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Abstract: Wheeled mobile robots are widely implemented in the field environment where slipping
and skidding may often occur. This paper presents a self-adaptive path tracking control framework
based on a radial basis function (RBF) neural network to overcome slippage disturbances. Both
kinematic and dynamic models of a wheeled robot with skid-steer characteristics are established with
position, orientation, and equivalent tracking error definitions. A dual-loop control framework is
proposed, and kinematic and dynamic models are integrated in the inner and outer loops, respectively.
An RBF neutral network is employed for yaw rate control to realize adaptability to longitudinal
slippage. Simulations employing the proposed control framework are performed to track snaking
and a DLC reference path with slip ratio variations. The results suggest that the proposed control
framework yields much lower position and orientation errors compared with those of a PID and
a single neuron network (SNN) controller. It also exhibits prior anti-disturbance performance and
adaptability to longitudinal slippage. The proposed control framework could thus be employed for
autonomous mobile robots working on complex terrain.

Keywords: wheeled robot; slipping and skidding; path tracking; radius basis function; adaptive control

1. Introduction

Path tracking is critical for autonomous driving, as it moves a mobile robot to follow
a desired path by longitudinal and lateral control [1]. The linear quadratic regulator
(LQR) controller, proportional–integrated–derivative (PID) controller, and sliding mode
controller are often used in path tracking control [2–4]. In addition, model predictive control
(MPC) is often used in path tracking. Model predictive control strategies are applied to a
wheeled mobile robot, and it has proved that MPC reduces energy consumption by 70%
compared to the reduction in energy consumption provided by PID control [5]. The various
path tracking control algorithms proposed for mobile robots usually employ constant
control parameters, which yield optimal performance under a no-disturbance condition.
Researchers focused on selecting suitable controller gains and designing compensators to
improve control performance [6–8]. Adaptive control methods were widely utilized for
systems with unknown dynamics and uncertain disturbances [9,10]. The terrain changes,
often considered disturbances for controller design, may have a variety of effects on a
robot’s motion, such as slipping and skidding [11,12]. Slippage, however, is especially
crucial for the motion control of mobile robots working in the field environment [13]. Such
disturbances may lead to the degradation of tracking performance [14].

A number of studies in the literature took slippage into account and proposed path
tracking control together with slipping and skidding compensation [15]. Therefore, the
accuracy of slippage parameter estimation is vital to the design of such controllers. The
generalized extended state observer (GESO) approach and Kalman filter were utilized to
estimate the slipping parameter of wheels [13,16], and the slippage effect was considered
in a kinematic model to improve the performance of path tracking [17–19]. The disturbance
led by slipping and skidding, however, is difficult to estimate and predict. Only few studies
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have presented adaptive controllers with time-varying parameters to adapt to various
terrains. An improved adaptive controller was proposed to allow a wheeled mobile robot
(WMR) to track the desired trajectory under unknown longitudinal slip [14]. The accuracy
and reliability of the path tracking of a four-wheel mobile robot when moving at high
dynamics on a slippery surface were addressed by employing an adaptive and predictive
controller [20]. A novel indirect adaptive controller was proposed to allow wheeled robots
to finish path tracking on complicated terrains in the presence of unknown interferences
and wheel slippage using integral sliding mode control (ISMC)-based neural networks
with updated rules for adjustments the weights [21]. A self-tuning methodology based
on probabilistic approaches and machine learning techniques was proposed to improve
the path tracking performance of for autonomous vehicles maneuvering along changing
terrain [22]. A new adaptive control scheme was used to overcome the difficulties in path
tracking, and the scheme included designing a new adaptive state-feedback controller and
two high-gain observers to estimate the unknown linear and angular velocities, respec-
tively [23]. The adaptive sliding mode control (SMC) method combines the adaptive control
method and a fast double power reaching law with the SMC method, and a complete
control loop with active slip compensation and adaptive SMC is thus established [24]. The
path tracking controller for field robots should overcome the terrain changes by employing
a time-varying controller that can adapt to slippage disturbances.

This paper addresses the problem of degradation on path tracking performance in
WMRs due to slipping and skidding for. The major contributions of this paper are listed
as follows:

• An equivalent error integrating position and orientation errors, and taking account
of the preview distance is employed for the development of path tracking control to
achieve both a lower position error and a steady posture.

• A dual-loop control framework that integrates kinematic and dynamic models in
the inner and outer loops, respectively, is proposed. A decoupled control method
including a yaw rate controller and a speed controller is utilized to achieve the tracking
target of a reference path with a desired speed.

• An RBF neural network is employed for yaw rate control to realize adaptability to
longitudinal slipping and skidding caused by complex terrain.

The remainder of this paper is organized as follows: In Section 2, a kinematic model
of a skid–steer wheeled robot is formulated with the definition of position and orientation
errors. Dynamic equations for the robot are also derived for path tracking controller design.
Section 3 introduces the dual-loop control framework for path tracking. Section 4 describes
simulation results by tracking a snaking and a DLC reference path under variations in slip
ratios. Finally, the conclusion and future work of this paper are shown in Section 5.

2. Kinematic and Dynamic Models

Kinematic and dynamic models are widely used to estimate robot behaviors and
dynamic response under the control input, which is essential for the development of a
controller. Both kinematic and dynamic models of a WMR with skid–steer characteristics
are established. Path tracking errors defined by driver-preview theory are included in the
kinematic model. Dynamic equations for the wheeled robot are formulated and used for
the inner-loop control of the proposed framework.

2.1. Kinematic Model

A kinematic model is firstly established for a skid–steer WMR to acquire its trajectory
and orientation variation under tracking control. Figure 1 shows a description of the
kinematic model with the error definition for path tracking. The position and orientation
of the wheeled robot can be explained with the world coordinate system XOY. C is the
center of gravity (CG) of the robot, which is taken as the reference point of path tracking in
this study. The wheeled robot consists of two driving rear wheels and two driven front
wheels, and steering is achieved by the speed difference between the two rear wheels.
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A generalized coordinate vector q = [x, y, θ, ϕL, ϕR]
T of the wheeled robot is defined,

where x and y denote the coordinates along the X and Y orientations of CG of the robot:
θ is the orientation angle of the robot with respect to the x-axis; and ϕL and ϕR are the
rotation angles of the left and right driving wheels, respectively. The kinematic equation of
a skid–steer wheeled robot is described as

.
q = S(q)

.
v (1)

where v = [ϕL, ϕR]
T and S(q) are formulated as

S(q) =
[ r cos θ

2
r sin θ

2 − r
B 1 0

r cos θ
2

r sin θ
2

r
B 0 1

]T

(2)

where r is the radius of a driving wheel, and B is the distance between the centerlines of
left and right wheels.

The non-holonomic constraint that a wheeled robot is subjected to is given by

A(q)
.
q = 0 (3)

where A(q) is

A(q) =

 sin θ − cos θ 0 0 0
− cos θ − sin θ B

2 r 0
− cos θ − sin θ B

2 0 r

 (4)

The non-holonomic constraint is under the assumption that the system is “pure rolling
without slipping” [25]. Wheeled robots working in a field environment often slip or
skid, and thus, the kinematic equation is rewritten by taking the slip ratio into account.
The kinematic model of a skid–steer wheeled robot under slippage conditions could be
obtained as

.
q =


.
x
.
y
.
θ
.
ϕL.
ϕR

 =


r cos θ

2 (1− fL)
r cos θ

2 (1− fR)
r sin θ

2 (1− fL)
r sin θ

2 (1− fR)
− r

B (1− fL)
r
B (1− fR)

1 0
0 1

 .
v (5)

where fL and fR are the slip ratios of left and right wheels, respectively, which are defined as

fs = 1− vs
.
ϕsr

, s = L or R (6)
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where vL and vR are the linear velocities of the left and right wheels, respectively.
Path tracking errors of the robot are composed of position errors in both the lateral and

longitudinal directions, as well as orientations with respect to the reference path, which are
defined as

ep = λ

√
(x− xr)

2 + (y− yr)
2 (7)

eθ = θ − θr (8)

where ep and eθ are the position and orientation errors, respectively, of the robot with
respect to the reference path; (xr, yr) represents the reference position; θr is the reference
orientation. λ is equal to 1 when the robot is at the left side of the reference path, while is
−1 when it is at the right side.

In this paper, an equivalent tracking error eq is defined by taking the preview distance
lp into account, which represents a position error of a future state [26]:

eq = eh + ep ≈ lp eθ + ep (9)

where eh is a position error in the future, which is caused by the orientation error eθ of the
current state. All of the defined errors are employed as the input and evaluation indicators
for controller development.

2.2. Dynamic Model

A dynamic model is subsequently built for the wheeled robot to take dynamic con-
straints of the motor driving system into account. The dynamic model, as shown in
Figure 2, can be explained with a body-fixed coordinate system, where the origin point is
located at the CG of the robot. TL and TR are driving torques on wheels generated by left
and right motors, respectively. Fy denotes constraint force along the y-axis, while FxL and
FxR are constraint forces on the left and right wheels along the x-axis.
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In this paper, it is assumed that the robot is constrained to moving on the horizontal
plane only. The dynamic equation of the system is formulated using the Lagrange method,
which can be expressed as

M
..
q = Bτ −AT(q)λ (10)

where M is the inertial matrix, B is the transfer matrix, τ denotes the input vector of driving
torques, and λ is the vector of constraint forces.

M = diag{m, m, J, JL, JR}

B =

[
0 0 0 1 0
0 0 0 0 1

]T

τ = [TL, TR]
T

λ =
[
Fy, FxL, FxR

]T
(11)
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where m is the mass of the robot, J is its moment of inertia along the z-axis, JL = mr2

4 + Jr2

B2 and

JR = mr2

4 + Jr2

B2 are the moments of inertia of the left and right driving wheels, respectively.

The vector of constraint forces λ =
[
Fy, FxL, FxR

]T can be defined as follows
FxL = CxL fL
FxR = CxR fR

Fy = Cy β
(12)

where CxL and CxR represent the longitudinal stiffness of the left and right driving wheels,
respectively; Cy is the cornering stiffness of the wheels; β is the wheel slip angle.

The wheel slip angle β can be estimated by the velocity variables of the previous time,
and can be expressed as follows

β(t) =
2

.
y(t− 1)− B

.
θ(t− 1)

2
.
x(t− 1)

(13)

where β(t) is the value of β at t moment;
.
θ(t− 1) is the value of

.
θ at t − 1 moment;

.
x(t− 1)

and
.
y(t− 1) are the values of

.
x and

.
y, respectively, at t − 1 moment.

The dynamic equation (Equation (10)) can thus be simplified as

..
q = M−1Bτ −M−1AT(q)λ (14)

The angular acceleration of the left and right driving wheels can be obtained, and it is
employed to design the inner loop of the control framework in this paper.

3. Path Tracking Controller

Figure 3 shows the configuration of the proposed dual-loop control framework for
path tracking. A decoupled control method, including a yaw rate controller and a speed
controller, is employed to achieve the tracking target of a given path with a desired speed,
which is defined as p =

(
xre f , yre f , θre f , vd

)
. The yaw rate controller is developed to move

the robot following the reference path. Slipping and skidding may lead to degradation
of the path tracking performance of a conventional controller. An RBF neural network
is thus utilized to propose a self-adaptive tracking control due to its prior adaptability
to various systems and performance against disturbances. At the same time, a speed
controller is designed to compensate the loss of robot speed due to the occurrence of
slipping and skidding. A motor controller is also developed to achieve the reference
angular velocity of the left and right driving wheels. Both dynamic and a kinematic
controls are realized in the inner and outer loops of the proposed control framework.
Slipping and skidding are simulated as unexpected disturbances of the kinematic model,
and the adaptive performance of the proposed framework is investigated.
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According to the configuration of the path tracking control framework from Figure 3,
the real path can be output in Algorithm 1.

Algorithm 1 Self-adaptive path tracking control algorithm based on RBF neural network

Input:
p = {xre f , yre f , θre f , vd};

Output:
O = {x, y, θ, v};

1: while t < tmax
2: //outer-loop control algorithm
3: ep(t)← Error(xre f (t), yre f (t), x(t), y(t)); //Compute error
4: [eθ(t); ev(t)]← Error([θre f (t), θ(t)]; [vd(t), v(t)]);
5: uv(t)← Speedcontroller(ev(t)); //PID control algorithm (Equation (15))
6: The yaw rate controller input x(t) = {eθ(t), ep(t),

.
eθ(t),

.
ep(t)};

7: if t = 0 then
8: Initialize matrix w(t), b(t) and c(t);
9: else
10: h(t)← Hiddenlayer(x(t), b(t), c(t)); //Compute hidden layer output matrix (Equation (18))
11: uy(t)← RBFoutput(w(t), h(t)); //Equation (19)

12:
Update matrix w(t + 1), b(t + 1) and c(t +

1);
//Equations (21) and (23)

13: end if
14: [

.
ϕLd(t),

.
ϕRd(t)]← Transition(uv(t), uy(t)); //The desired angular velocity

15: //Inner-loop control algorithm
16: [el(t); er(t)]← Error([

.
ϕLd(t),

.
ϕL(t)]; [

.
ϕRd(t),

.
ϕR(t)]);

17:
[TL(t); TR(t)]←Motorcontroller([el(t);

er(t)]);
//PID control algorithm (Equation (16))

18: [
.
ϕL(t + 1);

.
ϕR(t + 1)]← Dynamicmodel([el(t); er(t)]), and feedback to step 16 of the t + 1 moment;

19: //Inner-loop control closure

20:
O(t + 1)← Kinematicmodel(

.
ϕL(t + 1),

.
ϕR(t + 1), fL(t + 1), fR(t + 1)), and feedback to step 3–4 of the t + 1

moment;
21: t← t + 1;
22: //Outer-loop control closure
23: end while
24: return O;

3.1. Speed and Motor Control

Both uy and the speed controller output uv are the inputs of robot model through
angular velocity transition. The PID control algorithm is employed to develop the speed
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controller and motor controller, which are shown in Figure 3. The speed controller is
designed as

uv = KPv ev + KIv

∫
evdt + KDv

dev

dt
(15)

where KPv, KIv, and KDv are the proportional, integral, and differential coefficients of the
speed controller, respectively, and ev is the difference between the desired velocity vd and
actual velocity v of the robot.

The PID control algorithm of the motor controller is derived as

T′s = KPT es + KIT

∫
esdt + KDT

des

dt
, s = L or R (16)

where KPT , KIT , and KDT are the proportional, integral, and differential coefficients of the
motor controller, respectively; T′s is the torque output by the PID control algorithm; es is
the difference between the desired angular velocity

.
ϕsd and the actual angular velocity

.
ϕs

of the s-wheel. L and R represent left and right sides of the robot, respectively.
The motor controller uses the DC motor, and the DC motor is derived as

Ts = D Is − Z
.
ϕsd , s = L or R (17)

where Ts is the actual torque output by the DC motor, D is torque constant of the motor,
and Is is the motor current. In motor control, the influence of damping torque must not
be ignored. Therefore, the damping term is considered in the motor control, and Z is the
damping coefficient [5].

In the PID control algorithm, it is difficult to obtain reasonable proportional, integral,
and differential coefficients. In this paper, the following steps are used to tune the PID
controller, and the corresponding coefficient is obtained:

• Firstly, the proportional coefficient is tuned. The initial value can be calculated quanti-
tatively, and the different values from both sides of the initial value can be taken. The
final proportional coefficient can be determined when the system has a relatively fast
response speed.

• Secondly, the integral coefficient is tuned. The time for the system to reach stability is
tested when the value is 0–1, and the integral coefficient can be determined when the
time is relatively short.

• Thirdly, the differential coefficient is tuned. The differential coefficient, which is 0–1,
can be determined when the system is relatively stable.

According to the above method of tuning the PID controller, the coefficients of the
speed controller KPv, KIv, and KDv are 50, 0.5, and 0, respectively, and the coefficients of
the motor controller KPT , KIT , and KDT are 4, 0, and 1, respectively.

3.2. Yaw Rate Control

The yaw rate controller, as shown in Figure 4, is developed from an RBF neural
network where an online adaptive law is applied. The neural network is composed of an
input layer, a hidden layer, and an output layer. Position and orientation errors, as well as
their deviations, are taken as the input of the neural network. The output is the desired
yaw rate of the wheeled robot, which is denoted as uy. In this paper, a 4–9–1 structure is
employed to facilitate the RBF neural network, and a self-adaptive law is applied to update
the network parameters online.
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As shown in Figure 4, x =
[

eθ ep
.
eθ

.
ep

]T is defined as the network input,

and h =
[
hj
]T is the output of hidden layer, where hj represents the value of the Gaussian

function for the jth neuron.

hj = exp

(
−
‖x− cj‖2

2bj
2

)
(18)

where c =
[
cjk

]
is the central vector, b =

[
bj
]T is the width vector of the Gaussian function,

and j = 1, 2, . . . m, m is the number of neurons in the hidden layer.
The output of the neural network is

uy =
m

∑
j=1

ωjhj (19)

where ωj is the weight of output layer from the jth neuron.
An error indicator of the network is defined as

E =
1
2

e(t)2 (20)

In this paper, e(t) is defined as a weighted error with the equivalent tracking error eq
and its deviation

.
eq

e(t) = s1eq(t) + s2
.
eq(t) (21)

where s1 and s2 are the weight coefficients of eq and
.
eq, respectively.

The changes in the weight are ∆ωj(t), ∆bj(t), and ∆cjk(t), and they are derived using
the gradient descent method to update the network.

∆ωj(t) = −η ∂E
∂ωj

= ηe(t)hj

∆bj(t) = −η ∂E
∂bj

= ηe(t)ωjhj
‖x−cj‖2

bj
3

∆cjk(t) = −η ∂E
∂cjk

= ηe(t)ωjhj
xj−cjk

bj
2

(22)

where η is the learning rate, and the value is between 0 and 1.
When the value of η is too low, the speed of learning decreases. On the contrary, when

the value of η is too high, the change in the weight is unstable. Therefore, the momentum
term is added to Equation (22). If the gradient direction of the current time is similar to
that of the historical time, the gradient direction of the current time is strengthened; if it
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is different, the gradient direction at the current time weakens. The weight of the output
layer, the width, and center vectors of the Gaussian function can be updated by

ωj(t) = ωj(t− 1) + ∆ωj(t) + α
(
ωj(t− 1)−ωj(t− 2)

)
bj(t) = bj(t− 1) + ∆bj(t) + α

(
bj(t− 1)− bj(t− 2)

)
cjk(t) = cjk(t− 1) + ∆cjk(t) + α

(
cjk(t− 1)− cjk(t− 2)

) (23)

where α is factor of momentum, and the value is between 0 and 1.
A PID tracking controller is also formulated for the wheeled robot to obtain the central

vector values of the RBF network. Path tracking simulations are conducted by employing
the PID controller, and both position error and orientation error are collected to determine
the central vector of the RBF network by the K-means clustering method. In the simulation
employing the PID controller, the slippage disturbances are not taken into account. The
purpose of such simulation is to identify a suitable central vector for the RBF network
rather than a random approach.

4. Results and Discussion

The proposed path tracking algorithm is verified by tracking two different reference
paths, namely, a snaking path and a double lane change (DLC) path. As shown in Figure 5,
the robot tracks the path on a separation surface, and the slip ratios of the left and right
wheels are taken as disturbances input to the kinematic model. The effectiveness and adapt-
ability of the proposed control framework are demonstrated under tracking simulations.
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4.1. Algorithm Verification

The parameters of the wheeled robot for algorithm verification are listed in Table 1.
The learning rate η and factor of momentum α in the RBF network are set to 0.3 and
0.35, respectively. The weight coefficients s1 and s2 are 0.6 and 0.004, respectively. The
preview distance lp is 0.01 m in this paper. The initial values of neural network weights
(the weighting vector and the width vector) are set as follows: w = [0.05 0.05 · · · 0.05]T

and b = [0.5 0.5 · · · 0.5]T . Simulations to track both a snaking path and a DLC path are
conducted by employing the PID controller, and the central vector of the RBF network
is determined by the K-means clustering method. Unlike general vehicles operating on
prepared roads, wheeled mobile robots are used to accomplish special tasks in specific
occasions. Usually, the speed of a wheeled mobile robot is not fast. Therefore, in this paper,
the desired speed of the robot in the simulation is set to 1 m/s.
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Table 1. Parameters of the robot model.

Parameter Value Unit

r 0.21 m
B 0.67 m
m 115 kg
J 20.59 kgm2

JL 3.29 kgm2

JR 3.29 kgm2

CxL 10 kN
CxR 10 kN
Cy 240 N (◦)−1

D 0.5335 Nm (A)−1

Z 0.005 Nms (rad)−1

Figures 6 and 7 show the results of the proposed control framework by tracking a DLC
and a snaking path, respectively. The wheeled robot controlled by the proposed framework
can track both reference paths precisely without any significant offset from the “reference”,
and these are shown in Figures 6a and 7a. Position and orientation errors, as well as the
equivalent tracking error eq, when tracking the reference paths, are illustrated in Figures 6b
and 7b. The maximum position error of the proposed framework was less than 0.08 m when
tracking a DLC path, and it occurred in the lane-change part. The equivalent error remained
at nearly zero during the tracking process, which indicates the effectiveness of the RBF
network in reducing error indicators (Equation (20)). In contrast, sharp increases in errors
occurred when tracking a snaking path. The reference snaking path was composed of two
straight lines and a sinusoid, and abrupt changes in the reference orientation are occurred
the intersections of the straight line and curve. Although the tracking error increased to
about 0.2 m when changing from a straight line to a sinusoid, it rapidly converged to zero.

Figures 6c and 7c illustrate the angular velocities of the left and right driving wheels
generated by the proposed control framework. Their periodic variations are due to slippage
disturbance, as shown in Figure 5. The weighting coefficients of the output layer from
neurons No. 1, 3, 5, 7, and 9 were selected and shown in Figures 6d and 7d. These
coefficients also varied with the slippage to achieve a lower evaluation indicator, while
they showed abrupt increases and decreases in the discontinuous position of the reference
paths. The results indicate that the proposed control framework can adapt to slippage
disturbance in terms of adjusting the weights of the network. It can also adapt to the abrupt
change in reference orientation. The adaptiveness and effectiveness of the proposed control
framework were verified.
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4.2. Comparison with Other Control Algorithms

In this paper, a single neuron network (SNN) [27] and a PID control algorithms were
selected for comparisons with the proposed control framework in order to demonstrate
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the tracking performance. Equivalent error eq was also employed as the control target for
the two controllers. The results of the three control algorithms to in tracking a DLC and a
snaking reference path under slippage disturbance are shown in Figure 8.
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A quantification method was employed to evaluate the path tracking performance of
the different algorithms. Accumulate position, orientation and equivalent errors during
the tracking process, denoted by Sep, Seh, and Seq, respectively, are defined as

Sep =
∫ T

0

∣∣ep
∣∣dt

Seh =
∫ T

0 |eh|dt
Seq =

∫ T
0

∣∣eq
∣∣dt

(24)

where T is the total time of path tracking.
The trajectories and variations in the tracking errors with the time of the proposed

control framework, SNN, and PID when tracking a DLC path are illustrated in Figure 8.
The DLC path could be tracked by all of the afore-mentioned controllers. The variations in
ep and eq of the PID and SNN controllers occurred in a larger range when compared with
those of the proposed control framework. The maximum

∣∣eq
∣∣ values of the PID and SNN

controllers are nearly 0.15 m and 0.08 m, respectively, and they are much higher than those
of the RBF. The swinging postures of the robot are exhibited in trajectories of the SNN and
PID (Figure 8a), and this is due to the oscillating variations in eh of the two controllers in
the tracking process (Figure 8b). Although the heading error remained nearly constant in
the lane-changing process, the proposed framework yielded a steady posture.

Figure 9 compares the results of three controllers by tracking a snaking target path.
As shown in Figure 9a, a swinging posture of the wheeled robot appeared when tracking
the straight-line part for the SNN and PID controllers. The three controllers yielded an
abrupt increase in tracking errors in the intersections between a straight line and a sinusoid
curve, which is illustrated in Figure 9b. The maximum

∣∣ep
∣∣ values of the PID and SNN

are about 0.18 m and 0.1 m, respectively, and they are much higher than those of the
proposed framework. The obviously periodic changes in the three tracking errors of the
SNN and PID were caused by slip ratio variations (Figure 5). The slippage disturbance
led to degradation in the tracking performance of the SNN and PID controllers. The
proposed control framework exhibited the lowest tracking errors and prior anti-disturbance
performance when compared with those of the SNN and PID. The robot could track the
target path with lower errors and a steady posture.
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Figure 10 compares the accumulate position, orientation, and equivalent errors of
three different controllers. The proposed framework yielded the lowest Sep, Seh, and Seq
in both the DLC and snaking path tracking processes, while the PID controller exhibited
much higher accumulate errors than those of the other controllers. As shown in Figure 10a,
the proposed controller yielded much lower Seq than Sep and Seh when tracking the DLC
path. This is because that the equivalent tracking error eq is defined by taking account for
the position error of a future state and the heading error which may lead to approaching the
target path, decreases eq. This integrated consideration of tracking error caused a decrease
in the accumulate position error. Seh of the three controllers when tracking the DLC path is
much higher than when tracking the snaking path, which is due to a steady heading error
in the lane changing process, as shown in Figure 8b.
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5. Conclusions

An adaptive path-tracking controller is proposed in this study to overcome slippage
disturbances. Both a kinematic model and a dynamic model of a wheeled robot with skid-
steer characteristics are established for the development of a dual-loop control framework.
An RBF neural network is employed to design a yaw rate controller with anti-slippage
performance. Simulations to track snaking and DLC paths are conducted under slippage
disturbances. The proposed control framework yields much lower accumulate position,
orientation, and equivalent tracking errors compared with those of an SNN and a PID
controller. It also exhibits steady posture during the tracking process, which indicates its
prior anti-slippage performance. The weights of the output layer in the RBF network vary
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with respect to the disturbances input. The proposed dual-loop controller is demonstrated
to adapt to slippage, indicating that it could be employed in future vehicles or robots
working in complex conditions. While the model did not consider the effect of vertical
direction on path tracking. Our future work will focus on the validation of the proposed
control framework in a field environment with complex terrain and take into account the
vertical stiffness of the tire model.
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