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Abstract: Recently, cloud computing has begun to experience tremendous growth because govern-
ment agencies and private organisations are migrating to the cloud environment. Hence, having
a task scheduling strategy that is efficient is paramount for effectively improving the prospects
of cloud computing. Typically, a certain number of tasks are scheduled to use diverse resources
(virtual machines) to minimise the makespan and achieve the optimum utilisation of the system
by reducing the response time within the cloud environment. The task scheduling problem is NP-
complete; as such, obtaining a precise solution is difficult, particularly for large-scale tasks. Therefore,
in this paper, we propose a metaheuristic enhanced discrete symbiotic organism search (eDSOS)
algorithm for optimal task scheduling in the cloud computing setting. Our proposed algorithm is
an extension of the standard symbiotic organism search (SOS), a nature-inspired algorithm that has
been implemented to solve various numerical optimisation problems. This algorithm imitates the
symbiotic associations (mutualism, commensalism, and parasitism stages) displayed by organisms in
an ecosystem. Despite the improvements made with the discrete symbiotic organism search (DSOS)
algorithm, it still becomes trapped in local optima due to the large size of the values of the makespan
and response time. The local search space of the DSOS is diversified by substituting the best value
with any candidate in the population at the mutualism phase of the DSOS algorithm, which makes it
worthy for use in task scheduling problems in the cloud. Thus, the eDSOS strategy converges faster
when the search space is larger or more prominent due to diversification. The CloudSim simulator
was used to conduct the experiment, and the simulation results show that the proposed eDSOS was
able to produce a solution with a good quality when compared with that of the DSOS. Lastly, we
analysed the proposed strategy by using a two-sample t-test, which revealed that the performance
of eDSOS was of significance compared to the benchmark strategy (DSOS), particularly for large
search spaces. The percentage improvements were 26.23% for the makespan and 63.34% for the
response time.

Keywords: cloud computing; scheduling; metaheuristic; eDSOS; optimisation

1. Introduction

Cloud computing uses many resources, including storage, processors, networks,
memory, and applications that have been provisioned as services, as well as continually
changing information technology (IT) resources [1]. In this regard, the paradigm of cloud
computing has drastically brought down the cost of acquiring both software and hardware,
as well as that of the deployment of applications and the cost of maintenance. Due to the
high scalability in the cloud, customers are not worried about inaccurate estimation of the
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service scale, which can lead to wastage of resources when over-provisioned or a loss of
revenue when under-provisioned [2,3].

Cloud computing shares resources between users of the cloud via the concept known
as virtualisation. Virtualisation allows several environments that are running remotely to
be safely integrated into physical machines for the optimal usage of the physical resources
and energy [2]. Cloud data are situated crosswise over servers that are interconnected
through resources that are networked and accessed through virtual machines (VMs). In
this way, VMs in cloud server farms are a critical element of software stacks.

An example of a cloud platform that renders infrastructure services in the form of
VMs is the Amazon Elastic Computing Cloud (EC2) [4]. One of the central aims of cloud
computing is to maximise the revenue for both sides of the cloud provider, as well as for
the consumer. Task scheduling is an NP-complete problem, and it has developed as one
of the focuses in cloud computing [5], as inefficient task scheduling results in a loss of
revenue, degradation of execution, and violation of service-level agreements (SLAs).

Hence, strategies that are efficient for task scheduling are necessary in order to min-
imise metrics that are computationally based, such as the makespan, response time, system
throughput, and system utilisation, as well as those that are network-based, such as the
traffic volume, network communication cost, data communication cost, and round-trip
time [6]. These measurement metrics are cardinal in observing the cloud procedures for
handling difficulties—for example, quality of service (QoS) and SLA guarantees, load
balancing, energy efficiency, and fault tolerance [6].

There is existing research on task scheduling with encouraging solutions in the cloud
computing domain, yet problems related to task scheduling still remain NP-complete [7–10].
In cloud computing, the vast majority of task scheduling strategies applied are rule-
based [11–13] because they are easy to implement. According to [5], with regard to the
complex problems of task scheduling, rule-based strategies are characterised by poor perfor-
mance. Recently, the commonly used metaheuristic strategies for task scheduling problems
in grids, as well as in cloud computing environments, have included the symbiotic organ-
ism search (SOS) [7,9,14], genetic algorithms (GAs) [15–19], particle swarm optimisation
(PSO) [20–30], ant colony optimisation (ACO) [31–33], hybrid firefly–genetic [34], the whale
optimisation algorithm (WOA) [35], and hybrid electro search with a genetic algorithm
(HESGA) [36].

SOS is faster in terms of convergence compared with PSO, GAs, and ACO due to its
exploratory and exploitative features for finding optimal solutions [9,14,24,37]. Because
of the better execution of SOS compared to that of PSO, ACO, and GAs, variants of SOS
were utilised to benchmark our proposed task scheduling strategy. It is well known in the
literature that metaheuristics are superior to heuristics or local search scheduling strategies,
which is our reason for using the metaheuristic technique.

In this paper, an enhanced discrete symbiotic organism search (eDSOS) strategy
is proposed and used to schedule set-of-tasks applications in a cloud computing setting;
therefore, the costs of network communication and of data transfer are not key optimisation
setbacks when addressing independent tasks. In the setup of the experiment, similarly
to the experiments of [9], four dataset types were used—normal, left-half, right-half, and
uniform distributions—in order to appropriately test the proposed strategy. Accordingly,
different kinds of distributions were adopted to gain insight into the performance trends of
the proposed strategy. Most applications, such as web services, run for a long duration,
which results in variations in their CPU demands.

High-performance computing (HPC) applications have a short life expectancy; how-
ever, they place an extreme pressure on the CPU. Thus, the statistically chosen models for
task sizes speak to the divergent settings of simultaneously scheduling web applications
and HPC. The normal distribution indicates a circumstance where web applications and
HPC are balanced. Left-half circulation delineates a situation wherein web applications are
less likely than HPC applications to be scheduled, and right-half appropriation indicates
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the opposite. A uniform distribution indicates a situation where a single application type
is scheduled [9].

The proposed strategy can also be utilised in order to find solutions that are near-
optimal to well-outlined problems along discrete space, such as scheduling, production
planning, design problems, optimisation of network synthesis, and inventory control. These
problems come up in in many domains, including engineering, management, telecommu-
nications, etc.

The major contributions of this paper are as follows:

i. Proposal of a strategy for enhancing the diversification of the SOS algorithm for
optimal task schedules.

ii. Assessment of the proposed strategy by measuring the performance metrics of the
makespan and response time between VMs.

iii. Statistical validation of the results obtained with eDSOS against those of DSOS by
utilising paired t-tests and a one-tailed distribution.

The rest of this paper is organised as follows: the related work, which includes
metaheuristic algorithms used for problems of scheduling tasks in the cloud, the standard
SOS, and the processes of discrete symbiotic organism search, is presented in Section 1.
In Section 2 the description and formulation of the problem are presented. In Section 3,
the proposed system’s design and its depiction are exhibited. The simulation settings are
described in Section 4. Section 5 presents the results and discussion, and Section 6 presents
the conclusion.

2. Related Work

This section focuses on the existing literature related to metaheuristic strategies that is
applied for task scheduling in a cloud computing environment; these include the symbiotic
organism search (SOS), cuckoo search (CS), cat search optimisation (CSO), ant colony
optimisation (ACO), particle swarm optimisation (PSO), and genetic algorithms (GAs).

2.1. Metaheuristic Scheduling Strategies in the Cloud

Several works [7–9,14,15,17,22,29,31,32,38–45] on metaheuristic scheduling strategies
have been carried out to solve problems of task assignment with regard to minimising the
makespan, degree of imbalance, convergence speed, and response time. Furthermore, the
strategies have been shown to be good for finding an optimal task–resource assignment
scheme that tries to minimise the computational cost, maintains a good quality of service,
and increases the utilisation of computing resources. SOS, CS, CSO, PSO, ACO, GA, and
their different versions are among the commonly utilised nature-inspired strategies and
are based on populations found in the cloud.

In most situations, SOS outperforms PSO, GAs, and ACO [9,24,37] and has a faster ex-
ecution time. SOS is simple to implement as a parameter-free strategy in comparison with
other population-based strategies. Furthermore, problems to do with workflow scheduling
have been researched to a great extent by using PSO [29,30,46,47], with the sole aim of
minimising the cost of communication and the makespan. Likewise, independent task
scheduling has additionally been carried out in the cloud by utilising SOS [7,9,14,41] and
PSO [43,44,48], and both were shown to reduce the makespan. Enhanced and hybrid vari-
ants of PSO [5,26,29,47,48] were also proposed for task scheduling in the cloud environment
and were found to be a solution that was superior to GAs and ACO.

Consequently, the SOS algorithm has recently gained popularity in terms of its robust-
ness and the efficiency of the metaheuristic algorithm. As such, the SOS algorithm has
attracted researchers’ attention for its application in solving optimisation problems that
arise from numerous disciplines, such as science and engineering. Moreover, Table 1 shows
a summary of the applications of the SOS algorithm. Many attempts have been successful
in adapting and modifying SOS algorithms to address multi-objective and constrained
optimisation, which are important aspects in facilitating the design and optimisation of
several problems in engineering, as well as in computer science.
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While considerable success has recently been found in these domains, the optimisation
of problems in these domains remains an active research issue. As such, SOS algorithms
have been applied in order to solve optimisation problems in different areas, such as ma-
chine learning, construction project scheduling, power optimisation, design optimisation
of engineering structures, energy optimisation, transportation, wireless communication,
and economic dispatching.

Based on this trend of the use of the SOS for optimisation problems, it has been proven
to provide all-purpose principles that can be easily adapted in order to solve an extensive
range of optimisation problems in many areas, which prompted the authors of this study
to utilise SOS to solve a large-scale task scheduling problem in a cloud computing setting.
Consequently, this paper presents SOS-based variant strategies for scheduling large-scale
tasks in an IaaS cloud computing setting.

Table 1. Applications of SOS algorithms in different fields.

Area Application Reference

Machine learning

This method maps the SOS algorithm from a continuous space to a discrete space using an adaptive
S-shaped transfer function, and it can be used to search for the optimal feature subset in a feature
selection space.

[49]

Input parameter optimisation in data classification. [50]

Construction project scheduling

This work developed a new ensemble model called the evolutionary neural machine inference model
(ENMIM) in order to estimate energy consumption in residential buildings based on actual data. [51]

An optimisation tool is necessary for a construction management system in order to develop the
desired construction schedule and to save time and costs. [52]

Time, cost, and labour utilisation trade-off. [53]
Adjustment of the resource profile through a resource-levelling process. [54]
Optimising levelling of multiple resources [55]
Non-linear, non-convex, and implicit with respect to the design variables. [56]

Power optimisation

Power optimisation of three-dimensional turbo code using [57]
solutions for more complex, nonlinear, multi-modal optimisation problems, such as ORPD. [58]
Optimal power flow based on the valve-point effect and prohibited zones. [59]
Optimal power flow of power system with FACTS. [60]
Minimisation of network power loss while satisfying the power demand. [61]
Load frequency control. [62]
Short-term hydrothermal scheduling. [63]
Optimal coordination of directional over-current relays. [64]
Congestion management in a deregulated environment. [65]
Real power loss minimisation. [66]

Engineering structures

Design of a reconfigurable concentric circular array with phase-only controls differentiating
the beams. [67]

The primary principles, the basic concepts, and mathematical relations of the SOS algorithm are
presented, followed by the engineering applications of the SOS algorithm. [68]

Structural design optimisation. [69]
Optimum design of frame and grillage systems. [70]

Energy optimisation Minimising the energy of point charges on a sphere. [71]

Transportation
Capacitated vehicle routing. [72,73]
The excellence coefficients let ECSDSOS choose shorter edges (routes) for generating better
local paths. [74]

Wireless communications

Synthesis of antenna arrays. [75]
Design of linear antenna arrays with a low side-lobe level. [76]
Solved economic/emission dispatch. [77]
Large-scale economic dispatch with valve-point effects. [78]

Economic dispatch

Economic load dispatch. [79]
Dynamic economic dispatch with valve-point effects. [80]
Bid-based economic load dispatch [81]
Security-constrained economic dispatch. [82]

Material optimisation
The material distribution is described by control points; coordinates of these points are located along
the thickness of a plate using B-spline basis functions. In addition, DNN is used as an analysis tool to
supersede finite element analysis (FEA).

[83]
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2.2. Standard Symbiotic Organism Search algorithm

The symbiotic organism search (SOS) algorithm is a new population-based metaheuris-
tic algorithm that was proposed by [84]. The algorithm solves numerical optimisation
problems for a continuous real space. It imitates the symbiotic associations that exist
amongst organisms (i.e., the mutualism stage, commensalism stage, and parasitism stage)
in an ecosystem. The mutualism stage essentially implies the concurrent co-existence of
different organisms whereby both benefit from the association.

The commensalism stage is an interaction of two unique organisms in which one
gains from the association and the other is not hurt. A situation in which one organism
gains and the other is harmed by the relation is known as the parasitism stage. Here, each
organism, as a member of the ecosystem, is made up of a vector in the solution plane. Then,
each individual organism in the search space is allotted a value that hints at the degree of
its adaptation to the desired objective. The algorithm iteratively utilises a population of
the conceivable solutions so as to optimally converge to a position where the best global
solution lies. Furthermore, it applies the three stages of symbiotic associations to update
the positions of the solution vector in the search space.

According to [85], SOS is an optimisation algorithm that performs an iterative process,
as described by Definition 1. The process maintains the population of organisms that
demonstrate candidate solutions for the problem being addressed. The germane informa-
tion regarding the decision factors and a fitness value are capsulised into the organism,
and together comprise a list for its execution. Basically, the directions of the organisms are
amended by applying the three stages of symbiotic relationships. The basic pseudocode of
standard SOS is depicted in Algorithm 1.

Definition 1. We begin with the function f : D −→ < f ind X′ ∈ D : ∀X ∈ D f (X′) ≤ or ≥
f (X), where ≤ (≥) is a minimisation (maximisation), the objective function to be optimised is f ,
and D symbolises the search space, while the feasible solutions are components of D. A vector of
optimisation variables is represented by X; X = {x1, x2, x3, . . . , xn}. An enhanced solution is an
achievable solution X′ that enhances f .

Algorithm 1 Standard Symbiotic Organism Search Algorithm

Create and Initialise the Population of Organisms in the Ecosystem X =
{X1, X2, X3 . . . XN}
Set up stopping criteria
iteration_number ← 0
Xbest ← 0
Do
iteration_number ← iteration_number + 1
i← 0

Do
i← i + 1 j = 1 to N f (Xj) > f (Xbest)

Xbest ← Xj
Mutualism phase
Commensalism phase
Parasitism phase
While i <= N
While stopping condition is not true

2.3. Processes of the Discrete Symbiotic Organism Search

The standard SOS was intended and used for solving problems that are continuous.
Problems that are discrete in nature, such as the scheduling of tasks in a cloud computing
environment, are solved by utilising the discrete symbiotic organism search (DSOS), which
was proposed by [9]; here, the scheduling of the task optimisation problem was formulated
as a discrete problem. The continuous variant of the standard SOS was utilised to address



Algorithms 2021, 14, 200 6 of 24

optimisation problems for which the optimisation variables Xi, i = 1, 2, 3, . . . , n are contin-
uous, Xi ∈ < i = 1, 2, 3, . . . , n, but not optimisation problems for which the the variables
Xi, i = 1, 2, 3, . . . , n are a set of elements that are countable.

Moreover, the standard SOS works on optimisation variables that are completely
continuous, while DSOS is used for optimisation variables that are discrete. In DSOS, the
transverse and location of the organisms in the continuous space are mapped out into
formulated discrete functions, as displayed in Equations (3)–(8).

As proposed by [9], the DSOS algorithm comprises the following three phases.
Initialisation phase: In this phase, the initial population of the organisms is generated.

Each organism includes D components denoting candidate solutions and a fitness function
to decide the level of optimality of the solutions. Thus, each organism corresponds to a
decision for encoded task scheduling in a vector with dimensions of 1× n, as depicted in
Table 2, where the number of tasks is n. The range of natural numbers [1, m] represents
the vector’s elements, where the number of virtual machines (VMs) is m. Moreover, the
position of the kth organism in the solution space is Xk, and the VM for which task j is
allotted by the scheduler in the organism is Xk(j).

Table 2. An illustration of task scheduling.

T1 T2 T3 T4

1 1 3 2

Iterative phase: In this phase, the organisms’ positions are updated by imitating the
three stages of symbiotic relationships (mutualism, commensalism, and parasitism). In the
mutualism and commensalism stages, Xbest updates some portions of the variables, which
proceed to function as the memory of the procedure; Xbest is the best point visited up until
this point by an organism and its neighbors. Consequently, Equations (1) through (4) are
utilised to adjust the positions of the organisms chosen in the mutualism stage.

S1(p) = Xi + r1(Xbest − ((Xi + Xj)/2) f1) (1)

S2 = Xj + r2(Xbest − ((Xi + Xj)/2) f2) (2)

X∗i (q) = ds1(p)emod m + 1 (3)

X∗j (q) = ds2(p)emod m + 1 (4)

∀p ∈ {1, 2, 3, . . . , n} ∀q ∈ {1, 2, 3, . . . , m}
where X∗i and X∗j are the changed positions of the ith and jth members of the ecosystem;
i 6= j, and Xj is the organism that was selected randomly in the ith iteration for i 6= j.
f 1, f 2 ∈ {1, 2} are decided randomly, and they make up the benefit factor from the mutual
association; r1, r2 ∈ rand(0, 1) are random numbers that are uniformly generated in the
specified interval, and de indicates a ceiling function. In the commensalism stage, an
organism’s changed position X∗i is found by applying Equations (5) and (6).

S3(p) = r3(Xbest − Xj) (5)

X∗i (q) = ds3(p)emod m + 1 (6)

∀p ∈ {1, 2, 3, . . . , n} ∀q ∈ {1, 2, 3, . . . , m}, and j 6= i, where r3 is also a random number that
is uniformly generated between −1 and 1.

Furthermore, in the parasitism stage, a vector Xp, which is known as a parasite, is
produced by applying Equations (7) and (8).

S4(p) = r4Xi (7)

Xp(q) = ds4(p)emod m + 1 (8)
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∀p ∈ {1, 2, 3, . . . , n} ∀q ∈ {1, 2, 3, . . . , m} and j 6= i, where r4 is also a random number that
is uniformly generated between 0 and 1.

Termination phase: In this phase, all of the phases are repeated until a stopping
criterion is reached.

The pseudocode for the discrete symbiotic organism search is presented in Algorithm 2.

Algorithm 2 Discrete Symbiotic Organism Search Algorithm

1: Create and initialise the population of organisms in the ecosystem X =
{X1, X2, X3 . . . XN}

2: Set up stopping criteria
3: iteration_number ← 0
4: Xbest ← 0
5: Do
6: iteration_number ← iteration_number + 1
7: i← 0
8: Do
9: i← i + 1 j = 1 to N f (Xj) > f (Xbest) // f (X) is the fitness function

10: Xbest ← Xj
11: Mutualism phase
12: Randomly select Xj with i 6= j
13: Update X∗i and X∗j using Equations (3) and (4) f (X∗i ) > f (Xi)

14: Xi ← X∗i f (X∗j ) > f (Xj)

15: Xj ← X∗j
16: Commensalism phase
17: Randomly select Xj with i 6= j
18: r3 ← rand(−1, 1)
19: Update X∗i according to Equation (6) f (X∗i ) > f (Xi)
20: Xi ← X∗i
21: Parasitism phase
22: Randomly select Xj with i 6= j
23: Create a parasite vector Xp from Xi using a random number according Equation (8)

f (Xp) > f (Xj)
24: Xj ← Xp

25: While i <= N
26: While stopping condition is not true

3. Problem Description

Whenever a cloud broker (CB) receives tasks from a user that must be scheduled,
a cloud information service (CIS) issues a query to identify the services required by the
user in order to execute the tasks; then, the tasks are scheduled for the services that were
discovered. For example, tasks {T1, T2, T3, . . . , Tn} might be submitted to the CB in an
established interval of time. The fact that processing elements (VMs) are heterogeneous
implies that there are uneven processing speeds and memory, which suggests that a
task executed on different VMs results in variable costs of execution. Assume that the
available VMs are {V1, V2, V3, . . . , Vm} when the CB receives the tasks. As such, the tasks
are scheduled on the available VMs, and the task execution is performed on a “first come,
first serve” basis.

Our main goal is to accomplish greater utilisation of the VMs with a minimum
makespan through the scheduling of the tasks on the VMs. Accordingly, the expected time
to compute (ETC) of the tasks to be scheduled on individual VMs is used in the proposed
strategy in order to settle on a scheduling choice. Moreover, the values of the ETC are
obtained by using the ratio of the value of million instructions per second (MIPS) in a VM
to the length of the task [86,87], as exemplified in Table 3.
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The values of the ETC are normally presented in matrix form [86,87], where the
number of tasks to be scheduled is presented row-wise in the matrix, while the number of
available VMs is presented column-wise in the matrix. Hence, each row of the ETC matrix
indicates the execution times of a given task for each VM, while each column indicates the
execution times of each task on a given VM.

Table 3. Example of an ETC matrix.

T1 T2 T3 T4

V1 T1/V1 T2/V1 T3/V1 T4/V1
V2 T1/V2 T2/V2 T3/V2 T4/V2
V3 T1/V3 T2/V3 T3/V3 T4/V3

Furthermore, the aim of this paper is to minimise the makespan and response time
by obtaining the best combination of VMs with which tasks are to be executed. Let
Cij(i ∈ {1, 2, 3, . . . , m}, j ∈ {1, 2, 3, . . . , n}) be the time needed to execute the jth task on
the ith VM, where m and n are the numbers of VMs and tasks, respectively. Therefore,
the fitness value of each organism is decided by applying Equation (9), which decides the
extent of adaptation of the organism to the ecosystem.

f itness = min{Cij, ∀ tasksj mapped to VM i} i ∈ 1, 2, 3, . . . , m (9)

4. Enhanced Discrete Symbiotic Organism Search Strategy

The DSOS was proposed and used for solving task scheduling problems in the cloud,
where task scheduling was formulated as a discrete optimisation problem. The enhanced
discrete symbiotic organisms search (eDSOS) strategy proposed here is also used to solve
the task scheduling problem in a cloud computing setting, as well as for the formation of
task scheduling for discrete optimisation.

However, in the mutualism stage of eDSOS, Xbest, which is the organism with the
best fitting value, is substituted with Xk, as presented in Equations (10) through (13), in
which Xbest and Xk are the global and local optima, respectively. This is because this
strategy extends the search space and increases the diversity of the ecosystem [83]. In the
commensalism stage, modifications were made to improve the local exploitation ability.
Here, the rand(−1, 1) coefficient is replaced with rand(0.4, 0.9), as shown in Equation (12),
as well as Algorithm 3.

It can be seen that the former coefficient considerably affects the convergence speed.
With the wide range of [−1,1], the search space extends further, and this leads to a slow
convergence speed. Therefore, a sufficient range of [0.4,0.9], as expressed in Equation (15),
is proposed in order to reduce the computation time, but still ensure the accuracy [83]. The
pseudocode and a flowchart of the proposed strategy are depicted in Algorithm 3 and
Figure 1, respectively.

S1(p) = Xi + r1(Xk − ((Xi + Xj)/2) f1) (10)

S2(p) = Xj + r2(Xk − ((Xi + Xj)/2) f2) (11)

X∗i (q) = ds1(p)emod m + 1 (12)

X∗j (q) = ds2(p)emod m + 1 (13)

∀p ∈ {1, 2, 3, . . . , n} ∀q ∈ {1, 2, 3, . . . , m}

r3 = rand(−1, 1) (14)

r3 = rand(0.4, 0.9) (15)
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The proposed system model of the enhanced discrete symbiotic organism search
(eDSOS) strategy is shown in Figure 2; the model performs a scheduling process that
minimises the makespan and the response time. The model consists of eight (8) steps
such that each step consists of sub-steps that combine the processes of planning and
performing. Firstly, the customer request step provides an interactive mechanism for
users to submit their requests (tasks) with some requirements, such as data/resource
requirements. Furthermore, the task manager/estimator manages the tasks, and later
pushes the tasks to the scheduler.

The local resource manager constitutes the main aspect of the scheduling strategy.
The local resource manager monitors and manages local virtual resources and obtains
information regarding processing elements, memory, and bandwidth; this information is
further submitted to the global manager, which subsequently forwards it to the scheduler
for the task scheduling decision.

The scheduler component handles the preprocessing workload, task assignment,
schedule refinement, queue of tasks, and eDSOS task dispatch. Tasks are preprocessed
and assigned to the queue based on their expected time to compute, and the eDSOS task
dispatch forms the scheduling algorithm, which moves tasks from the queue into the
VMs. It first collects resource information (e.g., virtual machine capacity, computation
of the execution cost of a virtual machine) from the global resource monitor, which also
receives information about the availability of resources from the local resource manager.
The eDSOS then assesses the capacity of available resources in order to schedule tasks with
the minimum expected time to compute. The main contribution lies in that the eDSOS
strategy improves the performance of the entire cloud system through the minimisation of
the makespan and response time.

Algorithm 3 Enhanced Discrete Symbiotic Organism Search Algorithm

1: Create and initialise the population of organisms in the ecosystem X =
{X1, X2, X3 . . . XN}

2: Set up stopping criteria
3: iteration_number ← 0
4: Xbest ← 0
5: Do
6: iteration_number ← iteration_number + 1
7: i← 0
8: Do
9: i← i + 1 j = 1 to N f (Xj) > f (Xbest) // f (X) is the fitness function

10: Xbest ← Xj
11: Mutualism phase
12: Randomly select Xj with i 6= j
13: Update X∗i and X∗j using Equations (12) and (13) f (X∗i ) > f (Xi)

14: Xi ← X∗i f (X∗j ) > f (Xj)

15: Xj ← X∗j
16: Commensalism phase
17: Randomly select Xj with i 6= j
18: r3 ← using Equation (15)
19: Update X∗i according to Equation (6) f (X∗i ) > f (Xi)
20: Xi ← X∗i
21: Parasitism phase
22: Randomly select Xj with i 6= j
23: Create a parasite vector Xp from Xi using a random number according to Equation (8)

f (Xp) > f (Xj)
24: Xj ← Xp

25: While i <= N
26: While stopping condition is not true
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Figure 1. Flowchart of the eDSOS strategy.
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Figure 2. The proposed model of the eDSOS task scheduling strategy.

5. Simulation Settings

In order to validate our proposed algorithm, we tested it alongside the benchmark
algorithm with the CloudSim simulator [88], a tool kit for mimicking distributed processing
circumstances. We created two datacenters; each contained two hosts, and each individual
host had storage (1 TB), RAM (20 GB), and bandwidth (10 GB/s). A time-shared scheduling
policy for the VMs was used. The two hosts used dual-core and quad-core machines;
both had an X86 architecture, a Xen virtual machine monitor (VMM), Linux OS, and
1,000,000 MIPS as the cumulative processing power. Furthermore, the number of VMs
created was 20; all had 10 GB as the image size, a memory of 0.5 GB, a bandwidth of 1 GB/s,
and a single processing element.

The VMs’ processing power was in the range of 1000–10,000 MIPS. In addition, all
of the VMs used a time-shared cloudlet scheduler policy and a Xen VMM. The task sizes
were considered as cloudlet lengths and were generated from different distributions, which
were normal, left-half, right-half, and uniform distributions. The normal distribution
introduces more medium-sized tasks and fewer large- and small-sized tasks. The left-
half distribution portrays a few small-sized tasks and more large-sized tasks, while the
right-half distribution is the inverse.

The uniform distribution refers to an equivalent number of small-, medium-, and
large-sized tasks. There were 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 instances
created for each distribution. The larger numbers of instances empower us to increase
our understanding of the scalability of the execution of these strategies for large problems.
Table 4 presents the parameter settings for DSOS and eDSOS.

Table 4. Parameter settings.

Algorithm Parameter Value

DSOS and eDSOS Number of organisms 100
Number of iterations 1000
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6. Results and Discussion

The average makespans for executing instances of tasks 10 times by utilising DSOS and
eDSOS can be seen in Figures 3–6. All of the figures show a minimisation of the makespan
by using eDSOS in most situations, especially in some task instances, such as with 100
or more. In addition, the percentages by which eDSOS improved compared to DSOS for
different dataset instances are summarized in Tables 5–12, showing that the improvement
of the performance of eDSOS compared to DSOS increases as the search space expands.
Figures 7–10 indicate the response times of the VMs with DSOS and eDSOS; the figures
demonstrate that eDSOS’s response time is minimal for large-scale problem instances.

Moreover, in terms of convergence, for all of the dataset distributions, when applying
data instances of 100–1000, our strategy demonstrates better-quality solution improvement
in terms of the makespans obtained with both eDSOS and DSOS. It was demonstrated that
the strategies exhibited an improvement in the quality of the solutions in the early part of
the search. However, eDSOS was shown to have the ability to improve the quality of its
solutions at certain points in the search process. The solution quality of eDSOS was found
to be better than that of DSOS, particularly with larger problem sizes.

Tables 5–12 present the results of a two-sample t-test that was carried out to evaluate
whether there were significant differences between the makespans and response times
obtained with the eDSOS and DSOS when using similar stopping criteria for all task
instances. The acceptable p-value must be less than alpha α < 0.5; as shown in the tables,
almost all of the datasets had p-values that were less than this alpha value, which indicates
a significant improvement in the proposed eDSOS strategy compared to the DSOS strategy.
Therefore, it can be deduced that eDSOS outperforms DSOS as the search space expands.

Figure 3. Makespan for dataset with the normal distribution.

The performance improvement with eDSOS is thought to be related to the diversifi-
cation of the mutualism stage, as well as the modification of the commensalism stage to
the reduced range of r3 for a better convergence rate. The diversification of the mutualism
stage provides the search procedure the exploitative ability to traverse through different
regions to find the best solution. In the parasitism stage, through the use of the parasite
vector, premature convergence is avoided; thereby, the strategy does away with solutions
that are not active and uses a more active solution that forces the search processes away
from being entrapped in local optima.



Algorithms 2021, 14, 200 13 of 24

Figure 4. Makespan for the dataset with the left-half distribution.

Figure 5. Makespan for dataset with the right-half distribution.

In the parasitism stage, the search procedure is empowered with further exploratory
ability because it does not focus on only the best solution regions, which would likely cause
the search to be entrapped in a specific region. The quality of this strategy can even be
improved in later phases of the search process, which implies that eDSOS has a higher
likelihood than DSOS of obtaining a solution that is near-optimal.

The convergence curves of DSOS and the proposed eDSOS algorithm with 100, 500,
and 1000 instances of normally distributed tasks are shown in Figures 11–13. It can be
observed from the convergence curves that the proposed eDSOS strategy has a better
convergence accuracy than that of DSOS. The improved ecosystem diversity allows the
eDSOS to escape entrapment in local optima, which improves the exploratory ability of the
eDSOS procedure. The local exploitation strategy introduced in the commensalism phase
allows each organism to perform a better local search, which also contributes to the better
convergence accuracy.
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Figure 6. Makespan for the dataset with the uniform distribution.

Figure 7. Response time for the dataset with the normal distribution.
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Figure 8. Response time for the dataset with the left-half distribution.

Figure 9. Response time for dataset with the right-half distribution.
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Figure 10. Response time for the dataset with the uniform distribution.
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Figure 11. The convergence curves with 100 instances of tasks.
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Figure 12. The convergence curves with 500 instances of tasks.
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Figure 13. The convergence curves with 1000 instances of tasks.

Table 5. Comparison of the makespans of DSOS and eDSOS for the normally distributed dataset.

Task Size DSOS eDSOS Improvement
(%)

t-Test
Value

p-Value

100 122.48 102.02 20.05 5.4040 1.28 × 10−6

200 230.25 202.55 13.68 4.4966 3.36 × 10−5

300 349.04 298.90 16.77 5.1478 3.28 × 10−6

400 492.34 419.30 17.42 6.837 5.50 × 10−9

500 614.39 528.49 16.25 6.6650 1.07 × 10−8

600 762.94 665.33 14.67 9.2745 4.69 × 10−13

700 884.87 771.69 14.67 7.5949 2.93 × 10−10

800 1022.90 882.76 15.88 9.3003 4.25 × 10−13

900 1167.82 1014.86 15.07 9.0975 9.16 × 10−13

1000 1308.14 1139.44 14.81 8.0474 5.10 × 10−11

Table 6. Comparison of the makespans of DSOS and eDSOS for the dataset with the left-half distribution.

Task Size DSOS eDSOS Improvement
(%)

t-Test
Value

p-Value

100 101.34 86.31 17.41 4.9518 6.69 × 10−6

200 215.08 185.27 16.09 5.0252 5.13 × 10−6

300 304.43 260.67 16.79 4.5288 3.01 × 10−5

400 429.11 363.38 18.09 6.6084 1.33 × 10−8

500 571.23 504.68 13.19 5.8260 2.63 × 10−7

600 677.50 588.24 15.17 5.7192 3.94 × 10−7

700 821.29 693.86 18.37 8.6257 5.53 × 10−12

800 949.67 814.97 16.53 6.3993 2.97 × 10−8

900 1036.75 894.78 15.87 7.2671 1.04 × 10−9

1000 1201.66 1047.84 14.68 10.099 2.15 × 10−14
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Table 7. Comparison of the makespans of DSOS and eDSOS for the dataset with the right-half
distribution.

Task Size DSOS eDSOS Improvement
(%)

t-Test
Value

p-Value

100 85.92 77.00 11.58 2.4293 0.01825
200 189.86 150.41 26.23 9.3064 4.16 × 10−13

300 281.57 236.94 18.84 −1.0000 0.32150
400 370.46 318.64 16.26 5.1559 3.19 × 10−6

500 484.99 402.29 20.56 8.3335 1.70 × 10−11

600 597.84 484.65 23.35 9.1862 6.55 × 10−13

700 685.77 564.03 21.58 8.1428 3.53 × 10−11

800 804.90 660.39 21.88 10.5800 3.69 × 10−15

900 887.43 738.52 20.16 11.1340 5.00 × 10−16

1000 1006.27 863.99 16.47 18.5930 2.20 × 10−16

Table 8. Comparison of the makespans of DSOS and eDSOS for the uniformly distributed dataset.

Task Size DSOS eDSOS Improvement
(%)

t-Test
Value

p-Value

100 107.40 97.80 9.82 2.7944 0.00704
200 202.37 187.10 8.16 2.2366 0.02917
300 317.81 282.52 12.49 3.7330 0.00043
400 445.96 381.36 16.94 6.0255 1.2 × 10−7

500 573.27 512.68 11.82 4.5433 2.9 × 10−5

600 721.87 607.13 18.90 8.2421 2.4 × 10−11

700 833.74 713.53 16.85 6.9794 3.2 × 10−9

800 983.97 839.26 17.24 8.2634 2.2 × 10−11

900 1107.71 953.91 16.12 10.519 4.6 × 10−15

1000 1229.35 1049.98 17.08 11.448 2.2 × 10−16

Table 9. Comparison of the response times of DSOS and eDSOS for the normally distributed dataset.

Task Size DSOS eDSOS Improvement
(%)

t-Test
Value

p-Value

100 16.04 11.23 42.83 4.1806 9.9 × 10−5

200 35.24 24.29 45.08 5.1731 3.0 × 10−6

300 44.14 38.52 14.59 1.5192 0.1341
400 59.51 54.13 9.94 0.4537 0.6517
500 75.43 73.71 2.33 2.1002 0.0401
600 88.28 79.75 10.70 11.448 2.2 × 10−16

700 111.15 96.23 15.50 3.4483 0.00106
800 125.91 113.61 10.83 1.4226 0.1602
900 147.24 126.87 16.06 2.1341 0.0371
1000 159.07 141.32 12.56 −0.4574 0.6491
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Table 10. Comparison of the response times of DSOS and eDSOS for the dataset with the left-half
distribution.

Task Size DSOS eDSOS Improvement
(%)

t-Test
Value

p-Value

100 15.39 9.48 62.34 4.3641 5.32 × 10−5

200 28.54 21.15 34.94 4.2642 7.49 × 10−5

300 40.40 35.61 13.45 1.9637 0.0544
400 54.68 48.62 12.46 2.0785 0.0421
500 76.88 66.47 15.66 3.2315 0.0020
600 90.54 76.43 18.46 4.0290 0.0002
700 99.93 91.28 9.48 1.4371 0.1561
800 123.01 108.87 12.99 0.9288 0.3568
900 129.10 121.30 6.43 −0.5184 0.6062
1000 145.81 132.59 9.97 0.6189 0.5384

Table 11. Comparison of the response times of DSOS and eDSOS for the dataset with the right-half
distribution.

Task Size DSOS eDSOS Improvement
(%)

t-Test
Value

p-Value

100 9.83 6.47 51.93 3.3613 0.0014
200 19.71 14.68 34.26 3.8736 0.0003
300 29.92 25.27 18.40 3.6055 0.0007
400 37.21 36.87 0.92 0.1791 0.8585
500 49.30 44.14 11.69 2.4222 0.0186
600 58.33 56.93 2.46 0.6615 0.5109
700 70.99 65.15 8.96 2.2098 0.0311
800 82.20 75.22 9.28 −1.0545 0.2960
900 95.87 84.25 13.79 0.5383 0.5925
1000 99.02 90.76 9.10 1.3714 0.1755

Table 12. Comparison of the response times of DSOS and eDSOS for the uniformly distributed dataset.

Task Size DSOS eDSOS Improvement
(%)

t-Test
Value

p-Value

100 12.22 9.14 33.70 3.355 0.0014
200 23.16 19.90 16.38 2.071 0.0428
300 40.59 31.22 30.01 4.189 9.7 × 10−5

400 49.02 45.35 8.09 2.079 0.0421
500 63.39 56.59 12.02 2.818 0.0066
600 74.11 69.72 6.30 1.594 0.1165
700 87.29 80.95 7.83 2.135 0.0370
800 99.64 91.51 8.88 0.732 0.4670
900 117.27 103.70 13.09 0.821 0.4150
1000 128.05 115.48 10.89 0.683 0.4975

7. Conclusions

In this paper, an enhanced discrete variant of the metaheuristic symbiotic organism
search algorithm was designed and implemented. The discrete variant of this strategy was
inspired by the symbiotic interactions displayed by organisms in an ecosystem. Hence, the
strategy imitates the different types of symbiotic interactions (mutualism, commensalism,
and parasitism) in order to improve the quality of a particular objective function.

The proposed strategy was simulated with the CloudSim toolkit to schedule indepen-
dent tasks. The makespans and response times of VMs were measured, and eDSOS was
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shown to be better than the benchmark, DSOS. The improvement of the performance of
eDSOS compared to DSOS increased in most instances when the search space expanded.

The best improvements in terms of the minimisation of the makespan with eDSOS
were 13.68% to 20.05%, 14.68% to 18.37%, 11.58% to 26.23%, and 8.16% to 18.90% less
than those with DSOS for the normal, left-half, right-half, and uniform distributions,
respectively. Similarly, the best improvements in terms of the minimisation of the response
time with eDSOS were 02.23% to 45.08%, 06.43% to 62.34%, 0.92% to 51.93% and 06.30%
to 33.70% less than those with DSOS for the normal, left-half, right-half, and uniform
distributions, respectively. Thus, the results of the two-sample t-test showed that eDSOS
clearly outperformed DSOS through almost the entire process, and did so more glaringly
in the later state of the search process.

The diversification of the mutualism stage, as well as its mutual benefit factor mech-
anism, allowed eDSOS to search for better solutions in new regions of the search space.
In addition, reducing the range of random numbers for r3 provides the strategy with an
optimum solution in terms of the convergence rate at the commensalism stage. In the
parasitism stage, the parasite vector method aids in preventing premature convergence
through the addition of perturbation in the ecosystem. The unique features of the basic SOS
that are considered its advantage are its benefit factor, random number generation, and
parasite vector mechanism. In the global and local search, a crucial role is played by these
mechanisms. In addition to its global and local search ability, the SOS is parameterless, and
it is easy to implement features, which is also regarded as an advantage.

The utilisation of eDSOS for other discrete optimisation problems and the use of
more performance metrics can likely be tasks for future work. Additionally, hybrid and
multi-objective versions of SOS can be used in cloud environments while considering other
factors when scheduling tasks. The application of SOS to the scheduling of workflow and
the use container orchestration can also be researched in the future.
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