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Abstract: The shallow features extracted by the traditional artificial intelligence algorithm-based
damage identification methods pose low sensitivity and ignore the timing characteristics of vibration
signals. Thus, this study uses the high-dimensional feature extraction advantages of convolutional
neural networks (CNNs) and the time series modeling capability of long short-term memory networks
(LSTM) to identify damage to long-span bridges. Firstly, the features extracted by CNN and LSTM
are fused as the input of the fully connected layer to train the CNN-LSTM model. After that, the
trained CNN-LSTM model is employed for damage identification. Finally, a numerical example
of a large-span suspension bridge was carried out to investigate the effectiveness of the proposed
method. Furthermore, the performance of CNN-LSTM and CNN under different noise levels was
compared to test the feasibility of application in practical engineering. The results demonstrate
the following: (1) the combination of CNN and LSTM is satisfactory with 94% of the damage
localization accuracy and only 8.0% of the average relative identification error (ARIE) of damage
severity identification; (2) in comparison to the CNN, the CNN-LSTM results in superior identification
accuracy; the damage localization accuracy is improved by 8.13%, while the decrement of ARIE
of damage severity identification is 5.20%; and (3) the proposed method is capable of resisting the
influence of environmental noise and acquires an acceptable recognition effect for multi-location
damage; in a database with a lower signal-to-noise ratio of 3.33, the damage localization accuracy of
the CNN-LSTM model is 67.06%, and the ARIE of the damage severity identification is 31%. This
work provides an innovative idea for damage identification of long-span bridges and is conducive to
promote follow-up studies regarding structural condition evaluation.

Keywords: long-span bridge; long short-term memory network; convolutional neural network;
damage identification

1. Introduction

Owing to the joint effect of the tough service environment and the long-term over-
limit load, bridges will inevitably suffer deterioration during operation. Thus, health
monitoring systems have been widely used in the condition alarming of long-span bridges.
Accordingly, the comprehensive exploitation of bridge monitoring information and ac-
curate identification of the location and extent of damage is of crucial scientific research
significance and engineering application value to ensure bridge safety and smooth road
networks [1].

The essence of structural damage identification is the problem of pattern recognition,
which can be realized using artificial intelligence algorithms [2,3]. Generally, traditional
artificial intelligence algorithm-based damage identification methods include two steps:
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(i) extraction of damage sensitive features (DSFs). Time series analysis, frequency spectrum
analysis, statistical analysis, and other means are used to extract features that characterize
the damage state from the structural response [4,5]; (ii) prediction of damage. Artificial
intelligence algorithms are employed to establish the mapping relationship between DSFs
and damage location and severity [6,7]. For instance, Arangio et al. [8] utilized probabilistic
logic methods to develop a two-step Bayesian framework for damage localization and
extent prediction of the suspension bridge main cables and hangers. Casciati et al. [9]
applied the firefly and the artificial bee colony algorithms to diagnose the damage caused
by the decrease in stiffness of the cable and main beam. Due to the high uncertainty of the
measurement and finite element modeling, Ding et al. [10] established the objective function
using modal data and sparse regularization technology, and they developed a hybrid group
intelligence technology involving the Jaya and tree-seed algorithm to identify structural
damage. Meng et al. [11] used modal flexibility as DSF and performed damage diagnosis
of suspension bridge hangers based on a genetic algorithm. Guan et al. [12] recruited
wavelet coefficient modulus maxima as DSF and employed an artificial neural network
(ANN) and particle swarm algorithm to complete the damage identification of a suspension
bridge. Seyedpoor et al. [13] developed a two-step structural damage identification method.
First, the support vector machine was used to initially determine the damage location
to reduce the search space dimension, and then, the evolutionary algorithm was used to
accurately and quickly search for the damage location. The above study shows that current
research on conventional artificial intelligence algorithms-based damage identification
methods mainly focuses on traditional machine learning and evolutionary algorithms.
However, traditional machine learning algorithms, such as ANN and naive Bayes, are
shallow learning. The trained model has insufficient ability to recognize complicated
nonlinear damage, and the accuracy largely depends on the sensitivity of the selected DSFs.
Meanwhile, it is easy to fall into the local optimal solution problem during the solution
process of evolutionary algorithms. Hence, it is essential to explore more effective ways to
solve the aforementioned issues.

In 2006, Hinton et al. [14] proposed deep belief networks and introduced a layer-by-
layer pre-training method, which laid the foundation for the development of deep learning.
Shallow learning mostly relies on manual experience or feature conversion methods to
obtain features. In contrast, deep learning processes the original data through multilayer
nonlinear transformation, and then, it outputs higher-dimensional and more abstract
features, thereby avoiding complicated and repetitive feature engineering.

Convolutional neural networks (CNNs) and long short-term memory networks
(LSTM), which are of great application value, have gradually captured widespread at-
tention from scholars in the engineering field. Various research studies have been con-
ducted, which can be summarized into three aspects. (i) Structural defects detecting.
Cha et al. [15] designed a concrete crack detection method combining computer vision
(CV) and CNN, which can detect concrete cracks, steel corrosion, bolt corrosion, and steel
delamination. Gao et al. [16] introduced VGGNet for structural damage detection through
transfer learning technology, which shows that transfer learning technology has broad ap-
plication prospects in image-based structural defects recognition. Xu et al. [17] formulated
a framework for crack recognition and extraction of bridge steel box girders based on a
restricted Boltzmann machine. (ii) Structural damage identification. Lin et al. [18] devised
a CNN-based damage recognition method to accurately identify the damage location and
degree of the simply supported beam finite element model and automatically learn the low
order of the mode shape. Abdeljaber et al. [19] used the vibration response signal as the
model input for the CNN and separately trained the model for each node of the planar
steel frame structure to determine the bolt connection state. Yu et al. [20] proposed a novel
method based on deep CNNs for identifying and locating damage to building structures
equipped with intelligent control equipment. (iii) Data processing and state prediction.
Bao et al. [21] work out an anomaly detection method of structural health monitoring data
based on CV and CNN. Zhang et al. [22] applied the advantages of LSTM to model time
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series changes and used it to predict the depth of groundwater levels in agricultural areas.
Zhang et al. [23] utilized LSTM for sewer overflow monitoring and achieved better results
than multilayer perception and wavelet neural networks. The above-mentioned research
demonstrates that CNN does have a superior performance in feature extraction, and LSTM
also has unique advantages in describing time series changes.

Recently, the hybrid architecture of CNN and LSTM has been widely adopted due to its
outstanding performance. For instance, Yang et al. [24] introduced CNN-LSTM architecture
to non-contact computer vision-based vibration measurement and used the structural
vibration video to identify its basic modal frequency. Zhao et al. [25] employed the hybrid
architecture to establish the mapping relationship between the external excitation and the
nonlinear response, thereby detecting the early damage of the structure. Petmezas et al. [26]
proposed to use the CNN-LSTM model to help clinicians detect common atrial fibrillation
in real time on routine screening electrocardiograms. Wigington et al. [27] utilized the
CNN-LSTM model for handwritten font recognition, which significantly reduced the word
error rate and character error rate. Qiao et al. [28] proposed a short-term traffic flow
prediction method based on the 1DCNN-LSTM model, which aims to effectively solve
traffic travel and management problems. Evidently, the CNN-LSTM architecture can fully
combine the advantages of these two independent models, which is demonstrated to fulfill
more complicated tasks.

From the above literature review, the following conclusions can be drawn: (1) Shallow
features used for damage identification are usually not suitable for nonlinear situations
and harbor poor sensitivity. (2) CNN can extract the high-dimensional features, which
is beneficial to characterize the current damage state of the structure. (3) LSTM can
meticulously model the structural time history response, which is promising to depict
the historical damage state. (4) CNN-LSTM model holds outstanding performance in
numerous application scenes. Inspired by this, this study integrates the advantages of
CNN and LSTM in feature extraction and time-series modeling. A CNN-LSTM-based
damage identification method for long-span bridges is proposed. This method directly
acts on the structural accelerations. It uses CNN to extract high-dimensional features of
accelerations and LSTM to extract time-series features. Eventually, the extracted features
are fused and input into the fully connected layer to complete the damage identification.

The remainder of this article is expanded in the following sections. Section 2 intro-
duces the basic structure and optimization methods of CNN and LSTM and presents the
procedure of the proposed method. Section 3 uses numerical simulation to obtain data
samples and build a database to verify the feasibility and effectiveness of the proposed
method. Section 4 discusses the influence of environmental noise on the proposed method
and compares the performance of the proposed method with that of the CNN. Section 5
concludes this paper.

2. Methodology

The technical details and optimization methods of CNN and LSTM will be explained,
and the implementation framework of the proposed method will be established in this section.

2.1. Convolutional Neural Network

CNNs are generally composed of convolutional blocks and fully connected layers, as
described in Figure 1. The convolutional block consists of a convolution layer (C), pooling
layer (P), and activation function (A), which is mainly used to extract features and perform
nonlinear transformations. The fully connected layer (F) is used to output classification or
regression results.
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2.1.1. Convolutional Layer

The function of the convolutional layer is to extract the features of the input data,
which includes multiple convolution kernels. Each convolution kernel is an independent
feature extractor, thus improving the expressive ability of CNNs. Each convolution kernel
slides along the input data with a fixed stride and convolves with the data in turn until all
the receptive fields are traversed; subsequently, the feature map is output. This process
reflects the weight-sharing characteristics of the convolutional layer, effectively reduces the
model parameters, and improves the training efficiency of the network.

2.1.2. Pooling Layer

Although the network scale is significantly reduced after the convolutional layer, the
dimension of the output feature map remains large. If operations such as classification are
performed directly after the convolutional layer, over-fitting is prone to occur. Therefore, it
is necessary to reduce the dimension of the feature maps from the convolutional layer, i.e.,
the pooling layer. The role of the pooling layer is to select features to ensure the invariance
of features and consequently reduce the amount of calculation and number of parameters.
Average and max pooling are two commonly used pooling operations. Scherer et al. [29]
demonstrated that max pooling has better performance than average pooling. In this study,
max pooling will be used in all pooling layers.

2.1.3. Fully Connected Layer

A fully connected layer functions as a classifier in CNNs that performs a series of
nonlinear transformations on the feature map after convolution and pooling operations to
obtain an output. The fully connected layer usually has several hidden layers, which is
equivalent to an ANN.

2.1.4. Activation Layer

The main role of the activation function in CNNs is to enhance the representation
ability of the entire network. Usually, the activation function is located after the convo-
lutional layer or used in the fully connected layer. The most used activation functions in
CNNs are the sigmoid function, tanh function, and rectified linear unit (ReLU), which can
be expressed as:

σ(x) = 1/(1 + exp(−x)), (1)

tanh(x) = (exp(x)− exp(−x))/(exp(x) + exp(−x)), (2)

ReLU(x) = max(0, x). (3)

In general, when the input value is ≥5 or ≤−5, the gradient of the sigmoid function
is close to 0. When the loss is propagated back, the gradient disappears. To solve the
problem of vanishing gradient, ReLU is introduced into the neural network. It can be
seen from Equation (3) that when the input value is ≥ 0, the gradient of ReLU is always 1,
which improves the gradient saturation. Research [30] has shown that the ReLU activation
function greatly improves the convergence speed during network training.
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2.1.5. Backpropagation Updating

The training process of a CNN is divided into two stages: forward propagation and
backpropagation (BP). Forward propagation refers to the process of data flow from the
input layer to the output layer, and the loss function is obtained by calculating the error
between the model and the target output. BP calculates the gradient of the loss function
concerning each layer of parameters and then uses an optimization algorithm to minimize
the loss function, thereby updating the parameters. The updating process is as follows.

(i) Perform forward propagation from the input layer to the output layer:

al+1 = f
(

wl ⊗ al+bl
)

, (4)

where al and al+1 are the input and output of layer l, respectively. Moreover, wl and bl

are the corresponding weights and biases, respectively, and f (·) is the activation function.
(ii) Calculate the local gradient of the output layer:

δn =
∂L

∂an+1 f ′(an), (5)

where L represents the loss function, n is the depth of the proposed CNN, and f ′(·) is
the derivative of the activation function.

(iii) According to the chain rule, calculate the local gradient of the other layers:

δl = δl+1wl f ′(al). (6)

(iv) The gradient of the weight and bias can be obtained as follows:

∆wl = al+1δl , ∆bl = δl . (7)

(v) Update the weights and biases according to the learning rate η and momentum m:

wl = mwwl − ηw∆wl , bl = mbbl − ηb∆bl . (8)

2.2. Long Short-Term Memory Network

LSTM is an improved model of recurrent neural networks (RNNs) that solves the
problem of gradient disappearance of RNNs by introducing a gating mechanism and a
memory unit. Thus, LSTM can better process long sequence data [31].

As shown in Figure 2, LSTM is composed of three gate structures: a forget gate, an input
gate, an output gate, and two unit structures (hidden unit ht and memory unit ct). LSTM
uses a gating mechanism to select input information and update the state of the memory
unit to complete the recording and transmission of long-term historical information.
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2.2.1. Forget Gate

The function of the forget gate is to determine which information of the memory
unit state ct−1 needs to be forgotten or retained in the current memory unit state ct. The
output of the forget gate ranges from 0 to 1. When the output is closer to 0, the more
previous information must be forgotten, and vice versa. The output of the forget gate is
calculated by:

ft = σ
(

W f xt + U f ht−1 + b f

)
. (9)

2.2.2. Input Gate

The function of the input gate is to determine which information of input xt at the
current moment needs to be updated to the current memory unit state ct. The output of the
input gate is calculated as follows:

it = σ(Wixt + Uiht−1 + bi), (10)

c̃t = tanh(Wcxt + Ucht−1 + bc). (11)

2.2.3. State Updating of Memory Unit

In this phase, part of the information of the memory unit ct−1 is forgotten, and part of
the important information of xt is updated to the memory unit ct, which is written as:

ct = ft ⊗ ct−1 + it ⊗ c̃t. (12)

2.2.4. Output Gate

The function of the output gate is to determine which information of the current
memory unit ct needs to be output to the current hidden unit ht. Additionally, ot and ht are
calculated as:

ot = σ(Woxt + Uoht−1 + bo), (13)

ht = ot ⊗ tanh(ct), (14)

where ft, it, ot, ct, and ht represent the output of the forget gate, input gate, output gate,
memory unit, and hidden unit at time t, respectively. Additionally, W and U represent the
weight matrix relative to the input and hidden units, respectively. Moreover, b represents
the bias matrix, and ⊗ represents the element-wise multiplication of two vectors. The
initial value is set as c0 = h0 = 0.

2.2.5. Backpropagation through Time

The training process of LSTM, similar to CNN, is also divided into forward propaga-
tion and backpropagation phases. In contrast to the BP algorithm used in CNN, the LSTM
backpropagation phase uses the backpropagation through time algorithm [32,33].

2.3. Optimization Technology
2.3.1. Batch Normalization

When training a deep learning model, every time parameter updating will change
the distribution of the input data in any layer of the network. As the number of layers
increases, the difference in data distribution increases, causing the network to learn to
adapt to different distributions in each updating, greatly reducing the training speed of
the network. The phenomenon that the internal data distribution of the deep network
changes during the training process is known as an internal covariate shift. To solve such
phenomenon, Ioffe et al. [34] proposed batch normalization (BN). They demonstrated that
the introduction of BN into deep networks significantly improve the training speed and
generalization ability.
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2.3.2. Dropout

Deep learning models with a large number of parameters are prone to overfitting
during the training process, leading to an unsatisfactory prediction effect of the trained
model on the test set; i.e., the generalization ability of the model is seriously insufficient.
Srivastava et al. [35] proposed the dropout method, which effectively solves the overfitting
problem and improves the generalization ability of the model. The core idea of dropout
is to randomly disconnect a slice of neurons and their corresponding connections when
training deep networks so that they do not participate in the training, as shown in Figure 3.
To some extent, dropout is equivalent to artificially adding noise to the model, allowing
the model to learn more effective data features during the training process and improving
the representation ability and robustness of the model.
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2.4. Overview of the Proposed Method

Figure 4 illustrates the flowchart of the proposed damage identification method, which
includes four steps:

(i) Data acquisition and preprocessing: accelerations under different damage scenarios
are obtained and normalized.

(ii) Building database: accelerations of each measuring point obtained under the same
damage scenario are stacked into a data matrix with dimensions m× n, where m is
the number of measuring points and n is the sequence length. Then, the data matrix
is divided into k blocks with dimensions k × n; consequently, the number of data
samples under each damage scenario expands to k. After the database is built, it is
divided into a training set and a validation set.

(iii) Model construction and training: the framework of the CNN-LSTM model is con-
structed, and the features extracted by CNN and LSTM are merged in the fully
connected layer. Then, the training and validation sets are utilized to train and verify
the model, and the model is optimized according to the training results to find a
damage identification model with better performance.

(iv) Damage identification: accelerations under an unknown state are sent to the trained
model to locate damage and predict the severity.



Algorithms 2021, 14, 180 8 of 20

Algorithms 2021, 14, x FOR PEER REVIEW 8 of 21 
 

2.4. Overview of the Proposed Method 
Figure 4 illustrates the flowchart of the proposed damage identification method, 

which includes four steps: 
(i) Data acquisition and preprocessing: accelerations under different damage scenarios 

are obtained and normalized. 
(ii) Building database: accelerations of each measuring point obtained under the same 

damage scenario are stacked into a data matrix with dimensions ×m n , where m is 
the number of measuring points and n is the sequence length. Then, the data matrix 
is divided into k blocks with dimensions ×k n ; consequently, the number of data 
samples under each damage scenario expands to k. After the database is built, it is 
divided into a training set and a validation set. 

(iii) Model construction and training: the framework of the CNN-LSTM model is con-
structed, and the features extracted by CNN and LSTM are merged in the fully con-
nected layer. Then, the training and validation sets are utilized to train and verify the 
model, and the model is optimized according to the training results to find a damage 
identification model with better performance. 

(iv) Damage identification: accelerations under an unknown state are sent to the trained 
model to locate damage and predict the severity. 

 
Figure 4. Flowchart of CNN-LSTM model-based damage identification method. Figure 4. Flowchart of CNN-LSTM model-based damage identification method.

3. Numerical Example

In this section, a finite element model of a long-span suspension bridge is established to
obtain the acceleration response under various damage scenarios, and a CNN-LSTM model
for damage location and severity identification is constructed to verify the effectiveness
and feasibility of the proposed method.

3.1. Details of the Long-Span Suspension Bridge

The Egongyan special track bridge is a self-anchored suspension bridge with a main
span of 600 m, and it is the world’s largest bridge of its kind, as shown in Figure 5. The
main bridge span combination is 50 + 210 + 600 + 210 + 50 = 1120 m: a total of five spans.
The total width of the main bridge deck is 22 m. The main beam is a mixed structure of
steel box and concrete box. The steel box girder section is 926.4 m long, and the concrete
box girder section is 170.16 m long. A steel–concrete joint section with a length of 11.72 m
is present at the junction of the steel box and the concrete box on both sides. The steel box
adopts six web sections made of Q345qD and Q420qE steel. The concrete box adopts a
single-box three-chamber box girder, and it is made of C55 concrete.



Algorithms 2021, 14, 180 9 of 20

Algorithms 2021, 14, x FOR PEER REVIEW 9 of 21 
 

3. Numerical Example 
In this section, a finite element model of a long-span suspension bridge is established 

to obtain the acceleration response under various damage scenarios, and a CNN-LSTM 
model for damage location and severity identification is constructed to verify the effec-
tiveness and feasibility of the proposed method. 

3.1. Details of the Long-Span Suspension Bridge 
The Egongyan special track bridge is a self-anchored suspension bridge with a main 

span of 600 m, and it is the world’s largest bridge of its kind, as shown in Figure 5. The 
main bridge span combination is 50 + 210 + 600 + 210 + 50 = 1120 m: a total of five spans. 
The total width of the main bridge deck is 22 m. The main beam is a mixed structure of 
steel box and concrete box. The steel box girder section is 926.4 m long, and the concrete 
box girder section is 170.16 m long. A steel–concrete joint section with a length of 11.72 m 
is present at the junction of the steel box and the concrete box on both sides. The steel box 
adopts six web sections made of Q345qD and Q420qE steel. The concrete box adopts a 
single-box three-chamber box girder, and it is made of C55 concrete. 

 
Figure 5. Layout of a long-span suspension bridge and numbering of hangers (unit: m). 

The suspension bridge has 122 hangers in total, with 61 hangers on the upstream and 
downstream sides. A three-dimensional finite element model was built using Midas/civil 
2019, which is professional software for bridge structure analysis. The model is divided 
into 937 nodes and 924 elements (674 beam elements and 250 tension-only elements). The 
main beams and bridge towers are simulated by beam elements, and the main cables and 
hangers are simulated by tension-only truss elements (cable elements). 

3.2. Setting Damage Scenarios and Building Database 
Owing to the joint effects of environmental factors and external loads, damage to the 

hangers of suspension bridges during operation is mainly manifested in rust or breakage 
of wires after aging and cracking of the protective sleeve. The corrosion and fracture of 
the hangers will cause the effective cross-sectional area to decrease. Ignoring the changes 
in the quality of the entire hanger after the steel wire is corroded and broken, this study 
adopts a method for reducing the elastic modulus of the hanger to simulate the damage 
of the hanger. The damage rate is defined to represent the damage severity of the hanger, 
and the value of the damage rate is the reduction rate of the elastic modulus of the hanger. 

For convenience, this article numbers all the hangers according to the following rules. 
From the west to the east side span, the hangers on the upstream side are sequentially 
numbered 1, 2, 3... 59, 60, 61, and those at the downstream side are sequentially numbered 
62, 63, 64… 120, 121, 122, as shown in Figure 5. 

To test the performance of the proposed method, this section identifies the preset 
single-location damage, multi-location damage, and different damage severities of the 
hangers. The 1–31 hangers were chosen as the damage object, and the damage scenario 
was defined as a combination of damage type and degree of damage. There are three types 
of damages: damage to a single hanger, two hangers, and three hangers. The damage se-
verity was set as 5, 15, 25, 35, and 45%. Therefore, there are 15 damage scenarios in this 

Figure 5. Layout of a long-span suspension bridge and numbering of hangers (unit: m).

The suspension bridge has 122 hangers in total, with 61 hangers on the upstream and
downstream sides. A three-dimensional finite element model was built using Midas/civil
2019, which is professional software for bridge structure analysis. The model is divided
into 937 nodes and 924 elements (674 beam elements and 250 tension-only elements). The
main beams and bridge towers are simulated by beam elements, and the main cables and
hangers are simulated by tension-only truss elements (cable elements).

3.2. Setting Damage Scenarios and Building Database

Owing to the joint effects of environmental factors and external loads, damage to the
hangers of suspension bridges during operation is mainly manifested in rust or breakage
of wires after aging and cracking of the protective sleeve. The corrosion and fracture of
the hangers will cause the effective cross-sectional area to decrease. Ignoring the changes
in the quality of the entire hanger after the steel wire is corroded and broken, this study
adopts a method for reducing the elastic modulus of the hanger to simulate the damage of
the hanger. The damage rate is defined to represent the damage severity of the hanger, and
the value of the damage rate is the reduction rate of the elastic modulus of the hanger.

For convenience, this article numbers all the hangers according to the following rules.
From the west to the east side span, the hangers on the upstream side are sequentially
numbered 1, 2, 3... 59, 60, 61, and those at the downstream side are sequentially numbered
62, 63, 64 . . . 120, 121, 122, as shown in Figure 5.

To test the performance of the proposed method, this section identifies the preset
single-location damage, multi-location damage, and different damage severities of the
hangers. The 1–31 hangers were chosen as the damage object, and the damage scenario was
defined as a combination of damage type and degree of damage. There are three types of
damages: damage to a single hanger, two hangers, and three hangers. The damage severity
was set as 5, 15, 25, 35, and 45%. Therefore, there are 15 damage scenarios in this study,
and each scenario corresponds to multiple damage combinations. The specific settings of
the damage scenarios are shown in Table 1.

According to the damage scenarios shown in Table 1, the finite element model was
subjected to ambient excitation for dynamic analysis, and the vertical acceleration of
hangers 1–31 was obtained. The ambient excitation was simulated by white noise excitation
with a sampling frequency of 512 Hz, and the analysis time was 34 s. Each damage
combination contained 31 acceleration data, and the sequence length of each data was
17,408. The Z-score normalization method was used to preprocess the acquired data.
Figure 6 is part of the preprocessed acceleration data of hanger 15 under scenario 15.

The 31 acceleration data collected under the same damage combination are composed
of multi-channel data in the order of the hanger number, and a total of 510 acceleration
data with a dimension of 17,408 × 31 can be obtained. Then, each piece of acceleration data
is divided into 17 samples with dimensions of 1024 × 31, so a total of 8670 samples can
be generated from 510 pieces of data. Each sample is marked with the damage location
and degree, and all samples constitute the database. Finally, the database is divided into a
training set, validation set, and test set, which approximately conforms to the ratio of 6:2:2.
The number of samples is shown in Table 1.
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Table 1. Details of damage scenarios and division of samples.

Scenarios Damage Types Damage
Severity (%)

Damage
Combinations

Training
Samples

Validation
Samples Test Samples

1

Single damaged
hanger

5 31 327 100 100
2 15 31 327 100 100
3 25 31 327 100 100
4 35 31 327 100 100
5 45 31 327 100 100

6

Two damaged
hangers 1

5 36 412 100 100
7 15 36 412 100 100
8 25 36 412 100 100
9 35 36 412 100 100
10 45 36 412 100 100

11

Three damaged
hangers 1

5 35 395 100 100
12 15 35 395 100 100
13 25 35 395 100 100
14 35 35 395 100 100
15 45 35 395 100 100

Σ / / 510 5670 1500 1500
1 The damage of the two hangers can only happen to nine randomly selected hangers, i.e., No. 2, 5, 10, 13, 17, 19, 24, 27, and 30; therefore,
the number of corresponding damage combination is C2

9 . Moreover, three damages can only occur on hangers No. 5, 10, 13, 17, 19, 24, and
30, and the number of the corresponding damage combination is C3

7 .
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Figure 6. Part of the pre-processed acceleration data of hanger 15 under scenario 15.

3.3. Architecture of the Proposed CNN-LSTM

A CNN-LSTM for the damage localization and severity prediction of hangers is
designed. The architecture of the CNN includes four convolutional blocks for extracting
the high-dimensional features of accelerations (denoted as CNN features) and three fully
connected layers for damage localization or severity recognition. The architecture of LSTM
uses the LSTM layer to extract the time-series features of accelerations (denoted as LSTM
features). It should be noted that CNN and LSTM share the three fully connected layers.
After merging the extracted CNN and LSTM features, the fused features are used as the
input of the fully connected layer to predict the damage location or severity.

The model input adopts the acceleration with dimensions of 1024 × 31, where the
input height 31 is the number of hangers, and the input width 1024 is the sequence length.
However, the input dimension of the LSTM layer is related to the time step and sequence
length. This study sets the input dimension of the LSTM layer to 64 × 496, where 64 is
the time step and 496 is the sequence length. Therefore, the sample dimensions need to
be converted according to the following steps. Each sample is divided into 16 parts with
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dimensions of 64 × 31. Then, the 16 parts of the data are spliced along the first dimension
into a sequence of 496 acceleration data points, so the transformed sample dimension is
64 × 496.

The LSTM layer consists of 64 LSTM units and 496 hidden neurons. Convolutional
blocks are composed of a convolutional layer, a BN layer, an activation function, and a
pooling layer. Fully connected block 1 is composed of a fully connected layer and a BN
layer, and fully connected block 3 is the classification layer. The size of the convolution
kernel in convolutional block 1 is 64 × 1, and the size of the convolution kernel in other
convolutional blocks is 3 × 1. The activation function of the convolutional block and the
fully connected block 1 selects ReLU. The pooling layer in the convolutional block adopts
max pooling with a stride of 2. For the prediction of damage severity, the fully connected
block 3 has 31 outputs, corresponding to the number of hangers. For damage localization,
each hanger has two states (damaged/undamaged), and the fully connected block 3 has
a total of 62 outputs. The architecture of the proposed CNN-LSTM model is shown in
Figure 7, and the parameters are shown in Table 2.
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3.4. Model Training and Hyperparameter Optimization

This study is based on the deep learning framework Pytorch and the programming
language Python to complete the model compilation work. A computer with an Intel
Core i5-9300H CPU, GeForce GTX 1650 GPU, and RAM 16.00 GBs was used. Additionally,
Windows 10, Pytorch 1.4.0, and Python 3.8.2 operating systems were used, as well as CUDA
10.2 software.

For deep learning algorithms, hyperparameters are critical for model performance;
therefore, the model parameters need to be adjusted and optimized. The following hyper-
parameters were optimized and adjusted by the control variable method: learning rate, rate
of dropout, mini-batch, and BN layer. The specific parameters to be adjusted are shown in
Table 3. The epoch was set to 50, and the average epoch duration was 9720 s. The damage
recognition results of the CNN-LSTM model with different learning rates are plotted in
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Figure 8. It should be noted that the accuracy is the ratio of the number of samples correctly
localized in the validation set. Val-Mse is the mean square error between the prediction
vector of the damage severity and the target vector.

Table 2. Parameters of CNN-LSTM.

Layer Size/No. Stride Padding Input/Output Activation

Convolutional block 1
Conv1 64 × 1/32 2 SAME 31 × 1024/32 × 512 ReLU

BN layer - - - - -
Pool1 3 × 1/32 2 SAME 32 × 512/32 × 256 -

Convolutional block 2
Conv2 3 × 1/64 2 SAME 32 × 256/64 × 128 ReLU

BN layer - - - - -
Pool2 3 × 1/64 2 SAME 64 × 128/64 × 64 -

Convolutional block 3
Conv3 3 × 1/128 2 SAME 64 × 64/128 × 32 ReLU

BN layer - - - - -
Pool3 3 × 1/128 2 SAME 128 × 32/128 × 16 -

Convolutional block 4
Conv4 3 × 1/256 2 SAME 128 × 16/256 × 8 ReLU

BN layer - - - - -
Pool4 3 × 1/256 2 SAME 256 × 8/256 × 4 -

LSTM layer - - - 64 × 496/64 × 256 -

Fully connected block 1 Fc1 - - - 1280/1280 -
BN layer - - - 256/256 ReLU

Fully connected block 2 Fc2 - - - 256/31(62) -

Fully connected block 3 Fc3 - - - 31(62) Sigmoid (-)

Note. The size of the parameter used for damage localization is in brackets, and the size of the parameter used for damage severity
prediction is outside the brackets.

Table 3. Hyperparameters optimization of CNN-LSTM model.

Parameters to Be Adjusted Value Parameters to Be Adjusted Value

Learning rate

0.01
Mini-batch

32
0.005 64
0.001 128

0.0005

Rate of dropout

0
0.0001 0.3

BN layer Setting 0.5
Not Setting 0.7
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Figure 8. Influence of different learning rate on CNN-LSTM: (a) Localization; (b) Severity prediction.

Figure 8 indicates that under different learning rates, the loss of CNN-LSTM used for
damage localization and severity prediction, respectively, shows a short horizontal segment
in the second to eighth epoch, and then, it continues decreasing until the value stabilizes.
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As shown in Figure 8a, the training speed of the damage localization is the fastest when
the learning rate is 0.0001 and 0.0005, and the accuracy is higher under the same epoch,
but the accuracy curve with a learning rate of 0.0005 is more volatile. Moreover, Figure 8b
shows that when the learning rate is 0.0005, the loss and Val-Mse for predicting damage
severity are small. Therefore, the learning rates of the CNN-LSTM model used for damage
localization and damage severity prediction were set as 0.0001 and 0.0005, respectively.

The final adjustment result of other hyperparameters is that the convolutional layer
and the fully connected layer are added to the BN layer, the mini-batch is 64, and the fully
connected layer does not use dropout.

3.5. Damage Localization of Suspension Bridge Hangers

Based on the trained CNN-LSTM model in Section 3.4, the damage location of the
test set is predicted. To intuitively display the performance of the proposed method, the
number of samples for which the CNN-LSTM model correctly locates the damage in the
test set is shown in Table 4.

Table 4. Test results of CNN-LSTM on damage localization of the hangers.

Scenarios 1 2 3 4 5 6 7 8

No. of samples correctly identified 58 76 95 98 96 97 100 94

Scenarios 9 10 11 12 13 14 15 Σ

No. of samples correctly identified 100 100 96 100 100 100 100 1410

Figure 9 presents the accuracy of the damage localization of hangers under various
damage scenarios. “All” in the figure denotes the accuracy of the entire test set, i.e., the
average value of scenarios 1–15.
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Figure 9. Accuracy of CNN-LSTM for damage localization under different scenarios.

The following can be drawn from Table 4 and Figure 9.

(i) The accuracy of damage localization of the hangers in the test set reaches 94.0%,
showing that the proposed CNN-LSTM can effectively complete the task of dam-
age localization.

(ii) Comparing the recognition results of different damage scenarios, the accuracy of the
CNN-LSTM model in damage localization is between 58.0 and 100%. The accuracy in
scenarios 1 and 2 is relatively low, i.e., 58 and 76%, respectively, and the accuracy of
the other scenarios remains above 94%. The comparison results show that except for
scenarios 1 and 2, the CNN-LSTM-based damage identification method has higher
accuracy in locating the damage of hangers.
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(iii) When comparing the recognition results of different damage types, the proposed
method has little difference in the accuracy of a single damaged hanger, as well as
two and three damaged hangers. The accuracy increases from 84.6 to 99.2%, which is
an increase of approximately 15%. From the above results, it can be inferred that the
accuracy of the proposed model in damage localization is less affected by the number
of damaged hangers.

3.6. Damage Severity Prediction of Suspension Bridge Hangers

The absolute identification error (AIE) of the damage severity of the undamaged and
damaged hangers under different damage scenarios is calculated in Table 5.

Table 5. AIE of the damage severity of hangers under different damage scenarios.

Scenarios Average AIE of Undamaged Hangers (%) Average AIE of Damaged Hangers (%)

1

Single damaged hanger

5% 0.229 1.726
2 15% 0.068 2.047
3 25% 0.026 1.711
4 35% 0.017 2.070
5 45% 0.024 2.470

6

Two damaged hangers

5% 0.061 0.648
7 15% 0.005 0.913
8 25% 0.005 1.102
9 35% 0.002 1.159

10 45% 0.010 0.852

11

Three damaged
hangers

5% 0.018 0.563
12 15% 0.001 1.006
13 25% 0.001 0.804
14 35% 0.003 1.012
15 45% 0.016 0.405

It can be seen from Table 5 that the AIE of damage severity prediction of undamaged
hangers based on the CNN-LSTM model is in the range of 0.001–0.229%, where the average
AIE of damage scenario 1 is the largest, and those of scenarios 12 and 13 are the smallest.
Comparing the AIE of different damage types, the three damaged hangers are the lowest,
the two damaged hangers are the second, and the single damaged hanger is relatively
high. The AIE of the CNN-LSTM model for predicting the damage severity of damaged
hangers is between 0.563 and 2.470%, where the AIE of each scenario of the single damage
type is higher than that of the other damage types. According to the above analysis, the
proposed model has high accuracy in predicting the severity of the undamaged hangers.
The proposed model predicts that the damage severity of the damaged hangers generally
performs well, but the prediction result for a single damaged hanger is relatively poor.

To evaluate the performance of the proposed damage identification method, the
average relative identification error (ARIE) is used to evaluate the recognition effect of the
proposed model on the prediction of the damage severity of hangers, which is expressed as:

ARIE = ∑n
i

∣∣∣∣∣ydegpred − ydegtarg

ydegtarg

∣∣∣∣∣× 100%
n

(15)

where ydegpred is the prediction vector of damage severity, ydegtarg is the target vector, and n
is the number of hangers under the corresponding scenarios.

When calculating the ARIE, this study only focuses on the damaged hangers. The
value of the evaluation index ARIE is calculated according to Equation (15) and presented
in Figure 10.
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Figure 10. ARIE of CNN-LSTM model about damage severity prediction.

The following conclusions can be drawn from Figure 10.

(i) The ARIE of the CNN-LSTM model for the damage severity prediction of hangers is
8.0% in the test set. The ARIE under different damage scenarios is between 0.90 and
34.52%, and the ARIE under most damage scenarios is below 7.0%.

(ii) For the same damage type, the ARIE decreases as the damage severity increases. The
single damage scenarios decrease the fastest, with a decrease of approximately 29.03%,
and the two and three damaged scenarios decrease by 11.06 and 10.37%, respectively.
It can also be found from the ARIE results of the different damage severities that the
CNN-LSTM model has relatively small prediction errors for larger damage severities
(≥15%), while the accuracy of damage prediction for smaller damage severities (such
as 5%) is poor.

(iii) For the same damage severity, as the number of damaged hangers increases, ARIE
shows an overall downward trend.

4. Discussion

The anti-noise performance of the proposed model in Section 3 will be discussed, and
the prediction performance of CNN-LSTM and CNN will be compared in this section.

4.1. Influence of Environmental Noise on the Proposed Method

The bridge structure is in a tough external environment, and the structural response
will inevitably be disturbed by environmental factors. Therefore, it is necessary to discuss
the anti-noise performance of the proposed CNN-LSTM-based damage identification
method under different noise levels. This paper adds noise to the obtained acceleration
time-history response according to Equation (16), and the noise level is measured using the
signal-to-noise ratio [36].

x̂ = xsignal + xnoise = xsignal + εN
(
µ, σ2)

ε = sqrt
(

∑n
i x2

i /
(

n× 10SNR/10
)) , (16)

where x̂ and xsignal are acceleration samples with and without noise, respectively, SNR
is the signal-to-noise ratio, N

(
µ, σ2) is Gaussian noise obeying µ= 0, σ2 = 1, and n is the

length of the acceleration sample data.
Noise was added to the test samples to obtain five new test sets with signal-to-noise

ratios of 20, 10, 6.67, 5, and 3.33, respectively; moreover, the trained CNN-LSTM model (i.e.,
first training) in Section 3.4 was used for testing. Figure 11 shows the identification results
of the damage localization and severity prediction of hangers under different noise levels.
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Figure 11. Influence of environmental noise on the proposed method.

It can be seen from Figure 11 that the damage recognition effect of the CNN-LSTM
model on the hangers is greatly affected by environmental noise. In terms of the overall
trend, the accuracy of damage localization and the ARIE of the damage severity decreases
and increases with the increase in noise level, respectively. When the SNR is 10, the damage
localization accuracy can reach approximately 75%, but the ARIE of the severity prediction
increases significantly. When the SNR is 3.33, the recognition accuracy is only 46.40%,
which is 47.60% lower than the test result without noise, and the ARIE is close to 50%.

The CNN-LSTM model was retrained with a new training set composed of samples
with Gaussian noise (SNR: 10, 5, and 3.33) and noise-free samples, and the test set with
different noise levels was fed into the retrained model. The test results are shown in
Figure 11. It can be seen from Figure 11 that the anti-noise performance of the CNN-LSTM
model after retraining with noisy training samples was greatly improved. When the
SNR is 5 and 3.33, the accuracy of the damage localization of the hangers is increased by
17.40 and 20.66%, and the ARIE of the severity prediction is reduced by 11.67 and 19.00%,
respectively. The results show that using the acceleration response dataset containing noise
for the second training of the model can effectively improve the anti-noise performance of
the model against higher noise levels. Simultaneously, it also indicates that the proposed
model can quickly learn the damage characteristics in the acceleration response with noise
and has a strong learning ability.

4.2. Performance Comparison

Based on the time series modeling ability of LSTM, this paper combines it with CNN
for damage identification, obtaining promising results. However, it is essential to compare
the performance of the CNN-LSTM model against the CNN model to further verify the
merit of this research. The architecture of the corresponding CNN model is presented in
Figure 12, and the detailed parameters of such a model are tabulated in Table 6. The training
set, validation set, and test set of these two models come from the database established in
Section 3.2.
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Figure 12. Architecture of the corresponding CNN model.

Table 6. Parameters of the corresponding CNN model.

Layer Size/No. Stride Padding Input/Output Activation

Convolutional block 1
Conv1 64 × 1/32 2 SAME 31 × 1024/32 × 512 ReLU

BN layer - - - - -
Pool1 3 × 1/32 2 SAME 32 × 512/32 × 256 -

Convolutional block 2
Conv2 3 × 1/64 2 SAME 32 × 256/64 × 128 ReLU

BN layer - - - - -
Pool2 3 × 1/64 2 SAME 64 × 128/64 × 64 -

Convolutional block 3
Conv3 3 × 1/128 2 SAME 64 × 64/128 × 32 ReLU

BN layer - - - - -
Pool3 3 × 1/128 2 SAME 128 × 32/128 × 16 -

Convolutional block 4
Conv4 3 × 1/256 2 SAME 128 × 16/256 × 8 ReLU

BN layer - - - - -
Pool4 3 × 1/256 2 SAME 256 × 8/256 × 4 -

Fully connected block 1 Fc1 - - - 1024/1024 -
BN layer - - - 256/256 ReLU

Fully connected block 2 Fc2 - - - 256/31(62) -

Fully connected block 3 Fc3 - - - 31(62) Sigmoid (-)

Note. The size of the parameter used for damage localization is in brackets, and the size of the parameter used for damage severity
prediction is outside the brackets.

Figure 13 shows a comparison of the damage recognition results between the CNN-
LSTM model and the CNN model.

As shown in Figure 13, compared to the CNN-based damage identification method,
the overall recognition accuracy of the damage localization based on the CNN-LSTM model
increases by 8.13%, and the ARIE of severity prediction decreases by 5.20%.
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5. Conclusions

A new method of bridge damage identification combining CNN and LSTM is pro-
posed. The proposed method uses LSTM to extract the time-series features of the accel-
eration data, which are merged with the high-dimensional features of the acceleration
data extracted by CNN to realize bridge damage localization and severity prediction. A
finite element model was employed to simulate the damage of the hangers of a large-span
suspension bridge, and the acceleration dataset was obtained by time-history response
analysis to verify the effectiveness and accuracy of the proposed model. The following
work was carried out:

(1) A database containing 8670 damage samples was constructed and divided into a
training set, validation set, and test set. Afterward, the training set and the validation
set were used to train and select the proposed CNN-LSTM model. For the entire test
set, the accuracy of the damage localization of hangers reached 94.00%, and the ARIE
of the damage severity prediction was just 8.00%.

(2) To study the noise immunity of the proposed method, noise with different signal-
to-noise ratios was added to the samples in the database, and then the CNN-LSTM
model was retrained, and the test set after adding noise was predicted. The results
show that when the SNR is 3.33, the accuracy of damage localization reached 67.06%,
and the ARIE of the damage severity identification was 31%.

(3) The performance improvement of the CNN-LSTM model was investigated. The dam-
age recognition performances of the CNN and CNN-LSTM models were compared
and analyzed. The results show that the accuracy of damage localization based on
CNN-LSTM increased by 8.13%, and the ARIE of the damage severity prediction
decreased by 5.20% compared with CNN.

From the above results, it could be concluded that the proposed method can accurately
realize the identification of different damage locations and degrees of the target hangers.
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However, this method may possess a poorer recognition effect on the hangers with minor
damage. Therefore, it is indispensable to improve the recognition effect of minor damages
in the future. In addition, the main factor that affects the accuracy of the model is the
similarity between the training set and the actual situation. As a result, more data under
different scenarios will be collected in the future, which is expected to further improve the
accuracy of the model.
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