
algorithms

Article

Similar Supergraph Search Based on Graph Edit Distance

Masataka Yamada and Akihiro Inokuchi *

����������
�������

Citation: Yamada, M.; Inokuchi, A.

Similar Supergraph Search Based on

Graph Edit Distance. Algorithms 2021,

14, 225. https://doi.org/10.3390/

a14080225

Academic Editors: Deepak Ajwani,

Sabine Storandt and Darren Strash

Received: 22 June 2021

Accepted: 23 July 2021

Published: 27 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan;
eyd13231@kwansei.ac.jp
* Correspondence: inokuchi@kwansei.ac.jp

Abstract: Subgraph and supergraph search methods are promising techniques for the development of
new drugs. For example, the chemical structure of favipiravir—an antiviral treatment for influenza—
resembles the structure of some components of RNA. Represented as graphs, such compounds are
similar to a subgraph of favipiravir. However, the existing supergraph search methods can only
discover compounds that match exactly. We propose a novel problem, called similar supergraph
search, and design an efficient algorithm to solve it. The problem is to identify all graphs in a
database that are similar to any subgraph of a query graph, where similarity is defined as edit
distance. Our algorithm represents the set of candidate subgraphs by a code tree, which it uses to
efficiently compute edit distance. With a distance threshold of zero, our algorithm is equivalent to an
existing efficient algorithm for exact supergraph search. Our experiments show that the computation
time increased exponentially as the distance threshold increased, but increased sublinearly with the
number of graphs in the database.

Keywords: labeled graph; supergraph search; similarity graph; graph edit distance

1. Introduction

The coronavirus disease (COVID-19) has been spreading widely since 2019. In Japan,
favipiravir (brand name: Avigan) has been examined as a promising antiviral medication
against COVID-19. Favipiravir was initially developed as a medication to treat influenza.
When Favipiravir is ribosylated, its structure resembles acadesine, which is a precursor to
inosine. Inosine is the previous stage of guanosine and adenosine, which are components
of RNA [1]. With this treatment, the RNA synthetase of a virus mistakenly incorporates
favipiravir, instead of guanosine, into the replicating virus. This causes RNA synthesis to
stop and limits the replication of viruses inside the body.

Figure 1 shows the chemical structures of guanosine, inosine, acadesine, and ribosy-
lated favipiravir. The substructure α, drawn in red, is common to all of guanosine, inosine,
and acadesine. Therefore, in order to find candidate compounds for a new drug, it may
be useful to search for compounds containing a substructure, provided as a query, in a
database that consist of many compounds (i.e., substructure search). Conversely, if many
substructures relevant to new drug development are known, it can be useful to search
for substructures contained in a newly developed chemical compound, provided as a
query, in a database recording these substructures (i.e., superstructure search). This paper
discusses methods related to the latter task. The substructure drawn in blue in Figure 1 is
similar to the substructure α, but they do not match perfectly. In the situation shown, the
substructure α, which contributes to anti-influenza agents, is registered in a database. The
database contains various substructures for which its medicinal effects, side effects and
so on are known. If ribosylated favipiravir is given as the query and the substructure α is
the output as the search result, we may be able to discover that ribosylated favipiravir is
anti-influenza. Therefore, such a search engine for chemical compounds would be very
useful and effective.

Algorithms 2021, 14, 225. https://doi.org/10.3390/a14080225 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a14080225
https://doi.org/10.3390/a14080225
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14080225
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14080225?type=check_update&version=3

Algorithms 2021, 14, 225 2 of 25

O

N

NH
N

N

O

NH2

OH

OH OH

O

N

NH
N

N

O

OH

OH OH

O

NH2

N

N

O

OH

OH OH

NH2

O

OH

OH OH

N

N

F

O

NH2

O

Guanosine Inosine Acadesine Ribosylated Favipiravir

Figure 1. Similar Chemical Compounds.

A compound can be represented as a graph, in which the vertices and edges corre-
spond to the atoms and chemical bonds, respectively. The aforementioned substructure and
superstructure search correspond to subgraph search [2–14] and supergraph search [15–22],
respectively, which are actively being studied by researchers. A graph is a highly versatile
data structure for representing information in many fields. It can be used to represent
human relationship networks, protein interaction networks, resource description frame-
works (RDF), computer-aided designs (CAD), and computer vision images; moreover,
subgraph and supergraph search are used for many applications in addition to searching
for compounds. However, there is no method for searching for graphs that are similar
to subgraphs of a query graph and no method applicable to the resemblance between
substructures shown in Figure 1. This paper proposes the problem of similar supergraph
search and also proposes a method to solve it.

In this paper, we measure the similarity between two graphs g and g′ by the graph edit
distance. The graph edit distance is the minimum number of edits required to transform
g to another g′, where an edit is either an insertion, deletion, or relabeling of a vertex or
edge. The number of graphs obtained by editing the graph g θ times increases drastically,
especially when the numbers of vertices and edges are large and the varieties of vertex
and edge labels are wide. Such a drastic increase in edited graphs makes it difficult to
find similar graphs. However, some real applications need to obtain a subset of graphs
edited θ times. For example, editing the substructure in a broken ellipse of Figure 1 is
not admissible, whereas editing the remainder of the blue substructure is admissible. By
restricting an editable part in the structure, the number of graphs obtained by editing the
graph g θ times is decreased. In our proposed method, users can search for their desired
type of similar graphs in a database containing graphs and this search can be realized by
simply rewriting only one function without the need to modify our proposed algorithm.
Therefore, the method proposed in this paper is a general and flexible framework for
searching for similar subgraphs of query graphs and is easily customizable for searching
for the types of graphs desired by the user.

The remainder of the paper is organized as follows. Section 2 formalizes the novel
problem of searching for graphs contained in a query graph in a database storing many
graphs and Section 3 discusses related work. In Sections 4 and 5, we propose straightfor-
ward methods for a simpler problem in which the searched graphs are constrained. In
Sections 6 and 7, we propose a novel method for solving the original problem by extending
the above methods. In Section 8, we analyze the computational efficiency of the proposed
method by using real-world datasets. Finally, we conclude the paper in Section 9.

2. Problem Definition

A labeled graph is expressed as g = (V, E, Σ, `), where V is a set of vertices, E ⊆ V×V
is a set of edges, Σ is a set of labels for the vertices and edges, and ` : V ∪ E → Σ is a
function to assign the labels to the vertices and edges. We denote the set of all vertices
in graph g as V(g). A graph g is called a directed graph if the edges in g have directions;

Algorithms 2021, 14, 225 3 of 25

otherwise, g is called an undirected graph. A sequence of edges from v1 to v2 is called a
path and a graph (for a directed graph, all edges in the graph are replaced with undirected
edges.) and a path that exists between any two vertices is called connected.

Given graphs g = (V, E, Σ, `) and g′ = (V′, E′, Σ′, `′), ∀v, v1, v2 ∈ V′, when an injec-
tive function φ : V′ → V fulfills the following conditions, g′ is called a subgraph of g,
which is denoted as g′ ⊆ g:

• (φ(v1), φ(v2)) ∈ E if (v1, v2) ∈ E′;
• `′(v) = `(φ(v));
• `′((v1, v2)) = `((φ(v1), φ(v2))).

In addition, when (φ(v1), φ(v2)) ∈ E iff (v1, v2) ∈ E′, we call g′ an induced subgraph
of g, which is denoted as g′ ⊆i g. Although this paper focuses only on undirected and
connected graphs, the methods proposed can easily be extended to directed or uncon-
nected graphs.

The graph edit distance is the minimum number of edits required to transform a
graph g to another graph g′, where an edit is either an insertion, deletion, or relabeling of a
vertex or edge. In this paper, we assume that the cost of each edit is 1. The number of edits
between graphs g = (V, E, Σ, `) and g′ = (V′, E′, Σ, `′) is defined as follows:

dist(g, g′, ϕ) =
|V′ |

∑
i=1

ciϕ(i) +
|V′ |−1

∑
i=1

|V′ |

∑
j=i+1

c
(
(vi, vj)→

(
vϕ(i), vϕ(j)

))
, (1)

where we assume that |V| ≤ |V′| and V is extended to V+ = V ∪ {ε1, ε2, . . . , ε |V′ |−|V|} [23].
In addition, when g is transformed to g′, the mapping between V and V′ is expressed as
a bijective mapping ϕ : V+ → V′. cij is the cost to edit the vertex vi ∈ V+ to vj ∈ V′ and
c((vi, vj) → (vi′ , vj′)) is the cost to edit edge (vi, vj) ∈ E to (vi′ , vj′) ∈ E′. Editing εi ∈ V+

to vj ∈ V′ means performing a vertex insertion in g′. Therefore, the graph edit distance
ed(g, g′) between the graphs g and g′ is defined as follows:

ed(g, g′) = min
ϕ∈Φ(|V′ |,|V′ |)

dist(g, g′, ϕ), (2)

where Φ(α, β) is a set of all possible β-permutations of the integers 1, 2, . . . , α. The solution
to Equation (2) is one of the quadratic assignment problems, which are known to be
NP-complete.

Given a set of graphs G = {g1, g2, . . . , gn}, a query graph q, and a threshold θ as input,
the problem tackled in this paper is to output a set of graphs.

S = {gi ∈ G | ∃q′ ⊆ q s.t. ed(gi, q′) ≤ θ}. (3)

In Equation (3), note that q′ is a subgraph of q but not an induced subgraph of q. When
θ is 0 in Equation (3), the problem is equivalent to the original supergraph search problem.
Therefore, our problem, represented by Equation (3), is an extension of the supergraph
search problem.

3. Related Work

In Section 2, we defined the problem tackled in this paper. Recently, much attention has
been focused on searching for graphs satisfying some conditions in a database consisting
of multiple graphs. Table 1 summarizes graph search problems and the publications that
tackle each problem. The subgraph search problem is to find graphs that contain the query
graph and can be expressed as follows:

{gi ∈ G | q ⊆ gi},

whereas the supergraph search problem is to find graphs that the query graph contains
and it can be expressed as follows.

Algorithms 2021, 14, 225 4 of 25

{gi ∈ G | gi ⊆ q}.

These problems contain the subgraph isomorphism problem, which is known to be
NP-complete. The similar graph search problem is to find graphs that are similar to the
query graph, and can be expressed as

{gi ∈ G | ed(gi, q) ≤ θ}.

This problem contains the graph edit distance problem, which is known to be NP-
complete. Various methods have been proposed to solve these problems. The problem
tackled in this paper is to find graphs that are similar to subgraphs of the query graph and
contains both the subgraph isomorphism problem and graph edit distance problem. This
problem is a novel one, to the best of our knowledge. Since the subgraph isomorphism
problem and graph edit distance problem are NP-complete, a naive method for solving
either of the problems for a given query graph and for each graph in the database would
be unrealistic.

Most of the methods proposed in the articles cited in Table 1 are based on filtering
and verification and an index in each of the methods has a set of patterns P extracted
from the database in advance. For example, for the supergraph search problem, in the
filtering phase,

G′ = G \
⋃

p∈P
{gi ∈ G | p 6⊆ q, gi ⊆ q}

is obtained. Subsequently, the verification phase checks whether g ⊆ q, for each graph
g ∈ G′. Figure 2a shows four graphs in a database and two patterns contained in an index.
The index has the information that p1 ⊂ g1, p2 ⊂ g2, p1 ⊂ g4, and p2 ⊂ g4. Given the
query shown in Figure 2c, supergraph search methods first check whether p1 ⊆ q and
p2 ⊆ q and then obtain G′ = {g1, g3} in the filtering phase. In the verification phase, they
test whether g1 ⊆ q and g3 ⊆ q. Since the number of vertices in p2 is less than one for g2,
the computation time to check whether p2 ⊆ q becomes less than one for g2 ⊆ q and we
do not need to check whether g2 ⊆ q in the filtering phase. The patterns in P are either
paths, trees, cycles, or graphs extracted from databases. The patterns are extracted by the
enumeration or mining method. The enumeration method enumerates all subgraphs in
graphs in a database, where the subgraphs are restricted to either paths, trees, cycles, or
graphs. In contrast, the mining method enumerates all frequent patterns [24], which are
defined as

F(G, σ′) = {p | p ⊆ gi, gi ∈ G, σ(p, G) ≥ σ′}

from graphs in a database, where σ(p, G) is defined as the number of graphs in G containing
pattern p:

σ(p, G) = |{gi ∈ G | p ⊆ gi}|.

The extracted patterns are stored in a tree or lattice structure in the index of the
graph database. Enumerating patterns and mining patterns from a database are time-
consuming processes.

Table 1. Summary of graph search problems and references.

Complete Matching Similar Matching

graph {gi ∈ G | q = gi}
{gi ∈ G | ed(gi, q) ≤ θ}

search [25–32]

supergraph {gi ∈ G | gi ⊆ q} {gi ∈ G | ∃q′ ⊆ q s.t. ed(gi, q′) ≤ θ}
search [15–22] This paper (novel problem).

subgraph {gi ∈ G | q ⊆ gi} {gi ∈ G | ∃g ⊆ gi s.t. ed(g, q) ≤ θ}
search [2–14] There are no papers to our best knowledge.

Algorithms 2021, 14, 225 5 of 25

�

��

�

��

� �

�

�

��

�

�� ��
�

��

�

�

���	
����	��	�	��������

���	��������	��	��	�����	 ���	�����

Figure 2. Example of supergraph search.

CodeTree [17] is a method for the supergraph search problem. It does not distinguish
between filtering and verification phases; it filters out graphs that are not contained in
a given query graph while verifying unfiltered graphs. In addition, CodeTree does not
enumerate or mine patterns in a database. All graphs in a database are stored in the form of
one of the graph codes, such as AcGM [33] code or DFS [34] code, in the index in CodeTree.
The AcGM and DFS codes are based on adjacency matrices and adjacency lists, which
are alternatives to graph representations. The algorithms for constructing an index for a
database and searching graphs in the index are independent of the graph codes and, thus,
the method can be integrated and extended with various graph codes for representing
graphs in accordance with the intended characteristics of those codes. For this reason, the
method proposed in this paper is based on CodeTree.

In this paper, we focus on the problems in which each database consists of mul-
tiple graphs. Other subgraph search problems are to search for a database which con-
sists of “a single large graph”. Since the number of graphs given as input is two, we
need not distinguish the subgraph and supergraph searches. A typical problem of the
graph search with a single large graph is to output all embeddings (or occurrences)
{(φ(v1), φ(v2), . . . , φ(v|V(q)|))} in a large graph g for a query q consisting of vertices
(v1, v2, . . . , v|V(q)|) when the query q is a subgraph of the large graph g. This problem
is applicable to RDFs (Resource Description Frameworks), where each subject or object and
predicate corresponds to a vertex and edge in a graph, respectively; PPI (Protein-Protein
Interaction) networks, where each protein and interaction correspond to a vertex and edge,
respectively; and intrusion alert networks where each computer and possible attack such as
Denial-of-Service and TCP Service Sweep correspond a vertex and edge, respectively. Some
of the methods for solving these kinds of problems use not only exact matching [35–37]
but also approximate matching [38–41] with various similarity measures.

The most representative metric for measuring similarity between two graphs is the
graph edit distance. Most of methods for graph search problems use this graph edit
distance to measure similarities among graphs. Other most representative measures are to
use maximum common subgraphs or graph kernels [42,43] between two graphs. There
are two types of problems called maximum common induced subgraph problem [44]
and maximum common edge subgraph problem [45] and the problems for finding the
maximum common subgraphs in two graphs is NP-complete. In contrast, graph kernels
have been proposed to classify graphs in the machine learning domain. The random walk
graph kernel [46] returns a high similarity of graphs if random walks on the graphs produce
similar sequences of vertex and edge labels. The Weisfeiler–Lehman graph kernel [47] uses
the Weisfeiler–Lehman test, which was proposed to solve the graph isomorphism problem.
The kernel iteratively relabels each vertex v by concatenating a label of v and labels of v’s
adjacent vertices and returns high similarity for two relabeled graphs if the graphs have
many common labels.

Algorithms 2021, 14, 225 6 of 25

4. Straightforward Method for Constrained Problem

In Section 2, we defined the problem tackled in this paper. Here, for the sake of
simplicity, we first provide methods for outputting the following:

{gi ∈ G | ∃q′ ⊆i q s.t. ed(gi, q′) ≤ θ, q′is connected, |V(gi)| ≤ |V(q′)|}, (4)

by constraining the original problem. In the subsequent sections, we explain how the
method can be extended to solve the original problem.

Definition 1 (AcGM code [33]). Given a graph g = (V, E, Σ, `), we assign vertex iden-
tifiers u1, u2, . . . , u|V| to vertices in g and assume that a subgraph of g induced by vertices
u1, u2, . . . , ui (1 ≤ i ≤ |V|) is connected. g is represented by an adjacency matrix of dimen-
sion |V| × |V| for which its elements xi,j are `((ui, uj)) if (ui, uj) ∈ E or 0 otherwise. The AcGM
code of graph g is defined by concatenating the elements in the upper-right part of the adjacency
matrix, as follows:

code(g, 〈u1, u2, . . . , u|V|〉) = s1s2 · · · s|V|, (5)

where each code fragment si is defined as follows:

si = `(ui)x1,ix2,i · · · xi−2,ixi−1,i.

s1s2 · · · si is called a prefix of Equation (5). In addition, c2 ⊆ c1 means that a prefix of
an AcGM code c1 is equal to another AcGM code c2 and a graph expressed by AcGM code
c is denoted as g(c).

Definition 2 (Linear ordering between AcGM codes). When two AcGM codes α = a1a2 · · · ak
and β = b1b2 · · · bh fulfill either of the following conditions, we say that β � α:

• ∃t s.t. 1 ≤ t ≤ min(k, h), aq = bq for q < t and bt ≺e at;
• β ⊆ α;

where ≺e is a linear ordering between code fragments [34].

Example 1. Given the graph with four vertices shown in Figure 3, we have 4! = 24 pos-
sible permutations of the four vertices. Among the permutations, according to Definition 1,
code(g, 〈v2, v3, v4, v1〉) does not generate an AcGM code because a subgraph induced by 〈v2, v3〉
is not connected. We can generate 12 AcGM codes from the graph and we show three AcGM codes
as follows. Symbols on the left side of the following adjacent matrices are vertex IDs and the letters
on the upper side of the matrices are vertex labels. In addition, letters in the matrices are edge labels
and zeros in the matrices and they indicate that there are no edges.

?

?

?
?

?

?

?
?

?

?

?
?

A B C B

v1 0 a b a
v2 a 0 0 0
v3 b 0 0 0
v4 a 0 0 0

,

B A C B

v2 0 a 0 0
v1 a 0 b a
v3 0 b 0 0
v4 0 a 0 0

,

B A B C

v4 0 a 0 0
v1 a 0 a b
v2 0 a 0 0
v3 0 b 0 0

By concatenating the letters and zeros on sides of arrows in the matrices, three AcGM codes

are generated as follows.

α = code(g, 〈v1, v2, v3, v4〉) = A Ba Cb0 Ba00,

β = code(g, 〈v2, v1, v3, v4〉) = B Aa C0b B0a0, and

γ = code(g, 〈v4, v1, v2, v3〉) = B Aa B0a C0b0.

The order between the codes is α ≺ γ ≺ β.

Algorithms 2021, 14, 225 7 of 25

�

�

�

�

� �

�

Figure 3. Example of a graph.

Lemma 1. If two AcGM codes are the same, the graphs represented by the codes are isomorphic.

Proof. If two adjacency matrices are the same, the graphs represented by the matrices
are isomorphic. Since each AcGM code of a graph g corresponds one-to-one with an
adjacency matrix of g, if two AcGM codes are the same, the graphs represented by the
codes are isomorphic.

In contrast, if two graphs are isomorphic, their AcGM codes are not necessarily the
same. This means that there are multiple AcGM codes of g that fulfill Definition 1. Thus,
we denote the set of all AcGM codes of graph g as Ω(g).

Lemma 2. When an AcGM code c is a prefix of another code c′, g(c) is connected and is an induced
subgraph of g(c′).

Proof. Given an AcGM code c of a graph g, let its corresponding adjacency matrix be A.
All submatrices A′ of A obtained by iteratively deleting the last row and column of A
represent induced and connected subgraphs of g. According to Definition 5, AcGM codes
for the matrices A′ must be prefices of the AcGM code for A.

From the above discussion, one straightforward method for outputting the subgraphs
defined by Equation (4) is to compute the graph edit distance between a graph gi ∈ G
and a graph g(c′), represented by a prefix c′ ⊆ c for c ∈ Ω(q). However, computing the
edit distance between gi and g(c′) by Equation (2) is not feasible. Therefore, we discuss a
method for computing the edit distance by using the codes of gi and g(c′).

Lemma 3. Given the following AcGM codes:

c = `(u1)`(u2)x1,2 · · · `(ua)x1,a · · · xa−1,a (6)

c′ = `(u′1)`(u
′
2)x′1,2 · · · `(u′b)x′1,b · · · x

′
b−1,b, (7)

where a and b are the numbers of vertices in g(c) and g(c′), respectively, and the i-th vertex in
g(c) maps to the i-th vertex in g(c′), the number of edits ed(c, c′) to transform g(c) to g(c′) is
the following:

ed(c, c′) = ∑
1≤i≤min{a,b}

δ′(`(ui), `(u′i)) + ∑
1<j≤min{a,b}

∑
1≤i<j

δ′(xi,j, x′i,j)

+|a− b|+

∑b<j≤a ∑1≤i<j δ′(xi,j, 0) (b < a)
0 (a = b)

∑a<j≤b ∑1≤i<j δ′(0, x′i,j) (a < b),
(8)

where δ is the Kronecker delta and δ′(α, β) = 1− δ(α, β). The complexity of solving Equation (8)
is O((max{a, b})2). The ed(c, c′) function is symmetric: ed(c, c′) = ed(c′, c).

Proof. The first term of Equation (8) is the sum of the numbers of edits that occur because
of differences between the i-th (1 ≤ i ≤ min{a, b}) vertices in g(c) and g(c′) and its second
term is the sum of the numbers of edits that occur because of differences between edges

Algorithms 2021, 14, 225 8 of 25

(i, j) (1 ≤ i < j ≤ min{a, b}) in g(c) and g(c′). Its third term is the sum of the numbers of
edits to insert vertices in g(c) or g(c′) and its fourth term is the sum of the numbers of edits
to insert edges in g(c) or g(c′).

Since Equation (8) defines the number of edits between two graphs under the known
mapping such that ϕ(i) = i for all i (1 ≤ i ≤ max{a, b}), it corresponds to Equation (1).
Therefore, Equation (2) is formalized by using Equation (8) as the following lemmas.

Lemma 4. Given the two AcGM codes c and c′ defined in Equations (6) and (7), we have
the following.

ed(g(c), g(c′)) ≤ ed(c, c′). (9)

Proof. According to Equation (2), ed(g(c), g(c′)) ≤ ed(c, c′) is obvious.

Lemma 5. Given an arbitrary AcGM code c′ of a graph g′, the graph edit distance between g and
g′ is the following.

ed(g, g′) ≤ min
c∈Ω(g)

ed(c, c′). (10)

Proof. Let Ω+(g) be codes generated from all possible permutations of vertices in g.
So Ω+(g) = {code(g, 〈u1, u2, . . . , u|V(g)|〉) | 〈u1, u2, . . . , u|V(g)|〉 ∈ Φ(|V(g)|, (|V(g)|)} ⊇
Ω(g). Some codes c+ in Ω+(g) are not AcGM codes because a prefix of the permutation
from which c+ is generated may not induce a connected subgraph of g. Since Ω+(g)
are codes generated from all possible permutations of vertices in g, we have ed(g, g′) =
minc∈Ω+(g) ed(c, c′). In addition, because Ω(g) ⊆ Ω+(g), we have minc∈Ω+(g) ed(c, c′) ≤
minc∈Ω(g) ed(c, c′). Therefore,

ed(g, g′) = min
c∈Ω+(g)

ed(c, c′) ≤ min
c∈Ω(g)

ed(c, c′)

is satisfied.

Example 2. As shown in Figure 4, given two graphs g and q for which the edit distance is 3, let
an arbitrary AcGM code of g be AAb. Ω(q) is {AAaB0a, AAaBa0, ABaAa0, BAaA0a}. When
the code AAb is compared with AAaB0a ∈ Ω(q), we need three edits which are indicated as × in
Figure 4. By comparing AAb and all elements in Ω(q), we obtain the graph edit distance between q
and g according to Lemma 10.

� �

�

�

�� �
�

������������������ �������� ������

��� ��� ��� ���

� � � �� ����� �� � � � � �� �

Figure 4. Computation of Graph Edit Distance using AcGM codes.

From Lemma 5, we have the following corollary.

Collorary 1. If ed(c, c′) ≤ θ for two AcGM codes c and c′, then ed(g(c), g(c′)) ≤ θ.

Algorithm 1 shows the pseudocode for solving the problem defined by Equation (4).
In Line 3, an arbitrary AcGM code from Ω(gi) is generated for graph gi in database G.
After one of all possible AcGM codes for q is obtained in Line 4, a prefix c′, which consists
of j fragments ci, is generated in Line 6. Since c′ is a prefix of c, g(c′) must be a connected
and is an induced subgraph of q. Subsequently, gi is added to the set of output graphs
S if ed(ci, c′) ≤ θ, which indicates that gi is a solution in the set defined by Equation (4)

Algorithms 2021, 14, 225 9 of 25

according to Corollary 1. Once gi is added to S, any procedures for gi are stopped and
procedures for the next graph gi+1 are started. These steps are repeated for all of the graphs
in G. The time complexity of Algorithm 1 is O(|Ω(q)|∑|G|i=1 |V(gi)|3) and the algorithm has
some drawbacks, as follows.

(1) Although the algorithm produces |V(gi)| prefixes in Line 6 for each AcGM code c in
Ω(q) and computes Equation (8) |V(gi)| times in Line 7 for the prefixes, some of the
repeated calculations of Equation (8) are redundant because two prefixes c′ and c′′

produced from c satisfy c′ ⊂ c′′. Using the result of computing ed(ci, c′) to compute
ed(ci, c′′) would render Algorithm 1 efficient.

(2) Let Gc = {code(gi) | gi ∈ G} be the set of codes produced in Line 3. AcGM codes
code(gi) and code(gj), for which their prefixes are the same, are included in Gc. The re-
peated calculations of Equation (8) between these AcGM codes and c′ are redundant. If
the common prefix of code(gi) and code(gj) is cs, using the result of computing ed(cs, c′)
to compute ed(code(gi), c′) and ed(code(gj), c′) would make Algorithm 1 efficient.

Algorithm 1: Straightforward Algorithm for Searching (4)
h!
Data: G = {g1, g2, . . . , gn}, q, θ
Result: {gi ∈ G | ∃q′ ⊆i q s.t. ed(gi, q′) ≤ θ, q′is connected, |V(gi)| ≤ |V(q′)|}

1 S← ∅; //a variable for storing solutions
2 for gi ∈ G do
3 ci ← code(gi); //an arbitrary AcGM code of gi
4 for c ∈ Ω(q) do
5 for j ∈ [1, |V(gi)|] do
6 c′ ← pre(c, j);
7 if ed(ci, c′) ≤ θ then
8 S← S ∪ {gi};
9 break;

10 if gi ∈ S then
11 break;

12 return S;

5. Method for Traversing Prefix Tree for Constrained Problem

In order to overcome drawback (1), described in the previous section, we introduce
the following lemma.

Lemma 6. Given two AcGM codes c and c′, we have the following:

ed(pre(c, i), pre(c′, i)) ≤ ed(pre(c, j), pre(c′, j)) for i < j. (11)

In the case that i is greater than the number of fragments in c, we assume that pre(c, i) is
equivalent to c itself.

Proof. ed(pre(c, i + 1), pre(c′, i + 1)) is the sum of ed(pre(c, i), pre(c′, i)) and the number
of edits between the i + 1-th fragments of pre(c, i + 1) and pre(c′, i + 1)). Since the number
of edits is non-negative, ed(pre(c, i), pre(c′, i)) increases monotonically when i is increased.
Therefore, for i < j, we have ed(pre(c, i), pre(c′, i)) ≤ ed(pre(c, j), pre(c′, j)).

Collorary 2. According to Lemma 6, if ed(pre(c, i), pre(c′, i)) > θ, then ed(c, c′) > θ.

As a consequence of Lemma 6 and Corollary 11, when ed(pre(c, i), pre(c′, i)) > θ, we
can stop the computation in Line 7 of Algorithm 1.

Algorithms 2021, 14, 225 10 of 25

Lemma 7. Given the two following fragments:

s = `(ui)x1,i · · · xi−1,i (12)

s′ = `(u′i)x′1,i · · · x′i−1,i, (13)

for which their lengths are equal, the number of edits ed(s, s′) to equalize the fragments is as follows:

ed(s, s′) =

1 + ∑
1≤j<i

δ′(0, x′j,i) (s = null)

1 + ∑
1≤j<i

δ′(xj,i, 0) (s′ = null)

δ′(`(ui), `(u′i)) + ∑
1≤j<i

δ′(xj,i, x′j,i) (otherwise).

(14)

Since ed(s, s′) is a symmetric function, ed(s, s′) = ed(s′, s).

Proof. Please see the proof for Lemma 3.

Algorithm 2 shows the pseudocode for solving the problem defined by (4), which
overcomes the aforementioned drawback (1). After obtaining the j-th fragments of AcGM
codes ci and c in Line 7 of the algorithm, the number of edits between the fragments is
calculated according to Lemma 7. The number of edits is then added to the accumulated
edit count ae. According to Corollary 2, the algorithm stops the calculation of the number
of edits between ci and one of the AcGM codes of q in Line 8. However, because gi is a
member of the set defined in Equation (4) if the edited distance between ci and at least one
AcGM code in Ω(q) is less than θ, these steps are repeated for all AcGM codes of q. The
time complexity of Algorithm 2 is O(|Ω(q)|∑i=1 |G||V(gi)|2).

Algorithm 2: Straightforward Algorithm 2 for Searching (4)
Data: G = {g1, g2, . . . , gn}, q, and θ
Result: {gi ∈ G | ∃q′ ⊆i q s.t. ed(gi, q′) ≤ θ, q′is connected, |V(gi)| ≤ |V(q′)|}

1 S← ∅; //a variable for storing solutions
2 for gi ∈ G do
3 ci ← code(gi);
4 for c ∈ Ω(q) do
5 ae← 0; //ae is accumulated edit count
6 for j ∈ [1, |V(gi)|] do
7 ae← ae + ed(f rag(ci, j), f rag(c, j));
8 if ae > θ then
9 break;

10 if j = |V(gi)| then
11 S← S ∪ {gi};

12 if gi ∈ S then
13 break;

14 return S;

In order to overcome drawback (2), described in the previous section, we use a prefix
tree for the AcGM codes for G.

Definition 3 (Code Tree [17] (The detailed algorithm for constructing a code tree from a
graph database G is given in [17].)). A code tree T is defined as the triplet (>, N, B), where
> ∈ N is the root node of the tree, N is a set of the nodes of the tree, and B is a set of the branches of
the tree. In addition, each node is associated with a code fragment and a set of graph identifiers. Let
s(n) be the concatenation of the fragments associated with nodes on the path from the root to node

Algorithms 2021, 14, 225 11 of 25

n. When one of the AcGM codes of gi ∈ G is the same as s(n), the set of graph identifiers for node
n contains i, which is the identifier of graph gi ∈ G.

The code fragment and graph identifiers associated with node n are denoted as f r(n)
and ID(n), respectively. For the root node, f r(>) = null and ID(>) = ∅. We present an
example of a code tree below.

Example 3. A graph database G = {g1, g2, g3, g4} consists of four graphs, as shown in Figure 5.
When one of the AcGM codes for each graph in G is generated, the AcGM codes for the four graphs
are as follows.

code(g1, 〈v1, v2, v3〉) = ABaC0b,

code(g2, 〈v1, v2, v3〉) = ABaD0b,

code(g3, 〈v1, v2〉) = BBa, and

code(g4, 〈v1, v2, v3〉) = BBaC0b.

From these AcGM codes, a code tree is constructed, as shown in the right part of Figure 5. Node
n6 of the tree is associated with the code fragment C0b and the set of graph identifiers ID(n) = {1}.
The concatenation of fragments associated with nodes on the path from the root to node n6 is
ABaC0b, which represents graph g1 in G.

1v 2v 3v
b� � �

a

1v 2v 3v
b� � �

a

1v 2v
� �

a

1v 2v 3v
b� � �

a

����	
 ����	

�����	

������	
 ������	
 ������	

���� ���	

������	
4n

2n 3n

1n

7n6n 8n

5n

Figure 5. Code tree.

Algorithm 3 shows the pseudocode for searching for members of the set defined in
Equation (4) by traversing the code tree. At node n, Algorithm 3 adds vertex w of q to
〈w1, w2, . . . , wh〉, from which the fragment s is generated, with the addition of the prefix
code(q, 〈w1, w2, . . . , wh〉) of an AcGM code of q. The algorithm then recursively traverses
the children of n that have fragments similar to fragment s. In contrast to Algorithm 2,
which iteratively checks whether each individual graph in the graph database is a solution,
Algorithm 3 checks whether multiple graphs in the database are simultaneously solutions.
This is because each node in the code tree is associated with the common prefix of the
AcGM codes of multiple graphs in the database. This simultaneous checking renders our
search very efficient. The worst case time complexity of Algorithm 3 is the same as the
time complexity of Algorithm 2. When AcGM codes of graphs in the database do not
have common prefixes as one another, the time complexity of Algorithm 3 becomes worst.
However, the codes usually have common prefixes as one another and the computation
time that this algorithm needs is proportional to the number of nodes that Algorithm 3
traverses. In addition, at each node, Algorithm 3 needs O(h|V(q)||N|).

Algorithms 2021, 14, 225 12 of 25

Algorithm 3: Code Tree Search for Finding Solutions to Equation (4)
Data: the set of graphs S, query q, threshold θ, current node n, 〈w1, w2, . . . , wh〉,

and accumulated edit count ae
Result: {gi ∈ G | ∃q′ ⊆i q s.t. ed(gi, q′) ≤ θ, q′is connected, |V(gi)| ≤ |V(q′)|}

1 S← S ∪⋃i∈ID(n){gi};
2 N ← children(n);
3 C ← {(w, s) | s1s2 · · · shs = code(q, 〈w1, w2, . . . , wh, w〉) ⊆ c, c ∈ Ω(q)};
4 for (m, (w, s)) ∈ N × C do
5 e← ed(f r(m), s);
6 if ae + e ≤ θ then
7 ω ← 〈w1, w2, . . . , wh, w〉;
8 S← search(S, q, θ, m, ω, ae + e);

9 return S;

6. Method for Traversing Prefix Tree for Original Problem

At node n, for which its depth is h in the code tree, Algorithm 3 retains the accumulated
edit count ae for two concatenations c and c′ of fragments of length h. c and c′ have the
following restrictions:

• c is a concatenation of fragments associated with nodes on the path from the root of
the code tree to n and is an AcGM code of a connected and induced graph that is a
common subgraph of multiple graphs in the graph database;

• c′ is a prefix of one of the AcGM codes in Ω(q). According to the definition of the
AcGM code, g(c′) must be connected and is an induced subgraph of q.

In order to solve the original problem for searching for solutions to Equation (3), we
relax the restrictions as follows. The restriction that g(c′) is connected is a consequence of
the fact that code(q, 〈w1, w2, . . . , wh〉) is a prefix of the AcGM codes Ω(q) of q. Therefore,
in Line 4 of Algorithm 3., we relax this restriction by allowing 〈w1, w2, . . . , wh〉 to be all
possible h-permutations of vertices{v1, v2, . . . , v|V(q)|} in q. Codes code(q, 〈w1, w2, . . . , wh〉)
by some of the permutations correspond to unconnected graphs.

Next, we relax the restriction that g(c′) is an induced subgraph of q. Algorithm 1
produces prefixes of the AcGM codes of q to obtain connected and induced subgraphs of q.
Suppose that we would like to obtain, in addition to the connected and induced subgraphs,
all possible unconnected and non-induced subgraphs of q. In this case, we may need, in
addition to the prefixes of the AcGM codes of q, all possible codes generated by replacing
some elements xi,j in the prefixes by 0. This requires us to solve both the permutation
problem among the vertices of q and the combination problem among the edges of q.
However, we do not need to solve the latter problem for the following reasons. We consider
a graph q, its induced subgraph q′, and two graphs g1 and g2, shown in Figure 6. We refer
to two vertices in q′ as vi and vj.

• ed(q′, g1) = 2. Given a graph q′′ obtained by removing an edge from q′, we have
ed(q′, g1) < ed(q′′, g1) = 3. In the problem of finding solutions to Equation (3), we
check whether there exists a subgraph of q such that ed(q′, gi) ≤ θ and this subgraph
need not be an induced subgraph of q. Therefore, in the case that there is an edge
between two vertices vi and vj in q′ and there is also an edge in gi between the two
corresponding vertices, we do not need to consider the graph q′′ obtained by removing
an edge from q′. That is, we do not need to replace any elements xi,j in prefixes of the
AcGM codes of q′ by 0.

• ed(q′, g2) = 1. For the above q′′, we have ed(q′, g2) > ed(q′′, g2) = 0. Therefore, in the
case that there is an edge between two vertices vi and vj in q′ and there is no edge in
gi between the two corresponding vertices, we do not need to consider the graph that
does not have an edge corresponding to edge (vi, vj) in q′.

Algorithms 2021, 14, 225 13 of 25

• In all other cases, there is no edge between vi and vj in q′. Since xi,j = 0, we do not
need to replace xi,j by 0.

��

��

��

��

��

��

��

��

��

��

��

��

� �′ ��

��

�� ��

��
�	

�

Figure 6. Inclusion of graphs and similarity.

From the above discussion, we rewrite Lemma 7 as follows.

Lemma 8. ed(s, s′)

=

1 + ∑
1≤j<i

δ′(xj,i, 0) (s′ = null)

1 (s = null)
δ′(`(vi), `(v′i)) + ∑

1≤j<i
xi,j 6=0

δ′(xj,i, x′j,i) (s 6= null ∧ s′ 6= null).
(15)

This function is asymmetric.

Since we consider all possible subgraphs of q by the function defined in Equation (8),
we need to produce only the prefixes underlined above.

Algorithm 4 shows the pseudocode for searching for members of the set defined
in Equation (3) by traversing the code tree. The part from Lines 4–9 searches {gi ∈ G |
q′ ⊆ q s.t. ed(q′, gi) ≤ θ, |V(gi)| ≤ |V(q′)|}, whereas the part from Lines 10–13 searches
{gi ∈ G | q′ ⊆ q s.t. ed(q′, gi) ≤ θ, |V(gi)| > |V(q′)|}. The other difference between
Algorithm 3 and Algorithm 4 is Line 4, which produces codes from one of all possible
h-permutations of vertices of the query graph q. The codes produced are not limited to
AcGM codes, but are AGM codes [24]. In Lines 7 and 11, Equation (15) is used to calculate
the similarity between two fragments. Since the codes produced in Line 4 are limited
to prefixes of the AGM codes of q, we do not need to solve the combination problem
among the edges of q, which enables our proposed method to be very efficient. The time
complexity of Algorithm 4 is the same as one of Algorithm 3; nevertheless, the problem
that Algorithm 3 solves is a constrained problem of the problem that Algorithm 4 solves.

Algorithms 2021, 14, 225 14 of 25

Algorithm 4: Code Tree Search for Finding Solutions to Equation (3)
Data: The set of graphs S, query q, threshold θ, current node n, 〈w1, w2, . . . , wh〉,

and accumulated edit count ae.
Result: {gi ∈ G | q′ ⊆ q s.t. ed(q′, gi) ≤ θ}

1 S← S ∪⋃i∈ID(n){gi};
2 N ← children(n);
3 if ω 6= null ∧ h < |V(q)| then
4 C ← {(w, s) | s1s2 · · · shs = code(q, 〈w1, w2, . . . , wh, w〉), 〈w1, w2, . . . , wh, w〉 ∈

Φ(|V(q)|, h + 1)};
5 for (m, (w, s)) ∈ N × C do
6 ω ← 〈w1, w2, . . . , wh, w〉;
7 e← ed(f r(m), s);
8 if ae + e ≤ θ then
9 S← search(S, q, θ, m, ω, ae + e);

else
10 for m ∈ N do
11 e← ed(f r(m), null);
12 if ae + e ≤ θ then
13 S← search(S, q, θ, m, null, ae + e);

14 return S;

7. Customization of Solutions

In the previous section, we proposed a method for searching for the set of graphs
S defined by Equation (3). The number of graphs reachable by editing graph q′ θ times
in Equation (3) increases exponentially as θ is increased. Therefore, for a large θ, the
computation time required to search for the graphs in S becomes excessively long. However,
some real applications need to obtain the following sets of constrained graphs rather than
obtaining all the graphs in S.

〈1〉 Editing graphs is constrained: for example, the relabeling of vertices or edges is
admissible in ed(q′, gi) of Equation (3), whereas insertions and deletions are not
admissible. That is, when converting a labeled graph g to an unlabeled graph un(g)
by removing label information from vertices and edges in g, un(gi) and un(q′) in
Equation (3) are isomorphic.

〈2〉 Editing graphs is constrained: for example, editing some specific vertices and edges
in a query graph q is admissible, whereas editing other vertices and edges is not
admissible. For example, in the substructure drawn with blue lines and labels in
Figure 1, editing its ring structure is admissible, whereas editing the remainder of the
blue substructure is not admissible.

The problem for the above constraint 〈1〉 is formalized as follows.

{gi ∈ G | ∃q′ ⊆ q s.t. ed(gi, q′) ≤ θ ∧ un(gi) = un(q′)}. (16)

In order to solve this problem, Equation (15) is rewritten as follows.

ed(s, s′)

=

δ′(`(vi), `(v′i)) + ∑

1≤j<i
∧xi,j 6=0
∧x′i,j 6=0

δ′(xj,i, x′j,i) + ∑
1≤j<i
∧(xi,j=0
∨x′i,j=0)

∞ (s 6= null ∧ s′ 6= null)

∞ (otherwise).

(17)

For the case of s 6= null ∧ s′ 6= null, the first and second terms in Equation (17) are
the numbers of edits that occur by relabeling the i-th vertices and edges (i, j) (1 ≤ j < i),

Algorithms 2021, 14, 225 15 of 25

respectively, in g ∈ G and q′. The third term of Equation (17) is the sum of the numbers of
edits that occur by inserting or deleting edges. For this case, in containing such insertion or
deletion operations, the ed(s, s′) function returns values larger than θ and Algorithm 4 (in
Line 7) backtracks the code tree.

For the case of the above constraint 〈2〉, let some specific vertices in query graph q be
Vq ⊆ V(q). When Algorithm 4 visits node n in the code tree, it generates various codes by
〈w1, w2, . . . , wh, w〉, in Line 4. Some vertices in 〈w1, w2, . . . , wh, w〉 are included in Vq, but
others are not. In this case, Equation (15) is rewritten as follows.

ed(s, s′)

=

δ′(`(vi), `(v′i)) + ∑

wj∈Vq
∧1≤j<i
∧xi,j 6=0

δ′(xj,i, x′j,i) + ∑
wj /∈Vq
∧1≤j<i
∧xi,j 6=0

∞ (s, s′ 6= null ∧ wi ∈ Vq)

∞ (otherwise).

(18)

Thus, for the case of s 6= null ∧ s′ 6= null ∧ wi ∈ Vq, the first and second terms of
Equation (18) are the numbers of edits that occur by relabeling the i-th vertices and edges
(i, j) (1 ≤ j < i), respectively, in g ∈ G and q′, where wi and wj are elements in Vq. The
third term of Equation (18) is the sum of the numbers of edits that occur by editing the
other vertices and edges.

In order to summarize the above discussion, the advantages of our proposed method
are the following:

• Users can search for their desired type of similar graphs in a database contain-
ing graphs;

• This search can be realized by simply rewriting Equation (15), without the need to
modify Algorithm 4.

Therefore, the method proposed in this paper is a general and flexible framework for
searching for similar subgraphs of query graphs and is easily customizable for searching
for the types of graphs desired by the user.

8. Experimental Evaluation

For our experimental evaluation, we used the three real-world datasets used in [18]
which were downloadable from https://github.com/SNUCSE-CTA/IDAR on 1 March
2021. The datasets consisting of chemical compounds are called AIDS, NCI, and PubChem.
Each atom, chemical bond, atom type, and bond type in a chemical compound corresponds
to a vertex, edge, vertex label, and edge label, respectively. Sets of queries and databases
containing graphs were generated from each of the datasets. One hundred query graphs,
each containing more than 100 vertices, were selected from each of the datasets. Each
generated database contained between 10,000 and 100,000 graphs and each of the graphs
was generated by one of two different methods [18]. In the first method, each graph in a
database consisted of vertices and edges on a random walk on a graph randomly selected
from one of the datasets. This type of database is called rand. In the second method,
each graph in a database was a frequent subgraph with a minimum support value of
0.1% [24] that is enumerated from one of the datasets. This type of database is called freq.
In the experiments, vertices corresponding to hydrogen were removed, which is similar
to the experiments in [2,14,17,30]. Table 2 summaries graphs in databses and queries in
our experiments.

https://github.com/SNUCSE-CTA/IDAR

Algorithms 2021, 14, 225 16 of 25

Table 2. Summary of datasets used in our experiments.

AIDS NCI PubChem

Rand Freq Rand Freq Rand Freq

of vertex labels 31 10 42 15 16 9

of edge labels 3 3 3 3 3 2

graphs in databases

of graphs 100,000 100,000 100,000 100,000 100,000 100,000

avg. # of vertices 29.0 21.4 28.2 16.9 27.6 24.1

max. # of vertices 100 26 79 27 84 32

min. # of vertices 1 10 1 5 1 11

avg. # of edges 30.0 20.4 29.2 16.1 28.2 23.1

query graphs

of graphs 100 100 100

avg. # of vertices 71.0 63.9 64.9

max. # of vertices 222 132 175

min. # of vertices 42 40 34

avg. # of edges 74.9 68.9 67.8

Since the problem of similar supergraph search is a novel problem proposed in this
paper, there are no methods for solving this problem other than our proposed method
to the best of our knowledge. Although we cannot compare our proposed method with
other methods, our method is based on CodeTree (We use “CodeTree” to name the method
proposed in [17] and “code tree” to represent the index used in CodeTree). This is proposed
in [17] and our method with θ = 0 is equivalent to CodeTree. Our proposed method
was implemented in Java and the experiments reported in this section were conducted
on a workstation with an AMD Ryzen Threadripper 3970X 3.7 GHz CPU and 64 GB
main memory.

First, we conducted experiments for Algorithm 4 with Equation (17). Figures 7–9
show the average computation time (query processing time) t, the average number of
nodes n in the code tree that our method traversed, and the average number of solutions
|S|, respectively, for various numbers of graphs |G| in a database and various thresholds
θ. The computation time increased as the number of graphs in a database increased,
as shown in Figure 7. Although the time complexity of Algorithms 1 and 2 is linearly
related to the number of graphs in the database, the computation time of our method was
sublinear for the number of graphs in the database because Algorithm 4 maintains the
correspondence between a vertex of a query graph and vertices of multiple graphs in the
database simultaneously. In contrast, the computation time increased exponentially as
θ was increased, as shown in Figure 7. This is because the number of graphs reachable
by editing a graph q′ ⊆ q θ times increases exponentially. Although the computation
time increased as the database size increased for freq databases, the rate of increase was
less than for rand databases. This is because the numbers of nodes in code trees for freq
databases are smaller than those for rand databases and the former numbers are relatively
unchanged by the increase in database size, as shown in Figure 10. The reason why the
numbers of nodes in code trees are largely unaffected by database size is that frequent
subgraphs enumerated from the datasets are similar to each other and the AcGM codes of
similar frequent subgraphs have common prefixes. This is because a subgraph of a frequent
subgraph is also a frequent subgraph, which is a consequence of the anti-monotonic
property of the support value [24].

Algorithms 2021, 14, 225 17 of 25

As shown in Figure 8, the number of nodes in the code tree that Algorithm 4 traversed
also increased exponentially as θ increased. The shapes of the curves plotted in Figure 8
are similar to those in Figure 7 and the trend for the numbers |G| of graphs in databases
and thresholds θ in Figure 8 are also similar to those in Figure 7. Figure 11 shows t/n for
various numbers of graphs |G| in a database and various thresholds θ. The figure shows
that t/n is almost constant and unaffected by the number of graphs in a database, which
indicates that the computation time of our method is proportional to the number of nodes
in the code tree that Algorithm 4 traverses.

�

�

�

�

�

��

��

��

��

� ������ ������ ������ ������ �������

��
�
�
�
��
�	
�

��
	�

�
�
��
��

	
���������������
��������	�����

���

���

���

���

���

(a) AIDS (rand)

�

����

����

����

����

����

� ��	��� ��	���
�	��� ��	��� ���	���
��
�
�
�
��
�	
�

��
	�

�
�
��
��

��������������������������������

���

���

���

���

���

(b) AIDS (freq)

�

�

��

��

��

��

� ������ ������ ������ 	����� �������

��
�
�
�
��
�	
�

��
	�

�
�
��
��

���������������������
�����

���

���

���

���

���

(c) NCI (rand)

���

���

���

���

���

���

���

� ��	��� ��	��� ��	��� ��	��� ���	���

��
�
�
�
��
�	
�

��
	�

�
�
��
��

���������������������
�����

���

���

���

���

���

(d) NCI (freq)

�

�

�

�

�

��

��

��

��

� ������ ������ ������ ������ �������

��
�
�
�
��
�	
�

��
	�

�
�
��
��

	
���������������
��������	�����

���

���

���

���

���

(e) PubChem (rand)

�

���

���

���

���

� ������ ������ 	�����
����� �������

��
�
�
�
��
�	
�

��
	�

�
�
��
��

�������������������������������

���

���

���

���

���

(f) PubChem (freq)

Figure 7. Average computation times t for various numbers of graphs |G| in a database and various thresholds θ.

As shown in Figure 9, the number of solutions found by Algorithm 4 was proportional
to the number of graphs in the databases. Because there is a limit to the number of graphs
in the database, the number of solutions did not increase exponentially as |G| increased.
The rectangle in Figure 12 shows the space in which graphs in a database are distributed
and each point in the rectangle shows a graph in the database. Points inside the circle
are solutions for a given query q and threshold θ. If the number of graphs in database
G is doubled to G′, such that 2|G| = |G′|, the number of points surrounded by the circle
doubles, if the distribution is not changed such that P(G) = P(G′). Thus, the number of
solutions found by Algorithm 4 is proportional to the numbers of graphs in the databases.

Algorithms 2021, 14, 225 18 of 25

���

���

���

���

���

���

� ������ ������ 	�����
����� �������

�
��
��
�
�
�
�
�	

�
	�
�
�
�
��
�
�	
��
�
�
��
�
�

�������������������������������

���

���

���

���

���

� ���

(a) AIDS (rand)

�

�

�

�

�

��

� ������ ������ ������ ������ �������

�
��
��
�
�
�
�
�	

�
	�
�
�
�
��
�
�	
��
�
�
��
�
�

	
���������������
��������	�����

���

���

���

���

���

� ���

(b) AIDS (freq)

�

�

�

�

�

�

� ������ ������ 	�����
����� �������

�
��
��
�
�
�
�
�	

�
	�
�
�
�
��
�
�	
��
�
�
��
�
�

�������������������������������

���

���

���

���

���

� ���

(c) NCI (rand)

�

��

���

���

���

���

� ������ ������ ������ 	����� �������

�
��
��
�
�
�
�
�	

�
	�
�
�
�
��
�
�	
��
�
�
��
�
�

���������������������
�����

���

���

���

���

���

� ���

(d) NCI (freq)

�

�

�

�

� ������ ������ ������ 	����� �������

�
��
��
�
�
�
�
�	

�
	�
�
�
�
��
�
�	
��
�
�
��
�
�

���������������������
�����

���

���

���

���

���

� ���

(e) PubChem (rand)

�

��

��

��

��

��

��

� ��	��� ��	��� ��	���
�	��� ���	���

�
��
��
�
�
�
�
�	

�
	�
�
�
�
��
�
�	
��
�
�
��
�
�

�������������������������������

���

���

���

���

���

� ���

(f) PubChem (freq)

Figure 8. Average numbers of nodes n in the code tree that our method traversed for various numbers of graphs |G| in a
database and various thresholds θ.

Algorithms 2021, 14, 225 19 of 25

�

�

��

��

��

��

� ������ ������ ������ 	����� �������

�
��
��
�
�
��
	

�
�
�

���������������������
�����

���

���

���

���

���

� ���

(a) AIDS (rand)

�

�

��

��

��

��

� ������ ������ ������ 	����� �������

�
��
��
�
�
��
	

�
�
�

���������������������
�����

���

���

���

���

���

� ���

(b) AIDS (freq)

�

�

��

��

��

��

� ������ ������ ������ 	����� �������

�
��
��
�
�
��
	

�
�
�

���������������������
�����

���

���

���

���

���

� ���

(c) NCI (rand)

�

�

��

��

��

��

� ������ ������ ������ 	����� �������

�
��
��
�
�
��
	

�
�
�

���������������������
�����

���

���

���

���

���

� ���

(d) NCI (freq)

�

�

��

��

��

��

� ������ ������ ������ 	����� �������

�
��
��
�
�
��
	

�
�
�

���������������������
�����

���

���

���

���

���

� ���

(e) PubChem (rand)

�

�

��

��

��

��

��

� ������ ������ 	�����
����� �������

�
��
��
�
�
��
	

�
�
�

�������������������������������

���

���

���

���

���

� ���

(f) PubChem (freq)

Figure 9. Number of solutions |S| for various numbers of graphs |G| in a database and various thresholds θ.

�

���

���

���

���

�����

�����

�����

� ������ ������ ������ ������ �������

�
��
��
�
�
�
�
	
�

�
��
��
�
�
�
�
��
�

	
���������������
��������	�����

����������

 !�������

"��!
��������

� ���

(a) AIDS (rand)

�

��

��

��

��

��

� ������ ������ 	�����
����� �������

�
��
��
�
�
�
�
	
�

�
��
��
�
�
�
�
��
�

�������������������������������

����� ��!"

#$�� ��!"

%��$��� ��!"

� ���

(b) AIDS (freq)

Figure 10. Number of nodes in code trees.

Algorithms 2021, 14, 225 20 of 25

�

�

�

�

�

�

�

	

� ������ ������ ������
����� �������

��
�
��
�
�	

�

��������������������������������

���

���

���

���

���

(a) AIDS (rand)

�

�

�

�

�

�

�

	

� ��
��� ��
��� ��
��� ��
��� ���
���

��
�
��
�
�	

�

��������������������������������

���

���

���

���

���

(b) AIDS (freq)

�

�

�

�

�

�

�

� ��	��� ��	��� ��	���
�	��� ���	���

��
�
��
�
�	

�

�������������������������������

���

���

���

���

���

(c) NCI (rand)

�

�

�

�

�

�

�

� ��	��� ��	��� ��	���
�	��� ���	���

��
�
��
�
�	

�

�������������������������������

���

���

���

���

���

(d) NCI (freq)

�

�

�

�

�

�

�

	

� ��
��� ��
��� ��
��� ��
��� ���
���

��
�
��
�
�	

�

��������������������������������

���

���

���

���

���

(e) PubChem (rand)

�

�

�

�

�

�

�

	

� ��
��� ��
��� ��
��� ��
��� ���
���

��
�
��
�
�	

�

��������������������������������

���

���

���

���

���

(f) PubChem (freq)

Figure 11. Computation time per node t/n for various numbers of graphs |G| in a database and various thresholds θ.

Figure 12. Distribution of graphs in a database.

Figure 13 shows t/|S| for various numbers of graphs |G| in a database and various
thresholds θ; the figure indicates the average computation time to output each solution.
As the numbers of graphs in the databases increased, t/|S| decreased exponentially. This
is because |S| is proportional to the number of graphs in a database, whereas the overall
computation time to search for solutions is sublinear.

Algorithms 2021, 14, 225 21 of 25

�

���

����

����

����

����

� ������ ������ ������ 	����� �������

��
�
�
�
��
�
	

��

���������������������
�����

���

���

���

���

���

(a) AIDS (rand)

�

�

��

��

��

��

� ������ ������ ������ 	����� �������

��
�
�
�
��
�
	

��

���������������������
�����

���

���

���

���

���

(b) AIDS (freq)

�

���

����

����

����

����

����

� ������ ������ 	�����
����� �������

��
�
�
�
��
�
	

��

�������������������������������

���

���

���

���

���

(c) NCI (rand)

�

��

���

���

���

���

� ������ ������ ������ 	����� �������

��
�
�
�
��
�
	

��

���������������������
�����

���

���

���

���

���

(d) NCI (freq)

�

���

���

���

���

����

����

����

����

����

� ������ ������ ������ ������ �������

��
�
�
�
��
�
	

��

	
���������������
��������	�����

���

���

���

���

���

(e) PubChem (rand)

�

��

��

��

��

��

��

	�

� ��
��� ��
��� ��
��� ��
��� ���
���

��
�
�
�
��
�
	

��

��������������������������������

���

���

���

���

���

(f) PubChem (freq)

Figure 13. Computation time per solution t/|S| for various numbers of graphs |G| in a database and various thresholds θ.

Figure 14 shows that average computation time and the number of nodes that Al-
gorithm 4 traversed for various average numbers of vertices in graphs in a database and
various thresholds θ. When the average number of vertices in graphs in a database is
increased, the average computation time of Algorithm 4 is largely unaltered because the
computation time of Algorithm 4 is proportional to the number of nodes that Algorithm 4
traverses, as mentioned after Algorithm 3. The number is also largely unaltered with
respect to the change of the average number of the vertices. The reason why the number of
nodes that Algorithm 4 traversed is largely unaltered is because of the use of the function
ed(s, s′) shown in Equation (17). By using Equation (17), the relabeling of vertices or edges
is admissible, whereas insertions and deletions of the vertices and edges are not admissible.
Therefore, nodes that Algorithm 4 traverses are restricted. As mentioned in Section 7, one
of the advantages of our proposed method is the customizability for searching for the types
of graphs desired by users. By customizing the search for the types of graphs, the users
can reduce not only the number of solutions to be outputted but also computation time of
our proposed method.

Algorithms 2021, 14, 225 22 of 25

����

���

�

��

��� ���� ���� ���� ���� ����

��
�
�
�
��
�	
�

��
	�

�
�
��
��

	
������������
������������	��������

���

���

���

���

���

(a) AIDS (rand): Average computation time

����

������

�������

���������

��� ���� ���� ���� ���� 	���

�
�
��
�
�
�
�
��
	

�
	�
�
�
�
��
�
�	
��
�
�
��
�
�

�����������������������
�������

���

���

���

���

���

(b) AIDS (rand): the number of nodes that Algorithm 4 traversed

����

���

�

��

��� ���� ���� ���� ���� ����

��
�
�
�
��
�	
�

��
	�

�
�
��
��

	
������������
������������	��������

���

���

���

���

���

(c) NCI (rand): Average computation time

����

������

�������

���������

����������

��� ���� ���� ���� ���� 	���

�
�
��
�
�
�
�
��
	

�
	�
�
�
�
��
�
�	
��
�
�
��
�
�

�����������������������
�������

���

���

���

���

���

(d) NCI (rand): the number of nodes that Algorithm 4 traversed

����

���

�

��

��� ���� ���� ���� ���� ����

��
�
�
�
��
�	
�

��
	�

�
�
��
��

	
������������
������������	��������

���

���

���

���

���

(e) PubChem (rand): Average computation time

����

������

�������

���������

��� ���� ���� ���� ���� 	���

�
�
��
�
�
�
�
��
	

�
	�
�
�
�
��
�
�	
��
�
�
��
�
�

�����������������������
�������

���

���

���

���

���

(f) PubChem (rand): the number of nodes that Algorithm 4 traversed

Figure 14. Average computation time and the average number of nodes that Algorithm 4 traversed for various numbers of
vertices in graphs in a database and various thresholds θ.

Next, we conducted experiments for Algorithm 4 with Equations (15) and (17).
Figure 15 shows the computation times for various numbers of graphs in the databases
and various thresholds. The computation times with Equation (17) were much shorter
than those with Equation (15). This is because the number of graphs reachable by editing
a graph q′ ⊆ q θ times increases exponentially and editing graphs with Equation (17)
is limited to the relabeling of vertices and edges, which is faster than the insertion and
deletion of vertices and edges that are required with Equation (15).

Algorithms 2021, 14, 225 23 of 25

����

����

����

�����

������

�������

���������

� � � � �

��
�
�
�
��
�	
�

��
	�

�
�
��
��

	
��
������

����������	
��������

������������

����������	
��������

������������

����������	
��������

�������������

����������	
������ �

������������

����������	
������ �

������������

����������	
������ �

�������������

(a) AIDS (rand)

�����

����

���

�

��

� � � � �

��
�
�
�
��
�	
�

��
	�

�
�
��
��

�	
��	������

����������	��������

������������

����������	��������

������������

����������	��������

�������������

����������	������ �

������������

����������	������ �

������������

����������	������ �

�������������

(b) AIDS (freq)

����

����

����

�����

������

�������

���������

� � � � �

��
�
�
�
��
�	
�

��
	�

�
�
��
��

	
��
������

����������	
��������

������������

����������	
��������

������������

����������	
��������

�������������

����������	
������ �

������������

����������	
������ �

������������

����������	
������ �

�������������

(c) NCI (rand)

����

����

����

�����

������

�������

� � � � �

��
�
�
�
��
�	
�

��
	�

�
�
��
��

	
��
������

����������	
��������

������������

����������	
��������

������������

����������	
��������

�������������

����������	
������ �

������������

����������	
������ �

������������

����������	
������ �

�������������

(d) NCI (freq)

����

����

����

�����

������

�������

���������

� � � � �

��
�
�
�
��
�	
�

��
	�

�
�
��
��

	
��
������

����������	
��������

������������
����������	
��������

������������
����������	
��������

�������������
����������	
������ �

������������
����������	
������ �

������������
����������	
������ �

�������������

(e) PubChem (rand)

����

����

����

�����

������

�������

� � � � �

��
�
�
�
��
�	
�

��
	�

�
�
��
��

	
��
������

����������	
��������

������������

����������	
��������

������������

����������	
��������

�������������

����������	
������ �

������������

����������	
������ �

������������

����������	
������ �

�������������

(f) PubChem (freq)

Figure 15. Computation times of Algorithm 4 with Equation (15) and Equation (17) for various numbers of graphs |G| in a
database and various thresholds θ.

9. Conclusions

In this paper, we proposed a novel problem, which is called similar supergraph search,
and designed an efficient algorithm to solve the problem. The problem is to identify all
graphs in a database that are similar to any subgraph of a query graph, where similarity is
defined as the edit distance. The proposed algorithm has three advantages for searching a
database consisting of graphs for similar graphs. The first advantage is that the algorithm
checks whether multiple graphs in the database are simultaneously solutions, because each
node in the code tree is associated with the common prefix of the AcGM codes of multiple
graphs in the database. The second advantage is that the codes produced by our proposed
algorithm are limited to prefixes of the AGM codes of q and we do not need to solve the
combination problem among the edges of q. The third advantage is the customization that
enables users to search for their desired type of similar graphs in a database containing
graphs. Therefore, the algorithm is a general and flexible framework for searching for

Algorithms 2021, 14, 225 24 of 25

similar subgraphs of query graphs and it is easily customizable for searching for the
types of graphs desired by the user. Our experiments showed that the computation time
increased exponentially as the distance threshold increased, but increased sublinearly with
the number of graphs in the database.

Author Contributions: Conceptualization, A.I.; methodology, A.I.; software, M.Y. and A.I.; valida-
tion, M.Y. and A.I.; writing—original draft, A.I.; writing—review and editing, M.Y. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Number JP20K11835.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not available.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shiraki, K. Characteristics of a candidate of an antiviral medication against COVID-19. Jpn. Med. J. 2020, 5005, 25–31. (In Japanese)
2. Bonnici, V.; Ferro, A.; Giugno, R.; Pulvirenti, A.; Shasha, D.E. Enhancing Graph Database Indexing by Suffix Tree Structure. In

Proceedings of the IAPR International Conference on Pattern Recognition in Bioinformatics, Nijmegen, The Netherlands, 22–24
September 2010; pp. 195–203.

3. Cheng, J.; Ke, Y.; Ng, W.; Lu, A. FG-Index: Towards Verification-Free Query Processing on Graph Databases. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, Beijing, China, 11–14 June 2007; pp. 857–872.

4. Cheng, J.; Ke, Y.; Ng, W. Efficient Query Processing on Graph Databases. ACM Trans. Database Syst. 2009, 2, 48. [CrossRef]
5. Klein, K.; Kriege, N.M.; Mutzel, P. CT-Index: Fingerprint-based Graph Indexing Combining Cycles and Trees. In Proceedings of

the IEEE International Conference on Data Engineering, Hannover, Germany, 11–16 April 2011; pp. 1115–1126.
6. Shang, H.; Zhang, Y.; Lin, X.; Yu, J.X. Taming Verification Hardness: an Efficient Algorithm for Testing Subgraph Isomorphism.

Proc. Vldb Endow. 2008, 1, 364–375. [CrossRef]
7. Sun, S.; Luo, Q. Scaling Up Subgraph Query Processing with Efficient Subgraph Matching. In Proceedings of the IEEE International

Conference on Data Engineering, Paris, France, 16–19 April 2019; pp. 220–231.
8. Williams, D.W.; Huan, J.; Wang, W. Graph Database Indexing Using Structured Graph Decomposition. In Proceedings of the

IEEE International Conference on Data Engineering, Istanbul, Turkey, 17–20 April 2007; pp. 976–985.
9. Xie, Y.; Yu, P.S. CP-Index: on the Efficient Indexing of Large Graphs. In Proceedings of the ACM Conference on Information and

Knowledge Management, Glasgow, UK, 24–28 October 2011; pp. 1795–1804.
10. Yan, X.; Yu, P.S.; Han, J. Graph Indexing: A Frequent Structure-based Approach. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, Paris, France, 13–18 June 2004; pp. 335–346.
11. Yuan, D.; Mitra, P. Lindex: A Lattice-based Index for Graph Databases. VLDB J. 2013, 22, 229–252. [CrossRef]
12. Zhang, S.; Hu, M.; Yang, J. TreePi: A Novel Graph Indexing Method. In Proceedings of the IEEE International Conference on

Data Engineering, Istanbul, Turkey, 17–20 April 2007; pp. 966–975.
13. Zhao, P.; Yu, J.X.; Yu, P.S. Graph Indexing: Tree + Delta >= Graph. In Proceedings of the International Conference on Very Large

Data Bases, Vienna, Austria, 23–27 September 2007; pp. 938–949.
14. Zou, L.; Chen, L.; Yu, J.X.; Lu, Y. A Novel Spectral Coding in a Large Graph Database. In Proceedings of the International

Conference on Extending Database Technology, Nantes, France, 25–29 March 2008; pp. 181–192.
15. Chen, C.; Yan, X.; Yu, P.S.; Han, J.; Zhang, D.; Gu, X. Towards Graph Containment Search and Indexing. In Proceedings of the

International Conference on Very Large Data Bases, Vienna, Austria, 23–27 September 2007; pp. 926–937.
16. Cheng, J.; Ke, Y.; Fu, A.W.; Yu, J.X. Fast Graph Query Processing with a Low-Cost Index. VLDB J. 2011, 20, 521–539. [CrossRef]
17. Imai, S.; Inokuchi, A. Efficient Supergraph Search Using Graph Coding. IEICE Trans. Inf. Syst. 2020, 103-D, 130–141. [CrossRef]
18. Kim, H.; Min, S.; Park, K.; Lin, X.; Hong, S.; Han, W. IDAR: Fast Supergraph Search Using DAG Integration. Proc. Vldb Endow.

2020, 13, 1456–1468. [CrossRef]
19. Lyu, B.; Qin, L.; Lin, X.; Chang, L.; Yu, J.X. Scalable Supergraph Search in Large Graph Databases. In Proceedings of the IEEE

International Conference on Data Engineering, Helsinki, Finland, 16–20 May 2016; pp. 157–168.
20. Yuan, D.; Mitra, P.; Giles, C.L. Mining and Indexing Graphs for Supergraph Search. Proc. Vldb Endow. 2013, 6, 829–840. [CrossRef]
21. Zhang, S.; Li, J.; Gao, H.; Zou, Z. A Novel Approach for Efficient Supergraph Query Processing on Graph Databases. In

Proceedings of the International Conference on Extending Database Technology, Saint-Petersburg, Russia, 24–26 March 2009;
pp. 204–215.

22. Zhu, G.; Lin, X.; Zhang, W.; Wang, W.; Shang, H. PrefIndex: An Efficient Supergraph Containment Search Technique. In
Proceedings of the International Conference on Scientific and Statistical Database Management, Heidelberg, Germany, 30 June–2
July 2010; pp. 360–378.

http://doi.org/10.1145/1508857.1508859
http://dx.doi.org/10.14778/1453856.1453899
http://dx.doi.org/10.1007/s00778-012-0284-8
http://dx.doi.org/10.1007/s00778-010-0212-8
http://dx.doi.org/10.1587/transinf.2019EDP7011
http://dx.doi.org/10.14778/3397230.3397241
http://dx.doi.org/10.14778/2536206.2536211

Algorithms 2021, 14, 225 25 of 25

23. Riesen, K. Structural Pattern Recognition with Graph Edit Distance—Approximation Algorithms and Applications. In Advances
in Computer Vision and Pattern Recognition; Springer: Berlin, Germany, 2015.

24. Inokuchi, A.; Washio, T.; Motoda, H. An Apriori-based Algorithm for Mining Frequent Substructures from Graph Data. In
Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery, Lyon, France, 13–16 September
2000; pp. 13–23.

25. Chang, L.; Feng, X.; Lin, X.; Qin, L.; Zhang, W.; Ouyang, D. Speeding Up GED Verification for Graph Similarity Search. In
Proceedings of the IEEE International Conference on Data Engineering, Dallas, TX, USA, 20–24 April 2020; pp. 793–804.

26. Gouda, K.; Hassaan, M. CS_GED: An Efficient Approach for Graph Edit Similarity Computation. In Proceedings of the IEEE
International Conference on Data Engineering, Helsinki, Finland, 16–20 May 2016; pp. 265–276.

27. Kim, J.; Choi, D.; Li, C. Inves: Incremental Partitioning-based Verification for Graph Similarity Search. In Proceedings of the
International Conference on Extending Database Technology, Lisbon, Portugal, 26–29 March 2019; pp. 229–240.

28. Liang, Y.; Zhao, P. Similarity Search in Graph Databases: A Multi-Layered Indexing Approach. In Proceedings of the IEEE
International Conference on Data Engineering, San Diego, CA, USA, 19–22 April 2017; pp. 783–794.

29. Wang, X.; Ding, X.; Tung, A.K.H.; Ying, S.; Jin, H. An Efficient Graph Indexing Method. In Proceedings of the IEEE International
Conference on Data Engineering, Arlington, VA, USA, 1–5 April 2012; pp. 210–222.

30. Zhao, X.; Xiao, C.; Lin, X.; Wang, W.; Ishikawa, Y. Efficient Processing of Graph Similarity Queries with Edit Distance Constraints.
VLDB J. 2013, 22, 727–752. [CrossRef]

31. Zhao, X.; Xiao, C.; Lin, X.; Zhang, W.; Wang, Y. Efficient Structure Similarity Searches: A Partition-based Approach. VLDB J. 2018,
27, 53–78. [CrossRef]

32. Zheng, W.; Zou, L.; Lian, X.; Wang, D.; Zhao, D. Efficient Graph Similarity Search Over Large Graph Databases. IEEE Trans.
Knowl. Data Eng. 2015, 27, 964–978. [CrossRef]

33. Inokuchi, A.; Washio, T.; Nishimura, Y.; Motoda, H. A Fast Algorithm for Mining Frequent Connected Subgraphs; IBM Research:
Yorktown Heights, NY, USA, 2002.

34. Yan, X.; Han, J. gSpan: Graph-Based Substructure Pattern Mining. In Proceedings of the IEEE International Conference on Data
Mining, Maebashi City, Japan, 9–12 December 2002; pp. 721–724.

35. Bi, F.; Chang, L.; Lin, X.; Qin, L.; Zhang, W. Efficient Subgraph Matching by Postponing Cartesian Products. In Proceedings of the
International Conference on Management of Data, San Francisco, CA, USA, 26 June–1 July 2016; pp. 1199–1214.

36. Sun, Z.; Wang, H.; Wang, H.; Shao, B.; Li, J. Efficient Subgraph Matching on Billion Node Graphs. Proc. Vldb Endow. 2012, 5, 788–799.
[CrossRef]

37. Zhang, S.; Li, S.; Yang, J. GADDI: Distance Index based Subgraph Matching in Biological Networks. In Proceedings of the
International Conference on Extending Database Technology, Saint Petersburg, Russia, 24–26 March 2009; pp. 192–203.

38. Khan, A.; Li, N.; Yan, X.; Guan, Z.; Chakraborty, S.; Tao, S. Neighborhood based Fast Graph Search in Large Networks. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, Athens, Greece, 12–16 June 2011; pp. 901–912.

39. Khan, A.; Wu, Y.; Aggarwal, C.C.; Yan, X. NeMa: Fast Graph Search with Label Similarity. Proc. Vldb Endow. 2013, 181–192.
[CrossRef]

40. Tian, Y.; McEachin, R.C.; Santos, C.; States, D.J.; Patel, J.M. SAGA: A Subgraph Matching Tool for Biological Graphs. Bioinformatics
2007, 23, 232–239. [CrossRef] [PubMed]

41. Zhang, S.; Yang, J.; Jin, W. SAPPER: Subgraph Indexing and Approximate Matching in Large Graphs. Proc. Vldb Endow. 2010, 3,
1185–1194. [CrossRef]

42. Borgwardt, K.M.; Ghisu, M.E.; Llinares-López, F.; O’Bray, L.; Rieck, B. Graph Kernels: State-of-the-Art and Future Challenges.
Found. Trends Mach. Learn. 2002, 13, 531–712. [CrossRef]

43. Wang, X.; Smalter, A.M.; Huan, J.; Lushington, G.H. G-Hash: Towards Fast Kernel-based Similarity Search in Large Graph
Databases. In Proceedings of the International Conference on Extending Database Technology, Nantes, France, 25–29 March 2008;
pp. 472–480.

44. Raymond, J.W.; Willett, P. Maximum Common Subgraph Isomorphism Algorithms for the Matching of Chemical Structures. J.
Comput. Aided Mol. Des. 2002, 16, 521–533. [CrossRef] [PubMed]

45. Bahiense, L.; Manic, G.; Piva, B.; de Souza, C.C. The Maximum Common Edge Subgraph Problem: A Polyhedral Investigation.
Discret. Appl. Math. 2012, 160, 2523–2541. [CrossRef]

46. Kashima, H.; Tsuda, K.; Inokuchi, A. Marginalized Kernels Between Labeled Graphs. In Proceedings of the International
Conference on Machine Learning, Washington, DC, USA, 21–24 August 2003; pp. 321–328.

47. Shervashidze, N.; Schweitzer, P.; van Leeuwen, E.J.; Mehlhorn, K.; Borgwardt, K.M. Weisfeiler-Lehman Graph Kernels. J. Mach.
Learn. Res. 2011, 12, 2539–2561.

http://dx.doi.org/10.1007/s00778-013-0306-1
http://dx.doi.org/10.1007/s00778-017-0487-0
http://dx.doi.org/10.1109/TKDE.2014.2349924
http://dx.doi.org/10.14778/2311906.2311907
http://dx.doi.org/10.14778/2535569.2448952
http://dx.doi.org/10.1093/bioinformatics/btl571
http://www.ncbi.nlm.nih.gov/pubmed/17110368
http://dx.doi.org/10.14778/1920841.1920988
http://dx.doi.org/10.1561/2200000076
http://dx.doi.org/10.1023/A:1021271615909
http://www.ncbi.nlm.nih.gov/pubmed/12510884
http://dx.doi.org/10.1016/j.dam.2012.01.026

	Introduction
	Problem Definition
	Related Work
	Straightforward Method for Constrained Problem
	Method for Traversing Prefix Tree for Constrained Problem
	Method for Traversing Prefix Tree for Original Problem
	Customization of Solutions
	Experimental Evaluation
	Conclusions
	References

