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Abstract: The increasing demand for work-ready students has heightened the need for universities to
provide work integrated learning programs to enhance and reinforce students’ learning experiences.
Students benefit most when placements meet their academic requirements and graduate aspirations.
Businesses and community partners are more engaged when they are allocated students that meet
their industry requirements. In this paper, both an integer programming model and an ant colony
optimisation heuristic are proposed, with the aim of automating the allocation of students to industry
placements. The emphasis is on maximising student engagement and industry partner satisfaction.
As part of the objectives, these methods incorporate diversity in industry sectors for students
undertaking multiple placements, gender equity across placement providers, and the provision for
partners to rank student selections. The experimental analysis is in two parts: (a) we investigate
how the integer programming model performs against manual allocations and (b) the scalability
of the IP model is examined. The results show that the IP model easily outperforms the previous
manual allocations. Additionally, an artificial dataset is generated which has similar properties to the
original data but also includes greater numbers of students and placements to test the scalability of
the algorithms. The results show that integer programming is the best option for problem instances
consisting of less than 3000 students. When the problem becomes larger, significantly increasing the
time required for an IP solution, ant colony optimisation provides a useful alternative as it is always
able to find good feasible solutions within short time-frames.

Keywords: allocation; matching; industry placements; integer programming; ant colony optimisation

1. Introduction

There is an increasing emphasis on Work Integrated Learning (WIL) in universities
and other tertiary education providers [1] As a result, the number of students under-
taking WIL is growing rapidly, and the need to effectively manage the processes in-
volved is increasingly important. The Australian National Strategy of Work Integrated
Learnin (http://cdn1.acen.edu.au/wp-content/uploads/2015/03/National-WIL-Strategy-
in-university-education-032015.pdf, accessed 21 July 2021) proposes actions in eight key
areas, including: (1) developing university resources, processes and systems to grow WIL
and engage business and community partners and (2) addressing equity and access issues
to enable students to participate in WIL.

The problem of allocating students to industry placements is of significant interest.
Several factors need to be considered in order to achieve an acceptable allocation. In partic-
ular, we consider the Industry Based Learning (IBL) allocation problem where students are
allocated to industry placements. The aim is to provide an excellent educational experience
to students whilst maximising industry partner satisfaction (and thus engagement). In ad-
dition, the allocation aims to provide gender diversity within placements and ensures that
students allocated consecutive placements experience a diversity of sectors. Constraints
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arising from inclusive practices are increasingly important. For example, ref. [2] discusses
this in the context of resettlement of refugees and comments that ’the remaining ques-
tion is how to design mechanisms that cater to diversity objectives while still satisfying
desirable properties’.

We have considered real problem instances, but it is notable that the number of student
placements have been increasing overtime. Moreover, in certain university departments
(e.g., nursing), the number of placements to be filled can involve a very large number of
students and placements (>2000). A recent survey [3] of the placement of students in nurse
practitioner programs in the United States found that only 12% of facilities used electronic
means for placing students. They comment that ‘an investment in these platforms could
reduce faculty time for securing clinical placements’. Discussing a related problem of
assigning students to medical schools, ref. [4] investigate the need to improve efficiency
and reduce costs while ensuring that the pairing of students to medical schools is fair and
ensures that students are allocated to suitable schools.

Integer programming (IP) is an effective approach to solving optimisation problems [5].
The IBL problem is one that can be modeled effectively as an IP, particularly because the
underlying structure is that of the assignment or bi-partite matching problem [6], which can
be solved efficiently by commercial solvers. It is known that a linear assignment problem
(LAP) can be solved in a polynomial time, and an IP problem is categorised as an NP-
complete problem from a complexity point of view [7]. However, when problem instances
are large and consist of a very large number of variables and/or complicating constraints,
the IP can struggle to find feasible solutions, let alone prove optimality. In such cases,
meta-heuristics [8] provide an alternative way of generating good solutions in reasonable
time-frames (note that metaheuristics on their own have limitations; in particular, they can-
not provide guarantees of solutions they find and they often struggle with problems which
consist of nontrivial hard constraints) and in this study ant colony optimisation (ACO) [9]
is the meta-heuristic of choice. ACO encompasses a collection of heuristics originally based
on the behaviour of ants, which can be used to solve optimisation problems efficiently [9].

Compared to previous studies that investigate similar problems, the IBL problem is
unique in that it considers aspects such as partner happiness and gender equity. Moreover,
to solve this problem, we develop an exact method (IP) and heuristic method (ACO)
to tackle the problem. The motivation for using ACO is that we can model potential
solutions to the problem using sequences of students. ACO has proven to be effective
in previous studies which modelled the problem in this way [9]. The results of these
algorithms are compared with the actual schedules that were manually created using
data from previous semesters at the Faculty of IT, Monash University. Additionally, we
generate problem instances with varying numbers of students, companies and placements,
which are generated based on data for previous semesters. These problem instances allow
testing of the algorithms for scalability and provide insight into how the algorithms would
perform on allocation problems such as those arising in other domains that have much
larger allocation requirements (for example, nursing).

This study makes four contributions:

• Introduces a real-world allocation problem of allocating university students to indus-
try placements;

• Identifies key components of real data and uses this information to generate meaning-
ful artificial data, which can serve as a benchmark dataset for the community;

• Develops exact and heuristic methods based on IP and ACO to solve the alloca-
tion problem;

• Investigates the performance of these methods on real data and analyses different
aspects of the problem (e.g., proportion of students to placements) using artificial data.

The paper is organised as follows. In Section 3, the IBL problem is described; then, in
Section 4, a model for this problem is given. The ACO approach is presented in Section 5.
We then describe the random generation of instances of the IBL problem based on distri-
butions from real data in Section 6. The results and performance of the IP and ACO for
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these instances is detailed in Section 7. The paper concludes in Section 8 and possibilities
for future work are discussed.

2. Previous Work

The problem of finding matchings commonly occurs in a number of real-world situ-
ations [6]. The basic idea underlying the problem is to identify pairings between objects
in any two given sets. Hall’s marriage problem [10] is a classic matching problem, where
given a set of men and a set of women, the task is to maximise the number of pairs of men
and women that can be ‘married’. Similarly, a number of allocation problems include those
where students need to be allocated to colleges [11] or projects [12], residents allocated
to hospitals [11,13], and roommates allocated to rooms [14]. In this paper, we consider
allocations of students to placements, and so without loss of generality will refer to the two
sets as ‘students’ and ‘placements’.

In many cases, the set of students and (or) the set of placements have a list of pre-
ferred partners in the corresponding set. This is referred to as matching under preferences
(e.g., see [6]). Preferences can be two-sided or, alternatively, only one set may have prefer-
ences. Preferences are not given to every member of the set, and a member’s preference
can be totally or partially ordered. For example, a placement may prefer student s1 over
s2, but be indifferent between possible matchings with students s1 and s3. This gives rise to
problems such as the stable matching problem (a matching is stable if there are no two pairs
in the matching, say (s1, p1) and (s2, p2), where s1 prefers p2 to p1 and s2 prefers p1 to p2)
with partially ordered and incomplete lists (SMPI) and the hospital/residents problem
with partially ordered lists (HRP) [15]. In many of these cases, the problem is NP-hard
(e.g., [15]).

Irving defines three types of stable matchings [16]. A weak stable matching is one
where there are no pairs, (s1, p1) and (s2, p2), in the matching such that s1 prefers p2 to p1
and s2 prefers p1 to p2. Strong stability occurs where, for any two pairs (si, pi), i = 1, 2,
student s1 strictly prefers their own partner to p2 and s2 either strictly prefers p2 to p1 or
equally prefers both p1 and p2. (Note: in this case at most one of the two pairs can hold an
equal preference.) Super-stability occurs where, for any two pairs (si, pi), i = 1, 2, each si
strictly prefers their own partner to the other’s partner. Irving and Manlove [17] discuss
the case where there are ties in the preference lists which may also be incomplete. In this
case, finding a maximum weakly stable matching is NP-hard. According to the findings
of [16,17], the WIL problem is similar to a strong stable matching problem with ties in the
preference lists and incomplete preference lists, and hence it is an NP-hard problem.

Several types of matching, assignment and allocation problems have been solved
with IPs [18–21]. Klaus et al. [18] provide an overview of matching under preferences
and thoroughly review the literature in the area. Cholette [19] develops an embellished
transportation IP model to find a matching between wineries to distributors. In at least
one example, the model proposed a matching that resulted in a long-term partnership.
Al-Yakoob and Sherali [20] examine the problem of assigning employees to 86 different
gas stations distributed around Kuwait. They consider a multi-stage mixed integer pro-
gramming approach, where in the first stage employees are assigned to stations and in the
second stage individual shifts for the employees are determined. Naik et al. [21] consider
the problem of online resource allocation in a grid environment. They use a linear program-
ming approach, which is able to efficiently find new solutions when new information is
available. Ref. [22] use an IP which optimises utility (student preference ratings) to allocate
students to capstone projects with the constraint that each project requires a combination
of students from different disciplines.

Meta-heuristics have also been applied to matching problems [23,24]. Harper et al. [23]
investigate a genetic algorithm for assigning students to projects with multiple objectives.
Their proposed approach compares well with integer programming, but they observe that
nonlinear objectives can be handled by their method, which is more suitable for project
assignment. Gupta et al. [24] apply a genetic algorithm for matching security vulnerabilities
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to security profiles within an organisation. They show that the genetic algorithm is able to
efficiently achieve maximum vulnerability coverage with a minimum cost profile.

ACO is proven on a number of problems, such as job scheduling [25], traffic assign-
ment [26], image edge detection [27], and assembly line balancing [28,29]. There have also
been studies with ACO and optimisation of task allocation [30,31] and multi-objective
resource allocation [32,33]. Shyu et al. [31] show that ACO can be effective on the cell
assignment problem in PCS networks where cells need to be assigned to switches while
minimising cable and hand-off costs.

3. Problem Specification

The IBL Problem (IBLP) can be formally defined as follows. A set of n students
S = {s1, . . . , sn} are to be allocated to industry placements offered by m companies
C = {c1, . . . , cm}. Each company c ∈ C has a limited number, rc, of placements avail-
able. The total number of placements available is defined as R = ∑

c∈C
rc. Each company

c ∈ C is associated with one or more of b business sectors. Let Bi ⊆ C denote the companies
associated with business sector i and Q = {B1, B2, . . . , Bb}.

Each company interviews a subset of the students and gives each interviewed student
a preference rating. The preference rating assigned to student s by company c is denoted by
psc ∈ {1, 2, 3}. The following is the meaning of the preference values:

Rating 1: The company has a strong preference for the student;

Rating 2: The company has a preference for the student but would prefer a student with rank 1;

Rating 3: The company does not have a placement that is suitable for the student.

Students who are not interviewed by a company are automatically given a rating of 3
by that company. The following data are used in the allocation:

1. Gender: the students are partitioned into two subsets of S which are denoted female
F ⊆ S and male M ⊆ S. Some companies explicitly require an equitable gender mix;

2. Degree type: there are d different degree types. For example, students may be
enrolled in a computer science, software engineering, or an information technology
degree. Companies may have a student preference partly based on degree type;

3. Previous placement sector: For each student s, the list of the sectors of any previous
placements undertaken is denoted by Qs, which is defined as follows:

Qs =
⋃

i∈Es⊂{1,...,b}
Bi (1)

where Es is the set of business sectors for the student.

There are three sets of constraints to be satisfied when creating a feasible allocation:
(a) if there are more students than placements available, then all placements should be filled
(preferences permitting), (b) if not all placements can be filled, companies requiring fewer
placements should be given preference, and (c) students taking more than one placement
cannot undertake more than one placement in a given sector.

4. Integer Programming Model

A preliminary IP model is created for the IBLP, which is defined as follows. We define
binary variables x for allocating students to companies as follows: xsc = 1 if student
s is allocated to company c. Additionally, binary variables y are defined for counting
purposes. Let Ac be the number of students allocated to company c. The vector yc gives
a unary representation of Ac. Here, yck = 1 if k ≤ Ac and 0 otherwise. The length of
this unary vector is modulo |S| = n for every company. For example, yc = [1, 1, 1, 0, 0]
would represent three students allocated to company c from a total of |S| = 5 students
available. This representation enables an efficient way to evenly distribute students among
companies when there are insufficient students to fill the placements. The details of the
notation used for the model are summarised in Table 1.
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Table 1. The table of notations used in the IP model.

Notation Definition

Sets

S The set of n students S = {s1, . . . , sn}
C The set of m companies C = {c1, . . . , cm}
Bi The set Bi ⊆ C of companies in sector i ∈ [1, b]

Q The set of sets of companies belonging to each of the sectors: Q = {B1, B2, . . . , Bb}
Qs The set of companies belonging to sectors where student s has been previously placed

M The set of male students M ⊆ S

F The set of female students F ⊆ S

Parameters

rc The number of available placements in company c

R The total number of placements available: R = ∑
c∈C

rc

psc psc ∈ {1, 2, 3} is the preference rating of student s by company c

vc Constants which are used to prioritise companies with relatively low numbers of placements

Variables

xsc Binary variables where xsc = 1 if student s is allocated to company c

yc
A vector of binary variables providing a uniary representation of the number of students
allocated to company c

There are multiple components in the objective function of the problem associated
with company preferences. The aim is to maximise the number of allocations at the same
time whilst respecting gender equity. The IP model is as follows:

Maximise ∑
s∈S

∑
c∈C

(L− psc)xsc − ∑
c∈C

n

∑
k=1

vcyck −
(

∑
c∈C

∣∣∣∣∣ ∑s∈M
xsc − ∑

s∈F
xsc

∣∣∣∣∣
)

(2)

Subject to ∑
c∈C

xsc ≤ 1 ∀s ∈ S (3)

∑
s∈S

xsc ≤ rc ∀c ∈ C (4)

xsq = 0 ∀s ∈ S, ∀q ∈ Qs (5)

∑
s∈S

xsc −
n

∑
k=1

yck = 0 ∀c ∈ C (6)

yck − yc(k−1) ≤ 0 ∀c ∈ C, ∀k ∈ {2, . . . , n} (7)

xsc, yck ∈ {0, 1}, ∀s ∈ S, ∀c ∈ C, ∀k ∈ {1, . . . , n} (8)

The problem is defined as a maximisation problem, which means the penalty terms
are negated in the objective function. The first term in the objective sums the allocated
preference values for each student s allocated to company c using the preference weights psc.
Here, a constant L is used to ensure the objective values are positive valued. (In principle, L
is not required, though, positive values makes comparisons between the approaches more

straightforward.) The second term includes a weight vc =
rc
∑

k=1
k, where rc is the number of

students requested by company c, to give priority to companies requesting smaller number
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of placements in case the total number of students is less than the total number of available
placements. The third term in the objective ensures an equitable gender mix is provided
for those companies that request it.

Constraint (3) ensures that a student is assigned to at most one company. Con-
straint (4) limits the number of students allocated to a company to be at most the number
of placements available. Constraint (5) is the sector constraint ensuring a student cannot be
allocated to a company with the same sector as any of the student’s previous placements.
The notation Qs is used to denote the set of companies belonging to the same sector(s) as
the previous placements of student s, which is defined in (1). Constraints (6) and (7) ensure
that the appropriate weight is applied to the number of students assigned to a company.

An Illustration of the Problem

In this section, an example of the IBL problem is presented to further illustrate the IP
model. There are three students S = {s1, s2, s3}, where student s3 is female and the others
are male. Moreover, there are two companies C = {c1, c2} with two and one placement(s)
available, respectively. Furthermore, assume that student s1 has previous experience in the
business sector of Company c1. Table 2 provides the list of preferences.

Table 2. The table of preferences and the number of available placements of companies.

Student
Company

c1 c2 Gender

s1 p11 = 1 p12 = 3 male

s2 p21 = 2 p22 = 1 male

s3 p31 = 3 p32 = 2 female

rc r1 = 2 r2 = 1

vc v1 = 3 v2 = 1

With these parameters fixed, the IP model optimises the allocation of students to
companies respecting the preferences and constraints. The model resulting from this
problem description is provided in Appendix A. The optimal solution of this IP model
is x11 = 0, x12 = 1 (Student 1 is allocated to Company 2), x21 = 1 (Student 2 is allocated
to Company 1), x22 = 0, x31 = 1 (Student 3 is allocated to Company 1), x32 = 0. Here,
y1 is unary [1, 1, 0], that is, Company 1 has two students, and y2 is unary [1, 0, 0], that is,
Company 2 has one students.

5. Ant Colony Optimisation

ACO is proven on a number of practical problems [9], and among the ACO implemen-
tations,Max-Min Ant System (MMAS) has been one of the most effective practical ACO
variants [34]. Hence, this approach is used as the basis for our ACO implementation for
the IBL problem. We also found that the heuristic selection of the ant colony system [35]
provides improved intensification; hence, we use this step for the selection of the solution
components. Algorithm 1 shows theMax-Min Ant System applied to the IBL problem.

A solution is represented by π, which is a vector of placements. The length of π
corresponds to the number of students and πi = j means that student i is allocated to
placement j. (Note that this is not an allocation to a company but to a specific placement of
a company. This difference is important in the case where a company requires more than
one placement.) The input to the algorithm is an instance of the problem. The pheromone
trails are initialised (Initialise(T )), where τij =

1
pij

is the desirability of allocating student i
to placement j.
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Algorithm 1Max-Min Ant System for the IBL allocation problem.

1: Input: An IBL instance
2: Initialise(T )
3: while termination conditions not satisfied do
4: for j = 1 to nants do
5: π j := AllocateStudents(T )
6: end for
7: πib := arg minj=1,...,nants

f (π j)

8: πbs := Update(πib)
9: T := PheromoneUpdate(πbs)

10: end while
11: return πbs

A number of solutions (nants) to the problem are constructed in Lines 4–5. A solution is
built incrementally by allocating a student to a placement using the pheromone information
(AllocateStudents(T )). If a company preference for a student is 3 (not desired), the student
is not allowed to be allocated to the corresponding placement(s). A placement for a student
is selected using one of two rules. First, a random number is generated q ∈ (0, 1] and
compared with the parameter q0. If q < q0, placement k is chosen for student i according to:

k = argmax
j∈C

τij · ηij (9)

Otherwise, if q ≥ q0, placement k is chosen probabilistically according to:

P(πi = k) =
τik · ηik

∑j∈C τij · ηj
(10)

Here, η is a heuristic factor that biases the selection towards higher preference place-
ments, i.e., ηij =

1
pij

for student i and placement j.
In Line 7, the iteration best solution is determined as the one with the minimum

objective value (Equation (2)). The global best solution (Line 8) is then updated if a new
better iteration of the best solution was found. Finally, in Line 9, the pheromone trails are
updated in two steps. First, all solution components that are not found in the global best
solution have evaporation applied:

τij = τij · (1.0− ρ) (11)

Otherwise, the solutions components are updated with the allocation found in the
global best solution. In addition to evaporation, this step additionally includes a reward
factor to favour components in the global best solution. The pheromones are updated
according to:

τij = τij · (1.0− ρ) + δ (12)

where δ = Q/ f (πbs), f (πbs) is the objective value of the global best solution determined
according to Equation (2) and Q is selected such that 0.01 ≤ δ ≤ 0.1. The learning rate, ρ,
was chosen to be relatively high at 0.1, and determined on a subset of the instances from
the values [0.1, 0.05, 0.01].

6. Generating Problem Instances

The problem instances were generated using a number of distributions based on
actual data from instances of the Faculty of Information Technology’s Industry Based
Learning (IBL) program. The distributions used were the sector distribution, the degree
distribution, the student distribution, the preference distributions, and the number of
placement distributions:
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1. Sector distribution: the IBL industry partner companies come from a variety of
sectors (e.g., banking, consulting, energy, not for profit). The sector distribution gives
the probability distribution of a partner company belonging to a given sector. This
distribution is based on the frequencies of partner companies’ sectors based on
historical data.

2. Degree distribution: students from a variety of degrees take part in the IBL program.
The degree distribution gives the probability of a student belonging to a given de-
gree. This distribution is based on the frequencies of student’s degree type based on
historical data.

3. Student rating distribution: the overall performance of students during the selection
interviewing process depends partially on the students’ abilities (soft and hard skills).
Three categories were used to denote a student’s rating level: strong, medium and
weak based on the number of 1s the student received. A student receiving at least ten
1s was rated as ‘strong’; a student receiving between three and nine 1s was rated as
‘medium’, and a student with at most two 1s was rated as ‘weak’.

4. Preferences distributions: for each student, the likelihood of being allocated a 1, 2
or 3 depends on a number of factors. If a student is not interviewed by a company,
by default they will be allocated a rating of 3 for that company’s placements. Not
all degree types are suitable for all the company sectors. For example, a company in
sector X may prefer students in degree Y.
Based on historical data, a matrix of preference distributions for each pair (company
sector and the degree of the student) was obtained.
For each given sector, degree pair, we weighted the preference distribution [a, b, c],
where a, b, and c are the frequency of 1s, 2s and 3s, respectively, as follows. For a
student rated as medium, the distribution is unchanged. For a student rated as weak,
the distribution becomes[(1− 3α)a, (1 + α)b, (1 + 2α)c], and for a student rated as
strong, the distribution becomes [(1 + 3α)a, (1− α)b, (1− 2α)c] where α ∈ [0, 1/3].
A value α = 0.01 means that on average a strong student will be ranked a ‘1’ more
often than a weak student.

5. Number of placements: different partners offer different numbers of placements in
a given placement period. Additionally, the same partner might offer a different
numbers of placements in different placement periods. For each sector, a distribution
based on the frequencies of the number of placements offered by companies in this
sector was used. This distribution is based on the historical data.

To provide further information about the distributions, the bar charts of the sector
distribution and the degree distribution are provided in Figure 1. The exact names are
removed and the terms degi and secj are used for privacy reasons.

Figure 1. Bar charts representing the distributions of sectors and degrees used in generating the artificial data.
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7. Experiments and Results

Two sets of experiments were undertaken. The first set of experiments compares the
IP model with actual allocations from previous semesters. The second set of experiments is
to determine how the model scales, as allocations must be generated in short run-times.
There are two aspects to investigate in the second set of experiments. These are to test how
the IP model scales with problem size (numbers of students and companies) and also to
see how the performance varies with respect to the ratio of the number of students to the
number of companies.

The parameter settings forMMAS were determined by using previous studies as a
guide and fine-tuning by hand. The initial pheromone values were chosen as τik =

1
pij

and
nants = 10, which is the number of solutions constructed per iteration. To choose between
deterministic or probabilistic selection, q0 = 0.9 was determined from the range [0.1, 0.2,
0.5, 0.8, 0.9]. The learning rate ρ = 0.1 was determined from the range [0.1, 0.05, 0.01].

7.1. Integer Programming and Real Data

The IP model was run on real datasets. The original allocations were built by hand
taking several hours over a two week period of the scheduler’s time. In a few cases in
the manual allocation, private arrangement students were allocated to companies that
had not interviewed them. This process was incorporated in the simulations by making a
comparison with these students included and excluded from the student data set. In the
former case, their ranking was given a value of 2.

The results are presented in Table 3. The first column specifies the year and semester
(Year-Sem.). The second and third columns specify the number of students and the number
of companies for the corresponding year/semester. For the original allocation, we report the
average allocation (Avg.), the number of first preferences assigned (#1 s) and the number of
last preferences assigned (#3 s). (Note: the IP model does not allow these by implementing
it as a hard constraint.) For the IP model, the average allocation (Avg.), number of first
preferences (#1 s) and time taken in seconds (Time (s)) to allocate are reported.

Table 3. Comparison between the IP model and actual (manually created) schedules. Adjusted runs
(*) remove students who were not interviewed by any of the partners, as there are no preferences
for these students. For 2012-1 and 2012-2, the IP model is unable to place 1 student, and for 2013-2,
two students.

Original Allocation IP Model

Year-Sem. Stu. Comp./Depts. Avg. #1 s #3 s Avg. #1 s Time (s)

2012-1 43 21 1.35 28 0 1.21 32 0.073
2012-1 * 42 21 1.33 28 0 1.21 32 0.084

2012-2 62 33 1.29 45 1 1.10 55 0.141
2012-2 * 61 33 1.28 45 1 1.10 55 0.135

2013-1 46 31 1.39 29 2 1.24 35 0.140

2013-2 53 31 1.38 39 6 1.04 46 0.123

2014-1 38 31 1.37 25 1 1.44 34 0.090

2014-2 60 41 1.24 46 2 1.05 57 0.162

2015-1 51 47 1.39 31 0 1.21 40 0.148
2015-1 * 50 47 1.38 31 0 1.20 40 0.147

2015-2 75 65 1.25 58 2 1.09 68 0.265

2016-1 44 52 1.41 26 0 1.25 33 0.139
2016-1 * 42 52 1.38 26 0 1.21 33 0.138

2016-2 82 55 1.13 71 0 1.02 80 0.257
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In all but one instance, the IP model achieves better average allocation outcomes
than the manual allocation. The only exception is 2014-1, where the IP model has a
higher average allocation. The reason this happens is because the sector constraints were
overridden by the manual allocation and as this is implemented as a hard constraint in the
IP model, the IP is unable to find improvements. However, if this constraint is relaxed in
the IP model, the average allocation improves to 1.15, which is significantly better than the
manual allocation.

7.2. Investigating Artificial Data

Problem instances were generated using the respective distributions detailed in
Section 6. The numbers of students and the numbers of companies were limited to values
that would be practically feasible. The number of students ranged between 250 and 900
and the number of companies ranged between 200 and 600. The number of students was
chosen to be at least as many as the number of companies.

The problem generator and the IP model were implemented in Python 3.6. In order to
solve the IPs, Gurobi 8.0.0 [36] was used. Each run was given 30 min of wall-clock time.
During an actual allocation, 30 min was seen as a time limit that was acceptable. Since the
real instances always had less than 100 students, the run-times were within a second. For
those instances which could not be solved in the 30 min limit, an additional run with a limit
of 2 h was conducted to determine if any solution could be found. ForMMAS, 25 runs
per instance were conducted and the average values and associated standard deviations
across all the runs are reported.

Results

Tables 4 and 5 present the results of the IP model andMMAS on problem instances
generated by the various distributions discussed in Section 6. The first two columns
specify the number of students (Stu.) and companies (Comp.), respectively. The next four
columns specify the criteria used to measure the quality of solutions (three columns) and
the time taken (in seconds) by the IP. The first is #1 s, or the number of students assigned
to companies with a preference rating of 1. The larger the number of students with #1 s,
the better the solution. Second, Avg. or the average allocation of student preferences
assigned to the companies in a solution. Third, Obj is objective value in Equation (2).
The next six columns are associated withMMAS. Since 25 runs per instance withMMAS
were conducted, standard deviations (SDs) associated with each criteria are also shown.

For most instances (up to 3000 students and 3000 placements), the IP is able to find
optimal solutions, often quite quickly. The IP solutions are better than theMMAS solu-
tions considering number #1 preferences and average allocations for all these instances.
When the proportion of students to companies is high (25% and 50%), solutions with
students having a preference of 1 are found for all placements. Beyond 3000 students,
the IP struggles to find solutions within the 30 min time limit. In these cases,MMAS finds
solutions, but it is not possible to quantify their quality. Despite no guarantee on the quality
of the solution, at the very least a feasible solution to any large instance can be found within
five minutes. For real problems, these solutions can be provided to the industry partners in
lieu of a manual allocation that can be very problematic in construction.

Not surprisingly, the IP run-times progressively increase as the problem size increases.
Runs take more than a minute when there are more than 1000 students and 750 compa-
nies. However, this is still a feasible time-frame to obtain good solutions. As previously
discussed,MMAS provides an alternative when the IP run-times become too large. This
leads to a distinct advantage in real student allocation systems, where solutions can be
built, modified (e.g., incorporating a constraint such as a student must not be allocated to a
company), and re-built quickly if the user is unhappy with the allocation for some reason.



Algorithms 2021, 14, 219 11 of 17

Table 4. The results of the IP model andMMAS in instances with varying number of students
(250–900) and companies (200–700). Stu.: number of students; Comp.: number of companies; #1 s:
number of times a rating of 1 was achieved; Avg.: average allocation.

IP MMAS

Stu. Comp. #1 s Avg. Obj. Time (s) #1 s SD Avg. SD Obj. SD

200 50 63 1.00 441 0.69 60.40 1.06 1.03 0.02 431.40 1.06
200 100 120 1.00 852 1.36 109.00 1.98 1.08 0.02 834.00 1.98
200 150 173 1.14 1419 3.15 142.40 3.22 1.29 0.02 1385.08 3.20
200 200 106 1.47 1442 3.22 76.36 3.58 1.62 0.02 1405.32 4.83
300 75 109 1.00 777 1.90 63.84 2.91 1.41 0.03 724.84 2.91
300 150 223 1.00 1590 3.70 195.08 2.78 1.12 0.01 1558.08 2.78
300 225 271 1.00 1944 5.63 267.92 1.65 1.01 0.01 1933.92 1.65
300 300 258 1.14 2272 7.73 202.44 4.61 1.33 0.02 2164.00 8.51

400 100 120 1.00 867 2.80 67.88 1.37 1.43 0.01 809.88 1.37
400 200 258 1.14 2070 5.82 163.04 4.70 1.45 0.02 1968.04 4.70
400 300 320 1.20 2760 14.30 285.72 2.47 1.26 0.01 2668.64 11.56
400 400 322 1.15 2857 14.34 293.56 3.73 1.21 0.01 2715.44 12.67
500 125 188 1.00 1324 5.35 175.04 1.25 1.06 0.01 1304.04 1.25
500 250 342 1.00 2450 11.38 326.88 1.86 1.04 0.01 2427.88 1.86
500 375 388 1.12 3203 17.60 369.64 1.67 1.16 0.00 3131.76 7.23
500 500 420 1.15 3688 23.51 391.92 2.26 1.19 0.01 3512.96 10.04

600 150 196 1.00 1400 6.80 187.68 1.54 1.04 0.01 1386.68 1.54
600 300 352 1.00 2552 13.82 311.28 2.11 1.11 0.01 2504.28 2.11
600 450 482 1.12 3966 35.46 461.24 2.50 1.16 0.01 3875.40 7.26
600 600 446 1.21 4227 33.57 442.24 1.58 1.21 0.00 4055.44 11.57
700 175 242 1.00 1723 11.02 210.48 2.33 1.13 0.01 1684.48 2.33
700 350 496 1.00 3491 23.51 402.08 2.48 1.19 0.01 3394.08 2.48
700 525 571 1.18 4983 36.54 490.48 5.39 1.29 0.01 4762.24 16.04
700 700 399 1.43 5008 47.05 282.76 8.08 1.57 0.01 4486.56 21.27

800 200 249 1.16 2061 12.55 111.92 3.59 1.62 0.01 1918.92 3.59
800 400 356 1.34 3690 26.59 212.56 3.43 1.61 0.01 3539.56 3.43
800 600 266 1.63 4875 67.95 240.84 2.85 1.66 0.00 4704.36 12.93
800 800 302 1.62 5641 65.46 261.48 2.82 1.67 0.00 5399.92 7.42
900 225 325 1.00 2301 19.34 118.00 0.85 1.64 0.00 2089.00 0.85
900 450 377 1.39 4158 40.76 221.84 2.87 1.64 0.00 3995.84 2.87
900 675 614 1.32 6186 62.17 518.16 6.32 1.42 0.01 6019.64 8.04
900 900 753 1.16 6753 85.79 501.08 11.47 1.44 0.01 6280.96 16.70

The objective criteria are investigated further in Figures 2–4, using data with at most
2500 students. Larger instances are not considered since the IP model often fails to find
solutions within the time limit. Figure 2 shows the difference in #1 preferences from
MMAS to the IP Model (MMAS−IP

IP ). The chart on the left splits the results by student
numbers, whereas the figure on the right splits the results by the proportion of students
to placements ([0.25, 0.5, 0.75, 1.0]). Firstly, regarding the number of students, we see that
the differences increase with increasing problem size, i.e.,MMAS does not scale well.
However, once the problem instances are very large (>2000 students) the advantage of the
IP model is diminished. In fact, as it is seen in Table 5, if the problem instances are very
large,MMAS is by far the preferred method since on occasion the IP model struggles
to even find solutions. On examining the chart to the right of Figure 2, we see that in the
datasets with low proportions (0.25), the differences betweenMMAS and the IP model
are large. The difference reduces with increasing proportions (0.5 and 0.75) followed by a
slight increase when the proportion is 1.0. This is not surprising since when the proportions
of placements are low, the IP model is significantly more efficient and is able to find the
optimal solutions.
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Table 5. The results of the IP model andMMAS on instances with varying number of students
(250–900) and companies (200–700). Stu.: number of students; Comp.: number of companies; #1 s:
number of times a rating of 1 was achieved; Avg.: average allocation.

IP MMAS

Stu. Comp. #1sr Avg. Obj. Time (s) #1 s SD Avg. SD Obj. SD

1000 250 350 1.00 2485 20.69 167.88 2.42 1.52 0.01 2295.88 2.42
1000 500 659 1.05 4926 45.13 433.64 7.50 1.38 0.01 4693.64 7.50
1000 750 620 1.38 6823 76.93 430.20 6.14 1.57 0.01 6577.32 6.67
1000 1000 464 1.54 7165 114.53 314.24 8.65 1.69 0.01 6738.84 11.25
1200 300 479 1.00 3387 32.43 187.48 4.47 1.61 0.01 3090.48 4.47
1200 600 902 1.00 6372 63.72 575.88 7.24 1.36 0.01 6041.88 7.24
1200 900 852 1.29 8295 197.89 684.20 10.30 1.43 0.01 8070.72 13.05
1200 1200 1150 1.04 9134 169.86 840.80 10.83 1.30 0.01 8484.72 17.66

1400 350 481 1.00 3437 53.28 234.24 3.74 1.51 0.01 3185.24 3.74
1400 700 723 1.30 7025 107.78 417.48 4.40 1.60 0.00 6714.48 4.40
1400 1050 776 1.45 9475 139.75 583.60 10.23 1.58 0.01 9194.16 10.18
1400 1400 788 1.44 10,159 251.00 654.60 8.82 1.53 0.01 9611.12 12.17
1600 400 564 1.00 4014 72.83 252.48 2.42 1.55 0.00 3695.48 2.42
1600 800 768 1.33 7702 179.50 521.64 4.77 1.54 0.00 7450.64 4.77
1600 1200 906 1.43 10,932 191.22 707.00 6.37 1.55 0.00 10,408.52 11.53
1600 1600 902 1.44 11,617 322.23 698.36 7.17 1.56 0.00 10,917.16 11.05

1800 450 600 1.00 4297 91.67 284.40 2.37 1.53 0.00 3976.40 2.37
1800 900 949 1.27 8904 262.27 580.72 5.36 1.55 0.00 8530.72 5.36
1800 1350 1020 1.43 12,298 246.36 798.00 5.77 1.56 0.00 11,867.20 7.66
1800 1800 1276 1.29 13,295 772.45 987.04 11.07 1.45 0.01 12,411.96 15.25
2000 500 652 1.00 4639 112.73 529.84 4.22 1.19 0.01 4509.84 4.22
2000 1000 1395 1.00 9925 283.88 1135.68 8.93 1.19 0.01 9660.68 8.93
2000 1500 1916 1.04 14,266 335.39 1511.16 12.21 1.24 0.01 13,652.52 14.24
2000 2000 1948 1.03 15,351 549.03 1539.72 12.02 1.23 0.01 14,288.28 11.87

2500 625 857 1.00 6073 216.84 660.68 4.56 1.23 0.01 5869.68 4.56
2500 1250 1712 1.00 12,209 884.32 1286.00 6.95 1.25 0.00 11,776.00 6.95
2500 1875 2478 1.01 17,895 1402.82 1966.48 15.04 1.21 0.01 17,238.04 28.29
2500 2500 2500 1.00 19,292 1586.59 2036.44 15.70 1.19 0.01 17,993.36 17.09
3000 750 1005 1.00 7168 354.08 879.36 10.22 1.12 0.01 7035.36 10.22
3000 1500 2033 1.00 14,519 777.97 1698.75 8.13 1.16 0.00 14,177.75 8.13
3000 2250 - - - 1800.00 2370.88 15.28 1.21 0.01 20,819.96 16.30
3000 3000 3000 1.00 23,126 1361.27 2321.92 23.58 1.23 0.01 21,458.24 14.66

3500 875 1232 1.00 8766 1047.17 993.52 10.33 1.19 0.01 8522.52 10.33
3500 1750 - - - 1800.00 1948.61 7.61 1.19 0.00 16,594.61 7.61
3500 2625 - - - 1800.00 2662.12 11.65 1.24 0.00 24,192.00 14.27
3500 3500 - - - 1800.00 2743.84 13.72 1.22 0.00 25,022.63 16.98
4000 1000 1514 1.00 10,685 1893.59 1218.71 3.88 1.19 0.00 10,385.71 3.88
4000 2000 2784 1.00 19,755 2037.15 2210.61 6.59 1.21 0.00 19,176.61 6.59
4000 3000 - - - 1800.00 3179.00 17.73 1.20 0.00 27,805.08 12.89
4000 4000 - - - 1800.00 3324.33 22.52 1.17 0.01 28,407.67 10.16

Figure 3 shows a breakdown of the average allocations for the IP model by proportion
of student to placements ([0.25, 0.5, 0.75, 1.00]). In low proportions of placements to
students (0.25), we see that the average allocation is always close to 1.0, demonstrating that
most of the placements were satisfied with #1 preferences, whereas, when the proportions
become higher and there are more placements to fill, it is more difficult for a company
to obtain its ideal preference/s. This is expected since if there are very few placements
and many students (0.25), several first choice students can be allocated to each placement,
whereas, at the other end of the scale with one placement per student (1.0), unless there are
many (possibly unique) first choice students for every placement, an average allocation 1.0
can never be achieved.
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Figure 2. The % difference from MMAS to the IP model with respect to #1 Prefs. On the left, results are presented
as averages over number of students. For example, 600–900 is the average for the problem instances in the range of
600–900 students. On the right, the results are split by proportion of placements to students [0.25, 0.5, 0.75, 1.00].

Figure 3. The average allocation for the IP split by proportion of placements to students [0.25, 0.5,
0.75, 1.00].

Figure 3 shows a breakdown of the average allocation forMMAS by proportion of
student to placements ([0.25, 0.5, 0.75, 1.00]). First, we note that the allocations are generally
in a tight band, slowly increasing with increasing proportions. A comparison to the IP
model shows several obvious differences. Overall, the average allocation is lower with
low proportions of placements to students and increases slightly when the proportions are
higher (0.75 and 1.0 compared to 0.25 and 0.5).
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Figure 4. The average allocation forMMAS split by proportion of placements to students [0.25, 0.5,
0.75, 1.00].

8. Conclusions and Future Work

In this study, we investigate the problem of allocating students to industry placements,
which we refer to as the IBL allocation problem. This problem differs from those in
previous studies by considering multiple requirements of the companies, such as company
preferences for students, gender mix and sector constraints. We propose an exact approach
to solve the problem via integer programming. We find that although the IP model is
very effective on real data, it has limitations in the way it scales with large problem sizes.
Hence, we also propose an ACO-based heuristic with the aim of finding good solutions in
reasonable time-frames. Compared to manual allocations on real instances since 2012, we
see that the IP model improves upon these allocations in several respects, including the
average allocation preference and the number of placements allocated their #1 preferences.
This study demonstrates the value of automation in industry placement programs at
universities by providing excellent solutions with a high degree of flexibility.

The real data show a trend of increasing numbers of students who would like to
participate in IBL placements. Moreover, other university departments (e.g., nursing)
typically require much larger numbers of placements (up to 4000 placements at some
institutions). This provides the motivation to investigate how the proposed approaches deal
with increasing scales. Hence, based on information from the real data (e.g., distribution of
preferences), we generated a number of artificial problem instances. The IP solves small to
medium problems very effectively, finding optimal solutions within 30 min, but struggles
when the instances consist of more than 3000 students and may fail to find solutions for the
largest instances. For these problem instances, we see a clear advantage provided by ACO,
where it is able to find good solutions in small time-frames, although optimality cannot
be proved.

Future Work

For the IBL placement allocation, the IP model is a viable option and scales well for
the current program (<200 students per placement cycle). As such, it will be interesting to
investigate whether or not the model can easily be modified to deal with industry placement
programs at other universities. The authors of this study are currently investigating
possibilities in this direction.

For very large similar allocation problems (such as allocating students to nursing
placements), ACO is the preferable option, but with no guarantee of optimality. This leads
to several potential research directions, where the IP and ACO approaches may be further
enhanced to provide improved solutions in short time-frames. In particular, IP-based de-
compositions, such as Lagrangian relaxation [37,38], have proved to be effective in the past
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and combinations of IPs and ACO have also been proven on a range of problems [39–42].
Moreover, large neighbourhood search approaches [43,44] may prove to be very effective
in this context. Additionally, parallel implementations of ACO and associated hybrids
[45,46] have proved to be effective in the past and such approaches could help to reduce
run-times, enabling good solutions for large problems to be found in under a minute.
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Appendix A. An Illustration of the Problem: The IP Model

Maximise L− (x11 + 3x12 + 2x21 + x22 + 3x31 + 2x32)−
3(y11 + y12 + y13) + (y21 + y22 + y23)−
(|x11 + x21 − x31|+ |x12 + x22 − x32|)

Subject to

x11 + x12 ≤ 1

x21 + x22 ≤ 1

x31 + x32 ≤ 1

x11 + x21 + x31 ≤ 2

x12 + x22 + x32 ≤ 1

x11 = 0

x11 + x21 + x31 − (y11 + y12 + y13) = 0

x12 + x22 + x32 − (y21 + y22 + y23) = 0

y12 − y11 ≤ 0

y13 − y12 ≤ 0

y22 − y21 ≤ 0

y23 − y22 ≤ 0

x11, x12, x21, x22, x31, x32, y11, y12, y13, y21, y22, y23 ∈ {0, 1}

(A1)
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