
algorithms

Review

Decimal Multiplication in FPGA with a Novel Decimal
Adder/Subtractor

Mário P. Véstias 1,* and Horácio C. Neto 2

����������
�������

Citation: Véstias, M.P.; Neto, H.C.

Decimal Multiplication in FPGA with

a Novel Decimal Adder/Subtractor.

Algorithms 2021, 14, 198. https://

doi.org/10.3390/a14070198

Academic Editor: Frank Werner

Received: 7 June 2021

Accepted: 28 June 2021

Published: 29 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 INESC-ID, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa,
1959-007 Lisbon, Portugal

2 INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; hcn@inesc-id.pt
* Correspondence: mvestias@deetc.isel.ipl.pt

Abstract: Financial and commercial data are mostly represented in decimal format. To avoid errors
introduced when converting some decimal fractions to binary, these data are processed with decimal
arithmetic. Most processors only have hardwired binary arithmetic units. So, decimal operations
are executed with slow software-based decimal arithmetic functions. For the fast execution of
decimal operations, dedicated hardware units have been proposed and designed in FPGA. Decimal
multiplication is found in most decimal-based applications and so its optimized design is very
important for fast execution. In this paper two new parallel decimal multipliers in FPGA are
proposed. These are based on a new decimal adder/subtractor also proposed in this paper. The new
decimal multipliers improve state-of-the-art parallel decimal multipliers. Compared to previous
architectures, implementation results show that the proposed multipliers achieve 26% better area
and 12% better performance. Also, the new decimal multipliers reduce the area and performance gap
to binary multipliers and are smaller for 32 digit operands.

Keywords: decimal multiplication; decimal adder parallel multiplication; excess-3 coding; FPGA

1. Introduction

Financial and commercial applications like accounting, banking, tax calculation, in-
surance and currency conversion require a large amount of data computing. Therefore,
they are typically executed in high-performance computing platforms. These applications
run over large databases of numbers which, in many cases, are represented in decimal
format [1]. The last revision of the IEEE standard for floating-point arithmetic [2] includes
specific definitions and rules for decimal operations and three different formats: decimal
32, decimal 64 and decimal 128, with 7, 16 and 34 coefficient digits.

Most general-purpose processors only have binary arithmetic units. So, the fastest
solution to run decimal operations would be to convert decimal numbers to binary before
being processed and then convert the result to decimal. The problem is that not all
decimal numbers can be represented exactly as binary numbers with a finite number of
bits. So, to avoid errors created from binary calculation that could lead to unwanted result
deviations [3,4], arithmetic operations must be done directly over decimal numbers [5].
Their calculations must follow the conventions of decimal arithmetic and must keep a word
length enough to support the precision required by these applications. Current applications
may need over 30 precision digits to represent exactly a large set of decimal values found
in the databases of these applications [6].

Executing decimal operations with binary arithmetic hardware without converting
data to binary requires software algorithms for decimal arithmetic. Several software li-
braries for decimal arithmetic are supported by Intel [7], ANSI C [8] and GCC [9]. Software-
based decimal arithmetic is very slow compared to binary arithmetic implemented in
hardware [5]. This is acceptable as long as the performance is not an application re-

Algorithms 2021, 14, 198. https://doi.org/10.3390/a14070198 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-3621-8322
https://doi.org/10.3390/a14070198
https://doi.org/10.3390/a14070198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14070198
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14070198?type=check_update&version=1

Algorithms 2021, 14, 198 2 of 21

quirement. For example, commercial applications usually do not require high decimal
arithmetic performance.

However, the fast increase of commercial and financial transactions requires fast
decimal arithmetic computing to meet real-time requirements and exact computations.
Some approaches to binary/decimal computing [5,10] were adopted for the design of
processors with special units for decimal floating-point arithmetic, like the IBM eServer
z900 [11], the IBM POWER6 [12] and the IBM z10 [13].

Since the set of applications taking advantage of these specialized units is somehow
limited, most processors only include some kind of specific instructions to help in the
execution of decimal operations performed in software. In this scenario, FPGAs (Field Pro-
grammable Gate Array) may be a good alternative for the execution of decimal arithmetic
with dedicated hardware modules, like in many other applications [14,15]. Many financial
applications already use FPGAs to speed-up the execution of their algorithms and so an
hardware reprogrammable platform is already available. Besides, since logic in FPGAs
is implemented with look-up tables, the gap between binary and decimal arithmetic is
smaller than when implemented with ASIC (Application Specific Integrated Circuit).

Decimal multiplication is a fundamental arithmetic operation used in many appli-
cations and the design of other arithmetic functions. Therefore, fast decimal multipliers
are important to obtain fast decimal-based applications. Two new methods for parallel
decimal multiplication on FPGA with different tradeoffs between area and performance
are proposed. The methods are based on a new decimal adder/subtractor.

The results obtained with the new decimal multipliers improve both the area and
the performance of the best state-of-the-art decimal multipliers. Additionally, it reduces
considerably the implementation gap between decimal and binary multipliers in FPGA.

This paper is organized as follows. Section 2 describes state-of-the-art of decimal
multiplication. Section 3 introduces the decimal adder/subtractor. Section 4 describes the
proposed decimal multipliers. Section 5 presents the results of the new decimal multipliers
and compares the results with previous parallel decimal multipliers. Section 6 concludes
the paper.

2. Related Work

Processors with dedicated decimal hardware multipliers implement them with it-
erative algorithms [16,17] to reduce the size of the arithmetic unit. However, iterative
algorithms are slow compared to parallel implementations due to its iterative nature. for
fast execution, parallel decimal multiplication consists of partial product generation for
each multiplier digit followed by partial product addition. Partial product generation of a
N× N multiplication can be implemented with N× N small digit by digit multipliers or N
digit by multiplicand multipliers. A digit by digit multiplier can be implemented with logic
or with look-up tables [18–20]), for fast and compact design. However, given the quadratic
number of digit by digit multipliers necessary to implement a multiplication, these solu-
tions are viable only for small operand sizes. The proposal in [21] considered recoding of
operands to simplify digit by digit multiplication for partial product generation. However,
the performance and area of the decimal multiplier based on digit by digit multiplication is
still worst than a multiplier with a partial product for each multiplier digit.

The approach followed to implement a 1× N multiplier is to determine the decimal
multiples of the multiplier. A direct approach to a design a decimal multiplier based on
multiples generates all multiples of the multiplicand. Then, selects the required multiples
according to the multiplier digits. The generated multiples are then shifted and added to
generate the final product. While simple, the method requires a large multiplexer with
all multiplies for each multiplier digit and the generation of all multiples from A to 9A.
Knowing that the generation of some multiples are not carry-free, this solution degrades
the performance of the multiplier.

Therefore, authors started to consider only a limited set of multiples. In [22] only
multiples A, 2A, 4A, 5A are used, since they can be generated without carry propagation

Algorithms 2021, 14, 198 3 of 21

(multiple 4A is generated from 2A in sequence as 2× 2A). The other multiples are obtained
by adding two of these multiples. Since multiple 4A cannot be generated in a single carry-
free step, it has been removed from the set of base multiples in [23]. The other multiples
are obtained by adding a multiple from the set {0, 5X, 10X} and a multiple from the set
{−2X, −X, 0, X, 2X}. For fast selection of multiples, digits of the multiplier are first recoded,
but the solution requires a large multiplexer for each multiplier digit.

Since then, other sets of multiples and encodings were considered. In [24] two different
decimal encodings (4221 and 5211) are used to generate and reduce the partial products
with two different architectures. In one the architectures the multiplier is recoded into a
signed-digit (SD) set [−5, 5], while in the other the multiplier is encoded as A = YU5 + YL

like in [23], where YU ∈ {0, 1, 2} and YL ∈ {−2,−1, 0, 1, 2}. Signed-digit (SD) recoding of
the multiplier in the set [−5, 5] was adopted by several authors for the implementation
of a decimal multiplier [25,26]. The base architecture generates multiples {0, X, 2X, 3X,
4X, 5X}. These are selected for each partial product and the output is complemented to
obtain the negative of the multiple. The partial products are then reduced with a partial
product reduction module. Different representations are used to improve the generation
of complements and the decimal addition. The radix-5 algorithm proposed in [24] was
followed by [27] but using an hybrid 8421–5421 representation.

In [28] a decimal multiplier is proposed using a redundant decimal addition algorithm
based on a weighted bit-set encoding. The method generates double BCD (Binary-Coded
Decimal) numbers using decimal multiples 2X, 4X, and 5X. The redundant decimal adder
is used to reduce the generated 2n BCD partial products to a redundant number in the
range of [0, 15]. The final redundant product is then converted to BCD encoding.

The special case of constant decimal multiplication was considered in [29]. Constant
decimal multiplication is widely used in economic and financial applications. The authors
address this problem to design a solution with smaller area, power and delay compared to
constant decimal multiplication implemented with a general decimal multiplier. The work
proposes a new redundant digit set in {0, 18} and a 3:1 compressor. The results show an
improvement in the area up to 89%.

Partial products are then added is a step known as partial product reduction using
decimal adders. Partial product reduction can be designed with an adder tree or with a
multioperand adder. An adder tree successively reduces pairs of partial products until
a final result. Multioperand addition takes into account that multiple partials have to be
reduced into a single value. In [30] three techniques were proposed for multioperand
decimal addition. Two of the approaches consider speculative addition that speculates
about BCD correction values which are corrected while adding the operands. The other
technique uses a binary adder that produces a binary sum which is then corrected. This
last technique achieved the best area-delay results. A mixed binary and BCD multioperand
addition was proposed in [31]. Digits in a column are all added in binary, converted to
decimal and finally added with decimal adders.

In [22,23] the adder tree is implemented with decimal carry look-ahead adders. In [32]
partial products are recoded to 4221. This codification simplifies addition since it avoids he
correction step. The method reduces three partial products to two equally weighted 4221
decimal digits. These two operands are then converted to BCD add added to generate the
final result.

A different approach for decimal multiplication considers binary multipliers as the
base arithmetic unit [33–36]. This permits using binary multipliers that are faster and
may already be available in the system. Also, it implements both binary and decimal
multiplication in a single module. The method first converts the BCD operands of the
multiplication to binary. The converted operands are then multiplied using the binary
multiplier. The binary product is then converted to BCD. The main drawback of the binary-
based method is the large overhead introduced by the converters [35,37]. A balanced
solution was proposed in [34] that subdivides the multiplier and the multiplicand into

Algorithms 2021, 14, 198 4 of 21

smaller blocks and applies the method to each of these sub-blocks. The partials are then
aligned and added using decimal adders to generate the final product.

Most works on decimal multiplication target ASICs, but several architectures have
been proposed for FPGA and coarse-grained reconfigurable computing [38]. Any of the
previous architectures can be directly mapped to FPGA. However, a careful adaptation of
the design leads to a more efficient architecture since logic functions in FPGAs are imple-
mented with look-up tables. In [39] a parallel implementation of a multiplier was mapped
in Virtex-4 FPGA from Xilinx. The architecture obtains the partial products using digit by
digit multiplication with a binary multiplier followed by binary to BCD conversion [40].
The work in [41] described previously was mapped on a 6-input LUT FPGA.

A new optimization of the multiplication algorithm was considered in [42] where the
application of the Karatsuba-Ofman algorithm reduces the area of the parallel decimal
multipliers on FPGA at the cost of an increase in delay. A BCD multiplier using the atomic
1× 1 digit multiplier was proposed in [43]. The effort of the work is on the partial product
reduction unit. The two-digit partial products of all 1× 1 digit multiplications are correctly
aligned to generate the complete partial products. The partial products are then reduced
with a mix of binary decimal compressors and decimal adders.

Recently, a new decimal multiplier [44] improved the area of the best previous decimal
multipliers on FPGA by about 20%. The solution considers a new decimal adder based on
a mixed BCD/excess-6 representation and a 5221 recoding of the multiplier digits. Partial
products are obtained from the addition of a multiple in the set {0, 2X, 5X, 2X + 5X} and a
multiple in the set {X, 2X}.

Two novel decimal multipliers on FPGA with different area/performance tradeoffs
with both multipliers improving the area and performance of state-of-the-art multipliers are
proposed. Both methods use a new adder/subtractor based on the excess-3 representation
of multiples. Two different sets of multiples are considered: {0, X, 2X, 5X, 10X} and {2X,
4X, 5X}. Partial products are obtained by the addition or subtraction of two multiples of
the sets. The method permits a very efficient generation of multiples, which considerably
reduces the required resources. The area of the largest decimal multiplier is smaller than
the area of an equivalent binary multiplier.

3. Decimal Adder/Subtractor

In [45] a decimal adder was proposed that considers an excess-6 representation to
avoid carry propagation of addition. This adder is used in the proposed multipliers to
implement the adder tree. It also serves as the base for a novel decimal adder/subtractor
necessary for the design of the partial product generators. To better understand the new
adder/subtractor, the decimal adder proposed in [45] is briefly described.

3.1. BCD/Excess-6 Adder

The fundamental idea of the adder proposed in [45] is to consider addition of one digit
represented in BCD, w, and the other in excess-6 (BCD digit plus six), z. The result is correct
if w + z + 6 ≥ 16, but if w + z + 6 ≤ 15 then the result is in excess-6 and must be corrected
by subtracting six to obtain a BCD number. The advantage of the method is that the carry
out bit from each digit addition is always correct independently of whether the result as to
be corrected or not. These avoids carry propagation to correct the result. The carry-out bit
of each digit addition indicates if the result digit is BCD or excess-6. A carry out of 1 means
that the digit is in BCD, while a carry-out of 0 means that the result is in excess-6 and must
be corrected.

A generic decimal adder in which each of the operands can be independently repre-
sented in BCD or in excess-6 was designed in [45]. Each digit has an extra bit (isbcd) that
specifies if the digit is represented in BCD (isbcd = 1) or excess-6 (isbcd = 0). Since the
BCD/excess-6 adder needs one of the operands to be in BCD and the other in excess-6,
the inputs may have to be converted accordingly. If both are represented in BCD, one of

Algorithms 2021, 14, 198 5 of 21

the operands must be converted to excess-6. If both are represented in excess6 then one
must be converted to BCD.

The adjustment of the operands and their addition were designed with a single level
of LUT-6 and the carry-chain of the FPGA. The expressions of the generate and propagate
signals of a single digit adder are as follows [45]:

p[3] =

z[3]⊕ (z[2] ∨ z[1])⊕ w[3] if wbcd = zbcd = 1
z[3]⊕ (z[2] z[1])⊕ w[3] if wbcd = zbcd = 0
z[3]⊕ w[3] if wbcd 6= zbcd

p[2] =

 z[2]⊕ z[1]⊕ w[2] if wbcd = zbcd = 1
z[2]⊕ z[1]⊕ w[2] if wbcd = zbcd = 0
z[2]⊕ w[2] if wbcd 6= zbcd

p[1] =
{

z[1]⊕ w[1] if wbcd = zbcd
z[1]⊕ w[1] if wbcd 6= zbcd

p[0] = z[0]⊕ w[0]

(1)

The generate signals are always

g[3] = w[3]

g[2] = w[2]

g[1] = w[1]

g[0] = w[0]

(2)

Signals wbcd and zbcd indicate whether the digits w and z are represented in BCD or
in excess-6.

The addition of two decimal numbers whose digits are represented in BCD or excess-6
is implemented with a chain of single digit BCD/excess-6 adders.

3.2. BCD/Excess-6 Subtractor

BCD subtraction can be implemented with a similar approach. Considering two BCD
digits, w and z, the subtraction is correct if w− z ≥ 0, otherwise the result is in excess-6
and must be corrected by subtracting six to obtain a BCD number. The borrow out bit
from each digit subtraction is always correct independently of whether the result as to be
corrected or not. The borrow-out bit of each digit subtraction also informs if the result digit
is BCD or excess-6, that is, a borrow out of 1 means that correction is needed.

Considering again the two BCD digits, w and z, the subtraction can be implemented
with an adder as follows

w− z = w + 9′z + 1 = w + (9− z) + 1 (3)

where 9’z is the nine’s complement of z. Using the BCD/exccess-6 adder to execute this
addition, we must add six to the equation:

w− z = w + (9− z) + 6 + 1 = w + (15− z) + 1 = w + z + 1 (4)

From this equation, subtraction of two BCD digits, w − z, is accomplished by adding
w with the 1’s complement of z, z, plus one.

The decimal subtractor can be made generic with operands independently represented
in BCD or in excess-6 specified by the isbcd input. In this case, the inputs have to be
converted according to Table 1.

Algorithms 2021, 14, 198 6 of 21

Table 1. Functionality of a single digit BCD/excess-6 Subtraction.

w z Action

BCD BCD none
BCD excess-6 z→ z− 6

excess-6 BCD z→ z + 6
excess-6 excess-6 none

Similar to the adder described in the previous Section, the subtraction of two digits is
implemented with the generate and propagate signals defined as follows

p[3] =

z[3]⊕ (z[2] z[1])⊕ w[3] if wbcd = 0, zbcd = 1
z[3]⊕ (z[2] z[1])⊕ w[3] if wbcd = 1, zbcd = 0
z[3]⊕ w[3] if wbcd = zbcd

p[2] =

z[2]⊕ z[1]⊕ w[2] if wbcd = 0, zbcd = 1
z[2]⊕ z[1]⊕ w[2] if wbcd = 1, zbcd = 0
z[2]⊕ w[2] if wbcd = zbcd

p[1] =
{

z[1]⊕ w[1] if wbcd 6= zbcd
z[1]⊕ w[1] if wbcd = zbcd

p[0] = z[0]⊕ w[0]

(5)

The generate signals are always

g[3] = w[3]

g[2] = w[2]

g[1] = w[1]

g[0] = w[0]

(6)

Considering two N-digit decimal numbers W = wN−1wN−2 . . . w0 and
Z = zN−1zN−2 . . . z0 with digits represented in BCD or excess-6, specified with the extra in-
puts Wbcd = wbcdN−1wbcdN−2 . . . wbcd0 and Zbcd = zbcdN−1zbcdN−2 . . . zbcd0. The sub-
traction S = W−Z is implemented with a chain of N single digit BCD/excess-6 subtractors.
The carry-in of the single digit BCD/excess-6 subtractor associated with the least significant
digit is ’1’. The result is the decimal subtraction S = sN−1sN−2 . . . s0 and the extra output
ISbcd = isbcdN−1isbcdN−2 . . . isbcd0.

3.3. BCD/Excess-6 Adder/Subtractor

From the designs of the generic adder and subtractor described in the previous
Sections, a generic adder/subtractor circuit can be implemented considering an extra
input, op, that specifies if the operands are to be added (op = 0) or subtracted (op = 1).
The propagate signals of the circuit are a merge of the propagate signals of the adder and
of the subtractor described previously, namely.

Algorithms 2021, 14, 198 7 of 21

p[3] =

z[3]⊕ (op z[2] z[1])⊕ w[3] if wbcd = 0, zbcd = 0
z[3]⊕ (op z[2] z[1])⊕ w[3] if wbcd = 1, zbcd = 1
z[3]⊕ (op z[2] z[1])⊕ w[3] if wbcd = 0, zbcd = 1
z[3]⊕ (op z[2] z[1])⊕ w[3] if wbcd = 1, zbcd = 0

p[2] =

z[2]⊕ (op z[1])⊕ w[2] if wbcd = 0, zbcd = 0
z[2]⊕ (op z[1])⊕ w[2] if wbcd = 1, zbcd = 1
z[2]⊕ (op z[1])⊕ w[2] if wbcd = 0, zbcd = 1
z[2]⊕ (op z[1])⊕ w[2] if wbcd = 1, zbcd = 0

p[1] =
{

z[1]⊕ w[1] if wbcd 6= zbcd
z[1]⊕ w[1] if wbcd = zbcd

p[0] = op⊕ z[0]⊕ w[0]

(7)

The generate signals are always

g[3] = w[3]

g[2] = w[2]

g[1] = w[1]

g[0] = w[0]

(8)

The propagate signals of the generic BCD/excess-6 adder are functions of only two
inputs when wbcd 6= zbcd, while in the generic BCD/excess-6 subtractor they are functions
of only two inputs when wbcd = zbcd.

In the case of the generic adder/subtractor circuit, not considering input op, signals
p[0] and p[1] are functions of two variables, while signals p[2] and p[3] are functions of 3
and 4 variables, independently of inputs wbcd and zbcd. Therefore, the complexity of the
generic adder/subtractor has increased.

It is possible to reduce this complexity to only two variables as in the generic adder
and generic subtractor using operands represented in excess-3. Considering two BCD
digits, w and z, converted to excess-3 (add three), we3 and ze3, respectively. The addition
of we3 and ze3 is given by

we3 + ze3 = w + 3 + z + 3 = w + z + 6 (9)

This is the same to say that one of the operands in represented in BCD and the other
in excess-6. In addition, when operands use different representations the propagate signals
are only functions of two variables.

Considering the same two digits in excess-3, the subtraction of we3 and ze3 is given by

we3− ze3 = w + 3− (z + 3) = w + z (10)

This is the same to say that both operands are in BCD. In subtraction when operands
use the same representation the propagate signals are only functions of two variables.

Hence, when the operands are represented in excess-3 the propagate signals of both
operations are in the most simplified form as follows:

p[3] = op⊕ z[3]⊕ w[3]

p[2] = op⊕ z[2]⊕ w[2]

p[1] = op⊕ z[1]⊕ w[1]

p[0] = op⊕ z[0]⊕ w[0]

(11)

This property will allow the simplification of the multiplier to be described in the
next Section.

Algorithms 2021, 14, 198 8 of 21

The complete BCD/excess-6 adder/subtractor is implemented with a chain of N
single-digit BCD/excess-6 adder/subtractors. The carry-in of the single-digit BCD/excess-
6 adder/subtractor associated with the least significant digit is connected to the operation
selector. The carry-in is ’0’ if the selected operation is addition, and ’1’ otherwise. The result
is the decimal addition or subtraction and an extra output for each digit to specify if it is
BCD or excess-6.

4. Decimal Multiplier

Considering two operands, A and B, with n decimal digits (ai) and (bi), respectively,
given by

A = an−1an−2 . . . a0 =
n−1

∑
i=0

ai × 10i (12)

B = bn−1bn−2 . . . b0 =
n−1

∑
i=0

bi × 10i (13)

The product of A × B is a number with 2n decimal digits (pi) given by ∑2n−1
i=0 pi × 10i.

A decimal digit, xi, is coded with four bits according to expression

3

∑
j=0

xi[j]× wi[j] (14)

where xi[j] is the bit of xi at position j and wi[j] is the weight of bit xi[j] determined by
the codification.

The most common codification of a decimal digit is BCD (Binary-Coded Decimal)
that adopts the weights of a pure binary representation (8421). However, several other
representations have been considered in the literature, like (5421), (4221), (5221), (4311)
and (3321). A representation is chosen as the one that optimizes a particular arithmetic
algorithm. As observed in Section 3.3, we are particularly interested in the excess-3 code
(see Table 2).

Table 2. Representation of a decimal digit with excess-3.

Digit BCD Excess-3

0 0000 0011
1 0001 0100
2 0010 0101
3 0011 0110
4 0100 0111
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100

In this paper, the design of the multipliers follows the algorithm of most previous
approaches. Partial products are first generated and then reduced with a tree of decimal
adders. Each partial product results from the multiplication of a multiplier digit by the
multiplicand. The partial product is obtained by the addition or subtraction of two mul-
tiples of the multiplicand. This paper considers two different sets of multiples for the
partial product generation that leads to different tradeoffs between delay and area. In the
following, both methods for partial product generation are described.

Algorithms 2021, 14, 198 9 of 21

4.1. Partial Product Generator—Method 1

Considering a multiplicand, A, and a multiplier B, one partial product is the result of
the multiplication of a multiplier digit, bi, by the multiplicand. Since a digit varies between
0 and 9, the partial product corresponds to a multiple of A in the set {0, 1A, 2A, ..., 8A,
9A}. To obtain these multiples, two subsets of multiples are considered: S1 = {0, 5A, 10A}
and S2 = {0, A, 2A}. The advantage of these subsets of multiples is that they can be easily
generated without carry propagation, as will be shown later.

From these, any multiple of the set {0, A, 2A, . . . , 8A, 9A} can be obtained from the
addition or subtraction between multiples of each set as shown in Table 3.

Table 3. Generation of multiples using subsets S1 = {0, 5A, 10A} and S2 = {0, A, 2A}.

Multiple ∈ S1 ∈ S2 Operation

0 0 0 0 + 0
A 0 A 0 + A
2A 0 2A 0 + 2A
3A 5A 2A 5A − 2A
4A 5A A 5A − A
5A 5A 0 5A + 0
6A 5A A 5A + A
7A 5A 2A 5A + 2A
8A 10A 2A 10A − 2A
9A 10A A 10A − A

The hardware design of the partial product generator includes one multiplexer to
select the multiple from the subset S1, another multiplexer to select the second multiple
from S2 and one decimal adder/subtractor (see Figure 1).

Add/Sub

2Ae3
4N+4

Ae3
4N

2 1 0

OP
Sb

4N+4

ISbcd PP

N+1 4N+4

0e3
4N

10Ae3
4N+4

5Ae3
4N

2 1 0
Sa

4N+4

0e3
4N

22

bi

4

Add/Sub

5Ae3 Ae3
4N+4 4N

2Ae3
4N+4

bi

4

ISbcd PP

N+1 4N+4

Figure 1. Partial product generator for a single multiplier digit using subsets S1 = {0, 5A, 10A} and
S2 = {0, A, 2A}.

Selectors Sa and Sb of the multiplexers, and operand selector op are functions of the
4-bit multiplier digit, bi = bi[3]bi[2]bi[1]bi[0], as described in Table 4.

Algorithms 2021, 14, 198 10 of 21

Table 4. Generation of selectors in method 1.

bi[3]bi[2]bi[1]bi[0] Multiple Operation Sa Sb op

“0000” 0 0 + 0 “00” “00” 0
“0001” A 0 + A “00” “01” 0
“0010” 2A 0 + 2A “00” “10” 0
“0011” 3A 5A − 2A “01” “10” 1
“0100” 4A 5A − A “01” “01” 1
“0101” 5A 5A + 0 “01” “00” 0
“0110” 6A 5A + A “01” “01” 0
“0111” 7A 5A + 2A “01” “10” 0
“1000” 8A 10A − 2A “10” “10” 1
“1001” 9A 10A − A “10” “01” 1

The decimal adder/subtractor of the partial product generator is implemented as
explained in Section 3.3 with multiples represented in excess-3. Therefore, propagate
signals of the adder/subtractor are functions of three variables. Considering that the circuit
is to be implemented in FPGAs with 6-input LUTs, there are three unused inputs in each
LUT implementation of a propagate signal. So, the implementation of the partial product
generator can be further optimized by merging the multiplexer of the subset {0, A, 2A}
with the adder/subtractor (see Figure 2).

Sel-Add/Sub

2Ae3
4N+4

Ae3
4N

ISbcdi PPi

N+1 4N+4

10Ae3
4N+4

5Ae3
4N

2 1 0

4N+4

0e3
4N

Ma

Add/Sub

5Ae3 Ae3
4N+4 4N

2Ae3
4N+4

bi

ISbcdi PPi

N+1 4N+4

OP Sb

Sa
2

2

bi

4

Figure 2. Partial product generator for a single multiplier digit.

Block Sel − Add/Sub sums (op = 0) or subtracts (op = 1) the output of the multiplexer
with one multiple in the set {0, A, 2A}, determined by selector {Sb}. Considering the
propagate and generate expressions of the BCD/excess-6 adder/subtractor with operands
represented in excess-3, the expressions of the propagate and generate signals for a single
digit of block Sel − Add/Sub are as follows:

p[3] = op⊕ma[3]⊕ (Sb[0] Sb[1] ae3[3] + Sb[0] Sb[1] 2ae3[3])

p[2] = op⊕ma[2]⊕ (Sb[0] Sb[1] ae3[2] + Sb[0] Sb[1] 2ae3[2])

p[1] = op⊕ma[1]⊕ (Sb[0] Sb[1] ae3[1] + Sb[0] Sb[1] 2ae3[1])

p[0] = op⊕ma[0]⊕ (Sb[0] Sb[1] ae3[0] + Sb[0] Sb[1] 2ae3[0])

g[3] = ma[3]

g[2] = ma[2]

g[1] = ma[1]

g[0] = ma[0]

(15)

where ma is a digit from the output of the multiplexer, Ma. ae3 and 2ae3 are digits from
multiples Ae3 and 2Ae3, respectively.

Algorithms 2021, 14, 198 11 of 21

Connecting these propagate and generate signals with a carry chain provides the
circuit for a single digit of block Sel − Add/Sub with a carry-in and a carry-out (see the
implementation of a single digit in Figure 3).

LUT6

0
1

cout

p[3]

pp[3]

LUT6

0
1

p[2]

pp[2]

LUT6

0
1

p[1]

pp[1]

LUT6

0
1

p[0]

pp[0]

cin

g[2]g[3] g[1] g[0]

digit Sel-Add/Sub

44

isbcd pp

4

cout cin

ae3[3]
Sb[1]

ma[3]
Sb[0]

isbcd

op2ae3[3] Sb[1]
ma[2]

Sb[0]op Sb[1]
ma[1]

Sb[0]op Sb[1]
ma[0]

Sb[0]op

Sb[1] Sb[0]opae32ae3ma

ae3[2]
2ae3[2]

ae3[1]
2ae3[1]

ae3[0]
2ae3[0]

Figure 3. Implementation for a single digit of block Sel − Add/Sub in method 1.

The complete partial product is obtained with a chain of these single-digit blocks.
The generated partial products are in BCD/excess-6 format. Therefore, each partial prod-
uct output consists of N+1 BCD/excess-6 digits, {PP0, PP1, . . . , PPN−1}, and N+1 bits,
{ISbcd0, ISbcd1, . . . , ISbcdN−1}, one for each digit, indicating if the digit is represented in
BCD or excess-6.

The partial product generator produces all N partial products in parallel using N
(single digit) partial product generators (see Figure 4).

PPGdig

5Ae3

4N+4

2Ae3

4N+4

ISbcdN-1 PPN-1

N+1 4N+4

Ae3

4N 4

bN-1

PPGdig

4N+4 4N+4

ISbcd1 PP1

N+1 4N+4

4N 4

b1

PPGdig

4N+4 4N+4

ISbcd0 PP0

N+1 4N+4

4N 4

b0

OP

Figure 4. Proposed partial product generator in method 1.

Each partial product generator receives one digit of operand B.

4.2. Partial Product Generator—Method 2

The second method to generate the partial product considers the following subsets of
multiples: S1 = {4A, 5A} and S2 = {0, 2A, 4A}. The advantage of these subsets is that subset
S1 has only two multiples. The disadvantage is associated with the generation of multiple
4A as will be seen in the generation of multiples.

Similar to method 1, any multiple of the set {0, A, 2A, . . . , 8A, 9A} can be obtained
from the addition or subtraction between multiples of each set as shown in Table 5.

Algorithms 2021, 14, 198 12 of 21

Table 5. Generation of multiples in method 2.

Multiple ∈ S1 ∈ S2 Operation

0 4A 4A 4A − 4A
A 5A 4A 5A − 4A
2A 4A 2A 4A − 2A
3A 5A 2A 5A − 2A
4A 4A 0 4A + 0
5A 5A 0 5A + 0
6A 4A 2A 4A + 2A
7A 5A 2A 5A + 2A
8A 4A 4A 4A + 4A
9A 5A 4A 5A + 4A

The architecture of the partial product circuit is similar to that designed for method 1,
except that the multiplexer has only two inputs: 4A and 5A (see Figure 5).

Sel-Add/Sub

2Ae3
4N+4

4Ae3
4N+4

ISbcdi PPi

N+1 4N+4

5Ae3
4N+4

4Ae3
4N

1 0

4N+4Ma

Add/Sub

5Ae3 2Ae3
4N+4

4Ae3
4N+4

bi

ISbcdi PPi

N+1 4N+4

OP Sb

Sa
2

bi

4

4N+4

Figure 5. Partial product generator for a single multiplier digit using subsets S1 = {4A, 5A} and
S2 = {0, 2A, 4A}.

Selectors Sa and Sb, and operand selector op are functions of the multiplier digit,
bi = bi[3]bi[2]bi[1]bi[0], as described in Table 6.

Table 6. Generation of selectors in method 2.

bi[3]bi[2]bi[1]bi[0] Multiple Operation Sa Sb op

“0000” 0 4A − 4A “0” “10” 1
“0001” A 5A − 4A “1” “10” 1
“0010” 2A 4A − 2A “0” “01” 1
“0011” 3A 5A − 2A “1” “01” 1
“0100” 4A 4A + 0 “0” “00” 0
“0101” 5A 5A + 0 “1” “00” 0
“0110” 6A 4A + 2A “0” “01” 0
“0111” 7A 5A + 2A “1” “01” 0
“1000” 8A 4A + 4A “0” “10” 0
“1001” 9A 5A + 4A “1” “10” 0

Also, to simplify the adder/subtractor of the partial product generator all multiples
are represented in excess-3. Considering the equations of the propagate and generate
expressions of the adder/subtractor with operands represented in excess-3, the expressions

Algorithms 2021, 14, 198 13 of 21

of the propagate and generate signals for a single digit of block Sel − Add/Sub are as
follows:

p[3] = op⊕ma[3]⊕ (Sb[0] Sb[1] 2ae3[3] + Sb[0] Sb[1] 4ae3[3])

p[2] = op⊕ma[2]⊕ (Sb[0] Sb[1] 2ae3[2] + Sb[0] Sb[1] 4ae3[2])

p[1] = op⊕ma[1]⊕ (Sb[0] Sb[1] 2ae3[1] + Sb[0] Sb[1] 4ae3[1])

p[0] = op⊕ma[0]⊕ (Sb[0] Sb[1] 2ae3[0] + Sb[0] Sb[1] 4ae3[0])

g[3] = ma[3]

g[2] = ma[2]

g[1] = ma[1]

g[0] = ma[0]

(16)

Propagate and generate signals are interconnected with a carry chain to generate the
circuit for a single digit of block Sel − Add/Sub with a carry-in and a carry-out (see the
implementation of a single digit in Figure 6).

LUT6

0
1

cout

p[3]

pp[3]

LUT6

0
1

p[2]

pp[2]

LUT6

0
1

p[1]

pp[1]

LUT6

0
1

p[0]

pp[0]

cin

g[2]g[3] g[1] g[0]

digit Sel-Add/Sub

44

isbcd pp

4

cout cin

4ae3[3]
Sb[1]

ma[3]
Sb[0]

isbcd

OP2ae3[3]
4ae3[2]

Sb[1]
ma[2]

Sb[0]OP2ae3[2]
4ae3[1]

Sb[1]
ma[1]

Sb[0]OP2ae3[1]
4ae3[0]

Sb[1]
ma[0]

Sb[0]OP2ae3[0]

Sb[1]Sb[0]op4ae32ae3ma

Figure 6. Implementation for a single digit of block Sel − Add/Sub in method 2.

Similar to method 1, the complete partial product is obtained with a chain of these
single-digit blocks. All N partial products are generated parallel with N partial product
generators. The carry-in of the first module receives the op signal.

4.3. Generation of Multiples

The generation of partial products with one of the previous method is based on the
availability of multiples A, 2A, 4A, 5A and 10A of the multiplicand in excess-3, Ae3, 2Ae3,
4Ae3, 5Ae3 and 10Ae3, respectively. Multiple 10Ae3 is obtained from multiple Ae3 decimal
shifted left one digit with the new least significant digit equal to three.

Considering a number with n digits, A = an−1 . . . a0, where each digit has four bits,
ai = ai[3]ai[2]ai[1]ai[0] = ai[3− 0]. Considering also the excess-3 of A, Ae3 = Y = yn−1 . . . y0,
where each digit has four bits, yi = yi[3]yi[2]yi[1]yi[0] = yi[3− 0]. Each digit yi is obtained
according to Table 7.

Algorithms 2021, 14, 198 14 of 21

Table 7. Digit ai in excess-3, yi.

a ai[3− 0] ae3i[3− 0] yi[3− 0]

0 0000 0011 0011
1 0001 0100 0100
2 0010 0101 0101
3 0011 0110 0110
4 0100 0111 0111
5 0101 1000 1000
6 0110 1001 1001
7 0111 1010 1010
8 1000 1011 1011
9 1001 1100 1100

Considering now the excess-3 of 2A, 2Ae3 = Y = yn−1 . . . y0, each digit yi is obtained
according to Table 8.

Table 8. Digit 2ai in excess-3, yi.

a 2ai[4− 0] 2ae3i[4− 0] yi[3− 0]

ai−1[4] = 1 ai−1[4] = 0

0 0 0000 0 0011 0100 0011
1 0 0010 0 0101 0110 0101
2 0 0100 0 0111 1000 0111
3 0 0110 0 1001 1010 1001
4 0 1000 0 1011 1100 1011
5 1 0000 1 0011 0100 0011
6 1 0010 1 0101 0110 0101
7 1 0100 1 0111 1000 0111
8 1 0110 1 1001 1010 1001
9 1 1000 1 1011 1100 1011

Multiple 2ai of digit ai is obtained according to the second column of Table 8. In this
case, there is a carry out bit 2ai[4]. However, since the least significant digit of 2ai is always
zero then there is no carry propagation. However, multiple 2ae3i has always one at the
least significant bit. So, yi is the addition of 2ae3i plus the carry out from 2ae3i−1, that is,
it depends on 2ae3i and 2ae3i−1. The solution proposed in this paper, first determines all
carries 2ae3i[4] and then determines yi as a function of 2ae3i and 2ae3i−1[4], as described in
Table 8.

The implementation of Y = 4Ae3 is based on multiple 2A. First, multiple B = 2A is
determined according to the second column of Table 8. Then, multiple Y = 4Ae3 = 2Be3 is
determined like multiple 2Ae3 described previously.

Considering the excess-3 of 5A, 5Ae3 = Y = yn−1 . . . y0, each digit yi is obtained
according to Table 9.

Algorithms 2021, 14, 198 15 of 21

Table 9. Digit 2ai in excess-3, yi.

a 5ai−1[6− 0] yi[3− 0]

ai[0] = 1 ai[0] = 0

0 000 0000 0110 0011
1 000 0101 0110 0011
2 001 0000 0111 0100
3 001 0101 0111 0100
4 010 0000 1000 0101
5 010 0101 1000 0101
6 011 0000 1001 0110
7 011 0101 1001 0110
8 100 0000 1100 0111
9 100 0101 1100 0111

The multiple 5ai of one digit results in two digits. The most significant digit is in
[0 to 4] and the least significant digit is in [0 or 5], depending if digit ai is even or odd,
respectively. So, each digit yi depends on input digit ai−1 and the least significant bit of
digit ai, where a−1 = 0000. So, multiple 5A is generated in a single step without any carry
propagation according to Table 9.

All multiple generators assume that the input number is in BCD. To be more generic,
all multiple generators were designed with an extra input (isbcd) to specify if the number
is in BCD or excess-6. With generic multiple generators, the multipliers are also generic
permitting to interconnect several adders/subtractors or multipliers without having to
convert the output to BCD.

4.4. Partial Product Reduction

Partial product reduction adds the N partial products {PP0, PP1, . . . , PPN−1} with PPi
left shifted by i decimal places. Formally the addition of partial products is calculated
according to Equation (17).

N−1

∑
i=0

PPi × 10i (17)

The multioperand addition is designed using an adder tree, similar to [44]. The tree
has L = log2N levels of adders. Each level i has N

2i+1 adders, where level 0 is the first set
of adders.

The complete partial product reduction tree for N operands of size N+1 uses N
2 ×

log2(N) + N2 − N BCD/excess-6 single digit adders (digAdder). The critical path of the
adder tree with N partials is given by log2N digit adders plus 4× 2N carry chain bits.

4.5. BCD/Excess-6 to BCD Converter

The output of the partial product reduction is the product represented in BCD/excess-6
format, that is, some digits may be represented in BCD, while others may be represented in
excess-6. Unless the output is the input of another decimal adder/subtractor or multiplier
that accepts mixed BCD/excess-6 representations, the product has to be converted to BCD
to be presented.

Algorithms 2021, 14, 198 16 of 21

A digit of the product must be converted to BCD if isbcd is 0. The logical ex-
pressions to convert a BCD/excess-6 digit, d = d[3]d[2]d[1]d[0] to a BCD digit, dbcd =
dbcd[3]dbcd[2]dbcd[1]dbcd[0] are as follows:

dbcd[0] = d[0] (18a)

dbcd[1] = d[1]⊕ isbcd (18b)

dbcd[2] = (d[2]⊕ d[1]) isbcd ∨ d[2] isbcd (18c)

dbcd[3] = d[3] d[2] d[1] isbcd ∨ d[3] isbcd (18d)

The expressions are at most functions of four variables.

4.6. Architecture of the Two Versions of the Decimal Multiplier

The complete decimal multipliers include the multiples generators, the partial product
generators and the partial product reduction (see Figure 7).

A (BCD/e6)
(N digits)

P = A × B
(2N digits)

a)

Partial Product
Generator – Method 1

Partial Product
Reduction

N partial products

2Ae35Ae3

B (BCD/e6)
(N digits)

BCD/e6 to BCD
converter

Ae3

A (BCD/e6)
(N digits)

P = A × B
(2N digits)

b)

Partial Product
Generator – Method 2

Partial Product
Reduction

N partial products

4Ae35Ae3

B (BCD/e6)
(N digits)

BCD/e6 to BCD
converter

2Ae3

Figure 7. Architecture fo the proposed decimal multipliers. (a) Decimal multiplier with method 1
and (b) decimal multiplier with method 2.

The output of the partial product reduction is in BCD/excess-6 format. A final
BCD/excess-6 to BCD converter is required if the result in a pure BCD format is needed.
The difference between both multipliers is the partial product generator and the required
multiples. In Figure 7a, multiplier 1 uses the partial product generator based on multiples
Ae3, 2Ae3, 5Ae3 and 10Ae3 (obtained directly from multiple Ae3), and in Figure 7b,
multiplier 2 uses the partial product generator based on multiples 2Ae3, 4Ae3 and 5Ae3.

Algorithms 2021, 14, 198 17 of 21

For an N × N decimal multiplier the theoretical area occupation of both decimal
multipliers can be estimated (see Table 10).

Table 10. Theoretical area of both decimal multipliers in number of LUT6.

Block Multiplier 1 (#LUT6) Multiplier 2 (#LUT6)

MultGen(BCD) 7N 10N + 7
MultGen(BCD/e6) 8N + 1 10N + 7

PPG 8N2 + 11N 6N2 + 8N

PPR 4× (N
2 × dlog2 Ne+ N2 − N)

Converter (BCD) 4N
BCD Multiplier(BCD) 12N2 + 18N + 2Ndlog2 Ne 10N2 + 18N + 7 + 2Ndlog2 Ne

BCD Multiplier(BCD/e6) 12N2 + 15N + 1 + 2Ndlog2 Ne 10N2 + 14N + 7 + 2Ndlog2 Ne

There are two lines in the Table for the multiples generator: the first line is when the
operands and the result are in BCD and the second line is when they are in BCD/excess-6
representation. In the last case, the final converter is not used.

The area of multiplier 1 with inputs and output represented in BCD is 2N2 − 7 higher
than multiplier 2. When inputs and output are represented in BCD/excess-6, multiplier 1
has an area 2N2 + N − 6 higher than multiplier 2.

5. Results

All designs were described in VHDL and implemented in a Virtex-7 FPGA (-3 speed
grade). The architecture was simulated, synthesized, placed and routed using Vivado
19.1 from Xilinx. The area of all implementations after place and route are presented in
Tables 11 and 12.

Table 11. Logic area (LUTs) and delay (ns) of both multipliers with BCD inputs and output for
different number of digits in a Virtex-7 FPGA, speed grade -3.

Multiplier 1 Multipler 2

Size Model Area Delay Model Area Delay

2× 2 88 88 3.56 87 87 4.62
4× 4 280 280 4.97 255 255 5.92
8× 8 960 960 6.58 839 839 7.96
16× 16 3488 3504 8.93 2983 3001 10.22
32× 32 13,184 13,248 12.26 11,143 11,194 13.12
34× 34 14,892 14,976 13.04 12,587 12,643 13.91

Table 12. Logic area (LUTs) and delay (ns) of both multipliers with BCD/excess-6 inputs and output
for different number of digits in a Virtex-7 FPGA, speed grade -3.

Multiplier 1 Multipler 2

Size Model Area Delay Model Area Delay

2× 2 83 83 3.02 79 79 3.84
4× 4 271 271 4.32 239 239 5.31
8× 8 943 943 6.06 807 814 7.23
16× 16 3455 3471 8.37 2919 2937 9.31
32× 32 13,119 13,183 11.99 11,015 11,076 12.94
34× 34 14,823 14,907 12.84 12,451 12,535 13.78

Multiplier 1 is the fastest while multiplier 2 is the smallest. These relations are
determined by the multiples generators and the partial product generators. Multiplier
2 needs multiple 4× that is harder to generate and has a critical path higher than the
other multiples. This determines the higher critical path of the second multiplier. On the
other side, the multiplexer of the partial product generator of multiplier 1 has three inputs.
while the multiplexer of multiplier 2 has only two. This determines the smaller area of
multiplier 2.

Algorithms 2021, 14, 198 18 of 21

As can be observed from the results, multiplier 2 is 18% smaller than multiplier 1 for
the 32 digit multiplier. This difference reduces for smaller multipliers. On the other side,
multiplier 1 is 30% faster than multiplier 2 for the 2 digit multiplier. This difference reduces
for larger multipliers (see Figures 8 and 9).

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

2x2 4x4 8x8 16x16 32x32

LU
Ts

Size

Multiplier 1 Multiplier 2

Figure 8. Area variation of both multipliers.

Multiples generator of multiplier 2 occupies more area than those of multiplier 1,
but the partial generator is smaller in multiplier 2. Since the area of the partial product
generators reduces faster, the difference of the area of the proposed multiplier 2 to the
multiplier 1 increases with the size of the multipliers.

3

6

12

2x2 4x4 8x8 16x16 32x32

De
la

y
(n

s)

Size

Multiplier 1 Multiplier 2

Figure 9. Delay variation of both multipliers.

The difference in delay between the proposed multipliers is mostly due to the multiples
generators. Therefore the absolute difference between both multipliers is almost constant.
Therefore, the relative delay difference decreases with the size of the multipliers.

The results of the proposed multipliers were compared with state-of-the-art decimal
multipliers implemented in FPGA [41–44], (see Table 13).

All designs consider registered inputs and outputs. The multiplier in [41] uses the
final flip-flops to implement the final conversion from the internal representation to BCD.
To register the outputs an extra level of LUTs is required. In our circuit, the extra level of
LUTs implements both the converter and the register. In this reference, the decimal digit
adder occupies five LUT, while our decimal adder occupies only four. For a fair comparison,
the multiplier from [41] was redesigned and implemented with our decimal adder.

The decimal multiplier from [42] uses the Karatsuba-Offman algorithm to reduce the
area at the cost of delay. The area reduction impact is higher for larger operands. However,
even for the 16× 16 decimal multiplier, the proposed multiplier 1 achieves a similar area
with a reduction of 34% in the delay. Multiplier 2 reduces the area by 15% for the 16× 16

Algorithms 2021, 14, 198 19 of 21

multiplier with with a reduction of 28% in the delay. The improvements obtained with the
proposed decimal multipliers are higher for smaller operands since the relative overhead
of the Karatsuba-Offman algorithm is higher for smaller operands.

Table 13. Comparison of the proposed decimal multipliers with state of the art works for different number of digits.

[41] * [43] * [42] * [44] Multiplier 1 Multiplier 2

Size LUTs Delay LUTs Delay LUTs Delay LUTs Delay LUTs Delay LUTs Delay

2× 2 82 4.2 — — — — 91 4.2 88 3.56 87 4.62
4× 4 300 5.3 450 5.6 365 5.6 301 5.4 280 4.97 255 5.92
8× 8 1128 6.9 1850 8.1 1197 7.5 1065 7.0 960 6.58 839 7.96

16× 16 4336 9.5 6843 11.9 4088 11.5 3954 8.9 3504 8.53 3001 10.22
32× 32 16,928 13.4 — — 13,257 18.1 15,146 14.0 13,248 12.26 11,194 13.12
34× 34 19,197 14.2 — — — — 17,135 14.9 14,976 13.04 12,643 13.91

* remapped to Virtex-7 speed grade -3 technology for a fair comparison.

The proposed multiplier 1 is smaller (up to 14%) and faster than the previous best
decimal multiplier from [44]. This is due to the reduction in the area of the partial product
generator. The proposed multiplier 2 further improves the area of multiplier from [44] (up
to 35%) and also the performance for the multipliers with operands of 16 and 32 digits.

The area of multiplier 2 was compared with the area of a binary multiplier of equiv-
alent input operands generated for best speed with Xilinx Core Generator (see results in
Table 14)

Table 14. Comparison of the proposed decimal multipliers with state of the art works for different
number of digits.

Multiplier 2 Binary Comparison

Size (Digits) LUTs Delay (ns) Size (bits) LUTs Delau (ns) Area Ratio Delay Ratio

2× 2 87 4.62 7 46 2.59 1.89 1.78
4× 4 255 5.92 14 190 3.62 1.34 1.63
8× 8 839 7.96 27 720 5.11 1.16 1.56

16× 16 3001 10.22 54 2899 6.88 1.04 1.49
32× 32 11,194 13.12 13.1 11,866 9.84 0.94 1.33

Small decimal multipliers are relatively expensive compared to the binary multiplier,
but the proposed 16× 16 decimal multiplier 2 has an area only 4% higher than the area
of the binary multiplier and the proposed 32× 32 decimal multiplier 2 is smaller than the
binary multiplier. The area ratio reduction has to do with the overhead associated with the
generation of the multiples which are amortized as the multiplier size increases. The delay
of the decimal multiplier is always worse but the relative difference also decreases with the
operand size for the same reasons.

6. Conclusions and Future Work

We have proposed a new decimal adder/subtractor and two new partial product
generators for parallel decimal fixed-point multiplication on 6-input LUT FPGAs. The result
was two decimal multipliers with different tradeoffs between area and performance.

The partial product generators are based on different sets of multiples, namely {2A, 5A,
10A} and {2A, 4A, 5A}. The first set of multiples is easier to generate but the partial product
generator occupies more area than that using the second set of multiples. The inputs and
output of the multipliers can be represented in BCD or BCD/excess6 formats.

The results were compared with the best state-of-art implementations of a parallel
decimal multiplier in FPGA. One of the proposed multipliers achieves the best area and
delay for all operand sizes, except the smallest one, 2× 2, when compared to the state
of-art. The second multiplier further improves the area but at the cost of an increase in

Algorithms 2021, 14, 198 20 of 21

delay. Compared to a binary multiplier, the larger multipliers have a comparable area,
but the worst delay. Both area and delay ratios decrese with the operand size.

As future work, the proposed multiplier will be used to implement decimal floating-
point multiplication and fused multiplication-addition.

Author Contributions: Conceptualization, M.P.V. and H.C.N.; methodology, M.P.V. and H.C.N.;
software, M.P.V. and H.C.N.; validation, M.P.V. and H.C.N.; formal analysis, M.P.V. and H.C.N.;
investigation, M.P.V. and H.C.N.; resources, M.P.V. and H.C.N.; data curation, M.P.V. and H.C.N.;
writing—original draft preparation, M.P.V. and H.C.N.; writing—review and editing, M.P.V. and
H.C.N.; visualization, M.P.V. and H.C.N.; supervision, M.P.V.; project administration, M.P.V.; funding
acquisition, M.P.V. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by national funds through Fundação para a Ciência e a Tecnologia
(FCT) with Reference UIDB/50021/2020.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tsang, A.; Olschanowsky, M. A Study of Database 2 Customer Queries; Technical report; IBM Santa Teresa Laboratory: San Jose, CA,

USA, 1991.
2. IEEE Standards Committee. 754-2008 IEEE Standard for Floating-Point Arithmetic; IEEE: New York, NY, USA, 2008; pp. 1–58.
3. Quinn, K. Ever had problems rounding offfigures? this stock exchange has. Wall Str. J. 1983, 202, 37.
4. IBM Corporation. The Telco Benchmark. 2017. Available online: http://speleotrove.com/decimal/telcoSpec.html (accessed on

20 May 2020).
5. Cowlishaw, M.F. Decimal floating-point: Algorism for Computers. In Proceedings of the 16th IEEE International Symposium on

Computer Arithmetic, Santiago de Compostela, Spain, 15–18 June 2003; pp. 104–111.
6. IBM Corporation. Decimal Arithmetic FAQ. 2007. Available online: http://speleotrove.com/decimal/decifaq1.html#needed

(accessed on 20 May 2020).
7. Cornea, M.; Anderson, C.; Harrison, J.; Tang, P.; Schneider, E.; Tsen, S. A software implementation of the IEEE 754R decimal

floating-point arithmetic using the binary encoding format. In Proceedings of the IEEE 18th Symposium on Computer Arithmetic,
Montpellier, France, 25–27 June 2007; pp. 29–37.

8. ANSI CdecNumber Library v3.68. Available online: http://speleotrove.com/decimal/decnumber.html (accessed on 27 June
2021).

9. GNU CCompiler Library. Available online: https://www.gnu.org/software/libc/ (accessed on 27 June 2021).
10. Cornea, M.; Crawford, J. IEEE 754R Decimal Floating-Point Arithmetic: Reliable and Efficient Implementation for Intel

Architecture Platforms. Intel Technol. J. 2007, 11, 91–94. [CrossRef]
11. Busaba, F.; Krygowski, C.A.; Li, W.H.; Schwarz, E.M.; Carlough, S.R. The IBM z900 Decimal Arithmetic Unit. In Proceedings of

the ASilomar Conference on Signals, Systems, Computers, Pacific Grove, CA, USA, 4–7 November 2001; pp. 1335–1339.
12. Le, H.Q.; Starke, W.J.; Fields, J.S.; O’Connell, F.P.; Nguyen, D.Q.; Ronchetti, B.J.; Sauer, W.M.; Schwarz, E.M.; Vaden, M.T. IBM

POWER6 microarchitecture. IBM J. Res. Dev. 2007, 51, 639–662. [CrossRef]
13. Webb, C.F. IBM z10: The Next- Generation Mainframe Microprocessor. IEEE Micro 2008, 28, 19–29. [CrossRef]
14. Zhao, Y.; Wang, D.; Wang, L. Convolution Accelerator Designs Using Fast Algorithms. Algorithms 2019, 12, 112. [CrossRef]
15. Deabes, W. FPGA Implementation of ECT Digital System for Imaging Conductive Materials. Algorithms 2019, 12, 28. [CrossRef]
16. Vestias, M.P.; Neto, H.C. Revisiting the Newton-Raphson Iterative Method for Decimal Division. In Proceedings of the 2011

21st International Conference on Field Programmable Logic and Applications, Chania, Greece, 5–7 September 2011; pp. 138–143.
[CrossRef]

17. Véstias, M.P.; Neto, H.C. Iterative decimal multiplication using binary arithmetic. In Proceedings of the 2011 VII Southern
Conference on Programmable Logic (SPL), Cordoba, Argentina, 13–15 April 2011; pp. 257–262. [CrossRef]

18. Larson, R.H. High-Speed Multiply Using Four Input Carry-Save Adder. IBM Tech. Discl. Bull. 1973, 16, 2053–2054.
19. Ueda, T. Decimal Multiplying Assembly and Multiply Module. U.S. Patent 5,379,245, 3 January 1995.
20. Castillo, E.; Lloris, A.; Morales, D.P.; Parrilla, L.; García, A.; Botella, G. A new area-efficient BCD-digit multiplier. Digit. Signal

Process. 2017, 62, 1 – 10. [CrossRef]
21. Erle, M.A.; Schwarz, E.M.; Schulte, M.J. Decimal Multiplication with Efficient Partial Product Generation. In Proceedings of the

17th IEEE Symposium on Computer Arithmetic, Cape Cod, MA, USA, 27–29 June 2005; pp. 21–28.
22. Erle, M.A.; Schulte, M.J. Decimal multiplication via carry-save addition. In Proceedings of the 14th IEEE International Conference

on Application Specific Systems, San Diego, CA, USA, 9–11 June 2003; pp. 348–358.
23. Lang, T.; Nannarelli, A. A radix-10 combinational multiplier. In Proceedings of the IEEE 40th International Asilomar Conference

on Signals, Systems, and Computers, Kos Island, Greece, 29 October–1 November 2006; pp. 313–317.
24. Vázquez, A.; Antelo, E.; Montuschi, P. Improved Design of High-Performance Parallel Decimal Multipliers. IEEE Trans. Comput.

2010, 59, 679–693. [CrossRef]

http://speleotrove.com/decimal/telcoSpec.html
http://speleotrove.com/decimal/decifaq1.html#needed
http://speleotrove.com/decimal/decnumber.html
https://www.gnu.org/software/libc/
http://doi.org/10.1535/itj.1101.s2
http://dx.doi.org/10.1147/rd.516.0639
http://dx.doi.org/10.1109/MM.2008.26
http://dx.doi.org/10.3390/a12050112
http://dx.doi.org/10.3390/a12020028
http://dx.doi.org/10.1109/FPL.2011.33
http://dx.doi.org/10.1109/SPL.2011.5782658
http://dx.doi.org/10.1016/j.dsp.2016.10.011
http://dx.doi.org/10.1109/TC.2009.167

Algorithms 2021, 14, 198 21 of 21

25. Gorgin, S.; Jaberipur, G. Sign-Magnitude Encoding for Efficient VLSI Realization of Decimal Multiplication. IEEE Trans. Very
Large Scale Integr. VLSI Syst. 2017, 25, 75–86. [CrossRef]

26. Cui, X.; Dong, W.; Liu, W.; Swartzlander, E.E.; Lombardi, F. High Performance Parallel Decimal Multipliers Using Hybrid BCD
Codes. IEEE Trans. Comput. 2017, 66, 1994–2004. [CrossRef]

27. Zhu, M.; Jiang, Y.; Yang, M.; Chen, T. On High-Performance Parallel Decimal Fixed-Point Multiplier Designs. Comput. Electr. Eng.
2014, 40, 2126–2138. [CrossRef]

28. Gorgin, S.; Jaberipur, G. A fully redundant decimal adder and its application in parallel decimal multipliers. Microelectron. J.
2009, 40, 1471–1481. [CrossRef]

29. Hoseininasab, S.S.; Nikmehr, H. Architectures for multiple constant decimal multiplication. Comput. Electr. Eng. 2019, 75, 31–45.
[CrossRef]

30. Kenney, R.D.; Schulte, M.J. High Speed Multioperand Decimal Adders. IEEE Trans. Comput. 2005, 54, 953–963. [CrossRef]
31. Dadda, L. Multioperand Parallel Decimal Adder: A Mixed Binary and BCD Approach. IEEE Trans. Comput. 2007, 56, 1320–1328.

[CrossRef]
32. Vázquez, A.; Antelo, E.; Montushi, P. A New Family of High-Performance Parallel Decimal Multipliers. In Proceedings of the

IEEE 18th Symposium on Computer Arithmetic, Montpellier, France, 25–27 June 2007; pp. 195–204.
33. Neto, H.; Véstias, M. Decimal Multiplier on FPGA using Embedded Binary Multipliers. In Proceedings of the International

Conference on Field Programmable Logic and Applications, Dublin, Ireland, 27–31 August 2008; pp. 197–202.
34. Véstias, M.; Neto, H. Parallel Decimal Multipliers using Binary Multipliers. In Proceedings of the IEEE 6th Southern Pro-

grammable Logic Conference, Pernambuco, Brazil, 24–26 March 2010; pp. 73–78.
35. Fazlali, M.; Valikhani, H.; Timarchi, S.; Malazi, H.T. Fast Architecture for Decimal Digit Multiplication. Microprocess. Microsyst.

2015, 39, 296–301. [CrossRef]
36. Mukkamala, S.; Rathore, P.; Peesapati, R. Decimal multiplication using compressor based-BCD to binary converter. Eng. Sci.

Technol. Int. J. 2018, 21, 1–6. [CrossRef]
37. Al-Khaleel, O.; Al-Qudah, Z.; Al-Khaleel, M.; Papachristou, C. High performance FPGA-based decimal-to-binary conversion

schemes for decimal arithmetic. Microprocess. Microsystems 2013, 37, 287–298. [CrossRef]
38. Emami, S.; Sedighi, M. An Optimized Reconfigurable Architecture for Hardware Implementation of Decimal Arithmetic. Comput.

Electr. Eng. 2017, 63, 18–29. [CrossRef]
39. Sutter, G.; Todorovich, E.; Bioul, G.; Vázquez, M.; Deschamps, J.P. FPGA Implementations of BCD Multipliers. In Proceedings of

the IEEE International Conference on Reconfigurable Computing and FPGAs, Cancun, Mexico, 9–11 December 2009; pp. 36–41.
40. Jaberipur, G.; Kaivani, A. Binary-coded decimal digit multipliers. IET Comput. Digit. Tech. 2007, 1, 377–381. [CrossRef]
41. Vázquez, A.; de Dinechin, F. Efficient implementation of parallel BCD multiplication in LUT-6 FPGAs. In Proceedings of the

2010 International Conference on Field-Programmable Technology (FPT), Beijing, China, 8–10 December 2010; pp. 126–133.
42. Véstias, M.; Neto, H. Parallel Decimal Multipliers and Squarers Using Karatsuba-Ofman’s Algorithm. In Proceedings of the 15th

Euromicro Conference on Digital System Design, Cesme, Izmir, Turkey, 5–8 September 2012; pp. 782–788.
43. Gao, S.; Al-Khalili, D.; Langlois, J.; Chabini, N. Efficient Realization of BCD Multipliers Using FPGAs. Int. J. Reconfigurable

Comput. 2017, 2017, 2410408. [CrossRef]
44. Véstias, M.P.; Neto, H.C. Improving the area of fast parallel decimal multipliers. Microprocess. Microsyst. 2018, 61, 96–107.

[CrossRef]
45. Neto, H.C.; Véstias, M.P. Decimal addition on FPGA based on a mixed BCD/excess-6 representation. Microprocess. Microsyst.

2017, 55, 91–99. [CrossRef]

http://dx.doi.org/10.1109/TVLSI.2016.2579667
http://dx.doi.org/10.1109/TC.2017.2706262
http://dx.doi.org/10.1016/j.compeleceng.2014.08.013
http://dx.doi.org/10.1016/j.mejo.2009.07.002
http://dx.doi.org/10.1016/j.compeleceng.2019.01.024
http://dx.doi.org/10.1109/TC.2005.129
http://dx.doi.org/10.1109/TC.2007.1067
http://dx.doi.org/10.1016/j.micpro.2015.01.004
http://dx.doi.org/10.1016/j.jestch.2018.01.003
http://dx.doi.org/10.1016/j.micpro.2013.01.002
http://dx.doi.org/10.1016/j.compeleceng.2017.08.018
http://dx.doi.org/10.1049/iet-cdt:20060160
http://dx.doi.org/10.1155/2017/2410408
http://dx.doi.org/10.1016/j.micpro.2018.05.015
http://dx.doi.org/10.1016/j.micpro.2017.10.004

	Introduction
	Related Work
	Decimal Adder/Subtractor
	BCD/Excess-6 Adder
	BCD/Excess-6 Subtractor
	BCD/Excess-6 Adder/Subtractor

	Decimal Multiplier
	Partial Product Generator—Method 1
	Partial Product Generator—Method 2
	Generation of Multiples
	Partial Product Reduction
	BCD/Excess-6 to BCD Converter
	Architecture of the Two Versions of the Decimal Multiplier

	Results
	Conclusions and Future Work
	References

