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Abstract: This paper investigates the containment control problem of discrete-time first-order multi-
agent system composed of multiple leaders and followers, and we propose a proportional-integral
(PI) coordination control protocol. Assume that each follower has a directed path to one leader, and
we consider several cases according to different topologies composed of the followers. Under the
general directed topology that has a spanning tree, the frequency-domain analysis method is used to
obtain the sufficient convergence condition for the followers achieving the containment-rendezvous
that all the followers reach an agreement value in the convex hull formed by the leaders. Specially,
a less conservative sufficient condition is obtained for the followers under symmetric and connected
topology. Furthermore, it is proved that our proposed protocol drives the followers with unconnected
topology to converge to the convex hull of the leaders. Numerical examples show the correctness of
the theoretical results.

Keywords: containment control problem; first-order multi-agent systems; PI coordination control;
containment-rendezvous

1. Introduction

Distributed coordination control of multi-agent systems has been an active research
area for its widespread potential engineering applications including cooperative surveil-
lance, sensor networks, spacecraft formation flying, etc. The most fundamental problem
studied in coordination control is consensus problem [1–11] which means that each agent
reaches an agreement based on the information from its relative agents. According to the
different number of leaders in the multi-agent system, the consensus problem is generally
divided into leaderless case [12,13], single-leader–follower case [14–16], and multiple-
leader–follower case.

The containment control problem [17–24] is considered as a special multiple-leader–
follower consensus problem for multi-agent system with multiple leaders and followers,
and it requires all followers to converge into the convex hull spanned by leaders. Many
valuable results on the containment control problem of first-order multi-agent systems,
which are investigated in this paper, have been obtained in recent decades. Basic results
for realizing containment of continuous-time first-order multi-agent systems with sta-
tionary leaders have been given by Liu in [25], and the convergence conditions under
fixed and switching topologies are dependent on the topology structure. Wang and their
colleagues [26] investigated the containment problem of first-order multi-agent system
with communication noises, and designed a time-varying gain to reduce noises. A PD-type
control protocol was introduced and a parameter condition was given to guarantee the
containment achievement under input delays in Rong’s work [27]. Mu and partners[28] pro-
vided necessary and sufficient criteria for containment convergence if the communication

Algorithms 2021, 14, 209. https://doi.org/10.3390/a14070209 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-9032-2991
https://doi.org/10.3390/a14070209
https://doi.org/10.3390/a14070209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14070209
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14070209?type=check_update&version=1


Algorithms 2021, 14, 209 2 of 14

data rates are limited. Miao and colleagues [29] applied the event-triggered scheme into
containment control algorithms, and the convergence problem with single time delay and
multiple time delays were discussed, respectively. Considering the discrete-time first-order
multi-agent systems. The authors in [30] adopted the asynchronous containment control
protocol and got sufficient conditions for reaching containment. Additionally, containment
problem of multi-agent systems with second-order dynamics and general linear dynamics
has also attracted extensive attention [31–34].

According to aforementioned works, we note that general containment control pro-
tocols make each follower finally converge to different point in the convex hull spanned
by leaders. General containment problem only focuses on the containment and ignores
the consensus, which is called rendezvous in this paper, of the followers. If we take both
containment and consensus into consideration, a different control protocol is required,
and we define this problem as a containment-rendezvous problem in this paper. Actually,
the average-tracking problem of reference signals is a typical containment-rendezvous
problem, if we regard the reference signals as leaders. Shan and Liu [35] considered the
average-tracking problem of first-order multi-agent systems with unmatched reference
signals, and used the frequency-domain analysis method, which will be adopted in this
paper, to get the convergence condition. On the basis of average-consensus algorithm,
Chung [36] designed a containment-rendezvous algorithm that made all followers track
one point in the convex hull of first-order agents, but the results depended on the balance
property of communication topology.

Inspired by above works, this paper focuses on the containment-rendezvous problem
of discrete-time first-order multi-agent systems under general communication topology.
On the basis of the average-consensus algorithm, a proportional-integral (PI) coordination
control protocol is proposed for reaching containment-rendezvous. We first analyze the
protocol for the followers under general connected topology, and obtain a sufficient conver-
gence condition. Besides, we consider the followers with symmetric and connected topol-
ogy and get a less conservative convergence condition which has been simply discussed
in our initial work [37]. Furthermore, we investigate the followers under unconnected
topology that is regarded as a union of several connected parts, and obtain the convergence
condition according to that of general connected topology.

This paper is organized as follows. We give some basic concepts about graph theory,
the multi-agent systems, and the coordination control protocol in Section 2. The conver-
gence of the protocol under general connected topology, symmetric and connected topology
and unconnected topology of the followers is proved in Section 3. In Sections 4 and 5, the
numerical simulations and the conclusion are presented, respectively.

2. Problem Formulation
2.1. Graph Theory

Consider a multi-agent system with n agents is denoted by a graph G(V, E), where
V = {1, 2, . . . , n} and E ⊆ V×V stand for the vertex set and edge set, respectively. An edge
(i, j) ∈ E represents that agent j is able to access information of agent i and means that
vertex i is a neighbor of vertex j. If agent j has no neighbor, it is called a leader, otherwise,
it is a follower. The index set is denoted as Nj = {i ∈ V : (i, j) ∈ E, i 6= j}. A directed path
from i to j is a sequence of edges in a graph of the form (i, h0), (h1, h2), . . . , (hk, j), where
hk ∈ V. The adjacency matrix is a nonnegative matrix A = [aij] ∈ Rn×n defined as aji > 0
if (i, j) ∈ E, and aji = 0 otherwise. Furthermore, self edges are not allowed in this paper,
i.e., aii = 0. The Laplacian matrix is defined as L = [lij] ∈ Rn×n, where lii = ∑n

j=1,j 6=i aij
and lij = −aij, i 6= j.

A directed graph is called a directed tree if each node in graph has exactly one parent
except for one node which is called the root, and the root has directed paths to each other
node. A directed spanning tree of a directed graph is a direct tree that contains all nodes of
the directed graph. A directed graph has a spanning tree if there exists a directed spanning
tree as a subset of the directed graph.
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2.2. Agents’ Dynamics and Coordination Protocol

Investigate a discrete-time multi-agent system consisting of m leaders and n − m
followers labelled by 1, . . . , m and m + 1, . . . , n, respectively. The dynamic model of agent i
is given by

xi(k + 1) = xi(k), i = 1, . . . , m,

xi(k + 1) = xi(k) + ui(k), i = m + 1, . . . , n,
(1)

where xi(k) ∈ Rp and ui(k) ∈ Rp are the state and control input of agent i, respectively.
According to the PI control strategy, we use the following PI coordination control

algorithm for the first-order agents,

ui(k) = γ1

n

∑
j=1

aij(xj(k)− xi(k)) + γ2ri(k),

ri(k + 1) = ri(k) +
n

∑
j=m+1

aij(xj(k)− xi(k)),

i = m + 1, . . . , n,

(2)

where aij is the (i, j) entry of the adjacency matrix A, ri(k) represents the integral term, γ1
and γ2 are positive gain parameters to be decided for the proportional term and integral
term, respectively.

The states of leaders (1) remain static since the inputs of leaders are always zero, so
we only investigate the followers’ dynamics here. With the protocol (2), the dynamics of
follower i are rewritten as

xi(k + 1) = xi(k) + γ1

n

∑
j=1

aij(xj(k)− xi(k)) + γ2ri(k),

ri(k + 1) = ri(k) +
n

∑
j=m+1

aij(xj(k)− xi(k)),

i = m + 1, . . . , n.

(3)

In order to analyze the convergence performance of system (3), we introduce two
topologies, one of which is named as leader–follower topology composed of the leaders
and followers, and the other one is named as follower topology composed of the followers.
The Laplacian matrix of leader–follower topology is L given by

L =

[
0m×m 0m×(n−m)

L1 L2

]
,

where L1 represents the topology between leaders and followers, and L2 represents the
topology among followers. Meanwhile, the Laplacian matrix corresponding to the follower
topology is LF formulated as

LF = L2 − D,

where the diagonal matrix D is defined as

D = diag{
m

∑
j=1

am+1,j, . . . ,
m

∑
j=1

an,j}.

Generally, we need the basic assumption on the leader–follower topology of system (3)
as follows.



Algorithms 2021, 14, 209 4 of 14

Assumption 1. For each of the followers in the leader–follower topology, there is at least one leader
that has a directed path to the follower.

On the basis of Assumption 1, we make further assumptions on the follower topology
as follows.

Assumption 2. The follower topology has a directed spanning tree.

Assumption 3. The edges of the follower topology are bidirectional, i.e., Laplacian matrix LF is
symmetric, and it has a directed spanning tree.

Then we have the following lemma.

Lemma 1 ([38]). The Laplacian matrix LF of the follower topology has a simple eigenvalue 0 with
the corresponding eigenvector [1, 1, . . . , 1]T and all the other eigenvalues have positive real parts if
and only if the topology satisfies Assumption 2.

3. Main Results

System (3) is reformulated in a vector form as

XF(k + 1) =((In−m − γ1L2)⊗ Ip)XF(k)

− γ1(L1 ⊗ Ip)XL(k) + γ2R(k),

R(k + 1) =R(k)− (LF ⊗ Ip)XF(k),

(4)

where XL(k) = [xT
1 (k), . . . , xT

m(k)]T , XF(k) = [xT
m+1(k), . . . , xT

n (k)]T , R(k) = [rT
m+1(k), . . . ,

rT
n (k)]T .

Define R̂(k) = R(k)− γ1
γ2
(L1 ⊗ Ip)XL(k), and we get

XF(k + 1) = (In−m − γ1L2 ⊗ Ip)XF(k) + γ2R̂(k),

R̂(k + 1) = R̂(k)− (LF ⊗ Ip)XF(k).
(5)

Let Y(k) = [XT
F (k), R̂T(k)]T , and the system (5) is expressed in a compact form as

Y(k + 1) = (

[
In−m − γ1L1 γ2 In−m
−LF In−m

]
⊗ Ip)Y(k). (6)

To continue the convergence analysis of system (6), some useful lemmas are listed firstly.

Lemma 2 ([39]). Let P(z) be a polynomial of order two with complex coefficients in the form of
P(z) = z2 + (p1 + jq1)z + p2 + jq2, where j is the imaginary unit. The polynomial P(z) has all its
zeros in the open left half of the z-complex plane if and only if p1 > 0 and p2

1 p2 + p1q1q2 − q2
2 > 0.

Lemma 3 ([35]). If Q4 is invertible, det
(

Q1 Q2
Q3 Q4

)
= det(Q4)det(Q1 −Q2Q−1

4 Q3).

Lemma 4 ([40]). Let Q ∈ Cn×n, Q = Q∗ ≥ 0 and T = diag{ti, ti ∈ C}, then

λ(QT) ∈ ρ(Q)Co(0∪ {ti}),

where λ(·) denotes matrix eigenvalue, ρ(·) denotes matrix spectral radius and Co(·) denotes the
convex hull.

Next, we will obtain the convergence conditions of the system (6) according to different
follower topologies.
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3.1. General Directed Follower Topology

Theorem 1. Consider the multi-agent system (3) with leader–follower and follower topologies
satisfying Assumptions 1 and 2, respectively. With condition ∑n

i=m+1 qiri(0) = 0, all the followers
reach containment-rendezvous asymptotically that the followers converge to an agreement value in
the convex hull spanned by the leaders, if γ1 and γ2 satisfy

γ1 − γ2 > 0,

(γ1 − γ2)
2(γ2 − 2γ1 +

4Re(κi)

|κi|2
)− 4γ2 Im(κi)

2

|κi|4
> 0,

for i = m + 1, . . . , n, and
|λ(γ2DΘ−1(ejω))| < 1 (7)

hold with ω ∈ (0, π], where Θ(ejω) = (ejω − 1)2 I + γ1(ejω − 1)(LF + D) + γ2(LF + D) and
κi, i = m + 1, . . . , n represent the eigenvalues of the matrix LF + D.

Proof. According to the properties of the Kronecker product, we set the agents’ state
dimension as p = 1 in the following proof, and system (6) is written as

Ŷ(k + 1) =
[

In−m − γ1(LF + D) γ2 In−m
−LF In−m

]
Ŷ(k). (8)

Meanwhile, we divide the proof into two steps including convergence analysis and
the analysis of final rendezvous state.

Step 1: To analyze the convergence performance of system (8), we investigate the
characteristic equation of (8) as follows,

det(zI −
[

I − γ1(LF + D) γ2 I
−LF I

]
) = 0, (9)

and it can be reformulated from Lemma 3 as

det((z− 1)2 I + γ1(z− 1)(LF + D) + γ2LF) = 0. (10)

Evidently, it is obtained from Lemma 1 that the Equation (10) has a root at z = 1.
Before analyzing Equation (10), we first pay attention to the following equation

det((z− 1)2 I + γ1(z− 1)(LF + D) + γ2(LF + D)) = 0, . (11)

Obviously, (11) is equivalent to

z2 + (γ1κi − 2)z + (γ2 − γ1)κi + 1 = 0, i = m + 1, . . . , n. (12)

Instead of studying Equation (12) directly, we apply the bilinear transformation
s = z+1

z−1 to it and get

γ2κis2 + 2(γ1 − γ2)κis + (γ2 − 2γ1)κi + 4 = 0. (13)

Thus, Equation (12) has all roots within the unit circle, if and only if Equation (13) has
all roots in the open left half complex plane. Then, we reformulate Equation (13) as

s2 + (p1 + jq1)s + p2i + jq2i = 0, i = m + 1, . . . , n, (14)

where p1 = 2(γ1−γ2)
γ2

, q1 = 0, p2i =
γ2−2γ1

γ2
+ 4Re(κi)

γ2|κi |2
, q2i = − 4Im(κi)

γ2|κi |2
.
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Based on Lemma 2, the polynomial has all zeros in the open left half complex plane if
and only if the gains γ1 and γ2 satisfy

p1 > 0,

p2
1 p2i + p1q1q2i − q2

2i > 0, i = m + 1, . . . , n.
(15)

which is equivalent to

γ1 − γ2 > 0,

(γ1 − γ2)
2(γ2 − 2γ1 +

4Re(κi)

|κi|2
)− 4γ2 Im2(κi)

|κi|4
> 0,

i = m + 1 . . . , n.

(16)

Thus, the roots of Equation (11) all lie inside the unit circle if and only if there exist
gain parameters γ1 and γ2 satisfying condition (16).

Back to Equation (10), we reformulate it as

det(I − γ2DΘ−1(z)) = 0, (17)

where Θ(z) = (z − 1)2 I + γ1(z − 1)(LF + D) + γ2(LF + D). Under condition (16), it
is obvious that if condition |λ(γ2DΘ−1(ejω))| < 1 holds with ω ∈ (0, π], the roots of
Equation (17) lie inside the unit circle except for one root at z = 1. Thus, the characteristic
Equation (9) has all roots within or on the unit circle and we have finally proved the
asymptotic convergence of the system under Assumption 1, i.e.

lim
k→∞

Ŷ(k) = lim
k→∞

[XT
F (k), R̂T(k)]T = [XT

d , R̂T
d ]

T , (18)

where Xd ∈ Rn−m and R̂d ∈ Rn−m are constant vectors.
Step 2: We will prove that all followers reach an agreement value in convex hull

spanned by leaders.
According to Equation (4), we obtain with p = 1

lim
k→∞

LFXF(k) = 0. (19)

Under Assumption 1,we get from Lemma 1 and Equation (19)

lim
k→∞

xi(k) = xd, i = m + 1, . . . , n, (20)

where xd ∈ R is a constant. From Equation (20), it is clear that followers converge to the
same value. Taking the z transformation of Equation (4) with p = 1, we get

zXF(z)− zXF(0) =(I − γ1L2)XF(z) + γ2R(z)

− z
z− 1

γ1L1XL.

zR(z)− zR(0) =R(z)− LFXF(z)

(21)

Re-express Equation (21) as

XF(z) =[(z− 1)I + γ1L2 + γ2
LF

z− 1
]−1

[zXF(0) +
z

z− 1
γ2R(0)− z

z− 1
γ1L1XL]

=[(z− 1)I + γ1D + (γ1 +
γ2

z− 1
)LF]

−1

[zXF(0) +
z

z− 1
γ2R(0)− z

z− 1
γ1L1XL].

(22)
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Since the convergence of the system has been proved, using the final value theorem yields

lim
z→1

(z− 1)XF(z) =[(z− 1)I + γ1D + (γ1 +
γ2

z− 1
)LF]

−1

[z(z− 1)XF(0) + zγ2R(0)− zγ1L1XL]

=xd[1, 1, . . . , 1]T .

(23)

Letting W(z) = (z− 1)XF(z), we have limz→1 W(z) = xd[1, 1, . . . , 1]T and

[(z− 1)I + γ1D + (γ1 +
γ2

z− 1
)LF]W(z)

= [z(z− 1)XF(0) + γ2zR(0)− zγ1L1XL].
(24)

Multiplying Q = [qm+1, qm+2, . . . , qn] on both sides of (24), we get

Q[(z− 1)I + γ1D]W(z)

= Q[z(z− 1)XF(0) + γ2zR(0)− zγ1L1XL],
(25)

where Q is the left eigenvector of LF corresponding to eigenvalue 0. Then, we take the limit
of Equation (25) as z→ 1 and have

Qγ1Dxd[1, 1, . . . , 1]T = Q[γ2R(0)− γ1L1XL]. (26)

Equation (26) is rewritten as

γ1xd

n

∑
i=m+1

m

∑
j=1

qiaij =γ1

n

∑
i=m+1

m

∑
j=1

qiaijxj

+ γ2

n

∑
i=m+1

qiri(0),

(27)

and we finally get

xd =
∑n

i=m+1 ∑m
j=1 qiaijxj

∑n
i=m+1 ∑m

j=1 qiaij
, (28)

with ∑n
i=m+1 qiri(0) = 0. Apparently, xd is in the convex hull formed by leaders.

When p 6= 1, the proof is the same while the final state xd is a constant vector instead
of a constant. Hence, we can draw the conclusion that all followers will eventually reach
an agreement value in the convex hull spanned by leaders under our proposed protocol.
Theorem 1 is proved.

3.2. Symmetric Follower Topology

By means of some existing results [40,41], we present the convergence condition,
which is less conservative than (7), of system (3) under symmetric follower topology.

Theorem 2. The leader–follower and follower topologies of multi-agent system (3) satisfy Assump-
tions 1 and 3, respectively. With ∑n

i=m+1 ri(0) = 0, all the followers converge to an agreement

value
∑n

i=m+1 ∑m
j=1 aijxj

∑n
i=m+1 ∑m

j=1 aij
that lies in convex hull spanned by the leaders, if γ1 and γ2 satisfy

γ2 ≤ γ1 ≤
2
θi

, (29)

and
ρ(LF)(γ2 − 2γ1)− 2γ1θi + 4 > 0,

for i = m + 1, . . . , n, where θi = ∑m
j=1 aij
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Proof. We have already known that the characteristic Equation (9) has a root as z = 1, so
we only consider the situation that z 6= 1. From Lemma 3, Equation (9) equals to

det((z− 1)((z− 1)I + γ1D) + (γ1(z− 1) + γ2)LF) = 0. (30)

When z 6= 1, (30) is reformulated as

det(I + G(z)LF) = 0, (31)

where

G(z) =


γ1(z−1)+γ2

(z−1)(z−1+γ1θm+1)

. . .
γ1(z−1)+γ2

(z−1)(z−1+γ1θn)

,

and θi = ∑m
j=1 aij, i = m + 1, . . . , n is the (i, i) entry of the diagonal matrix D.

Let F(z) = det(I + G(z)LF). According to the generalized Nyquist stability crite-
rion [41], the zeros of F(z) are in the unit circle when G(z) does not have poles out of the
unit circle, if λ(G(ejω)LF) does not enclose the point (−1, j0) for ω ∈ [−π, π]. Because of
the symmetry of the Laplacian matrix LF, it follows from Lemma 4 that

λ(G(ejω)LF) ∈ ρ(LF)Co(0∪ gi(ejω)), i = m + 1, . . . , n, (32)

where

gi(ejω) =
γ1(ejω − 1) + γ2

(ejω − 1)(ejω − 1 + γ1θi)
. (33)

For calculating conveniently, we assume that γ2 ≤ γ1. In order to ensure that all the
poles of G(ejω) are within or on the unit circle, we have

0 ≤ γ1θi ≤ 2. (34)

Equation (33) is rewritten as

gi(ejω) =
γ1 cos ω + γ2 − γ1 + jγ1 sin ω

a + jb
, (35)

where a = 2 cos2 ω + (γ1θi − 2) cos ω− γ1θi and b = sin ω(2 cos ω + γ1θi − 2).
To analyze the intersections of gi(ejω) on the real axis, we get

Im(gi(ejω)) =(2(γ1 − γ2) cos ω + (γ1 − γ2)(γ1θi − 2)

− γ2
1θi) sin ω = 0.

(36)

For ω ∈ (0, π], Equation (36) has only one solution ω = π and

gi(ejπ) =
γ2 − 2γ1

4− 2γ1θi
. (37)

It is evident that ρ(LF)Co(0 ∪ gi(ejω)) does not enclose the point (−1, j0), if all the
points (ρ(LF)gi(ejπ), j0) are on the right side of the point (−1, j0) for i = m + 1, . . . , n, i.e.,

ρ(LF)
γ2 − 2γ1

4− 2γ1θi
> −1. (38)

Hence, λ(G(ejω)LF) does not enclose the point (−1, j0) and G(z) has no poles out of
the unit circle, if we choose the gain parameters γ1 and γ2 satisfying γ2 ≤ γ1 ≤ 2

θi
, and

ρ(LF)(γ2 − 2γ1)− 2γ1θi + 4 > 0, for i = m + 1, . . . , n. Thus, F(z) has all zeros within the
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unit circle, which means that the roots of characteristic Equation (9) are within or on the
unit circle. Hence, the convergence of the system is proved.

The analysis of final rendezvous state is omitted here for it is almost same as the proof
of Theorem 1. The only difference is that the left eigenvector of the symmetric Laplacian
Matrix LF corresponding to eigenvalue 0 becomes [1, . . . , 1], and the final value is

xd =
∑n

i=m+1 ∑m
j=1 aijxj

∑n
i=m+1 ∑m

j=1 aij
. (39)

Theorem 2 is proved.

3.3. Unconnected Follower Topology

Considering the follower topology is unconnected, i.e., it has no spanning tree, the
containment-rendezvous cannot be achieved by our proposed PI coordination control
protocol. In this case, we can divide the follower topology into several connected parts,
and obtain the convergence conditions based on the results in Theorem 1.

In order to analyze the convergence behavior, we divide the unconnected follower
topology into N connected parts, each of which has a spanning tree or has only one agent,
and we labelled the parts as 1, . . . , N. For each part, the state and integral vectors of
followers are defined as XFl (k) and Rl(k), l = 1, 2, · · · , N. Hence, the dynamic models of
followers are formulated as

XFl (k + 1) =(In−m − γ1L2l ⊗ Ip)XFl (k)

− γ1(L1l ⊗ Ip)XL(k) + γ2Rl(k),

Rl(k + 1) =Rl(k)− (LFl ⊗ Ip)XFl (k), l = 1, . . . , N.

(40)

where L1l , L2l and LFl are same as the definitions of above L1, L2 and LF, respectively.
For each part l, the characteristic equation is given by

det((z− 1)2 I + γ1(z− 1)(LFl + Dl) + γ2LFl ) = 0,

where Dl is same as the definition of above D.
Similar to Theorem 1, we take into account the following equation

det((z− 1)2 I + γ1(z− 1)(LFl + Dl) + γ2(LFl + Dl)) = 0. (41)

Then, in the light of Theorem 1, we come to the following results.

Theorem 3. The leader–follower topology of multi-agent system (3) satisfies Assumption 1 and
the follower topology is unconnected. All the n−m followers converge to the convex hull spanned
by the m leaders, if for all N parts, the roots of Equation (41) lie in the unit circle, and

|λ(γ2DlΘ
−1
l (ejω))| < 1

hold with ω ∈ (0, π], where Θ(ejω) = (ejω − 1)2 I + γ1(ejω − 1)(LFl + Dl) + γ2(LFl + Dl).

Proof. Divide the unconnected follower topology into N connected parts (40), and the
state and the integral term of followers are expressed as XF(k) = [XF1(k), . . . , XFN (k)]

T

and R(k) = [R1(k), . . . , RN(k)]T . It is evident the the dynamics (40) of each part have
completely same form as (4).

According to the proof of Theorem 1, the followers in one part reach the containment-
rendezvous under condition in Theorem 3. In each part. the followers reach an agreement
value in convex hull spanned by the leaders. Evidently, the convex hull spanned by the
leaders in each part must be contained in the convex hull composed of all the leaders in the
system. Hence, all followers converge to the convex hull composed of all the leaders.
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4. Simulations

In this section, we consider a first-order multi-agent system including 6 leaders and
5 followers labelled by 1, . . . , 6 and 7, . . . , 11, respectively. The initial states of agent i
are set to x1(0) = [4, 4]T , x2(0) = [5, 2]T , x3(0) = [6, 7]T , x4(0) = [7, 1]T , x5(0) = [9, 3]T ,
x6(0) = [10, 8]T , x7(0) = [5,−1]T , x8(0) = [9, 2]T , x9(0) = [2, 6]T , x10(0) = [8, 10]T and
x11(0) = [10, 5]T . All the leader–follower topologies considered in this section satisfy
Assumption 1. The weight of each edge between a leader and a follower is set to 1 and the
weight of each edge among followers is shown in the pictures. The simulation results with
different follower topology of the agents are exhibited as follows.

General Topology. The general follower topology satisfying Assumptions 1 and 2 is
shown in Figure 1.

Figure 1. General topology of the agents.

Select the gain parameters as γ1 = 0.2 and γ2 = 0.05 satisfying the conditions in
Theorem 1, and all followers reach an agreement value in the convex hull spanned by
leaders (see Figures 2 and 3).
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Figure 2. Trajectories of agents with general topology.
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Figure 3. States of followers with general topology.

Symmetric Topology. The symmetric follower topology satisfying Assumptions 1 and 3
is shown in Figure 4.
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Figure 4. Symmetric topology of agents.

Since the condition is easier to calculate, we are able to give a more specific range of
the parameters. Under the given topology, we have γ1 ≤ 0.67 and we choose γ1 as 0.2
here. With the condition γ1 = 0.2, we then have γ2 > 0.1. Finally, we choose γ1 = 0.2 and
γ2 = 0.11 to guarantee that the conditions in Theorem 2 hold. Then, all followers reach the
containment-rendezvous asymptotically (see Figures 5 and 6).
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Figure 5. Trajectories of agents with symmetric topology.
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Figure 6. States of followers with symmetric topology.

Unconnected Topology. The unconnected follower topology shown in Figure 7 sat-
isfies Assumption 1. It is evident that the topology can be divided into two connected
follower topologies as shown in Figure 8.

The gain parameters are set as γ1 = 0.2 and γ2 = 0.1 satisfying the requirement in
Theorem 3. It is seen from Figures 9 and 10, all followers are divided into two group and
followers in each group reach own agreement value in the convex hull spanned by leaders.
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Figure 7. Unconnected topology of the agents

Figure 8. Two connected parts in the unconnected topology.
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Figure 9. Trajectories of agents with unconnected topology.
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Figure 10. States of followers with unconnected topology.

5. Conclusions

In this paper, containment-rendezvous problem of discrete-time first-order multi-
agent systems is analyzed. The proposed control protocol includes a proportional term and
an integral term. The proportional term ensures the realization of the containment, and the
integral term guarantees the rendezvous. According to the frequency-domain analysis and
numerical example, the effectiveness of our proposed protocol under the general connected
follower topology is proved. For the symmetric and connected follower topology, a simpler
convergence condition is presented. The containment control problem under unconnected
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follower topology is further discussed. Notably, the unconnected follower topology can
be divided into several connected ones, so the followers still converge to the containment
formed by all the leaders. Since the work in our paper is only a theoretic research and do
not consider the trajectory of the agents, compared with some practical works [42–44], we
will continue to study this question in a more practical way in our future work.
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