
algorithms

Article

Design of an FPGA Hardware Optimizing the Performance and
Power Consumption of a Plenoptic Camera Depth
Estimation Algorithm †

Faraz Bhatti * and Thomas Greiner

����������
�������

Citation: Bhatti, F.; Greiner, T.

Design of an FPGA Hardware

Optimizing the Performance and

Power Consumption of a Plenoptic

Camera Depth Estimation Algorithm.

Algorithms 2021, 14, 215. https://

doi.org/10.3390/a14070215

Academic Editors: Paulo Flores and

Mário Véstias

Received: 17 June 2021

Accepted: 14 July 2021

Published: 15 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Smart Systems and Services (IoS3), Pforzheim University, Tiefenbronner Strasse 65,
75175 Pforzheim, Germany; thomas.greiner@hs-pforzheim.de
* Correspondence: faraz.bhatti@hs-pforzheim.de; Tel.: +49-7231-28-6854
† This paper is an extended version of our paper published in ICASSP 2021–2021 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021,
doi:10.1109/ICASSP39728.2021.9414690.

Abstract: Plenoptic camera based system captures the light-field that can be exploited to estimate the
3D depth of the scene. This process generally consists of a significant number of recurrent operations,
and thus requires high computation power. General purpose processor based system, due to its
sequential architecture, consequently results in the problem of large execution time. A desktop
graphics processing unit (GPU) can be employed to resolve this problem. However, it is an expensive
solution with respect to power consumption and therefore cannot be used in mobile applications
with low energy requirements. In this paper, we propose a modified plenoptic depth estimation
algorithm that works on a single frame recorded by the camera and respective FPGA based hardware
design. For this purpose, the algorithm is modified for parallelization and pipelining. In combination
with efficient memory access, the results show good performance and lower power consumption
compared to other systems.

Keywords: plenoptic; light-field; image processing; FPGA image processing; hardware; 3D image
processing algorithm; optimizations; mobile application

1. Introduction

Image processing is being used extensively in a wide range of applications, such as
automation, quality control, security, robotics, research and healthcare. Recent advances in
3D image processing techniques have resulted in new challenges such as mobile applica-
tions with short execution time. Stereo camera setup is widely used as an optical method
to estimate the depth of an object. This system, however, has some intrinsic limitations,
such as camera position calibration. Plenoptic camera can be used to overcome such a
problem [1]. The basic principle is similar to stereo camera system, as it works on the
micro-images recorded by multiple points-of-view. These images can be modeled as inputs
from several cameras with distinctive perspective. Hence, using this technique data can be
used to analyze and extract parameters from a scene by recording just a single image. There
are various algorithms available to manipulate the plenoptic raw image data, which vary
on the basis of processing requirements and accuracy. These algorithms can be classified
with respect to 2D and 3D parameters computation, such as refocusing [2–5] and depth
estimation algorithms [6,7]. The former, as the name suggests, is used to focus different
areas in the scene after the image is being captured. This is achieved by exploiting the
information of micro-images. This paper presents a modified depth estimation algorithm
based on [6], that works directly on the raw image and estimates depth from single frame.
In [8], the corresponding advantages of this algorithm are discussed. General purpose
processor based solution is flexible in nature, but due to its sequential nature it results in a

Algorithms 2021, 14, 215. https://doi.org/10.3390/a14070215 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-4056-3647
https://orcid.org/0000-0001-6202-3345
https://doi.org/10.3390/a14070215
https://doi.org/10.3390/a14070215
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14070215
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14070215?type=check_update&version=2

Algorithms 2021, 14, 215 2 of 20

large execution time. Generally, a desktop graphics processing unit (GPU) can be employed.
It provides the higher computation power at the cost of excessive energy consumption [9],
which makes it an unfeasible choice in mobile systems with limited resources. We propose
a modified version and an FPGA hardware architecture that is characterized by low power
consumption and operates in real time. Hence, it is suitable for mobile applications.

The target mobile application is an assisted wheeled walker for the elderly. It is
equipped with a plenoptic camera system to estimate the depth of the objects in real-
time [10]. The objective is to warn or alert the respective user for an imminent hazardous
situation or objects. It is a computation intensive application as it has real-time processing
requirements, i.e., throughput should be better than 30 fps. A possible solution is to use a
low-power mobile GPU which is a compromise between computation power and energy
consumption, such as [11,12]. Hardware solutions are generally employed to cope with the
performance problem. ASIC (application-specific integrated circuit) based solution is not
viable, as it is not reconfigurable and it requires long design time that consequently results
in higher cost [13,14], whereas FPGA is reprogrammable, it implements multi-level logic
using both programmable logic blocks and programmable interconnects, and therefore can
be used for prototyping. Moreover, it employs simpler design cycle and its respective time-
to-market has a smaller overhead. In this way, FPGA combines the speed of hardware with
the flexibility of software [15–17]. Thus, FPGAs are being used as performance accelerators
in several image processing applications, such as [18,19].

This study presents an optimized FPGA based hardware design for the realization of
targeted 3D depth estimation algorithm to boost the performance with respect to execution
time. The presented design exploits the highly parallel architecture of FPGA and therefore
enhances the performance by employing existing optimization techniques. For instance,
by increasing the resources to process the algorithm to attain the performance gain. It
decreases the execution time of an algorithm significantly. However, it also results in a trade-
off between resource usage and performance. Ideally, all the tasks in the algorithm should
be able to run in parallel. However, it is not always possible because of the inter-dependency
of tasks. Further challenge is to select and define the segments that correspond to the
largest tasks in an algorithm from execution time perspective. A performance boost can be
achieved by optimizing such regions in the algorithm. Moreover, the hardware design is
evaluated and compared with a low-power mobile GPU realization regarding performance
and power consumption. The latter is implemented using similar optimizations as the
FPGA design.

The rest of the paper is arranged as follows: Section 2 discusses the related work in the
field of 3D image processing and hardware architectures. Section 3 explains plenoptic image
processing concept and application. Sections 4 and 5 cover depth estimation algorithm and
hardware system design. Sections 6 and 7 contain hardware implementation, evaluation
and conclusion.

2. Related Work

In literature, various researchers have employed FPGA for image processing applica-
tions [20–24]. The authors of [25] presented an FPGA hardware architecture for real-time
disparity map computation. In [26], authors developed a real-time stereo-view image-based
rendering on FPGA. Few researchers proposed FPGA accelerators for plenoptic camera
based systems, but they only deal with the 2D refocusing algorithms. Hahne et al. [27] used
FPGA for the real-time refocusing of standard plenoptic camera. Their results show that
FPGA performs better than GPU and general purpose computer with respect to execution
time. Similarly, authors of [28] suggested the hardware implementation of super-resolution
algorithm for plenoptic camera. They used the FPGA hardware in their design and the
results have shown that the respective execution time was better than general purpose pro-
cessor based system implementation. Pérez Nava et al. [29] have proposed the idea to use
GPU to implement super-resolved depth estimation algorithm based on plenoptic camera
system to improve the execution time performance. Similarly, the authors of [30] used GPU

Algorithms 2021, 14, 215 3 of 20

for the real-time depth estimation using focused plenoptic camera. Lumsdaine et al. [31]
also used GPU to achieve the real-time performance of the algorithm, which consists of
refocusing and stereo rendering. These studies suggest that the GPU can be used as a
solution to improve the execution time of such algorithms. However, it is an expensive
solution from perspective of power consumption. It is therefore not feasible for the target
mobile application with limited available resources. One possible solution is to use a
low-power mobile GPU, which has not been used for depth estimation algorithm based on
plenoptic camera as per the best of authors’ knowledge.

A small number of researchers used FPGA for the depth estimation [32], and dispar-
ity [33] calculation algorithms based on plenoptic camera. However, these algorithms do
not work directly on the raw data captured by the plenoptic camera. Latter’s approach
uses multiple focused images separated by some distance, which can either be obtained by
multiple cameras or by generating several images from one camera with different perspec-
tives. It consequently adds an intermediate processing overhead and ultimately increases
the total time of processing. To overcome this overhead, this paper presents an FPGA
design that focuses on the algorithm which works directly on raw data and hence does
not require intermediate processing. The raw data in this case consists of micro-images
captured directly from the plenoptic camera. There are only few researchers who published
algorithms which work directly on the raw images captured from a focused plenoptic
camera, such as [6,7,34,35]. However, there are no hardware accelerators designed for
such algorithms.

3. Plenoptic Camera Based Image Processing

Plenoptic or light-field camera collects the light-field information of a scene by em-
ploying specialized design. Unlike the conventional camera, plenoptic camera captures
light as well as associated direction information. It contains a micro-lens array (MLA)
between the main lens and the image sensor [36], as depicted in Figure 1. Whereby Li
represents a micro-lens in the grid with a unique identifier i ∈ {1, 2, 3, . . . }; dL corresponds
to the diameter of the micro-lens, fm is the focal length of the main lens, am is the distance
of the object from the main lens and bm is the distance between virtual image and the main
lens. Moreover, bLm is distance between MLA and the main lens, and bL is the distance of
the corresponding virtual image from the MLA, bLs is the distance between MLA and the
image sensor. The image is formed behind the image sensor, hence it is virtual.

2F2F

bm

bLm
fm

am

Image
Sensor MLA Main

Lens

Object

Virtual
Image

bL

dL

Li

L2

L1

bLs

Figure 1. A setup of focused light-field camera including a main lens, an image sensor and an MLA.

Within the plenoptic camera, a micro-lens in the MLA focuses a segment of main-lens
image on the sensor with its own perspective. These micro-lenses either have similar focal
lengths, or they consist of different focal lengths (multi-focus) [37]. Hence, each micro-lens
captures a part of the scene corresponding to its position and perspective. As a result,
an image that consists of a grid of micro-images with distinct perspectives is captured,

Algorithms 2021, 14, 215 4 of 20

as shown in Figure 2. As the scene is captured with several focal planes, the output
image can be refocused even after it has been captured. In this way, a scene is recorded
with several perspectives just by taking a single picture. Moreover, depth of the scene is
computed by evaluating this data, that too can be estimated just by single recording of the
scene. The depth-of-field (DOF) of the plenoptic camera is higher in comparison to same
configuration conventional camera [7]. It also reduces occlusion regions [1] because of its
large array of micro-lenses with small field view, which are closely interlaced together.

(a) (b)

(c) (d)

Figure 2. (a) Raw image captured by plenoptic camera (b) part of the image displaying micro-images
(c) resulting image after applying refocusing (d) estimated sparse depth map of the scene.

4. Depth Estimation Algorithm

The used single recording plenoptic camera based depth estimation algorithm is based
on [6]. However, it is modified to completely exploit the advantages of the hardware
realization. The modifications include the usage of a non-parametric transform and a
respective cost function for finding the correspondence with minimum error.

In order to model the main camera thin lens camera model can be used:

1
fm

=
1

am
+

1
bLm + bL

. (1)

In an MLA of the plenoptic camera, micro-lenses are arranged in a specific order, such
as hexagonal. Due to such formation, a classic stereo camera paradigm can be considered
for a pair of adjacent micro-lenses to calculate the depth of the scene, as shown in the
Figure 3. Using the thin lens model, plenoptic camera is represented in 2D space as parallel
planes: object plane OP, main lens plane MP, MLA plane MLP, sensor plane SP and image
plane IVP. Two micro-lenses Li project points Psi onto SP that is placed at the distance of
bLs from the MLP. Rays from L1 and L2 intersect at virtual point PV onto the IVP. Moreover,
di refers to the distance onto the SP from the principal axis of the respective Li, and b

Algorithms 2021, 14, 215 5 of 20

represents the baseline distance between the micro-lenses. The triangulation of this setup
results in:

∆d
b

=
bLs
bL

. (2)

d1

bL-bLs

O
bj

ec
t P

la
ne

bL
bLs

IVPSPMLP

M
ai

n
Le

ns
 P

la
ne

bLmam

Pv

bm

L1

L2

Ps1

Ps2

b

d2

dL

Image
Plane

Sensor
Plane

MLA
Plane

MPOP

Figure 3. Plenoptic camera model with two micro-lenses and corresponding planes.

Whereby ∆d represents disparity that equals to: d2 − d1. The distance of Pv, rep-
resented as virtual depth (v), is estimated with respect to intrinsic parameter bLs of the
camera that is calculated during the calibration process. Thus, v is computed by the relative
distance of bL with respect to bLs, which is only possible if the projected point is focused by
minimum two micro-lenses.

v =
bL
bLs

=
b

∆d
. (3)

The baseline distance between two adjacent micro-lenses equals to its diameter. So
Equation (3) becomes:

v =
dL
∆d

. (4)

By considering MLp as a reference plane, 3D points can be represented as: center of a
micro-lens Li(cxi, cyi, 0), projection of a point Psi(xsi, ysi, bLs) onto Sp, and the virtual point
Pv(xv, yv, v) on Ivp. With the help of Thales’s theorem:

‖Pv − Ps1‖
‖Ps1 − L1‖

=
bL − bLs

bLs
. (5)

Pv = Li + v · (Psi − Li). (6)

Similarly:
xv = cxi + v · (xsi − cxi). (7)

yv = cyi + v · (ysi − cyi). (8)

To calculate the actual distance of the object am from the main lens, Equation (1) can
be used by substituting bm = bLm + vbLs, which results in:

am =
fm(bLm + vbLs)

bLm + vbLs − fm
. (9)

Algorithms 2021, 14, 215 6 of 20

Processing Steps

These equations show that the object distance is computed by estimating virtual
depth which subsequently depends on the points projected by the micro-lenses. These
calculations show how the final depth is estimated, which is achieved by a series of steps.
Therefore, modified algorithm is divided into several processing steps: pre-processing,
non-parametric transform, best-match computation and consequently depth-evaluation,
as depicted by a UML activity diagram in Figure 4.

Stereo
Matching

Census-
Transform

Reference
Micro-Lens

Target
Micro-Lens

Best-Match Computation

Pre-
Processing

Best-
Match

Depth
Evaluation

[Matching Range]

text

texttext

[New Frame]

[Yes]
[No]

[Yes]

[No][Yes]
[No]

[Yes]
[No]

Search Range Reference
Micro-Images

Search Range of
Target Micro-Images

Figure 4. UML activity diagram of the modified depth estimation algorithm.

During pre-processing, geometric data of the micro-images, including lens-types
and corresponding coordinates of its center, is calculated with the help of calibration
information. Moreover, valid pixels in the input raw image are defined with respect to the
MLA. Raytrix R5 camera [38] used in this study consists of an MLA with three different
types of micro-lenses. Figure 5 depicts micro-lenses with distinct focal-lengths that are
arranged in a hexagonal order. The center micro-lens and the surrounding micro-lenses
are represented by Lri and Ltj respectively. The numbers (0–5), which are inscribed on the
micro-lenses correspond to the values of j in Ltj. Additionally, the radius of micro-lens
rL, diameter dL and baseline distance b with respect to the Lri are indicated. Since the
micro-lenses are arranged in a hexagonal order and their respective diameters are equal,
the b between two micro-lenses is computed by:

b = ln · dL. (10)

Whereby ln is a positive integer that implies how far is the target micro-lens Ltj from
the Lri in terms of number of micro-lenses, ln ∈ {1, 2, 3 . . . }. However, it is only valid for
the micro-lenses that are located at multiple of 60° with respect to the reference micro-lens.
It is due to the hexagonal arrangement of the micro-lenses in the MLA grid. For instance, b
of Lri with the adjacent target micro-lens Lt2 is calculated as:

b =
rL

cos(60°)
= 2 · rL = 1 · dL. (11)

The rest values of ln are calculated by using trigonometric relations.

Algorithms 2021, 14, 215 7 of 20

b

Radius

dL

1.dL
1.73.dL

2.dL

Lri

4.rL
3.rL
1.rL2.rL5

2

4

3

1

0

Ltj

Figure 5. Micro-lenses hexagonal arrangement in the MLA.

Figure 6 contains two adjacent micro-images. The border bµ, rL and dL of the micro-
images are defined in number of pixels. Raytrix R5 [38] camera has the bµ of 1 pixel.
The modified algorithm defines valid pixels in a micro-image which are those that lie
within the border of the micro-lens. The reference pixel Pr(x, y) is placed inside the
reference micro-image Iri whose center is at Cri(cxi, cyi). The point Pr(x, y) is considered
valid only if this condition holds true:

‖Pr(x, y)− Cri(cxi, cyi)‖ ≤| rL − bµ | (12)

Reference
Micro-Image

Adjacent
Micro-Image

Pr(x,y)

Iri

Cri(cxi,cyi)

Lens border
bµ

Lens Diameter dL

rL
Lens

Center

x

y

Figure 6. Two adjacent micro-lenses in an MLA with center points and a reference point Pr(x, y).

The following step is to use a non-parametric transform on the input raw image.
In the modified algorithm, census transform is employed . It depends on the relative
order of the pixel intensities rather than the actual value of an intensity. This property
makes it robust to illumination variations in an image. If a reference pixel Pr(x, y) is lying
within neighborhood of N(Pr(x, y)), where Pr(x, y) /∈ N(Pr(x, y)), the census transform is
formally defined as [39]:

CT{Pr(x, y)} =
⊗

ξ(I(Pr(x, y)), I(Pr′(x′, y′))) (13)

ξ(I(Pr), I(Pr′)) =

{
1 if(I(Pr) < I(Pr′))

0 otherwise
(14)

Whereby, CT{Pr} is the census transformed pixel, Pr′ ∈ N(Pr), ξ(I(Pr), I(Pr′)) is a
comparison function and

⊗
denotes the bit wise concatenation.

Best-match computation (BMC) involves finding the correspondence of valid census
transformed reference pixel CT{Pr(x, y)} in target micro-images with a minimum error.
This leads to the multi-view stereo problem, because every point of interest is projected by
several micro-lenses. Correspondence is searched for a given CT{Pri(x, y)} of a reference

Algorithms 2021, 14, 215 8 of 20

micro-image Iri(cxi, cyi) in target micro-images Iti. To save computation costs, search is
restricted by matching only target pixels that lie on the epipolar lines within the neigh-
borhood N(Pr(x, y)) micro-images. Since the micro-lenses in the MLA are rectified and
their respective planes are parallel, the epipolar line ep of a stereo pair is parallel to the b,
as shown in Figure 7. A virtual point Pv is projected on two adjacent micro-images planes
I1 and I2, at P and P’, with centers C1 and C2 respectively.

b
u

v

I1 I2

ep

Pv

C1 C2

P P’

Figure 7. Two parallel micro-images depicting the epipolar geometry of the stereo pair.

For each micro-image pair, stereo-matching is performed, the respective error is then
subsequently compared. It results in a best-match for the given Pri(x, y). The modified
algorithm uses Hamming distance as the cost function to determine the error of similarity
during the process of finding the correspondence. Along with the computation of best-match,
respective disparity is computed. Finally, in depth-evaluation, virtual depth is estimated by
using corresponding disparity and baseline distance of the best-match measurement.

5. Hardware System Design

FPGA’s inherently parallel architecture enables it to be used as a hardware accelerator
to improve the performance from execution time perspective. Thus the objective is to
exploit the available parallelization in the algorithm with respect to the hardware. It is
achieved either by executing tasks concurrently with the help of multiple processing units
or by pipelining the computational tasks. The former results in excessive use of available
resources. Thus can only be used with a limited number of tasks and iterations. Pipelining
increases the throughput of the given design. In ideal parallel program structure, pipelining
initiation interval (ii) is 1, which means next input can be applied to the pipeline after
one clock cycle. This way the pipeline stages are always busy and maximum possible
throughput is achieved. Bigger values of ii correspond to the lower gain from the pipelining,
for instance ii = n implies that pipeline stage stalls after each operation for (n − 1) clock
cycle. There are various performance bottlenecks which restrict the associated gain from
the parallelization.

Sequential dependencies within the algorithm substantially limit the performance of
the hardware. Therefore, it is essential in designing process to define all the sequential
dependencies between internal sub-modules of the algorithm. Figure 8 illustrates the
UML composite internal structure diagram that includes dependencies between different
components of the algorithm. Each component (sub-modules) of the algorithm requires
an interface with the external storage that retains the input and output data related to
the algorithm. Similarly, these components also require an interface with internal storage
to save their intermediate results. Depth-evaluation depends on best-match computation
that can only start processing as soon as the pre-processing and non-parametric transform
come to an end. For this reason, all three components cannot start executing independently.
However, intra-component tasks can be executed in parallel, such as defining valid pixels
and defining lens type are independent of each other and hence can run concurrently.
The next sections explain how the algorithm is adapted and optimized with respect to
the performance.

Algorithms 2021, 14, 215 9 of 20

<<use>>

Internal Structure

:Plenoptic Depth Estimation Algorithm

:Pre-Processing

:MLA Geometric
Data

:Defining Valid
Pixels

:Defining Lens
Type

<<use>>

<<use>>
Input/output

Data

:Depth Evaluation

:Depth Map

:Best-Match
Computation

:Pair Selection

:Stereo Matching

<<use>>

:Census Transform

:Internal Storage

Figure 8. UML structure diagram showing the dependencies between different components of
the algorithm.

5.1. Bottleneck Segments

These are the segments of code that correspond to the largest tasks in the algorithm
from the perspective of execution time. They, represented by BSp

n, are the dominant
performance bottlenecks in an algorithm. Whereby p corresponds to the sub-module of
the algorithm and n is the number of the segment. They consist of either a portion or a
complete sub-module. They contain a large number of complex operations or operations
in a recursive order.

The respective bottleneck segments of the modified algorithm are arranged in Table 1.
It shows that the most BSp

n reside within the best-match computation sub-module of the
algorithm. It is because of the recursive nature of the matching process. All of these BSp

n
are adapted and optimized with respect to the hardware.

Table 1. Selected BSp
n from sub-modules of the algorithm.

Sub-Module BSp
n Description

Pre-Processing BSpp
1

Consists of recursive operations to calculate the grid lines
of micro-lens array, such as lens-type.

BSpp
2

Arranges and assigns the calculated micro-lens grid data
to the corresponding micro-lenses.

Census Transform BSct
1

Recursive operations to convert the input image to the
transformed image with respect to the window size.

Best-Match
Computation BSbc

1
Selects reference micro-image and fetches the respective
input data to find the correspondence.

BSbc
2

Recursive operations to select the target micro-images for
matching.

BSbc
3

Iterative search process to calculate error to find the
correspondence across the target micro-image

Depth-Evaluation BSde
1

Transferring the calculated depth estimations to the
memory

5.2. Temporal Parallelization

In proposed modified algorithm, selection of a pair for the stereo-matching depends
on the baseline distance b. The different b with neighboring target micro-images Iti from
reference micro-image Ir in an MLA is shown in Figure 9. During the stereo-matching
process, to find the correspondence, Ir needs to be correlated with several Iti which are
placed at b distance from the respective Ir. Whereby b is calculated by Equation (10).
The values inscribed in the micro-lenses refer to the ln of the respective baseline distance.
The angles represent the arrangement of Iti with respect to Ir in the MLA.

Algorithms 2021, 14, 215 10 of 20

-40.9°

1.73 2

2

1.73

2.65

3.46

2.64

3

2.65

3

3.6

3.46

4

3.6

3.6

4

1

1

-90°

0°Ir

b L
D

 =
 l n

 .
D

µ

-60°

-13.9°
-19.1°

-30°

-46.1°

-73.9°-79.1°

dL

Ta
rg

et
 M

ic
ro

-Im
ag

es

1.dL 2.dL 3.dL 4.dL

Figure 9. Micro-images grid including reference and target micro-images placed at different base-
line distances.

Search process starts with target micro-images that are located at the shortest b = 1 · dL
in all directions from Ir. Subsequently, Iti that is placed at higher b, is searched for a match.
This way, baseline distance keeps increasing until a match is found. It is a computation
intensive task due to its recursive nature. The modified algorithm reduces this effort by
restricting the matching process. It is because the dimensions of the micro-images are quite
small, e.g., dL of Raytrix R5 camera is almost 23 pixels. It only allows each micro-image to
capture a little fraction of information. Therefore, it can be established that the probability
of finding the match is higher in the micro-images which are located in close proximity
to the Ir. By taking it into account, it is determined from experiments that a good match
is found with Iti, which is located within range of lmax = 4 from Ir. Thus the maximum
baseline distance is restricted to b = 4 · dL.

From Figure 9, it is apparent that the matching occurs in all directions with respect
to the Ir. However, it causes redundant matching computations to take place, because in
subsequent stereo-matching the role of same pair gets swapped, i.e., reference with target
micro-image . For this reason, the proposed design allows only those micro-images to
be correlated during the stereo-matching, which are located between 0 ≤ θ ≤ −90 from
the reference micro-image. It ensures matching to be carried out only once for each pair,
and therefore it significantly reduces the redundant computations. In this formation,
maximum number of target micro-images that can be correlated with Ir is nT = 18.

Selection of micro-image pairs to find the best match is pipelined, as depicted in
Figure 10. Whereby N corresponds to the latency of one matching task. The temporal
parallelization ensures the extensive search for the match to be carried out concurrently.
Total latency of stereo-matching with nT number of target micro-images, without the
pipelining is N ∗ nT clock cycles, and with pipelining it equals to N + ii(nT − 1) clock
cycles. Thereby, gain obtained from temporal parallelization is restricted by the value of ii.
In stereo-matching, to save computation, a condition is added which ensures that matching
only occurs with Iti that are placed at higher distance (ln > 1.73) if a match is found at
the shorter distance. Thus, in a case, when no match is found at the shortest distance,
search stops and the next reference pixel is selected. This however, results in inter-iteration
(loop-carried) dependency that consequently increases ii.

Algorithms 2021, 14, 215 11 of 20

b=lmax.dL

b=1.dL

b=1.dL Dependency

Ta
rg

et
 S

el
ec

tio
n

Latency
N

Stereo-matching

ii

Ir It1

N
Stereo-matching

Ir It2

N
Stereo-matching

Ir Iti

Figure 10. Selection process of target micro-images entailing temporal parallelism.

5.3. Spatial Parallelization

Finding the best match is a nested stereo-matching process, as shown in Figure 11.
After selecting a target micro-image with respect to Ir, matching is performed within its
physical boundaries. Epipolar geometry is employed in the design in order to reduce
the computation efforts. The maximum number of pixels, represented by M, that can lie
on an epipolar line ep is equal to the diameter dL of the micro-lens minus its border bµ.
For Raytrix R5 camera, M is calculated to 22 using following equation:

M = dL − bµ. (15)

epPr(x,y) Pt1 Pt2….......Ptj

b=dL

Ir Iti

Cr Cti

Reference
Micro-Image

Target
Micro-Image

x

y

Figure 11. Stereo-matching between reference and target micro-images.

From Figure 11, it is clear that matching process is recursive in nature. It therefore
enables the proposed design to use the spatial parallelization, as depicted in Figure 12.
Each correlation with target micro-image pixel Ptj computes error of stereo-matching and
corresponding disparity. If the latency of each comparison is Ns clock cycles, the total
latency to finish the matching process of hardware which ensures concurrency is ideally
Ns clock cycles.

Algorithms 2021, 14, 215 12 of 20

M
at

ch
in

g

Latency
Stereo-matching error

Pr(x,y) ep.Pt1
Disparity

0 Ns

C
on

cu
rr

en
t

Ex
ec

ut
io

n
Stereo-matching error

Pr(x,y) ep.Pt2
Disparity

Stereo-matching error
Pr(x,y) ep.Ptj

Disparity

Figure 12. Spatial parallelization during stereo-matching.

5.4. Census Transform

Census transform used in the design is adapted to exploit parallelization. Figure 13
shows a segment of an image where pixels are arranged in rows and columns (3 × 5).
In this case, window size for the census transform is set to: M ×M = 3 × 3. The process
starts by selecting center pixel Pr that is correlated with the surrounding pixels within
the respective window. In the next iteration, window shifts to right and the next center
pixel Pri+n is selected and process goes on. These windows are represented by dotted lines
and distinct colors. This process is completely pipelined in the proposed design, which
allows iterations to run concurrently. Moreover, in hardware design, resource usage is
optimized by using the arbitrary width data type. The corresponding number of bits is set
to: M×M− 1. The inter-iteration dependencies are resolved by using a buffer of depth
M×M− 1 to store the bit comparison results during the correlation process.

(0,0) (0,1)

(1,0)

(2,0)

(1,0)

(2,1)

(0,3)

(1,3)

(2,3)

(0,2)

(1,2)

(2,2)

(0,4)

(1,4)

(2,4)
Pri+1 Pri+2Pri

Figure 13. Census transform with a reference pixel.

Hamming distance is well established as a cost function for census transform. It
is calculated for a target range and it results in dissimilarity between a pair of pixels.
The pixel with the minimum Hamming distance corresponds to the best match for a given
pixel Pr(x, y). For a M×M window census transform, the number of bits n (bit length)
of each transformed pixels is M × M − 1. Sequential realization of Hamming distance
implements long carry chains of the adders. The optimized hardware solution is a balanced
tree implementation that uses adders with arbitrary number of bits for intermediate results,
as shown in Figure 14. It consequently reduces the resource consumption. Total number of
required adders are: n− 1. This figure shows the realization of a 5 × 5 census transform
window, so the bit length of pixels is 24, and the total number of adders required are 23.
Maximum number of bits m for the adder is calculated by 2m, which is equal to or greater
than n, so in this case m is 5. This implementation only requires two clock cycles to produce
the results, which includes operations: comparing bits (XOR), shifting right, sum of the set

Algorithms 2021, 14, 215 13 of 20

bits and in the end a comparison to check if it is the minimum distance and calculating the
corresponding disparity.

n=24
2

3

4

5

+

+

a0a1

+

a2a3

+

a4a5

+

a6a7

+

an-3 an-2

+

an-1an

+ + +

+ +

+ + + + +

No. of
Bits

Hamming distance

Figure 14. Optimized hardware implementation with arbitrary width adders.

5.5. Memory Optimizations

The optimization of the hardware design is an iterative process. The major challenge
lies in management of the memory accesses. Since the modified algorithm consists of a
substantial number of computation operations, a large number of low latency memory
cells are required to store the corresponding results. However, only limited such memory
is available in a given FPGA based SoC. External DDR memory can be used but accessing
such memory is costly with respect to the execution time. Thus a large number of memory
accesses eventually increase the latency of the algorithm exponentially. The proposed
algorithm design resolves this by partitioning the input raw image into several segments
and process them from the DDR memory in parallel. This ensures concurrent access.
The input image data are stored in the memory in a row-major order. The process to
find the best match for a given pixel occurs in both directions, i.e., horizontal and vertical.
Therefore, the image data are partitioned into smaller blocks. However, it makes the order
of the data non-contiguous that is stored in a respective block, as shown in the Figure 15a.
It is resolved by rearranging the blocks to ensure that the stored data are contiguous (see
Figure 15b).

0

1

2

3

0 1

2 3

Non-Contiguous Contiguous

(a) (b)
Figure 15. Partitioned memory to ensure contiguous access. (a) Non-Contiguous (b) Contiguous

Moreover, low latency memory cells are exploited during the matching process to
comply with timing constraints. It is realized in conjunction with a lookup table, which
stores the corresponding validity information of the pixels. A certain number of low latency
memory cells are allocated to buffer the data from the external DDR memory. These data
are repeatedly used in one iteration of the operations and therefore saves a large number
of high cost external memory accesses.

Algorithms 2021, 14, 215 14 of 20

Furthermore, a circular shift-buffer based on low latency memory is designed for the
algorithm. As explained earlier, in stereo-matching, the micro-images are selected which
lie on the epipolar line, and the baseline distance to choose target micro-images is restricted
to 4. Thus in matching process, the same data are accessed multiple times because each
pixel needs to be compared with the target micro-image. It establishes the ground to utilize
the available memory in an optimized order by removing the redundant memory accesses.
The idea is to perform stereo-matching with respect to rows and add the new input data
from the external memory only when all the pixels placed on the first column of the buffer
finish their respective matching. The memory is arranged from low to high addresses,
as shown in left side of the Figure 16. The input data size is R × C, so the buffer size is
chosen R × C0. Whereby C0 equals to a scalar value that is specified with respect to the
available memory. The value of C0 is set 92 in the implementation, because 4 micro-images
are considered for the matching whose respective diameter is 23 pixels (Raytrix R5 camera).
The data are arranged with respect to rows. When the succeeding column from input image
requires to be written in the buffer, the pointer shifts right and the first element of each row
is replaced by the respective new data. Subsequently, the shift-counter is increased by one.
In this case, index of the buffer to access the last element is equal to the zeroth element
index minus the shift-counter.

rnr1r0

d0,0 d0,1 d0,no dm,0 dm,nod1,0 d1,no

c0 c1 cn

New Data

Shift Buffer

d0,0 d0,1 d0,no

dm,0 d0,1 dm,no

d1,0 d1,1 d1,no

Low-Address

High-Address

Figure 16. Circular shift-buffer for the algorithm.

6. Evaluation and Results

In the proposed design, FPGA is configured as a co-processor where it is not directly
connected with an image acquisition logic. The hardware architecture for selected plenoptic
camera based algorithm is presented in Figure 17. It is based on Xilinx Zynq UltraScale+
MPSoC that is divided mainly into processing system (PS) and programmable logic (PL).
PS consists of a quad-core ARM processor, a dual core real-time ARM processor, a general
interrupt controller, memory interfaces and on-chip-memory (OCM). PL contains FPGA
configurable logic blocks, resources such as lookup tables (LUTs) and flip-flops (FFs).
Furthermore, it contains DSP blocks and Block RAMs (BRAMs). Programmable logic
and processing system communicates via high performance (HP) master/slave ports and
accelerator coherency port (ACP). Plen-Module represents the depth estimation algorithm
module in the system. It is connected with the application processor unit (APU) via
AXI_Lite interface and master HP0 port. This interface is responsible for configuring and
initializing the module. HP ports are connected directly to the external memory. Plen-
Module utilizes available slave HP ports to communicate with memory for reading input
data and storing output data. Intermediate results are stored in the BRAM. APU can read
BRAM with the help of BRAM controller. Furthermore, Plen-Module is also connected
with interrupt controller. Similarly, AXI_Timer is coupled with RPU via AXI_Lite interface.
It is used for timing measurement.

Algorithms 2021, 14, 215 15 of 20

A
X

I I
nt

er
fa

ce

Interrupt
Controller

Ex
te

rn
al

 M
em

or
y

D
D

R

SMMU/CCI

BRAM Controller

PS PL

S_HP0
...

S_HP3

M_HPM0

OCM 256KB

Real-Time Processing
Unit (RPU)

Dual Core
ARM R5

BRAM

Clock

Application Processing
Unit (APU)

Quad Core
ARM A53

SRAM

Timer

SCU

DMA IP

AXI-Lite

M_AXI-MMTS
M_AXIS-MMTS

Interrupt Plenoptic-Core

Interrupt

AXI-Lite

AXI-Stream

M-AXI-Full

AXI Timer
Interrupt

DDR Controller Central Switch

Figure 17. Xilinx Zynq UltraScale+ based hardware design for the plenoptic camera system.

The hardware design was realized with the help of Xilinx Vivado High-level synthesis
(HLS) tool. It was implemented on Xilinx Zynq UltraScale+ ZCU102 programmable
MPSoC with following parameters:census window size was 5 × 5, the range of Hamming
distance matching was set to dL of micro-image that is 23 and the input image resolution
was: 512 × 512. The RTL of the algorithm was generated via Xilinx HLS which was then
incorporated in the system architecture using Xilinx Vivado design suite. For light-field
images, few synthetic datasets are available, such as [40,41]. However, neither of them
contain raw micro-images and therefore are not suitable for the presented algorithm.
For this reason, a dataset was recorded focusing on indoor scenarios with the help of
Raytrix R5 camera. The resulting sparse depth maps from the presented algorithm were
correlated with the depth maps generated by the RxLive software (Raytrix GmbH [38]).
The camera was considered to be calibrated and therefore same geometric parameters (i.e.,
lens type, validity) were used for all the test benches. The evaluation metric was execution
time of the algorithm to calculate the depth map.

Figure 18 shows two different scenes captured by the camera. The top dataset (chair)
represents an indoor scenario consisting of a table and a chair from the perspective of
the wheeled walker, whereas the bottom one (cup) depicts objects closer to the camera.
Images are arranged as follows: (from left to right) raw image consisting of micro-images,
depth map calculated by RxLive and the depth map generated by the presented algorithm.
From the figure, it is clear that the latter’s depth map was more dense than the RxLive.
The quantitative results calculated by image statistics are listed in the Table 2. The density
was computed by dividing the total number of valid depth pixels with the total number of
pixels in the given area. It shows that the density of the depth maps estimated by presented
algorithm for chair dataset was ≈52 times more, and for cup dataset was ≈7 times more
than the respective RxLive depth maps. Similarly, presented algorithm’s depth map density
for chair dataset was ≈31% more, and for cup dataset is ≈21% higher than the respective
Zeller et al. [6] depth maps. Moreover, the standard deviation of the depth maps from
RxLive was slightly better than the presented algorithm.

Algorithms 2021, 14, 215 16 of 20

Figure 18. Raw image (left), filtered RxLive sparse depth map (middle) and filtered sparse depth
map calculated by the presented algorithm (right).

Table 2. Sparse depth map images statistics.

Std. Deviation Density Valid Pixels

chair
Presented Alg. 0.161 0.842 882,533
Zeller et al. [6] 0.178 0.64 676,763
RxLive 0.124 0.016 16,851

cup
Presented Alg. 0.181 0.501 525,385
Zeller et al. [6] 0.173 0.413 433,148
RxLive 0.160 0.072 75,108

The initial implementations of the design were not able to meet the timing constraints,
such as setup time. Moreover, the latency of first implementable design was more than 1
hour. However, after repeatedly improving the system, the latency dropped and timing
constraints were met. The actual execution time of the algorithm measured in milliseconds
with respect to different optimizations is arranged in Table 3. BSp

n in the first column
of the table refers to the bottleneck segments listed in Table 1, whereas optimization
corresponds to the approaches described in Section 5. Hence, the group of both represents
the optimization used at specific BSp

n. Moreover, this table includes the maximum latency
obtained from Xilinx HLS as well as the utilization results acquired from Xilinx Vivado
design suite. The utilization was measured by the consumption of LUTs, FFs, BRAMs
and DSPs. To measure the accuracy of the results, percentage of bad pixels (BPR) that
corresponded to the error ≥ 1 and the absolute relative error were used. The maximum
achieved clock frequency that met implementation timing constraints was 200 MHz.

Algorithms 2021, 14, 215 17 of 20

Table 3. Actual execution time, gain, utilization and error comparison

Optimization Execution
Time in ms

Gain
in ms

Max. Latency
in Clocks

BPR in
%

Abs. Rel
Error

Utilization Vivado

LUTs FFs BRAMs DSPs

BSpp
1 ,BSpp

2 , BSct
1 1121.25 3.64× 109 18.36 0.146 15,628 19,623 10 16

BSbc
2 , Temporal 726.96 394.28 1.34× 109 18.36 0.146 16,986 20,520 10 16

BSbc
3 , Temporal 604.06 122.89 1.85× 109 18.36 0.146 14,845 19,094 10 15

BSbc
3 , Spatial 600.33 3.73 1.85× 109 18.36 0.146 18,291 21,619 10 40

BSbc
2 , Spatial 562.62 37.71 2.08× 108 18.54 0.145 18,896 21,811 5 16

Combination 334.41 228.21 1.41× 107 18.36 0.146 20,900 25,150 5 13
Hamm_Distance 311.11 23.3 1.41× 107 18.37 0.146 21,446 25,085 10 267
Memory_Opt. 27.18 283.92 6.72× 106 18.45 0.147 29,412 28,769 1797 272

BSpp
1 , BSpp

2 and BSct
1 were adapted to use the temporal parallelization, and the re-

spective execution time of the algorithm consequently dropped to 1121.25 ms. Similarly,
temporal parallelization on BSbc

2 and BSbc
3 resulted in gain of 394.24 and 122.89 ms respec-

tively. The execution time was further reduced by using spatial parallelization on BSbc
2

and BSbc
3 . The combination of temporal and spatial parallelization on BSbc

1 , BSbc
2 and BSbc

3
caused the execution time to dramatically decrease to 334.41 ms. Subsequently, Hamming
distance optimization together with arbitrary length fixed point numbers shrank down the
execution time by ≈8%, which was at the cost of ≈3% additional LUTs, almost twice the
BRAMs and ≈20 times more DSPs, whereas the FFs consumption was slightly improved
by ≈0.25%. The overall resource usage increased due to the length of the fixed point
numbers. Finally, memory optimization brought the execution time down to 27.18 ms.
The corresponding gain was 283.92 ms, whereas the number of BRAMs raised to 1797 that
corresponded to ≈98.5% utilization.

The presented algorithm was additionally adapted, optimized, implemented and
tested on a mobile GPU. It was achieved by refining bottleneck segments to exploit paral-
lelization. The algorithm was realized using CUDA programming model. The respective
specification of each execution platform employed in the evaluation process is listed in
Table 4. The comparison of executing the modified single recording algorithm on the
PC-system, on mobile GPU based system and on FPGA MPSoC is arranged in Table 5.
The GPU was configured in 6-core 15 watt mode. The power consumption was calcu-
lated by measuring the current drawn and voltage with the help of digital multimeter
(Protek 506). FPGA hardware was ≈20% faster than mobile GPU and ≈69% faster than
the PC-system. Consequently, it provided highest fps and consumed the least power as
compared to both mobile GPU and PC-system. From these results, it can be concluded that
the presented FPGA design was a suitable solution for the targeted mobile application.

Table 4. PC-system, mobile GPU and FPGA specifications.

Platform Specifications

PC-system Corsair 200R desktop, Windows 10, Intel core i7-7700K CPU,
512 GB SSD and 16 GB RAM.

Mobile GPU NVIDIA® Jetson Xavier NXTM, CUDA cores = 384,
Max. Memory = 8 GB LPDDR4x @51.2 GBits/s.

FPGA MPSoC Xilinx Zynq UltraScale + ZCU102 MPSoC contains
LUTs = 274,080, FFs = 548,160 and BRAMs = 1824.

Algorithms 2021, 14, 215 18 of 20

Table 5. PC-system, mobile GPU and FPGA comparison.

Exec. Time per
Frame

Throughput in
fps Power in W Performance in

fps/W

PC-System 88 ms 11 85.1 0.13
Mobile GPU 34 ms 29 13.4 2.19
FPGA MPSoC 27 ms 37 7.1 5.21

7. Conclusions

Depth estimation algorithms are used in various fields, such as in research and automa-
tion. This paper proposes a plenoptic based approach which works on a single recording of
a raw image from the light-field camera. From the timing point of view, high computation
tasks and large resulting execution time are the biggest challenges of such algorithms. The
existing solution is to use a GPU based system with high computation power to comply
with the computation requirements. However, this solution is expensive from power
consumption perspective and therefore cannot be used in power limited applications, such
as a mobile application. This paper proposes a modified single recording plenoptic camera
based depth estimation algorithm. Moreover, it presents a FPGA based hardware design in
order to optimize the performance of the algorithm by employing inherited parallelization.
FPGA based hardware exploits both temporal and spatial parallelization in the targeted
algorithm. The performance bottleneck is mainly caused by the presence of recursive
operations and large memory access time. Optimization of memory accesses and managing
the resources is a complex and an iterative process. The presented hardware design is
realized and compared with the low-power mobile GPU solution. The results have shown
a considerable improvement in the performance with respect to execution time. It leads
to the conclusion that the presented FPGA hardware design is faster and consumes less
power as compare to both PC-system and mobile GPU based solutions.

Author Contributions: Conceptualization, F.B. and T.G.; methodology, F.B. and T.G.; software, F.B.;
validation, F.B.; formal analysis, F.B. and T.G.; investigation, F.B.; resources, F.B.; data curation, F.B.;
writing—original draft preparation, F.B.; writing—review and editing, F.B. and T.G.; visualization,
F.B. and T.G.; supervision, T.G.; project administration, T.G.; funding acquisition, T.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This work is financed by the Baden-Württemberg Stiftung gGmbH, Germany.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ACP Accelerator Coherency Port
APU Application Processor Unit
ASIC Application-specific Integrated Circuit
BPR Percentage of Bad Pixels
BRAM Block RAM
CPU Central Processing Unit
CT Census Transform
DOF Depth of Field
FF Flip-flop
GPU Graphics Processing Unit

Algorithms 2021, 14, 215 19 of 20

HLS High-level Synthesis
ii Initiation Interval
LUT Lookup Table
MLA Micro-lens Array
OCM On-chip-memory
PL Programmable Logic
PS Processing System
RMSE Root-mean-square Error

References
1. Adelson, E.H.; Wang, J. Single lens stereo with a plenoptic camera. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 99–106.

[CrossRef]
2. Fiss, J.; Curless, B.; Szeliski, R. Refocusing plenoptic images using depth-adaptive splatting. In Proceedings of the 2014 IEEE

International Conference on Computational Photography (ICCP), Santa Clara, CA, USA, 2–4 May 2014; pp. 1–9. [CrossRef]
3. Vaish, V.; Wilburn, B.; Joshi, N.; Levoy, M. Using plane + parallax for calibrating dense camera arrays. In Proceedings of the 2004

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004;
pp. 2–9. [CrossRef]

4. Yang, J.C.; Everett, M.; Buehler, C.; McMillan, L. A Real-time distributed light field camera. In Proceedings of the 13th Eurographics
Workshop on Rendering; Eurographics Association: Aire-la-Ville, Switzerland, 2002; pp. 77–86.

5. Bizai, G.; Peiretti, F.; Salvatelli, A.; Drozdowicz, B. Algorithms for codification, multiperspective and refocusing of light fields:
Implementation and evaluation. In Proceedings of the 2017 XLIII Latin American Computer Conference (CLEI), Cordoba,
Argentina, 4–8 September 2017; pp. 1–7. [CrossRef]

6. Zeller, N.; Quint, F.; Stilla, U. Establishing a probabilistic depth map from focused plenoptic cameras. In Proceedings of the 2015
International Conference on 3D Vision, Lyon, France, 19–22 October 2015; pp. 91–99. [CrossRef]

7. Perwass, C.; Wietzke, L. Single lens 3D-camera with extended depth-of-field. In Human Vision and Electronic Imaging XVII;
Rogowitz, B.E., Pappas, T.N., de Ridder, H., Eds.; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA,
2012; Volume 8291, pp. 45–59. [CrossRef]

8. Zeller, N. Direct Plenoptic Odometry-Robust Tracking and Mapping with a Light Field Camera. Ph.D. Thesis, Technische
Universität München, München, Germany, 2018. Available online: https://dgk.badw.de/fileadmin/user_upload/Files/DGK/
docs/c-825.pdf (accessed on 17 June 2021).

9. Collange, S.; Defour, D.; Tisserand, A. Power Consumption of GPUs from a Software Perspective. In Proceedings of the
International Conference on Computational Science, Baton Rouge, LA, USA, 25–27 May 2009; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 914–923. [CrossRef]

10. Engel, G.; Bhatti, F.; Greiner, T.; Heizmann, M.; Quint, F. Distributed and context aware application of deep neural networks in
mobile 3D-multi-sensor systems based on cloud-, edge- and FPGA-computing. In Proceedings of the 2020 IEEE 7th International
Conference on Industrial Engineering and Applications (ICIEA), Bangkok, Thailand, 16–21 April 2020; pp. 993–999. [CrossRef]

11. Wang, G.; Xiong, Y.; Yun, J.; Cavallaro, J.R. Accelerating computer vision algorithms using OpenCL framework on the mobile
GPU—A case study. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Vancouver, BC, Canada, 26–31 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 2629–2633. [CrossRef]

12. Rister, B.; Wang, G.; Wu, M.; Cavallaro, J.R. (Eds.) A Fast and Efficient Sift Detector Using the Mobile GPU. In Proceedings of the
2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013.

13. Amara, A.; Amiel, F.; Ea, T. FPGA vs. ASIC for low power applications. Microelectron. J. 2006, 37, 669–677. [CrossRef]
14. Kuon, I.; Rose, J. Measuring the Gap Between FPGAs and ASICs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2007,

26, 203–215. [CrossRef]
15. Page, D.S. A Practical Introduction to Computer Architecture; Texts in Computer Science; Springer: Dordrecht, The Netherlands;

London, UK, 2009.
16. Johnston, C.T.; Gribbon, K.T.; Bailey, D.G. Implementing Image Processing Algorithms on FPGAs. Available online: https:

//crisp.massey.ac.nz/pdfs/2004_ENZCON_118.pdf (accessed on 17 June 2021).
17. Downton, A.; Crookes, D. Parallel architectures for image processing. Electron. Commun. Eng. J. 1998, 10, 139–151.:19980307.

[CrossRef]
18. Xu, Y.; Long, Q.; Mita, S.; Tehrani, H.; Ishimaru, K.; Shirai, N. Real-time stereo vision system at nighttime with noise reduction

using simplified non-local matching cost. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg,
Sweden, 19–22 June 2016; pp. 998–1003. [CrossRef]

19. Wang, W.; Yan, J.; Xu, N.; Wang, Y.; Hsu, F.H. Real-Time High-Quality Stereo Vision System in FPGA. IEEE Trans. Circuits Syst.
Video Technol. 2015, 25, 1696–1708. [CrossRef]

20. Draper, B.A.; Beveridge, J.R.; Bohm, A.; Ross, C.; Chawathe, M. Implementing image applications on FPGAs. Object recognition
supported by user interaction for service robots. IEEE Comput. Soc. 2002, 3, 265–268. [CrossRef]

http://doi.org/10.1109/34.121783
http://dx.doi.org/10.1109/ICCPHOT.2014.6831809
http://dx.doi.org/10.1109/CVPR.2004.1315006
http://dx.doi.org/10.1109/CLEI.2017.8226403
http://dx.doi.org/10.1109/3DV.2015.18
http://dx.doi.org/10.1117/12.909882
https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/c-825.pdf
https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/c-825.pdf
http://dx.doi.org/10.1007/978-3-642-01970-8{_}92
http://dx.doi.org/10.1109/ICIEA49774.2020.9101915
http://dx.doi.org/10.1109/ICASSP.2013.6638132
http://dx.doi.org/10.1016/j.mejo.2005.11.003
http://dx.doi.org/10.1109/TCAD.2006.884574
https://crisp.massey.ac.nz/pdfs/2004_ENZCON_118.pdf
https://crisp.massey.ac.nz/pdfs/2004_ENZCON_118.pdf
http://dx.doi.org/10.1049/ecej:19980307
http://dx.doi.org/10.1109/IVS.2016.7535510
http://dx.doi.org/10.1109/TCSVT.2015.2397196
http://dx.doi.org/10.1109/ICPR.2002.1047845

Algorithms 2021, 14, 215 20 of 20

21. Sugimura, T.; Shim, J.; Kurino, H.; Koyanagi, M. Parallel image processing field programmable gate array for real time image
processing system. In Proceedings of the 2003 IEEE International Conference on Field-Programmable Technology (FPT) (IEEE
Cat. No.03EX798), Tokyo, Japan, 17 December 2003; pp. 372–374. [CrossRef]

22. Jinghong, D.; Yaling, D.; Kun, L. Development of image processing system based on DSP and FPGA. In Proceedings of the 2007
8th International Conference on Electronic Measurement and Instruments, Xi’an, China, 16–18 August 2007; pp. 2-791–2-794.
[CrossRef]

23. Birla, M. FPGA based reconfigurable platform for complex image processing. In Proceedings of the 2006 IEEE International
Conference on Electro/Information Technology, East Lansing, MI, USA, 7–10 May 2006; pp. 204–209. [CrossRef]

24. Bhatti, F.; Greiner, T.; Heizmann, M.; Ziebarth, M. A new FPGA based architecture to improve performance of deflectometry
image processing algorithm. In Proceedings of the 2017 40th International Conference on Telecommunications and Signal
Processing (TSP), Barcelona, Spain, 5–7 July 2017; pp. 559–562. [CrossRef]

25. Michailidis, G.T.; Pajarola, R.; Andreadis, I. High Performance Stereo System for Dense 3-D Reconstruction. IEEE Trans. Circuits
Syst. Video Technol. 2014, 24, 929–941. [CrossRef]

26. Li, Y.; Claesen, L.; Huang, K.; Zhao, M. A Real-Time High-Quality Complete System for Depth Image-Based Rendering on FPGA.
IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 1179–1193. [CrossRef]

27. Hahne, C.; Lumsdaine, A.; Aggoun, A.; Velisavljevic, V. Real-Time Refocusing using an FPGA-based Standard Plenoptic Camera.
IEEE Trans. Ind. Electron. 2018, 1. [CrossRef]

28. Pérez, J.; Magdaleno, E.; Pérez, F.; Rodríguez, M.; Hernández, D.; Corrales, J. Super-resolution in plenoptic cameras using FPGAs.
Sensors 2014, 14, 8669–8685. [CrossRef]

29. Perez Nava, F.; Luke, J.P. Simultaneous estimation of super-resolved depth and all-in-focus images from a plenoptic camera.
In Proceedings of the 2009 3DTV Conference: The True Vision— Capture, Transmission and Display of 3D Video, Potsdam,
Germany, 4–6 May 2009; pp. 1–4. [CrossRef]

30. Vasko, R.; Zeller, N.; Quint, F.; Stilla, U. A real-time depth estimation approach for a focused plenoptic camera. In Advances in
Visual Computing; Bebis, G., Boyle, R., Parvin, B., Koracin, D., Pavlidis, I., Feris, R., McGraw, T., Elendt, M., Kopper, R., Ragan, E.,
et al., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 70–80.

31. Lumsdaine, A.; Chunev, G.; Georgiev, T. Plenoptic rendering with interactive performance using GPUs. In Image Processing:
Algorithms and Systems X; and Parallel Processing for Imaging Applications II; Egiazarian, K.O., Agaian, S.S., Gotchev, A.P., Recker, J.,
Wang, G., Eds.; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2012; Volume 8295, pp. 318–332.
[CrossRef]

32. Chang, C.W.; Chen, M.R.; Hsu, P.H.; Lu, Y.C. A pixel-based depth estimation algorithm and its hardware implementation for
4-D light field data. In Proceedings of the Circuits and Systems (ISCAS), 2014 IEEE International Symposium on, Melbourne,
Australia, 1–5 June 2014; pp. 786–789. [CrossRef]

33. Domínguez Conde, C.; Lüke, J.P.; Rosa González, F. Implementation of a Depth from Light Field Algorithm on FPGA. Sensors
2019, 19, 3562. [CrossRef] [PubMed]

34. Fleischmann, O.; Koch, R. Lens-based depth estimation for multi-focus plenoptic cameras. In Pattern Recognition; Jiang, X.,
Hornegger, J., Koch, R., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 410–420.

35. Hog, M.; Sabater, N.; Vandame, B.; Drazic, V. An Image Rendering Pipeline for Focused Plenoptic Cameras. IEEE Trans. Comput.
Imaging 2017, 3, 811–821. [CrossRef]

36. Georgiev, T.; Lumsdaine, A. Depth of Field in Plenoptic Cameras. Available online: https://diglib.eg.org/bitstream/handle/10.2
312/egs.20091035.005-008/005-008.pdf?sequence=1&isAllowed=y (accessed on 17 June 2021).

37. Georgiev, T.; Lumsdaine, A. The multifocus plenoptic camera. In Digital Photography VIII; Battiato, S., Rodricks, B.G., Sampat,
N., Imai, F.H., Xiao, F., Eds.; International Society for Optics and Photonics (SPIE):Bellingham, WA, USA, 2012; Volume 8299,
pp. 69–79. [CrossRef]

38. Raytrix 3D Light-Field Vision. Raytrix|3D Light Field Camera Technology. 2020. Available online: https://raytrix.de/ (accessed
on 17 June 2021).

39. Zabih, R.; Woodfill, J. Non-parametric local transforms for computing visual correspondence. In Computer Vision—ECCV ’94;
Eklundh, J.O., Ed.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 151–158.

40. Honauer, K.; Johannsen, O.; Kondermann, D.; Goldluecke, B. A dataset and evaluation methodology for depth estimation on 4D
light fields. In Computer Vision—ACCV 2016; Lai, S.H., Lepetit, V., Nishino, K., Sato, Y., Eds.; Springer International Publishing:
Cham, Switzerland, 2017; pp. 19–34.

41. Synthetic Light Field Archive. 2020. Available online: https://web.media.mit.edu/~gordonw/SyntheticLightFields/ (accessed
on 17 June 2021).

http://dx.doi.org/10.1109/FPT.2003.1275779
http://dx.doi.org/10.1109/ICEMI.2007.4350799
http://dx.doi.org/10.1109/EIT.2006.252111
http://dx.doi.org/10.1109/TSP.2017.8076049
http://dx.doi.org/10.1109/TCSVT.2013.2290575
http://dx.doi.org/10.1109/TCSVT.2018.2825022
http://dx.doi.org/10.1109/TIE.2018.2818644
http://dx.doi.org/10.3390/s140508669
http://dx.doi.org/10.1109/3DTV.2009.5069675
http://dx.doi.org/10.1117/12.909683
http://dx.doi.org/10.1109/ISCAS.2014.6865253
http://dx.doi.org/10.3390/s19163562
http://www.ncbi.nlm.nih.gov/pubmed/31443285
http://dx.doi.org/10.1109/TCI.2017.2710906
https://diglib.eg.org/bitstream/handle/10.2312/egs.20091035.005-008/005-008.pdf?sequence=1&isAllowed=y
https://diglib.eg.org/bitstream/handle/10.2312/egs.20091035.005-008/005-008.pdf?sequence=1&isAllowed=y
http://dx.doi.org/10.1117/12.908667
https://raytrix.de/
https://web.media.mit.edu/~gordonw/SyntheticLightFields/

	Introduction
	Related Work
	Plenoptic Camera Based Image Processing
	Depth Estimation Algorithm
	Hardware System Design
	Bottleneck Segments
	Temporal Parallelization
	Spatial Parallelization
	Census Transform
	Memory Optimizations

	Evaluation and Results
	Conclusions
	References

