the internal implementation differs. Instead of using
a pheromone-based probability distribution function, a probability density function (PDF)
is used by employing any P(x) ≥ 0 ∀x such that:

∫ ∞
−∞ P(x) = 1. For this paper, Gaussian

functions were chosen due to the ease of sampling. For a multi-variable optimisation
problem, a kernel Gi(x) is defined as a sum of weighted Gaussian functions equal to the
number of variables as follows:

Gi(x) =
k

∑
l=1

ωl
1

σi
l

√
2π

e
−

(x−µi
l )

2

2(σi
l )

2 . (31)

where i = 1, . . . , n is the number of variables, and µi
l and σi

l are the lth solution and its
standard deviation for each variable. Instead of using a pheromone matrix τij, a pheromone
archive table Tij is used such that, for each solution, µ and σ represent the chosen solution
with its standard deviation. The subscript l = 1, . . . , k represents current index to the
archived solutions and k is an optimisation parameter, i.e., the total number of archive
solutions that can be stored at any iteration. The solution at an iteration in the archive is
sl = µ1

l , . . . µn
l . To execute the algorithm, the following steps are followed [33].

The ACO performance is based on the selection of the number of ants m, the size k
of the archive, the number of iterations to run the algorithm and the ACO parameters,
where q and ζ are algorithm parameters. If q is too small, the ranking is focused on the best
solution, while a larger value results in a flat, more uniform search for alternative solutions.
The ζ parameter on the other end will have an equivalent effect as the ρ, the pheromone
evaporation rate. The higher value of ζ will promote the forgetting of the current solution
and exploration of new areas in the solution space, meaning that the convergence rate will
be slower. The Algorithm 2 is said to have short-term memory [31].

The best ACO parameters for the present problem were found by numerical experi-
mentation and are listed in Table 3. Similar to GA, ACO is a stochastic algorithm in that it
converges to a different solution each time it is executed.
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Algorithm 2: Ant colony optimisation.

• Define the number of ants m, and number of archives k;
• Initialise a random solution for the number of ants into archive T;

while (l < maxIteration)||(stop criteria) do

1. For each ant: evaluate the fitness of the solution f (sl);
2. Rank the solutions by the best performing fitness f (sl) first;
3. Give the solutions a probability weight of ωl :

ωl =
1

qk
√

2π
e
− (l−1)2

2q2k2 .

4. Find the values of σi
l using the equation:

σi
l = ζ

k

∑
j=1

∣∣∣si
j − si

l

∣∣∣
k− 1

.

5. The mean, µ and the standard deviation, σ, of the best solution in T
are used to sample the new solution for the ants.

end
Save File← best solution

Table 3. ACO setup parameters.

Parameters Value

Number of ants, m 20
Number of archives, k 30
Maximum iteration, i 100
Forgetting constant, ζ 0.8
Pheromone constant, q 0.05

3.5. Cuckoo Search Algorithm

The cuckoo search algorithm was developed by Yang and Deb [35]. This search
algorithm (Algorithm 3) was inspired by the breeding behaviour of cuckoo birds. Cuckoo
birds are opportunistic agents that try to maximise the chance of their offspring’s survival
without doing anything in terms of incubating eggs and feeding the hatchings.

The cuckoo lays its eggs in other birds’ nests. The eggs are hidden among the original
eggs in the nest. Sometimes, to increase the chance of its chicks’ survival, the cuckoo
might dispose of the other bird’s eggs. The cuckoo that hatches first also maximises its
own chance of survival by disposing of the other eggs in the nest. The algorithm used for
optimisation using cuckoo search is as follows [35].

The best CS parameters for the present problem were found by numerical experimen-
tation and are listed in Table 4.

Table 4. CS setup parameters.

Parameters Value

Number of nests, m 20
Number of birds, k 30
Maximum iteration, i 100
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Algorithm 3: Cuckoo search optimisation.

• Initialise the population n and host nests x1(i = 1, 2, 3 . . . n);
• Set the maximum search generations maxG;
• Set Iter = 0;

while (Iter < maxG)||(stop criteria) do

1. Randomly select a cuckoo i to generate a new solution by Levy flights;
2. Evaluated the fitness of the solution Fi;
3. Randomly chose a nest among the n nests;
4. if (Fi < Fj) then

replace j by the new solution;
else

keep original solution;
end

5. The birds with the lowest fitness are dropped;
6. Update Iter = Iter + 1;

end
Save File← data

Each egg in the nest represents a solution and a cuckoo dropping an egg in the nest
represents a new solution.

4. Simulation Results and Discussion

A validation exercise based on numerical simulations was conducted in the Mat-
lab/Simulink environment. The ODE optimisation algorithm was selected to be the
Bogacki–Shampire solver with a sampling time of 1 kHz. The simulations were conducted
on a Windows 10 computer with a i5 processor and 8 Gb of RAM.

The rotorcraft model was first trimmed at hover, 10 m above the ground and at low
forward speed, i.e., 10 m/s. Once a steady state was achieved, the system was driven to
track a sinusoidal height and step input for the x and y directions, while regulating other
states and rejecting disturbances.

4.1. Trimming Results

To apply PID control on the rotorcraft, it must be trimmed. The trim states are found
by solving the rotorcraft dynamic equation:

f(x,u) = 0 (32)

In this simulation, the trim is specified by zero translation velocities and angular rates,
vI = [0 0 0]T and ωB = [0 0 0], respectively.. This requires a set of inputs in cyclic and
collective to achieve this state. The steady-state values for hover trim are shown in Table 5.



Algorithms 2021, 14, 178 13 of 24

Table 5. The system parameters used for the trim numerical simulations.

Parameters Value Parameters Value

TM =5494.6 N CTM =0.0083
λe =0.0645 vie =8.87 m/s

QTe =431.26 N.m CQMe =0.00067
θ0Me =0.139 rad

TT =106 N CTt =0.0040
λe =0.0446 vie = 7.55 m/s

QTe =11.59 N.m CQe =0.00035
θ0Te =0.229 rad

a1c =0.00 rad b1s =0.0019 rad

The behaviour of the rotorcraft in response to the tabulated trim values is shown in
Figures 4 and 5. As expected, the model is not entirely stable (rotorcraft require constant
closed-loop control for stability); however, it does maintain the rotorcraft in the vicinity
of the trim point. To make sure that the aircraft is stable at hover and can recover from
disturbances such as wind gust and stabilise to an upright position when it is initially tilted,
an active controller is used.
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Figure 4. The nonlinear rotorcraft model response to selected trim control input.
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Figure 5. The nonlinear rotorcraft model response to selected trim control input.

4.2. Controller Implementation Results

As discussed previously, tuning an inherently unstable rotorcraft is a tedious task. The
prevailing methodology for designing PID-controlled rotorcraft is by linearising the model
of interest and then using the available wealth of analytical tools to find the gains that meet
performance specifications [36]. The other method is empirical in nature and relies on the
ability to excite the system and measure the output and use the Ziegler–Nichols method to
find the gains. The following, however, presents the results of PID controller gains achieved
through the optimisation techniques based on computational intelligence as presented in
the previous section. These are compared to the results found by manual tuning.

4.2.1. Hover

The four controllers are then tuned to minimise the objective function in Equation (25).
For each optimisation algorithm, ten trials were executed. The convergence graphs of each
of the four optimisation techniques are shown in Figure 6.

The best gains returned the following values of the objective function and the running
times as given in Table 6. The ACO-PID completed the optimisation the fastest and had
the lowest average ISE score. The gains found for the four PID controllers’ optimisation
methods are given in Table 7.

Table 6. The fitness, the running times of the four PID controllers’ gains optimisation algorithms and
the mean and standard deviation of the ten experiments conducted.

PID Gains PSO GA ACO CS

Best fitness 1.499 × 10−7 2.563 × 10−7 1.340 × 10−7 1.566 × 10−7

Running time (min) 94.70 91.21 77.59 119.68

Mean 1.521 × 10−7 2.608 × 10−7 1.434 × 10−7 1.763 × 10−7

Standard deviation 0.020 0.065 0.119 0.240



Algorithms 2021, 14, 178 15 of 24

Table 7. The four PID controllers’ gains found using optimisation for hover conditions.

PID Gains Roll Pitch Yaw Altitude Long Lat

PSOKp −12.564 36.446 −20.986 −37.172 10.998 49.8666
Ki 0 0 36.985 2.460 −45.444 19.936
Kd −12.546 16.296 48.725 7.108 41.892 −47.418

GA Kp 21.0000 −10.0000 −14.0000 −17.7500 19.7552 36.0000
Ki 0 0 18.0000 −10.0000 11.0000 33.2500
Kd 0 0 31.0000 0.9319 −19.0000 −8.0000

ACO Kp 20.0000 −9.7567 −19.9999 −19.9970 0.9746 19.9999
Ki 0 0 8.6687 −1.7510 10.9126 19.9970
Kd 0 0 19.9860 0.8009 −17.1235 −6.5332

CSKp 20.0000 −8.8618 −19.6234 −20.0000 17.6503 20.0000
Ki 0 0 20.0000 −14.9142 19.5898 20.0000
Kd −4.3698 −11.9869 20.0000 1.0630 −18.6291 −8.6031

Figure 6. The change in fitness over the number of iterations (generations).

The performance of these controllers is evaluated for tracking elevation around
the trim height, i.e., zd = −10 ± 1 metres and unit steps wind gust for y at t = 7 s.
Figures 7 and 8 show a visual comparison of the controllers. The ACO-PID is superior to
others, although the others are also within the performance specifications.
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Figure 7. The controlled nonlinear rotorcraft position response to selected desired inputs.
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Figure 8. The controlled nonlinear rotorcraft orientation response to selected desired input.

PID controllers tend to have better regulation than tracking due to the limited region
of effectiveness. Next is the tracking of sudden changes in longitudinal displacement. The
controllers are able to track a small forward speed up to 2 m/s (Figures 9 and 10). However,
the ACO-PID seems to perform better. It also has less overshoot, which is very desirable if
the rotorcraft is performing in confined spaces. The PSO-PID is the worst-performing, with
a velocity overshoot of 68%. Figure 11 shows the inputs into the rotorcraft commanded by
each controller. An attempt to move the rotorcraft from trim with a velocity higher than
2 m/s results in instability.
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Figure 9. The controlled rotorcraft positions with the forward translation at 1 m/s.
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Figure 10. The controlled rotorcraft forward velocity tracking of 1 m/s.
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Figure 11. The four rotorcraft inputs to maintain trim hover flight.

4.2.2. Forward Speed

A well-known effect of the PID-controlled system is its loss of performance away
from the trimmed condition. The tuned system was tested on how well it withstands
the translation from hover to 10 m/s forward speed. Because the optimally tuned PID
controllers can give performance of up to 2 m/s, after which the rotorcraft becomes unstable,
a new trim position is required for forward speed. The four controllers were retuned for
the 10 m/s forward flight to be the new trim condition. This trim condition is also based
on Equation (32), with the exception that the vI = [10 0 0].

The best gains returned the values of the objective function and the running times
given in Table 8.

Table 8. The fitness, the running times of the four PID controllers’ gains optimisation algorithms and
the mean and standard deviation of the ten experiments conducted for forward speed.

PID Gains PSO GA ACO CS

Best fitness 1.334 × 103 2.772 × 106 1.221 × 106 1.372 × 106

Running time (min) 92.11 90.72 81.39 130.02

Mean 1.676 × 103 2.776 × 106 1.234 × 106 1.382 × 106

Standard deviation 308 3.336 × 103 1.707 × 104 8.590 × 103

The PID controllers’ gains obtained using the proposed optimisation algorithms for
10 m/s forward flight conditions are given in Table 9.
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Table 9. The four PID controllers’ gains found using optimisation for the 10 m/s forward flight con-
ditions.

PID Gains Roll Pitch Yaw Altitude Long Lat

PSOKp 37.1538 −11.7904 4.4863 −36.6162 11.9372 8.4715
Ki 0 0 38.2470 5.9218 1.8956 0.6122
Kd 17.5394 −2.7273 2.3572 7.1495 −7.9646 0.1276

GA Kp 37.1538 −11.7904 4.4863 −36.6162 11.9372 8.4715
Ki 0 0 38.2470 5.9218 1.8956 0.6122
Kd 17.5394 −2.7273 2.3572 7.1495 −7.9646 0.1276

ACO Kp 37.1538 −11.7904 4.4863 −36.6162 11.9372 8.4715
Ki 0 0 38.4697 5.9218 1.8956 0.6122
Kd 17.5394 −2.7273 2.3572 7.1495 −7.9646 0.1276

CSKp 37.1538 −11.7904 4.4863 −36.6162 11.9372 8.4715
Ki 0 0 38.2470 5.9218 1.8956 0.6122
Kd 17.5394 −2.7273 2.3572 7.1495 −7.9646 0.1276

The newly tuned PID controllers are able to keep the flight path by following the
reference signal. Figures 12 and 13 show the position and the velocity time history of the
rotorcraft. The velocity is kept constant and the x translation increases steadily. In this
experiment, the GA-PID proved to track the velocity better than the other controllers. Even
though it is the best, the velocity overshoots by 11% and settles quicker than others, in
less than 4 s. The rest of the controllers also traced the ramp displacement, but this was at
the expense of the height of the rotorcraft. Also noteworthy is that the GA-PID did have
worse performance for y direction regulation. The multi-axis and underactuation problem
becomes prominent in this part of the numerical experiment as optimising one output
variable comes at the expense of the other variable.
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Figure 12. The nonlinear rotorcraft position time history 10 m/s.
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Figure 13. The nonlinear rotorcraft velocity time history 10 m/s.

4.2.3. Robustness

Finally, the rotorcraft was perturbed with a constant gust wind to verify the robustness
of the tuned PID controllers. The wind was introduced at time t = 7 s, to see if the rotorcraft
would be able to return to equilibrium. Figures 14 and 15 show the position and orientation
of the rotorcraft when it is subjected to a 10 m/s gust wind from the starboard side. All
hover PID controllers are able to recover from the gust with 5 s as shown in Figure 14. It
is noted, however, that the steady-state error in height is increased. The velocity graph,
in Figure 15, shows that the total lateral rotorcraft speed does change at 7 s and recovers
asymptotically.

For gust perturbation in forward speed, the rotorcraft, even though it still tracks
the forward speed correctly, drifts and does not recover the desired position, as shown
in Figure 16. The ACO-PID seems to be more effective in its response, while the GA-PID
responds the worst to gust. The hypothesis is that, due to its strict adherence to the objective
function during tuning, it struggles with any effect outside the norm.

Nguyen [37] has covered, extensively, the shortcomings and perils of adaptive control
on aircraft systems and their lack of amicable proofs, leading to the large number of
documented experimental aircraft incidents. However, the PID gains derived in this paper
are offline in nature and the computational intelligence optimisation algorithms only assist
in the selection of these gains. The algorithms themselves do not form part of the final
aircraft flight control system.

This also clarifies what might appear as a contradictory conclusion from the presented
numerical simulations: that ACO-PID performs better for hover while the GA-PID performs
better for forward flight. This does not mean that the rotorcraft flight control system will
fly ACO and then change to GA, but that the results of the optimisations (i.e., the gains)
are programmed to the flight controller. These gains are subjected to similar scrutiny for
any PID-based flight controller gains determined through other documented and popular
methods that are, albeit, not optimal.
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Figure 14. The position history of the rotorcraft subjected to starboard gust disturbance at hover.
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Figure 15. The speed of the rotorcraft in response to starboard gust disturbance at hover.
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Figure 16. The position of the rotorcraft in response to starboard gust disturbance at 10 m/s.

5. Conclusions

A mathematical model of a rotorcraft was developed. Assumptions were made to
simplify the calculations of thrust and torque generated by the rotors of the rotorcraft,
as well as to limit the effects of surface drag on the system. Two trim conditions were
investigated: hover and 10 m/s forward flight. The paper presented the use of computa-
tional intelligence optimisation techniques for tuning the PID controllers’ gains that were
developed for a rotorcraft system.

It was observed through numerical simulation that the optimised PID controllers are
effective around the trim point for which they were developed, with ACO-PID performing
better for hover and GA-PID for forward flight. However, this conclusion is not universal
and is only valid for the hover and forward flight cases investigated in this paper. The
controllers are able to tolerate some deviation from this operating point, such as an increase
in forward speed and when subjected to gust winds. However, they cannot be employed
to control the rotorcraft through its entire flight envelope as they started to lose stability.
Since the PID controller can only affect one input for every reference input, the cross-
coupling effects can be noticeable when translating, for example. These effects become
more pronounced as the rotorcraft moves away from the designed trim condition. Hence,
different controllers need to be designed for different operating regions and gain scheduling
employed to transition from one controller to the next as the region changes. However, the
ACO-optimised controller seems to outperform the other optimisation algorithms both in
holding the trim state and recovering from external disturbance.

A follow-up to the proposed optimised PID controller for the rotorcraft is to employ a
robust nonlinear controller that not only operates in the entire flight envelope of the aircraft
but is able to handle disturbance and is also tolerant to bounded uncertainties and actuator
loss of effectiveness, such as a sliding mode controller.
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