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Abstract: In the conventional k-means framework, seeding is the first step toward optimization
before the objects are clustered. In random seeding, two main issues arise: the clustering results may
be less than optimal and different clustering results may be obtained for every run. In real-world
applications, optimal and stable clustering is highly desirable. This report introduces a new clustering
algorithm called the zero k-approximate modal haplotype (Zk-AMH) algorithm that uses a simple
and novel seeding mechanism known as zero-point multidimensional spaces. The Zk-AMH provides
cluster optimality and stability, therefore resolving the aforementioned issues. Notably, the Zk-AMH
algorithm yielded identical mean scores to maximum, and minimum scores in 100 runs, producing
zero standard deviation to show its stability. Additionally, when the Zk-AMH algorithm was applied
to eight datasets, it achieved the highest mean scores for four datasets, produced an approximately
equal score for one dataset, and yielded marginally lower scores for the other three datasets. With its
optimality and stability, the Zk-AMH algorithm could be a suitable alternative for developing future
clustering tools.

Keywords: numerical clustering; categorical clustering; cluster analysis; partitional clustering algo-
rithm; fuzzy clustering

1. Introduction

Clustering or cluster analysis [1–4] is an unsupervised classification method that
does not require object labeling during clustering [2,5–7]. Many clustering approaches,
such as hierarchical clustering, partitional clustering, mixture density-based clustering,
graph-theoretic clustering, fuzzy clustering, and search technique-based clustering, are
being actively developed for various cluster analysis applications. One of the most efficient
clustering approaches, particularly for clustering large and high-dimensional datasets,
is partitional clustering [2]. This approach involves estimating the center of a cluster,
optimizing an objective function, and finally assigning objects to clusters based on their
distances to the centers of the clusters. Formally, partitional methods address the problem of
dividing n cases, described by p variables, into a small number k of discrete classes [8]. Two
popular heuristic methods are often adopted in this approach: centroid-based techniques
such as the k-means and fuzzy c-means algorithms, as well as the k-modes and fuzzy
k-modes approaches; and representative object-based techniques, such as the k-medoid
method [6,9]. In general, in partitional algorithms, the center can be the mean, mode,
median, or object itself.

The k-means clustering algorithm [10] is the precedent for several recent partitional
algorithms. Numerous algorithms have been derived from the k-means framework, includ-
ing fuzzy approaches such as the fuzzy c-means algorithm [11], categorical approaches such
as the k-modes [12] and fuzzy k-modes algorithms [13], and mixed-type approaches [14]
such as k-prototypes algorithm [12] and several modified versions such as those reported
in [15,16]. An alternative to k-means is the k-approximate modal haplotype (k-AMH)
algorithm [17], which is specifically intended for Y-DNA short tandem repeats (Y-STR)
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clustering problems and derived from the k-means framework. This algorithm is similar
to the k-means framework in terms of the seeding selection mechanism but uses a fuzzy
partition matrix in its optimization process. The other difference is that its cluster center is
based on objects such as k-medoids.

In the partitioning of algorithms such as k-means, the main problem with obtaining
optimal clustering results lies in the seeding selection mechanism. In fact, the seeding
process is the first step in the k-means clustering framework and is a primary contributor to
the optimization process. It is well known that an appropriate seeding selection mechanism
may produce optimal clustering results; accordingly, numerous investigations have been
performed on this issue. One of the most popular seeding methods proposed to address
this problem for the k-means algorithm is the k-means++ algorithm [18]. The k-means++
algorithm adopts a statistical probability popularly known as careful seeding in the seeding
selection mechanism in the original k-means algorithm. This careful seeding process has
also been inherited in the fuzzy clustering approach. The fuzzy c-means algorithm [11]
uses a randomly generated fuzzy membership values to initialize a partition matrix for the
seeding process; however, it is difficult to control the initialization seeding in this method
to obtain the optimal solution, and the operations of this algorithm are quite complex [19].
The k-means++ algorithm, which is a similar seeding method, was simply incorporated
into the fuzzy c-means approach to derive a new extension known as fuzzy c-means++ [20].
This attempt demonstrated a significant contribution to the overall performance of the
fuzzy c-means method, particularly in terms of making the process less time consuming.
Consequently, numerous seeding methods for the fuzzy c-means approach, e.g., moun-
tain clustering [21], subtractive clustering [22,23], and grid and density clustering [19]
were proposed.

The issue related to seeding selection continues to exist and has attracted a significant
amount of research attention, and various ideas have been proposed over the past few
years. For example, a new seeding approach called the k-centroid initialization algorithm
(PkCIA) based on eigenvalues/eigenvectors for computing initial cluster centroids was
recently proposed [24]. Another seeding selection mechanism was proposed based on a
small subset of non-degenerate observation points extracted from an original dataset [25].
In addition, Franti and Sieranoja [26] conducted an intensive study on the seeding selection
issue and split it into six categories: random points, farthest point heuristic, sorting heuris-
tic, density-based, projection-based, and splitting technique; however, no clear conclusion
was made as to which seeding method or category works better [26]. Therefore, further
improvement of the seeding mechanism is needed, and attempts to achieve the required
optimality, particularly for k-means is an ongoing research problem. In addition, to tackling
seeding selection issues, a recent idea, aimed at optimal clustering results, is the repeated
k-means. This method must be performed multiple times with different seeding selection
mechanisms while maintaining the lowest SSE value [26]. At present, attempts are ongoing
in this regard.

The k-AMH algorithm, however, seems to present a comparably less significant seed-
ing selection issue. For example, the original k-AMH algorithm for categorical data was
found to be superior to other extended k-means approaches such as the k-modes and fuzzy
k-modes methods [17]. A key advantage of the k-AMH algorithm is that it provides a
higher minimum accuracy score compared with the other algorithms, as determined by
performing 100 experimental runs. Apparently, the main factor that contributes to its supe-
riority over other algorithms is that the k-AMH framework is not heavily dependent on
the seeding selection mechanism, even though it uses random seeds. This advantage also
exists for the k-AMH numerical extensions, called k-AMH numeric I and II [27], and these
approaches have been found to be comparable to the fuzzy c-means technique. An earlier
attempt to improve the random seeding mechanism for the original k-AMH algorithm, in
particular for Y-STR clustering, yielded very promising results [28].

The aforementioned points discussed above present a basis to employ the k-AMH
framework in order to yield highly constant results for each seeding while still maintaining
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their optimality. As discussed above, numerous attempts at seeding, such as the popular
k-means++ approach, seem to be primarily focused on obtaining optimal clustering results.
This is because optimality is prioritized when solving clustering problems. Benchmarking
the optimality is subject to certain comparisons with existing solutions or algorithms,
particularly for k-means algorithm. Notably, very few studies on cluster stability have
been conducted thus far. This can be attributed to the fact that cluster stability is required
only after desirable optimality by the appropriate seeding selection mechanism. According
to Franti and Sieranoja [26], k-means can be improved from two aspects: better initial-
ization (Seeding selection) and repeated k-means. At present, no concrete solution has
been obtained. For k-AMH algorithm, a recent attempt for the repeated k-AMH has been
proposed [29]. This finding is quite promising; however, it must be noted that an optimal
objective function is not necessarily produced optimal clustering results.

Clustering should be a structure on a dataset that is stable. When applied to several
datasets from the same underlying model or of the same data-generating process, the
clustering algorithm should yield similar results [30]. From an experimental perspective,
clustering algorithms should produce optimal and stable results in every run; however,
the seeding selection mechanism may vary, which may occasionally lead to different clus-
tering results. Therefore, we herein introduces a new algorithm based on the k-AMH
framework and associated with a simple but novel seeding mechanism, with the objective
of achieving cluster optimality and stability. Clustering algorithms are made of a clear
distinction between clustering method (objective function) and clustering algorithm (the
framework) [1,31]; therefore, the proposed algorithm is based on the k-means objective
function, combined with the k-AMH clustering framework and worked with a simple
and novel seeding selection mechanism known as zero-point multidimensional spaces.
The aim is to achieve optimality clustering along with stability. Cluster optimality and
stability are defined as the capability of an algorithm to produce optimal results and stable
results for every seeding and run. Therefore, the proposed algorithm, which has the ad-
vantages of optimality and stability, can serve as an alternative method for the repeated
k-means approach.

2. Preliminaries
2.1. k-Means Clustering Framework

The traditional k-means algorithm is based on a center-based clustering framework [2]
in which objects are partitioned into a cluster according to their distances to the cluster
centers. Generally, the objective of k-means is to partition a dataset X into C cluster with the
number of clusters, k, set as a priori. Let X = {X1, X2, . . ., Xn} be a set of n objects and Xi
be represented with its attributes as [xi,1, xi,2, . . ., xi,m]. In addition, let Z = {Z1, Z2, . . ., Zk}
be a set of k cluster centers and Zl be represented with its attributes as [zl,1, zl,2, . . ., zl,m].
Finally, C = {C1, C2, . . ., Ck} is a set of k clusters. Generally, using the k-means framework,
X is partitioned into C through the following steps:

Step 1—First, initialize the number of clusters, k.
Step 2—Randomly select Z from X as the center of clusters (better known as centroids).
Step 3—Assign X to the closest cluster centroid based on the distance of each X and Z. The
distance is typically calculated using Euclidean distance as Equation (1).

deuc(Xi, Zl) =

√√√√ m

∑
j=1
|xij − zl j|2 (1)

Step 4—Update the centroids of the newly formed clusters, C, using mean. The updating
process is computed as Equation (2).

zli =
∑n

i=1 wlixi

∑n
i=1 wli

(2)
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where wli is (n× k) matrix satisfying the following Equations (3)–(6),

wli =

{
1, i f deuc(Xi, Zl) = mindeuc(Xi ,Zl),1≤l≤k

0, Otherwise
(3)

wli ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ l ≤ k, (4)

k

∑
i=1

wli = 1, 1 ≤ i ≤ n, (5)

n

∑
i=1

wli > 0, 1 ≤ l ≤ k, (6)

Step 5—Repeat Steps 3 and 4 and stop when the process intra- and inter-cluster dissimilarity
objective function are minimized. The objective function is computed as in Equation (7)

F(W, D) =
k

∑
l=1

n

∑
i=1

Wlideuc(Xi, Zl), (7)

For fuzzy approach, the algorithm is called fuzzy c-means algorithm and uses the
same framework as above. However, the objective function is minimized as Equation (8),

F(W, D) =
k

∑
l=1

n

∑
i=1

wψ
li deuc(Xi, Zl), (8)

which is subject to the following Equations (9)–(11),

wli ∈ [0, 1], 1 ≤ i ≤ n, 1 ≤ l ≤ k, (9)

k

∑
i=1

wli = 1, 1 ≤ i ≤ n, (10)

n

∑
i=1

wli > 0, 1 ≤ l ≤ k, (11)

where ψ ∈ [1, ∞) is a weighting exponent that is typically greater than 1.0. The partition
matrix, also known as fuzzy membership, W, is updated as Equation (12)

wli =
deuc(Xi, Zl)

− 1
ψ−1

∑k
l=1 deuc(Xi, Zl)

− 1
ψ−1

, 1 ≤ l ≤ k, 1 ≤ i ≤ n (12)

and the centroid of fuzzy c-means is updated as Equation (13)

zli =
∑n

i=1 wψ
li xi

∑n
i=1 wψ

li

(13)

The fuzzy c-means algorithm can be formalized in the form of pseudocode as Algorithm 1.
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Algorithm 1 FUZZY C-MEANS (X, k, ψ).
Input: dataset X, number of clusters k, and weighting exponent ψ
Output: Set of clusters C = {C1, C2, . . ., Ck}

1: Select Zl randomly from X, where 1 ≤ l ≤ k
2: for each Zl do
3: for each Xi do
4: Calculate F(W, D) as Equation (8)
5: if F(W, D) is minimized then
6: Update Zl as Equation (13)
7: end if
8: end for
9: end for

10: Assign Xi to Cl for all l, 1 ≤ l ≤ k and i, 1 ≤ i ≤ n
11: Output results

2.2. k-AMH Clustering Framework

Similar to k-Means, the k-AMH [17] uses the same clustering framework, which begins
with random seeds and updating the centers of the clusters and ends with optimizing
an objective function. Finally, the objects closer to the centers of the clusters are grouped
together into those clusters. The k-AMH algorithm differs from the k-means algorithm in
terms of how the centers are updated. The k-AMH algorithm exploits the objects themselves
to update the cluster centers, whereas the fuzzy c-means algorithm uses the mean, as the
name implies. In general, the k-AMH algorithm has two extensions: the k-AMH algorithm
for categorical clustering, which is the original version previously introduced for clustering
Y-STR data, and the recent k-AMH algorithm for numerical clustering. In addition, there
are two extended versions of numerical clustering [27]. The first one follows the original
k-AMH categorical algorithm exactly except that the numerical distance, e.g., Euclidean
distance (previously reported as k-AMH numeric I), is used, whereas the second version
has its objective function substituted with the objective function of the fuzzy c-means
algorithm (previously reported as k-AMH numeric II).

2.2.1. k-AMH Algorithm for Categorical Clustering

As mentioned above, the k-AMH algorithm [17] for categorical clustering is the
original k-AMH algorithm. Beginning with predefined k clusters, k seeding is initialized,
the objects are tested individually, and the objects are replaced in succession to obtain the
final objects as the centers of the clusters. Let X = {X1, X2, . . ., Xn} be a set of n categorical
objects and H = {H1, H2, . . ., Hk} ∈ X be a set of objects at the centers of clusters, better
known as medoids. To partition X into C, the k-AMH framework generally requires the
following steps:

Step 1—First, initialize the number of clusters, k.
Step 2—Randomly select H from X as the center of the clusters (better known as medoids).
Step 3—Replace the medoids, H, by testing each one until Xn. The updates are complete
when the objective function is maximized as Equation (14) and subject to Equations (15)–(21).

F(W, Q)r > F(W, Q)t, r 6= t; ∀t, 1 ≤ t ≤ (n− k) (14)

where r is the current cost function.
F(W, Q) is maximized and defined in Equation (15):

F(W, Q) =
k

∑
l=1

n

∑
i=1

wψ
li qli (15)

where wli ∈ W is a (k× n) matrix and qli ∈ Q is another (k× n) matrix containing the
dominant weighting value.
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The wli describes the degree of fuzziness of the object, which contains values from 0
to 1, as described in Equation (16).

wli =


1, i f Xi = Hl

0, i f Xi = Hv, v 6= l
1

∑k
v=1

[ dsim(Xi ,Hl )
dsim(Xi ,Hv)

] 1
ψ−1

i f Xi 6= Hl and Xl 6= Hv, 1 ≤ v ≤ k
(16)

where k(≤ n) is a predefined number of clusters, H is the medoid such that H =
{H1, H2, . . ., Hk} ∈ X, ψ ∈ [1, ∞) is a weighting exponent that is typically greater than 1.0,
and dsim(Xi, Hl) is the dissimilarity measure calculated between object Xi and medoid Hl ,
as described in Equation (17):

dsim(Xi, Hl) =
m

∑
j=1

γ(xij, hl j), (17)

where m is the number of attributes and subject to the following conditions,

γ(xj, hj) =

{
0, xj = hj

1, xj 6= hj
(18)

The qli assigns a value of 1.0 or 0.5, known as the dominant weighting value, as
described in Equation (19):

qli =

{
1.0, i f wψ

li = maxwψ
li ,1≤l≤k

0.5, Otherwise
(19)

which is subject to the following Equations (20) and (21),

1.5 ≤
k

∑
i=1

qli ≤ k, 1 ≤ i ≤ n (20)

0.5 <
n

∑
i=1

qli < n, 1 ≤ l ≤ k (21)

Step 4—Assign X to C when the final H is obtained.

Thus, the procedure above can be formalized in the form of pseudocode as Algorithm 2.

Algorithm 2 k-AMH (X, k, ψ).
Input: dataset X, number of clusters k, and weighting exponent ψ
Output: Set of clusters C = {C1, C2, . . ., Ck}

1: Select Hl randomly from X, where 1 ≤ l ≤ k
2: for each Hl do
3: for each Xi do
4: Calculate F(W, Q) as Equation (15)
5: if F(W, Q) is maximized then
6: Replace Hl with Xi as Equation (14)
7: end if
8: end for
9: end for

10: Assign Xi to Cl for all l, 1 ≤ l ≤ k and i, 1 ≤ i ≤ n
11: Output results
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2.2.2. k-AMH Algorithm for Numerical Clustering

This section provides the procedure of the k-AMH numerical algorithm for numerical
clustering. k-AMH numeric II [27] was chosen as the algorithm to be used for the new
seeding mechanism. Please note that k-AMH numeric I could not be used in this case
due to the maximization procedure. Similarly, k-AMH numeric II (simply called the k-
AMH numeric hereafter) requires the testing and replacement of objects if and only if
the objective function is minimized. Please note that this k-AMH numerical algorithm,
the objective function is not based on a maximization process as imposed by the original
k-AMH algorithm. Therefore, the k-AMH numeric algorithm follows exactly the original
k-AMH steps above except for Step 3 which is the updating medoids, the k-AMH numeric
replacement’s object is based on the objective function as described in Equation (8). To
partition X into C, the k-AMH numeric framework generally requires the following steps:

Step 1—First, initialize the number of clusters, k.
Step 2—Randomly select Z from X as the center of the clusters (better known as medoids).
Step 3—Replace the medoids, Z, by testing each one until Xn. The updates are complete
when the objective function is minimized as Equation (22).

F(W, D)r < F(W, D)t, r 6= t; ∀t, 1 ≤ t ≤ (n− k) (22)

The wli is updated as Equation (16) but using Euclidean distance as Equation (1).

Step 4—Assign X to C when the final Z is obtained.

The procedure above can be formalized in the form of pseudocode as Algorithm 3.

Algorithm 3 k-AMH NUMERIC (X, k, ψ).
Input: dataset X, number of clusters k, and weighting exponent ψ
Output: Set of clusters C = {C1, C2, . . ., Ck}

1: Select Zl randomly from X, where 1 ≤ l ≤ k
2: for each Zl do
3: for each Xi do
4: Calculate F(W, D) as Equation (8)
5: if F(W, D) is minimized then
6: Replace Zl with Xi as Equation (22)
7: end if
8: end for
9: end for

10: Assign Xi to Cl for all l, 1 ≤ l ≤ k and i, 1 ≤ i ≤ n
11: Output results

3. Proposed Clustering Algorithm with a Constant Seeding Selection
3.1. Proposed Seeding Selection Method

Traditionally, seeding selection for clustering algorithms, such as the k-means, k-modes,
and fuzzy c-means algorithms, including the k-AMH algorithm, involves randomly generated
seeds by default. Unlike the k-means framework, the k-AMH algorithm exploits the k-objects
(usually known as medoids) from the seeding process until they are clustered. Thus, each
object needs to be replaced individually to find the final k-objects if the objective function
is optimized. For object replacement, the objective function minimization is mainly based
on the minimization process of each set of k-objects forming a k-combination. Therefore, an
appropriate combination of k-objects may lead to better clustering results and vice versa.

Figure 1 depicts two scenarios that may happen in the random seeding method. Con-
sider three clusters C1, C2, and C3 with objects colored in green, black, and blue, respectively,
and the seeding of k-objects (k = 3) that are taken from the objects randomly, represented
in red. It is a well-known problem that many cases result in the worst-case scenario shown
in Figure 1a, in which the three objects are seeded from the same cluster (the green cluster).
However, it may also result in the best-case scenario shown in Figure 1b, in which the
three objects are seeded and represented by each cluster. These scenarios may lead to
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either poorer clustering results (the worst-case scenario) or better clustering results (the
best-case scenario). Therefore, for every run, the clustering results may vary, ranging from
the worst-case to the best-case clustering performance.

(a) (b)

Figure 1. Current seeding approach with random seeds for three clusters: C1, C2, and C3. (a) Random seeding approach,
which may result in three seeds from the same cluster. (b) Random seeding approach, which may result in seeding objects
that represent the three clusters equally.

Roughly speaking, the proposed seeding concept is derived from a special point in a
Cartesian coordinate system called the origin. Figure 2 depicts a conceptual idea of a new
seeding mechanism that seeds the k-AMH algorithm with zero-point multidimensional
spaces for each k-cluster.

The idea is to offer a globally optimal solution for each object by pointing to the same
data point, known as the origin shown in Figure 2a. In this process, selecting the k-objects
seem to be more appropriate in setting up the best possible k-object combination shown in
Figure 2d. Using the same k-AMH (numerical) framework, the proposed approach begins
with the first k-object and testing of the objects individually to determine the object that
will serve as the center of the first cluster, whereas the other clusters continue pointing to
the origin, as shown in Figure 2b. This process is repeated for the second k-object shown in
Figure 2c, then for the third k-object shown in Figure 2d. Under these circumstances, it is
believed that the k-AMH algorithm converges in a globally optimal fashion for the best
possible combination of k-objects. In fact, using the fixed reference point for every seeding
process gives the new seeding method and k-AMH numeric algorithm the advantage of
producing constant results. In such convergence spaces, the clustering results may reach
stability and the optimal clustering results may be achieved in every run.

(a) (b)
Figure 2. Cont.
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(c) (d)
Figure 2. Proposed seeding approach with zero multidimensional spaces seeding regarding k-AMH numeric procedure.
(a) Three clusters (C1, C2, and C3) initially refer to the same point: the origin. (b) Two clusters (C2 and C3) initially refer to
the origin, whereas C1 has obtained the final object using k-AMH numeric procedure. (c) Remaining cluster C3 initially
refers to the origin, whereas C2 has obtained the final object. (d) Final k-combination objects. Note: This concept will be
implemented in the k-AMH framework where the process of finding the final medoids (Cluster center) involves checking
for each object Xi and replacing it, if the cost function is minimized. For the case above, the final cluster centers for C1,
will be obtained first, followed by C2, and finally C3. The final cluster centers denoted as C1, C2, and C3 are actually, and
eventually, represented by the arbitrary objects X owing to the k-AMH procedure.

3.2. Proposed Algorithm

We call the new algorithm with zero-point seeding the Zk-AMH algorithm. The
main difference between the Zk-AMH algorithm and the k-AMH numeric algorithm
is the replacement of random seeding with zero-point multidimensional seeding. In
addition, from an implementation perspective, each k-object will be compared to n objects
rather than (n− k) objects, as imposed by the original k-AMH numeric algorithm. This
difference exists because the seeding objects are not taken from the n objects. Thus, the
Zk-AMH algorithm employs the procedure and steps as described for the k-AMH numeric
algorithm above exactly, except in terms of the seeding selection (Step 2). From the
perspective of implementation, the zero-seeding assigns zero values of multidimensional
spaces (attributes). Therefore, let O = O1, O2, . . ., Ok be a set of origins and Ẑl,j ∈ Om,
where 1 ≤ l ≤ k, and 1 ≤ j ≤ m is the zero-seeding assigned to each Ẑ with O. For
example, if k = 3 and m = 5, the initial seeding may resemble Ẑ1 = {0, 0, 0, 0, 0, 0},
Ẑ2 = {0, 0, 0, 0, 0, 0}, and Ẑ3 = {0, 0, 0, 0, 0, 0}. Therefore, the initial objective function as
Equation (8) is first obtained by calculating the distance X and Ẑ as Equation (1), which is
based on the zero-seeding. This initial objective function must be maximal according to
our theorem below.

Theorem 1. Let Ẑl ∈ O be the zero-seeding for 1 ≤ l ≤ k. Ẑl is replaced with Xi for 1 ≤ i ≤ n to
serve as the medoid if and only if

F(W, D)i < F(W, D)β; ∀i, 1 ≤ i ≤ n where β is the zero-seeding

Proof. Let X = {X1, X2, . . ., Xn} be a set of n objects, O = {O1, O2, . . ., Ok}be a set of
zero-point seeding, and Ẑ = {Ẑ1, Ẑ2, . . ., Ẑk} be a set of medoids (centers of clusters) for
k clusters. Let deuc(Xi, Ol) be the distance between object Xi and zero-seeding Ol , and let
deuc(Xi, Ẑl) be the distance between object Xi and medoid Ẑl . Thus, based on Equation (1),
deuc(Xi, Ol) is given by
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deuc(X, O) =

√√√√ m

∑
j=1
|xj − oj|2,

=

√√√√ m

∑
j=1
|x|2

and deuc(Xi, Ẑl) is given by

deuc(X, Ẑ) =

√√√√ m

∑
j=1
|xj − zj|2

Therefore, deuc(X, O) must be greater than deuc(X, Ẑ). We write F(W, D)i, where
Ẑl ∈ X, and F(W, D)β, where Ẑ = O, as

F(W, D) =
k

∑
l=1

n

∑
i=1

wψ
li deuc(Xi, Ẑl)

As deuc(X, O) is greater than deuc(X, Ẑ) and wψ
liand deuc(Xi, Ẑl) are non-negative, the

product (wψ
li deuc(Xi, Ẑl))

i; ∀i, 1 ≤ i ≤ n must be less than (wψ
li deuc(Xi, Ẑl))

β. It follows that
the sum of all quantities obeys

F(W, D)i =
k

∑
l=1

n

∑
i=1

wψ
li deuc(Xi, Ẑi) < F(W, D)β =

k

∑
l=1

n

∑
i=1

wψ
li deuc(Xi, Ẑl)

Hence, the function is minimized, and the result follows. The convergence of the
k-AMH algorithm is already proven based on that of the previous version [17].

Thus, the object replaced by testing one-by-one object as required by the k-AMH
procedure, will yield the minimization process of the objective function. As a result, the
final objects (medoids) are obtained after all the objects are tested and replaced accordingly.
Based on the k-AMH procedure, the final medoids are the cluster centers that would achieve
cluster optimality and stability. The zero-seeding that acts as fixed seeding selection leads
to Zk-AMH stability.

Therefore, to partition X into C, the Zk-AMH algorithm requires the following steps:

Step 1—First, initialize the number of clusters, k.
Step 2—Select Ẑl j ∈ Om as the center of the clusters (better known as medoids).
Step 3—Replace the medoids, Ẑ, by testing each one until Xn. The updates are com-
plete when the objective function is minimized as Equation (22). The wli is updated as
Equation (16) but using Euclidean distance as Equation (1).
Step 4—Assign X to C when the final Ẑ is obtained.

Therefore, the Zk-AMH algorithm can be described in pseudocode as Algorithm 4.

3.3. Computational Complexity

In terms of the overall computational complexity, the Zk-AMH algorithm is linearly
proportional to the size of the dataset with O(kmn) ∈ O(n), where k is the number of
clusters, m is the number of dimensional spaces, and n is the number of objects. The time
taken for the new seeding is considered to be O(1) because the seeding is assigned once
for the initialization. It is nearly similar to the computational complexity of the k-means
algorithm, which is O(nkt), where n is the number of objects, k is the number of clusters,
and t is the number of iterations required for its iteration processes. The detailed time
complexity and scalability testing for the k-AMH algorithm is reported in [17].
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Algorithm 4 Zk-AMH(X, k, ψ).
Input: dataset X, number of clusters k, and weighting exponent ψ
Output: Set of clusters C = {C1, C2, . . ., Ck}

1: Initialize Zero points, Ẑlc ∈ Om, where 1 ≤ l ≤ k and 1 ≤ c ≤ m
2: for each Ẑl do
3: for each Xi do
4: Calculate F(W, D) as Equation (8)
5: if F(W, D) is minimized then
6: Replace Ẑl with Xi as Equation (22)
7: end if
8: end for
9: end for

10: Assign Xi to Cl for all l, 1 ≤ l ≤ k and i, 1 ≤ i ≤ n
11: Output results

4. Experimental Setup
4.1. Dataset

Eight real-world numerical datasets were used to evaluate the algorithm performance:
the Iris, Pima, Haberman, Wine, Seed, User Knowledge, E-coli, and Cleveland datasets
from the UC Irvine (UCI) machine learning repository [32]. The experiments were focused
on measuring the cluster optimality and stability of the newly proposed algorithm. These
datasets cover various scenarios such as number of attributes, ranging from 3 to 13, and
the number of classes, ranging from 2 to 8. Table 1 summarizes the datasets used in
this experiment.

Table 1. Summary of Numerical datasets.

Dataset Description
Number of

Objects Classes Attributes

1. Iris The Iris dataset is used to analyze the three types of Iris plants. 150 3 4

2. Haberman Haberman’s survival dataset is used for breast cancer studies. 306 2 3

3. Pima The Pima Indians Diabetes Dataset was provided by the National
Institute of Diabetes and Digestive and Kidney Diseases. 393 3 8

4. Wine The Wine dataset is used for chemical analysis of wines grown in a
specific region of Italy. 178 3 13

5. Seed The Seed dataset is used to compare three different varieties of wheat:
Kama, Rosa, and Canadian. 210 3 7

6. User knowledge

The User knowledge dataset is employed to study the knowledge
status of students about electrical Direct Current (DC) machines. The
dataset was the combination of a 258-item training set and 145 item
test set.

403 4 5

7. E-coli The E-coli dataset is used to predict protein localization sites. 336 8 7

8. Cleveland

The Cleveland dataset is used to diagnose coronary artery disease.
The dataset contained 303 items with 75 attributes and was divided
into 5 classes. However, the dataset was filtered down to 297 items
with only 5 numerical attributes.

297 5 5

4.2. Evaluation Method

A 100-run experiment was conducted for each algorithm and dataset for further
analysis. On top of the proposed algorithm (the Zk-AMH), the other six algorithms were
used for comparison. Table 2 lists and summarizes the algorithms.
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Table 2. List of algorithms used for comparison.

Algorithm Seeding Method Cluster Approach Cluster Center

1. k-means [10] Random Hard Mean
2. k-means++ [18] Probability Hard Mean
3. Fuzzy c-means [11] Random Soft Mean
4. Fuzzy c-means++ [20] Probability Soft Mean
5. k-AMH Numeric [27] Random Soft Object
6. k-AMH Numeric++
(Using k-means++ seeding) Probability Soft Object
7. Zk-AMH
(The proposed algorithm) Zero-Seeding Soft Object

An external criterion was used to evaluate the clustering performance. It can be
used to discover inherent data structures in the clustering results [1] and measures the
degree of correspondence between the clusters and the priori classes assigned to them.
The Fowlkes-Mallows (FM) Index [33] was used to measure the performance of clustering
algorithms as Equation (12)

FM =

√(
TP

TP + FP

)(
TP

TP + FN

)
(23)

where TP is the number of true positives, FP is the number of false positives, and FN is
the number of false negatives.

5. Results

This section presents the results obtained from 100 experimental runs for each of the
seven algorithms and eight datasets. The experimental results provide evidence that the
new Zk-AMH seeding algorithm performs better than the existing algorithms. Based on
the experimental results, the results of the analysis focus on two main factors according
to the objectives stated earlier. First, to provide evidence that the new Zk-AMH seeding
algorithm is optimal (Cluster optimality). This is the first goal that is primarily required
for any new clustering algorithm. Second, to provide evidence that the Zk-AMH is stable
(Cluster stability). Hence, FMI scores such as the mean, maximum, minimum, and standard
deviation were chosen to compare the clustering performance of the Zk-AMH approach
with respect to the six algorithms as listed in Table 2. Please note that for fuzzy clustering
algorithms such as the fuzzy c-means, fuzzy c-means++, k-AMH, k-AMH++, and Zk-AMH
algorithms, the weighting exponent of ψ was set to 1.1.

5.1. Cluster Optimality

Figure 3 shows an initial comparison of the seven algorithms for the combination
of the eight datasets considered. These results demonstrate that the Zk-AMH algorithm
is certainly competitive and comparable to its counterparts, the k-means, k-means++,
fuzzy c-means, fuzzy c-means++, k-AMH numeric, and k-AMH numeric++ algorithms.
Overall, the Zk-AMH approach produced the highest minimum scores and marginally
lower maximum scores than the other algorithms. Moreover, the box plot for the Zk-AMH
algorithm is larger than those of the other algorithms, particularly in the third quartile. It
indicates that the Zk-AMH algorithm attained scores that were greater than the median
score and close to the maximum score as compared to the other algorithms.

Since the above results indicate that the proposed approach is very competitive, a
one-way ANOVA was conducted to support these results. The test indicated that the
assumption of homogeneity of variance was violated; therefore, the Welch F-ratio was
reported. There was also significant variance in the clustering scores among the seven
algorithms, in which F(6, 2483) = 59, p < 0.01, ω2 = 0.05. Thus, the Games–Howell post
hoc test was used to compare the seven algorithms.
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Figure 3. Initial comparison among the k-means, k-means++, fuzzy c-means, fuzzy c-means++,
k-AMH numeric, k-AMH numeric++, and Zk-AMH algorithms for the combination of all eight
datasets considered.

Table 3 compares the results of the Games–Howell post hoc test for the Zk-AMH
algorithm with those for the other six algorithms. At the 5% significance level and with
p < 0.01, the mean score of the Zk-AMH algorithm (mean = 0.62, 95% confidence inter-
val [0.60, 0.63]) differs from those of the k-means (mean = 0.50, 95% confidence interval
[0.49, 0.51]) and k-means++ (mean = 0.51, 95% confidence interval [0.49, 0.52]) algorithms.
Thus, the k-AMH algorithm outperformed the k-means and k-means++ algorithms in
terms of clustering performance. Furthermore, with p > 0.05, the performance of the Zk-
AMH approach is essentially comparable to those of the fuzzy c-means (mean = 0.61, 95%
confidence interval [0.59, 0.62]), fuzzy c-means++ (mean = 0.55, 95% confidence interval
[0.54, 0.56]), k-AMH numeric (mean = 0.61, 95% confidence interval [0.59, 0.62]), and k-
AMH numeric++ (mean = 0.60, 95% confidence interval [0.59, 0.62]) algorithms in terms of
average clustering performance.

Based on the overall average scores for the combination of all eight datasets, the
results provide evidence that the Zk-AMH algorithm is optimal and comparable to the
other clustering algorithms. The box plot demonstrated the first piece of evidence in this
regard, where the Zk-AMH approach yielded the median value that is almost similar to
the other algorithms, such as the fuzzy c-mean and k-AMH algorithms (see Figure 3).
Furthermore, the Zk-AMH scored the highest minimum score in 800 experimental runs
(1 algorithm × 100 runs × 8 datasets). Finally, the one-way ANOVA test proved that the
Zk-AMH algorithm (a) outperformed the hard clustering approaches such as the k-means
and k-means++ algorithms, (b) is comparable to the fuzzy c-means and fuzzy c-means++
approaches, and (c) retained its clustering performance with the original k-AMH algorithm
and k-AMH with k-means++ seeding method (k-AMH++). In addition, for the dataset
comparison, the Zk-AMH algorithm clearly showed its advantages by producing the high-
est scores for four datasets, an approximate score for one dataset, and marginally lower
values for the other three datasets (see Table 4).
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Table 3. Multiple Comparison of the Zk-AMH Algorithm with the other Six Algorithms for a Combined Dataset.

FM Index—Games–Howell

(I) Algo. (J) Algo. Mean Diff. (I-J) Std. Err. p-Value
95% CI

Lower Bound Upper Bound

Zk-AMH k-means 0.12 0.01 <0.01 0.09 0.14
k-means++ 0.11 0.01 <0.01 0.08 0.14

Fuzzy c-means 0.01 0.01 0.98 −0.02 0.04
Fuzzy c-means++ 0.07 0.01 <0.01 −0.04 0.10
k-AMH numeric 0.01 0.01 0.98 −0.02 0.04

k-AMH numeric++ 0.01 0.01 0.81 −0.02 0.05

Table 4. Mean, Maximum, Minimum, and Standard Deviation for Each Algorithm and Dataset.

FMI Score Algorithm
Dataset

1 2 3 4 5 6 7 8

Mean k-means 0.641 0.507 0.563 0.540 0.660 0.522 0.311 0.247
k-means++ 0.694 0.514 0.597 0.569 0.699 0.414 0.312 0.248
Fuzzy c-means 0.891 0.502 0.633 0.701 0.898 0.509 0.455 0.266
Fuzzy c-means++ 0.823 0.516 0.602 0.589 0.757 0.407 0.447 0.251
k-AMH numeric 0.901 0.488 0.661 0.713 0.885 0.446 0.498 0.261
k-AMH numeric++ 0.900 0.487 0.645 0.689 0.883 0.455 0.486 0.262
Zk-AMH 0.908 0.494 0.623 0.732 0.893 0.413 0.583 0.278

Min. k-means 0.373 0.421 0.307 0.425 0.332 0.333 0.185 0.162
k-means++ 0.495 0.392 0.320 0.480 0.486 0.277 0.181 0.151
Fuzzy c-means 0.536 0.490 0.623 0.455 0.898 0.362 0.326 0.209
Fuzzy c-means++ 0.457 0.406 0.310 0.395 0.456 0.239 0.255 0.186
k-AMH numeric 0.884 0.418 0.619 0.441 0.705 0.315 0.435 0.223
k-AMH numeric++ 0.870 0.472 0.603 0.451 0.804 0.297 0.320 0.205
Zk-AMH 0.908 0.494 0.623 0.732 0.893 0.413 0.583 0.278

Max. k-means 0.844 0.643 0.729 0.672 0.880 0.653 0.467 0.334
k-means++ 0.829 0.675 0.714 0.725 0.885 0.594 0.458 0.319
Fuzzy c-means 0.904 0.568 0.641 0.728 0.898 0.594 0.578 0.307
Fuzzy c-means++ 0.960 0.659 0.723 0.765 0.911 0.590 0.659 0.304
k-AMH numeric 0.928 0.569 0.696 0.743 0.904 0.624 0.595 0.310
k-AMH numeric++ 0.925 0.512 0.696 0.752 0.901 0.624 0.590 0.306
Zk-AMH 0.908 0.494 0.623 0.732 0.893 0.413 0.583 0.278

Std. Dev. k-means 0.118 0.040 0.136 0.063 0.125 0.062 0.057 0.034
k-means++ 0.101 0.050 0.071 0.061 0.112 0.067 0.060 0.037
Fuzzy c-means 0.051 0.009 0.005 0.046 0.000 0.089 0.070 0.022
Fuzzy c-means++ 0.126 0.054 0.086 0.121 0.129 0.075 0.086 0.027
k-AMH numeric 0.009 0.026 0.028 0.038 0.020 0.077 0.047 0.019
k-AMH numeric++ 0.008 0.009 0.029 0.066 0.013 0.079 0.045 0.023
Zk-AMH 0 0 0 0 0 0 0 0

5.2. Cluster Stability

Table 4 presents the performances of all algorithms using the mean, maximum, min-
imum, and standard deviation. The values in bold are the optimum values (the highest
minimum and maximum accuracies and lowest standard deviations) obtained by a par-
ticular algorithm for each dataset. The most impressive result regarding the Zk-AMH
algorithm is that its standard deviation is zero for all datasets, which means that the mean,
minimum, and maximum scores are identical. Based on this result, it can be concluded
that the Zk-AMH algorithm produced constant and stable clustering results for every run.
The other algorithms show their variability in producing clustering results due to seeding
mechanism, even though they were seeded by distinctive objects as in k-means++ seeding.
In addition, the Zk-AMH algorithm yielded the highest mean scores for four of the eight
datasets, specifically, datasets 1, 4, 7 and 8; approximately the same mean score for dataset
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5; and marginally lower mean accuracies for datasets 2, 3 and 6. Furthermore, the Zk-AMH
algorithm produced the highest minimum score for all datasets except dataset 5, which had
a marginally lower score. The Zk-AMH algorithm also demonstrated its competitiveness
compared with the other six algorithms with marginally lower maximum scores.

6. Discussion

The first consideration regarding the Zk-AMH algorithm is the cluster optimality.
Based on the overall average scores for the combination of all eight datasets, the results
provide evidence that the Zk-AMH algorithm is optimal and comparable to the other
clustering algorithms. The box plot demonstrated the first piece of evidence in this regard,
where the Zk-AMH approach yielded approximately similar median value with the k-AMH,
k-AMH++, and fuzzy c-means scores (see Figure 3). Furthermore, the Zk-AMH scored
the highest minimum score in 800 experimental runs (1 algorithm × 100 runs × 8 datasets).
Finally, the one-way ANOVA test proved that the Zk-AMH algorithm is optimal and
comparable to the fuzzy c-means and fuzzy c-means++ approaches. In addition, for the
dataset comparison, the Zk-AMH algorithm clearly showed its advantages by producing
the highest scores for four datasets, an approximately score for one dataset, and marginally
lower values for the other three datasets (see Table 4).

The second consideration regarding the Zk-AMH algorithm is the cluster stability.
Most impressively, the Zk-AMH algorithm exhibited its strength by producing identical
mean, minimum, and maximum scores, which led its standard deviation to decline to zero
for all datasets (see Table 4). It is clearly evident that in the 100-run experiment for each
dataset, the Zk-AMH managed to produce constant results. This scenario did not happen
to the other algorithms, except for the fuzzy c-mean algorithm with dataset 5 alone. In fact,
out of eight datasets, four produced the optimal values, whereas the other four datasets
produced marginally lower scores. Further investigation of why these two datasets were
less optimal is urgently required.

Hence, the new seeding method seems to be exceptionally well suited and to work
exclusively for the k-AMH clustering framework to achieve cluster optimality and stability.
The new seeding might not work for the k-means and fuzzy c-means frameworks due to
their center using the mean. The cluster optimality is actually inherited from the previous
performance of k-AMH framework. Furthermore, the new seeding mechanism contributed
to cluster stability. With the fixed seeding technique and using multidimensional zero
points (the origin), the Zk-AMH algorithm converges in a globally optimal fashion toward
better clustering performance.

7. Conclusions

Based on the experimental results above, the Zk-AMH algorithm is stable while
seeding with zero-point multidimensional Cartesian spaces. In fact, the algorithm also
maintains its optimal solution for numerical clustering and is comparable not only to its
original algorithm, the k-AMH numeric algorithm and its extension k-AMH numeric++,
but also its counterparts, the k-means, k-means++, fuzzy c-means, and fuzzy c-means++
algorithms. The most promising finding is that the Zk-AMH algorithm obtained identical
results for all datasets in every run, due to its cluster stability. Thus, the seeding selection
would no longer be an obstacle to producing optimal clustering results for every run. With
its optimality and stability, the proposed Zk-AMH has the potential to be used in the future
development of clustering tools, particularly for numerical clustering.
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