
algorithms

Article

Synthetic Experiences for Accelerating DQN Performance in
Discrete Non-Deterministic Environments †

Wenzel Pilar von Pilchau 1,* , Anthony Stein 2 and Jörg Hähner 1

����������
�������

Citation: Pilar von Pilchau, W.; Stein,

A.; Hähner, J. Synthetic Experiences for

Accelerating DQN Performance in

Discrete Non-Deterministic

Environments. Algorithms 2021, 14,

226. https://doi.org/10.3390/

a14080226

Academic Editors: Simone Faro,

Alessio Plebe and Arianna Pavone

Received: 30 June 2021

Accepted: 26 July 2021

Published: 27 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Organic Computing Group, University of Augsburg, 86159 Augsburg, Germany;
joerg.haehner@informatik.uni-augsburg.de

2 Artificial Intelligence in Agricultural Engineering, University of Hohenheim, 70599 Stuttgart, Germany;
anthony.stein@uni-hohenheim.de

* Correspondence: wenzel.pilar-von-pilchau@uni-a.de
† This paper is an extended version of our paper published in 12th International Conference on Neural

Computation Theory and Applications, Budapest, Hungary, 2–4 November 2020.

Abstract: State-of-the-art Deep Reinforcement Learning Algorithms such as DQN and DDPG use the
concept of a replay buffer called Experience Replay. The default usage contains only the experiences
that have been gathered over the runtime. We propose a method called Interpolated Experience
Replay that uses stored (real) transitions to create synthetic ones to assist the learner. In this first
approach to this field, we limit ourselves to discrete and non-deterministic environments and use a
simple equally weighted average of the reward in combination with observed follow-up states. We
could demonstrate a significantly improved overall mean average in comparison to a DQN network
with vanilla Experience Replay on the discrete and non-deterministic FrozenLake8x8-v0 environment.

Keywords: Experience Replay; Deep Q-Network; Deep Reinforcement Learning; sample efficiency;
interpolation; Machine Learning

1. Introduction

In the domain of Deep Reinforcement Learning (RL), the concept known as Experi-
ence Replay (ER) has long since developed to become a well-known standard for many
algorithms [1–3]. Initially designed as an extension for Q- and AHC-Learning [4], it has
become an integral part of the Deep Q-Network (DQN) family. Here, it is mandatory
to overcome instabilities in the learning phase [5]. Another positive effect that comes
along with the use of ERs is an increased sample efficiency, which is achieved by reusing
remembered transitions several times.

Being a key component for many Deep RL algorithms makes the concept of ER
attractive for improvements and extensions. Most of them store real, actually experienced,
transitions. Mnih et al. [2], for example, used the basic ER version to assist their DQN,
and Schaul et al. [1] extended it to a version called Prioritized Experience Replay, which,
instead of uniformly drawing, prefers experiences that promise greater learning successes.
However, there are other approaches as well, and these extensions focus on the usage and
creation of experiences that are synthetic in some way. An example of this is the so-called
Hindsight Experience Replay [3] that saves trajectories of states and actions together with
a corresponding goal. By replacing the goal with the last encountered state, a synthetic
trajectory is created and saved together with the real one. The authors could show that this
method promises great success in multi-objective problem spaces.

The contribution of our work is an ER-extension that uses synthetic experiences. A (not
complete) list of (Deep) RL algorithms that use an ER is the following: DQN, DDPG or
classic Q-Learning [6]. Our ER version is targeted to improve the performance of these
algorithms in nondeterministic and discrete environments. To achieve this, we consider
all the stored real state-transitions as the gathered knowledge of the underlying problem.

Algorithms 2021, 14, 226. https://doi.org/10.3390/a14080226 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-9307-855X
https://orcid.org/0000-0002-1808-9758
https://doi.org/10.3390/a14080226
https://doi.org/10.3390/a14080226
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14080226
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14080226?type=check_update&version=2

Algorithms 2021, 14, 226 2 of 23

Utilizing this knowledge, we are able to create synthetic experiences that contain an average
reward of all related surroundings. This approach makes it possible to increase the sample
efficiency even more because experiences are now also used for the generation of new
and possibly better synthetic experiences. We use observed follow-up states to complete
our so-called interpolated experiences and can support our learner in the exploration phase
this way.

The evaluation is performed on the FrozenLake environment from the OpenAI Gym [7].
Offering a discrete state space in the form of a grid world, in combination with a non-
deterministic state-transition-function, makes it a good choice to evaluate our algorithm
on. To increase scientific relevance and validity, we evaluate three different state encodings
and corresponding various deep network architectures.

The investigated problem is discrete and non-deterministic, and the averaging is a
rather simple method as well, but the intention is to gain the first insights in this highly
interesting field. We can reveal promising potential utilizing this very simple technique,
and this work serves as a basis to build up further research on.

The present work is an extended version of [8]. In addition to the original publication,
we used actual deep neural networks instead of a linear regression. We also investigated
different state encodings, making the problem more difficult and interesting and also
increasing the scientific validity. We tied up on the results of this paper and were able to
define new questions to investigate. The key idea remains the same but is extended with
deeper evaluation.

The paper is structured as follows: We start with a brief introduction of the ER
and Deep Q-Learning in Section 2 and proceed with relevant related work in Section 3.
In Section 4, we introduce our algorithm alongside with a problem description and the
Interpolation Component that was used as an underlying architecture. The evaluation and
corresponding discussion, as well as interpretation of the results, are presented in Section 5.
The article closes with a conclusion and gives an outlook on future work in Section 6.

2. Background

In this section, we start with introducing the idea of the Experience Replay and
continue with the presentation of Deep Reinforcement Learning basics as well as an
explanation of why the former concept is mandatory here.

2.1. Experience Replay

The ER is a biologically inspired mechanism [4,9–11] to store experiences and reuse
them for training later on.

An experience is defined as: et = (st, at, rt, st+1), where st denotes the start state, at
the performed action, rt the corresponding received reward and st+1 the follow-up state.
To perform Experience Replay, at each time step t, the agent stores its recent experience in a
data set Dt = {e1, . . . , et}. In an non-episodic/infinite environment (and also in an episodic
one after enough time has gone by), we would run into the problem of limited storage.
To counteract this issue, the vanilla ER is realized via a FiFo buffer, and old experiences are
thrown away after reaching the maximum length.

This procedure is repeated over many episodes, where the end of an episode is defined
by a terminal state. The stored transitions can then be utilized for training either online or
in a specific training phase. It is very easy to implement ER in its basic form, and the cost
of using it is mainly determined by the storage space needed.

2.2. Deep Q-Learning

The DQN algorithm is the combination of the classic Q-Learning [12,13] with neural
networks and was introduced in [2,14]. The authors showed that their algorithm is able
to play Atari 2600 games on a professional human level utilizing the same architecture,

Algorithms 2021, 14, 226 3 of 23

algorithm and hyperparameters for every single game. As DQN is a derivative of classical
Q-Learning, it approximates the optimal action-value function:

Q∗(s, a) = max
π

E
[
rt + γrt+1 + γ2rt+2 + . . . |st = s, at = a, π

]
. (1)

However, DQN employs a neural network instead of a table to parameterize the
Q-function. Equation (1) displays the maximum sum of rewards rt discounted by γ at
each time-step t, which is achievable by a behaviour policy π = P(a|s), after making an
observation s and taking an action a. DQN performs a Q-Learning update at every time
step that uses the temporal-difference error defined as follows:

δt = rt + γ max
a′

Q(st+1, a′)−Q(st, at). (2)

Tsitsiklis et al. [5] showed that a nonlinear function approximator used in combination
with temporal-difference learning, such as Q-Learning, can lead to unstable learning or
even divergence of the Q-Function.

As a neural network is a nonlinear function approximator, several problems arise:

1. the correlations present in the sequence of observations;
2. the fact that small updates to Q may significantly change the policy and, therefore,

impact the data distribution; and
3. the correlations between the action-values Q(st, at) and the target values

r + γ maxa′ Q(st+1, a′) present in the td-error shown in Equation (2).

The last point is crucial because an update to Q will change the values of both
the action-values and the target values. This change could lead to oscillations or even diver-
gence of the policy. To counteract these issues, two concrete actions have been proposed:

1. The use of an ER solves, as stated above, the two first points. Training is performed
each step on minibatches of experiences (s, a, r, s′) ∼ U(D), which are drawn uni-
formly at random from the ER.

2. To remove the correlations between the action-values and the target values, a second
neural network is introduced that is basically a copy of the network used to predict
the action-values. The target-network is either frozen for a certain interval C before it
is updated again or “soft” updated by slowly tracking the learned networks weights
utilizing a factor τ. This network is responsible for the computation of the target
action-values. [2,15]

We use the target network performing “soft” updates as presented above and extend
the classic ER with a component to create synthetic experiences.

3. Related Work

The classical ER, introduced in Section 2.1, has been improved in many further publi-
cations. One prominent improvement is the so called Prioritized Experience Replay [1],
which replaces the uniform sampling with a weighted sampling in favour of experience
samples that might influence the learning process most. This modification of the distri-
bution in the replay induces bias, and to account for this, importance-sampling has to be
used. The authors show that a prioritized sampling leads to great success. This extension
of the ER also changes the default distribution but uses real transitions and therefore has a
different focus.

The authors of [16,17] investigated the composition of experience samples in the ER.
They discovered that for some tasks, transitions made in an early phase when exploration
is high are important to prevent overfitting. Therefore, they split the ER into two parts: one
with samples from the beginning and one with actual samples. They also show that the
composition of the data in an ER is vital for the stability of the learning process, and at
all times, diverse samples should be included. Following these results, we try to achieve

Algorithms 2021, 14, 226 4 of 23

a broad distribution over the state space utilizing synthetic experiences (for most of our
configurations).

Jiang et al. [18] investigated ERs combined with model-based RL and implemented a
tree structure to represent a model of the environment. In their research, they learned a
model of the problem and invented a tree structure to represent it. Using this model, they
could simulate virtual experiences that they used in the planning phase to support learning.
To increase sample efficiency, experience samples are stored in an ER. This approach has
some similarities to the interpolation-based approach presented in this work but addresses
other aspects, such as learning a model of the problem first.

Gu et al. [19] presented an interpolation of on-policy and off-policy model-free Deep
Reinforcement Learning techniques. In this publication, an approach of interpolation
between on- and off-policy gradient mixes likelihood ratio gradient with Q-Learning,
which provides unbiased but high-variance gradient estimations. This approach does not
use an ER and therefore differs from our work.

This work draws on the methods proposed in [20–24]. The authors used interpolation
in combination with an XCS classifier System to speed up learning in single-step problems
by using previous experiences as sampling points for interpolation. Our approach focuses
on a DQN as a learning component and, more importantly, multi-step problems and there-
fore differs from this work. Anyhow, we adopted the so-called Interpolation Component
that is introduced in more detail in Section 4.3.

4. Interpolated Experience Replay

In this Section, we present the FrozenLake problem and introduce our algorithm to
solve it. We also introduce the Interpolation Component that serves as architectural concept.

4.1. Problem Description

“FrozenLake” is one example of a non-deterministic world in which an action at ∈ A
realised in a state st ∈ S may not consistently lead to the same follow-up state st+1 ∈ S.
FrozenLake is basically a grid world consisting of an initial state I, a final state G and frozen,
as well as unfrozen tiles. The unfrozen tiles equal holes H in the lake and if the agent
falls into one of such, he has to start from the initial state again. If the agent reaches G, he
receives a reward of 1. The set of possible actions A consists of the four cardinal directions
A = {N, E, S, W}. Executing a concrete action (e.g., N) only results with a probability of
1
3 in the corresponding field, but it is also possible that the agent instead performs one
of the orthogonal actions (in our example: W or E) with the same probability of 1

3 for
each case. This behaviour makes the environment non-deterministic. Because there is a
discrete number of states the agent can reach, we can denote the problem as discrete as
well. The environment used for evaluation is the “FrozenLake8x8-v0” environment from
OpenAI Gym [7], as depicted in Figure 1.

In addition to the described version, we changed the reward function to return a
reward of −1 in the case of falling into a hole and 5 for reaching the goal. As the first
adaption is crucial for our approach, the second change helps the learner to solve the
environment. Both changes intensify the received rewards and therefore the experienced
transitions. Assigning a negative reward to the end of an episode (hole) makes it possible to
calculate an average reward containing an additional value (see below). By testing different
final rewards (goal), we could observe that the agent performed best with a reward of 5.

The decision to focus on the presented environment was taken because: (1) it is a
relatively well-known problem in the RL community (OpenAI Gym); (2) our presented
approach is designed for discrete and non-deterministic environments. To add more
variability, we used three different state encodings (see Section 5.1).

The non-deterministic character of the problem comes with difficulties that are de-
scribed in the following paragraph: If an action is chosen that leads the agent in the
direction of the goal, but because of the slippery factor, it is falling into a hole, it addition-
ally receives a negative reward and creates the following experience: et = (st, at,−1, st+1).

Algorithms 2021, 14, 226 5 of 23

If this experience is used for a Q update, it misleadingly shifts the state-action value away
from a positive value. We denote the slippery factor for executing a neighbouring action as
cslip, the resulting rewards for executing the two neighbouring actions as rright

t and rleft
t and

the reward for executing the intended action as rint
t and can then define the true expected

reward for executing at in st as follows:

rexp
t =

cslip

2
· rright

t +
cslip

2
· rleft

t + (1− cslip) · rint
t . (3)

I

H

H

H

H H H

H H H

H G

A

Figure 1. The FrozenLake8x8-v0 environment from OpenAI Gym [7].

Following Equation (3), we define the experience that takes the state-transition func-
tion into account and that does not confuse the learner as the expected experience eexp

t :

eexp
t = (st, at, rexp

t , st+1). (4)

The learner will converge its state-action value Qπ(st, at) after seeing enough experi-
ences to:

Qπ(st, at) = Q∗(st, at) = rexp
t + γ max

a′
Q∗(st+1, a′). (5)

A Q update with received (misleading) experiences comes with the effect of oscillation
as the non-deterministic property of the environment creates rewards and follow-up states
that might lead in completely opposite directions (e.g., brings the agent closer to the goal
vs. ends the episode in a hole). In the original environment (reward for falling into a hole
equals 0), this effect would also appear because the different follow-up states hold the same
information. If the learner only receives experiences in the form of eexp

t , the amount of time
required to converge to Q∗ could be decreased.

4.2. Averaging Rewards

The intention of our solution is to reduce the amount of training by the creation of
synthetic experiences that are as similar as possible to eexp

t . As a current limitation, we
focus on estimating rexp

t and use real observed follow-up states st+1. That approach is
possible because the environment is discrete (this represents a mandatory precondition
of our algorithm). Discrete environments provide a limited amount of states and more
important corresponding follow-up states, and it is possible to observe and remember
them. In continuous environments, we would also need to predict the follow-up state next
to the reward, and for this first investigation of the concept of interpolated experiences, we

Algorithms 2021, 14, 226 6 of 23

decided to keep it simple. To compute an accurate estimation of eexp
t , we need to estimate

rexp
t first.

The set of all rewards that belong to the experiences that start in the same state st and
execute the same action at can be defined as:

Rt :=
{

rn ∈ {r|(s, a, r, s′) ∈ Dt ∧ a = at ∧ s = st}
}

. (6)

We use the rewards in Rt to calculate the average and denote it as ravg
t . This value

holds as a good estimation of rexp
t .

ravg
t =

∑r∈Rt r
|Rt|

, (7)

following this, we can then define eavg
t as our estimation of eexp

t as:

eavg
t = (st, at, ravg

t , st+1), (8)

with
eavg

t ≈ eexp
t . (9)

The accuracy of this interpolation correlates with the amount of transitions stored in
the ER, which start in st and execute at. This comes from the fact that the effect of outliers
can be mitigated from enough normal distributed samples. To achieve this, we defined an
algorithm that triggers an interpolation after every step the agent takes. A query point xq
is drawn via a sampling method from the state space, and all matching experiences:

Dmatch := {et ∈ Dt|st = xq}, (10)

where their starting point st is equal to the query point xq, are collected from the ER. Then
for every action a ∈ A, all experiences that satisfy at = a are selected from Dmatch in:

Da
match := {et|et ∈ Dmatch ∧ at = a}. (11)

The resulting transitions are used to compute an average reward value ravg
t . Utilizing

this estimation, a synthetic experience eavg
t for every distinct next state:

st+1 ∈ {s′|(st, at, rt, s′) ∈ Da
match}, (12)

is created. This results in a minimum of 0 and a maximum of 3 synthetic experiences per
action and sums up to a maximum of 12 synthetic transitions per interpolation depending
on the amount of stored transitions in the ER. As with the amount of stored real transitions,
which can be seen as the combined knowledge of the model, the quality of the interpolated
experiences may get better. A parameter cstart_inter is introduced that determines the mini-
mum amount of stored experiences before the first interpolation is executed. The associated
pseudocode is depicted in Algorithm 1.

4.3. Interpolation Component

Stein et al. introduce their Interpolation Component (IC) in [22]. As already mentioned
in Section 3, we adopted it for our approach. We use it as the underlying basic structure for
our interpolation tasks and present it in more detail in the following chapter.

This IC, depicted in Figure 2, serves as an abstract pattern and consists of a Ma-
chine Learning Interface (MLI), an Interpolant, an Adjustment Component, an Evaluation
Component and the Sampling Points (SP). The MLI acts as an interface to attached ML
components and as a controller for the IC. If it receives a sample, it is handed to the Ad-
justment Component; there, following a decision function, it is added to or removed from
SP. If an interpolation is required, the Interpolation Component fetches the required sam-
pling points from SP and computes, depending on an interpolation technique, an output.

Algorithms 2021, 14, 226 7 of 23

The Evaluation Component provides a so-called trust-level as a metric of interpolation
accuracy.

Algorithm 1: Reward averaging in IER.

Initialize D;
Initialize Dinter;
while s is not terminal state do

Store experience e in D;
if |D| ≥ cstart_inter then

Draw x from S;
Select all et that match st = x from D;
Store results in Dmatch;
forall a ∈ A do

Select all et that match at = a from Dmatch;
Store results in Da

match;
Compute ravg

t ;
forall distinct st+1 in Da

match do
Create eavg

t = (x, a, ravg
t , st+1);

Add eavg
t to Dinter;

𝐼𝐼𝐼𝐼
𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝐼𝐼

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝐸𝐸 𝑇𝑇𝐼𝐼𝐼𝐼

𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝐴𝐴𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸

𝐴𝐴 𝐴𝐴∗ +/−

𝐼𝐼𝐸𝐸𝐸𝐸𝐴𝐴𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝐼𝐼 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖

Figure 2. A schematic of the Interpolation Component from Stein et al. [22].

We replaced the SP with the ER. It is realized by a FiFo queue with a maximum length.
This queue represents the classic ER and is filled only with real experiences. To store the
synthetic transitions another queue, a so-called ShrinkingMemory is introduced. This second
storage is characterized by its decreasing size. Starting at a predefined maximum, it gets
smaller depending on the length of the real experience queue. The Interpolated Experience
Replay (IER) has a total size, comprising the sum of the lengths of both queues, as can be
seen in Figure 3. If this size is reached, the length of the ShrinkingMemory is decreased,
and the oldest items are removed. This goes on as long as either the real valued queue
reaches its maximum length and there is some space left for interpolated experiences or
the IER fills up with real experiences. As interpolation is a lot of extra work, it might seem
counterproductive to throw such examples away, but this decision was made because of
two reasons:

1. As the learner comes near convergence, randomly distributed experiences might
harm the real distribution that is derived by following the actual policy. Following
this point, the learner benefits more from real experiences as time goes by.

2. The quality of the interpolated experiences is unclear and a bad interpolation could
harm the learner even more than a misleading real experience. By throwing them
away and regularly replacing them with new ones, we try to mitigate this effect.

Algorithms 2021, 14, 226 8 of 23

We also introduced a minimum length for the interpolated storage that is never fallen
below. This results in a differing behaviour from the above-explained procedure. If the
ShrinkingMemory is instructed to reduce its length, it does this only until it reaches this
threshold. Therefore, the maximum length of the IER consists of the real experience buffers
maximum length ser_max and the minimum length of the synthetic part ssyn_min.

Interpolated Experience Replay

real experiences synthetic experiences

sier

ser ssyn

ssyn min

Figure 3. Intuition of Interpolated Experience Replay memory.

The IER algorithm, as described in Section 4.2, is located in the Interpolant, and,
as stated above, executed in every step. An exhaustive search would need a computation
time of O(n) and therefore is not practical for large sized IERs because this operation
is executed in every single step. A possible solution for this problem is to employ a so
called kd-tree, which represents a multidimensional data structure. Using such a tree,
the computation time could be decreased to O(log n) [25]. As the examined problem is
very small and consists out of |S| = 64 discrete states, we use another approach to reduce
the computation time further to O(1). To achieve this, we use a dictionary dict : K → V of
size |S| ∗ 3 = 192 with keys:

K := {(st, at)|st ∈ S, at ∈ A}, (13)

and corresponding values:

V :=
{

ravg
t , St+1

}
, (14)

with:
St+1 =

{
st+1 ∈ {s′|(st, at, rt, s′) ∈ Da

match}|a = at
}

. (15)

This equals an entry for every state-action pair with associated average rewards and
distinct next states of all seen transitions. The dictionary is updated after every transition
the agent makes.

To evaluate the quality of computed interpolations, an appropriate metric cloud be
used in the Evaluation part. This is not implemented yet and left for future work.

5. Evaluation

This chapter first introduces the experimental setup and is followed with a detailed
evaluation of the results.

5.1. State Encodings

We investigated three different state encodings:

1. State Vector Encoding (VE): The state vector encoding is realized with an array of
the length of the state space (|S| = 64). The whole vector is filled with zeros, and the
entry that corresponds to the actual state is set to 1. This results in an input layer of
size 64.

2. Coordinates Encoding (CE): The coordinates state encoding is realized via a vector
with two entries that hold the value for the normalized x- and y-coordinate. An input
layer of size two is used here.

3. Local Knowledge Encoding (LKE): In the local knowledge state encoding, the agent
receives a vector with eight entries that corresponds to the surrounding fields of the

Algorithms 2021, 14, 226 9 of 23

actual state. The different state types are shown in Table 1. We utilized an input layer
of size 8. In this encoding, we face the problem of perceptual aliasing [26], as some
states have the exact same encoding but in fact are different. These states share their
collected follow-up states and rewards, and therefore, it is expected that a small real
experience buffer should perform better than a big one because stored experiences
are replaced with a higher frequency. Furthermore, the complexity of the problem
increases because of these states.

Table 1. An overview of the values for the different types of tiles in the LKE state encoding.

Tile Type Value

initial state 0
final state 1

frozen 2
hole 3

out of state space 4

A graphical illustration of the different encodings can be observed in Figure 4.

I

H

H

H

H H H

H H H

H G

A

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

y\x

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

state vector encoding = [0,. . .,0,1,0,. . .,0]

coordinates encoding= [77 ,
6
7] = [1, 0.86]

local knowledge encoding = [3,3,2,4,4,4,1,2]

Figure 4. A graphical illustration of the three different state encodings. Every tile is represented by
an index for the VE encoding. A coordinate system is used for the CE encoding and the surrounding
8 tiles represent the LKE encoding. An example for the state A is given for every encoding in
the bottom.

5.2. Query Methods

We investigated four different query methods of how to receive xq:

1. Random (R): This method draws randomly from the state space. We expect this mode
to assist the learner with exploration. Because the new inserted experiences induce a
completely differing distribution (1

|S|), this might also harm the learner. The concept

Algorithms 2021, 14, 226 10 of 23

is not feasible for LKE because the sampling of eight random numbers out of five
possibilities results in illegal or not existing states most of the time.

2. Policy Distribution (PD): This method draws a random state from the real experience
buffer. The received state distribution resembles the one that is created by the policy.
We expect the (possible) harmful effect of inducing a different sample distribution to
be mitigated.

3. Last State (LS): To stay even closer to the distribution created by the policy, this
method takes the last state that was saved to the real experience buffer.

4. Last State—On Policy Action Selection (LS-OnPol): In an attempt to stay even
closer to the distribution that the policy creates, we use the LS query method in
combination with an altered interpolation step. We only create synthetic experiences
for one action that is given by the actual policy. Using this technique, we create
synthetic samples for the same experiences the agent observed with a small deviation
in the form of the actual ε of the exploration.

5.3. IER Modes

We investigated three different methods of how the IER was used:

1. Synthetic Min Size Zero (MSZ): In this mode, we used a minimum size for the
synthetic buffer of 0. In this configuration, the learner starts with a lot of synthetic
samples in its buffer, but if he comes near convergence, they are replaced with real
experiences, and in the end, the agent learns from the real data.

2. Synthetic Min Size Equals Real Size (MSERS): In this mode, we set the ssyn_min to
ser_max. The synthetic buffer fills up completely and stays like this. Overt time, the
real experience buffer fills to the same size, and in the end, both buffers have the same
length. This brings a ratio of synthetic to real experience samples in favour of the
interpolated ones in the beginning and ends in an equal distribution of both.

3. Only Use Interpolated Buffer (OIER): Because (as described in Section 4.2) we as-
sume that our synthetic samples are even better than the real ones, we also investi-
gated how our approach performs if we only train on them. The maximum length
of the IER, in this case, is only related to ssyn_min because the real examples are never
used for learning.

5.4. Hyperparameter

Preliminary experiments revealed the hyperparameters given in Table 2, which are
shared by all experiments.

Table 2. An overview of hyperparameters applied for the FrozenLake8x8-v0 experiment.

Parameter Value

Learning rate α 0.0005
Discount factor γ 0.95

Epsilon start 1
Epsilon min 0

soft replacement τ 0.25
Size of IER sier 100k

Start Learning at size of IER 200
Minibatch size 32

Start interpolation at cstart_inter 100
double True
dueling True

The used network architectures for the different state encodings are presented in
Table 3. All networks use the same amount of output nodes.

Algorithms 2021, 14, 226 11 of 23

Table 3. The used network architectures for the different state encodings.

State Encoding Input Hidden Layer Output

VE 64 [32, 32] 4
CE 2 [128, 256] 4

LKE 8 [64, 64] 4

Table 4 shows the different hyperparameter for the IER modes. The value of ser_max
for OIER and MSERS varies for LKE from the other encodings and is much smaller; this
comes from the assumption (as described in Section 5.1) that a smaller buffer would help
to handle aliasing states because the rotation of the sampling points is increased that way.
In contrast, we expect that a bigger buffer helps in the other cases because it corresponds
to a bigger knowledge base and consequentially better synthetic experiences.

Table 4. The IER-related hyperparameter for the different IER modes.

IER Mode State Encoding ser_max ssyn_min |IER|

MSZ All 100 k 0 100 k

MSERS VE and CE 100 k 100 k 200 k
LKE 50 k 50 k 100 k

OIER VE and CE 100k 100 k 100 kLKE 20k

We used a linearly decaying ε-greedy as the exploration technique and investigated
three different durations texpl (500, 750 and 1000 episodes).

5.5. Experiments

As baseline, we used a DQN with vanilla ER and ser_max = 100,000 for all three state
encodings to compare the different configurations with.

The different constellations of the individual experiments are shown in Table 5. We
measure the average return over the last 100 episodes to obtain a moving average that
indicates how often the agent is able to reach the goal in this time. Each experiment was
repeated 20 times, and the results are reported as the overall mean values and the observed
standard deviations (±1SD) over the repetitions.

Table 5. An overview of the individually conducted experiment constellations.

Experiment State Encoding IER Mode Query Method texpl

1 VE

SMZ
×

R

×

500
MSERS PD 750
OIER LS 1 k

OIER LS-OnPol

2 CE

SMZ
×

R

×

500
MSERS PD 750
OIER LS 1 k

OIER LS-OnPol

3 LKE

SMZ
× ×

500
MSERS PD 750
OIER LS 1 k

OIER LS-OnPol

Algorithms 2021, 14, 226 12 of 23

Each configuration was tested against the baseline, and the differences have been
assessed for statistical significance. Therefore, we first conducted Shapiro–Wilk tests in
conjunction with visual inspection of QQ-plots to determine whether a normal distribution
can be assumed. Since this criterion could not be confirmed for any of the experiments,
the Mann–Whitney-U test has been chosen. All measured statistics, comprising the corre-
sponding p-values for the hypothesis tests, can be found in the Appendix A.

5.6. Experimental Results

Figures 5–7 depict the results of the best IER configurations, as given in Table 6.
Each Figure holds the results for all investigated exploration phases in this order: texpl =
(500, 750, 100). Figure 5 shows the result for the VE state encoding, Figure 6 the result for
the CE state encoding and Figure 7 the result for the LKE state encoding. The graphs for all
conducted experiments can be found in the Appendix B.

Table 6. Best IER configurations found during the evaluation. The last two columns depict the overall
received mean reward of the configuration and its corresponding baseline. A higher value indicates
better performance.

Experiment State Encoding texpl Configuration Mean Mean
Baseline Config

1 VE
500 MSERS-PD 0.4111 0.4252
750 SMZ-LS 0.3484 0.3862

1000 OIER-PD 0.2564 0.2747

2 CE
500 OIER-PD 0.4677 0.4983
750 OIER-PD 0.3661 0.3894

1000 MSERS-LS 0.2533 0.2707

3 LKE
500 OIER-LS-OnPol 0.3562 0.4132
750 OIER-LS-OnPol 0.2711 0.3228

1000 OIER-LS-OnPol 0.1952 0.2311

Figure 5. The best results among all conducted experiments with state-encoding VE. The solid red line represents the
classical ER serving as baseline to compare with. The dashed green line shows the average reward of the IER approach.
The blue line depicts the decaying epsilon. The lines for IER and the baseline represent the repetition averages. texpl = 500.
texpl = 750. texpl = 1000.

Algorithms 2021, 14, 226 13 of 23

Figure 6. The best results among all conducted experiments with state-encoding CE. The solid red line represents the
classical ER serving as baseline to compare with. The dashed green line shows the average reward of the IER approach.
The blue line depicts the decaying epsilon. The lines for IER and the baseline represent the repetition averages. (texpl = 500.
texpl = 750. texpl = 1000.

Figure 7. The best results among all conducted experiments with state-encoding LKE. The solid red line represents the
classical ER serving as baseline to compare with. The dashed green line shows the average reward of the IER approach.
The blue line depicts the decaying epsilon. The lines for IER and the baseline represent the repetition averages. texpl = 500.
texpl = 750. texpl = 1000.

Figures 8–10 picture the size of the IER at a given episode. As the graphs for different
texpl only differ marginally, we chose texpl = 500 to present here. The graphs for experiment
1 and 2 look quite similar, but experiment 3 differs from them. This comes from the fact that
we chose smaller values for ter_max for MSERS and OIER because of the aforementioned
reasons. The orange curve, indicating OIER-OnPol, shows a less steep increase than the
OIER configuration resulting from the creation of fewer synthetic samples.

5.7. Interpretation

All presented best configurations (Figures 5–7) outperform their corresponding base-
line (red line) and converge on a higher value alongside a steeper increase. This effect even
increases with a smaller value of texpl . The IER approach and the baseline for texpl = 500
remain close to each other after 1400 episodes, and we can expect a similar behaviour from
the other experiments if we give them more time. This shows that our approach helps
the agent to understand the underlying model of the environment in the early to mid
stages of learning (exploration phase). This fits our expectations from Section 4.2, where
we noted that Q(S, A) will converge to Q∗(S, A) after seeing enough samples, but our
synthetic experiences can accelerate this process. The enhanced information encapsulated
in a synthetic experience as well as the distribution created by the interpolation process help
to reduce oscillations that come from the effect of shifting the Q-function away from Q∗.

Algorithms 2021, 14, 226 14 of 23

The IER graph in Figure 6a ends slightly below the baseline. As it reaches a higher
value, both overall and faster, we still consider it to outperform the baseline.

A closer look at Table 6 reveals a clear best configuration for experiment 3 (OIER-
LS-OnPol). Experiment 2 favours OIER-PD with an outlier for texpl = 1000, but the
difference between OIER-PD and MSERS-LS is marginal here (cf. Appendix A), and
therefore, we can declare OIER-PD as the best-performing configuration for this experiment.
For the CE encoding, on the other hand, it is not as obvious, and we obtain three different
configurations here. Overall, we can observe that the random query method performs
poorly in comparison with the others, which fits our expectations from Section 5.2. The PD
query method seems to be the most efficient method for encodings with global knowledge
(VE and CE).

Figure 8. The intuition of Interpolated Experience Replay memory for the VE state encoding and
texpl = 500.

Figure 9. THe intuition of Interpolated Experience Replay memory for the CE state encoding and
texpl = 500.

Algorithms 2021, 14, 226 15 of 23

Figure 10. The intuition of Interpolated Experience Replay memory for the LKE state encoding and
texpl = 500.

The agent limited to local knowledge benefited most from staying as close as possible
to the distribution created by the policy. All interpolation techniques, except OnPol, create
synthetic experiences for every action a ∈ A that has been performed from the actual state.
A synthetic experience is created for every follow-up state that has been reached from this
state-action-pair. This should result in a maximum of 12 created experiences for every
state. In the case of conceptual aliasing, the agent observes more than three follow-up
states, which leads to the creation of many synthetic experiences. This might harm the
learner more than it helps. Reducing this amount (by only interpolating experiences for
one action) helps the learner. Additionally, here comes the effect of a smaller value of ser
into play because, as stored experiences are replaced more often, the used follow-up states
for interpolation are located closer to the trajectory created by the policy, which results in
lesser follow-up states for aliasing states.

The fact that the agents from experiment 1 and 2 do not benefit from the OnPol
configuration could be explained by the bigger effect of exploration that is induced into the
ER by interpolating all actions. This increased spread over the state space seems to assist
the learner.

The best results can be observed in the LKE experiments. The problem of the concep-
tual aliasing that arises here brings an additional difficulty into play and complicates the
whole learning process. Our synthetic experiences use the gathered problem knowledge
stored in the real transitions and help the learner to understand the problem. As this
fact holds for all state encodings, the LKE encoding benefits from the additional focus on
promising follow-up states that are replicated in the ER (OnPol).

In conclusion, our approach outperforms the baseline in most of the configurations in
every state encoding. Using only synthetic experiences and querying in a way that follows
the policy distribution to some extend promises better results.

6. Conclusions and Future Work

We presented an extension for the classic ER used in Deep RL that includes synthetic
experiences to speed up and improve learning in non-deterministic and discrete environ-
ments. The proposed algorithm interprets stored, actually experienced transitions as an
(inaccurate) model of the environment and calculates synthetic (s, a, r, s)-tuples by means of
interpolation. The synthetic experiences comprise a more accurate estimate of the expected
long-term return a state-action pair promises than a real transition does. We investigated
three different state encodings of the FrozenLake8x8-v0 environment from the OpenAI
Gym to evaluate our approach for varying network structures and different challenges.

Algorithms 2021, 14, 226 16 of 23

To date, the employed interpolation technique is a simple, equally weighted averaging
that serves as an initial approach. More complex methods in even more complex problem
spaces have to be investigated in the future. The IER approach was compared to the default
ER in the FrozenLake8x8-v0 environment from the OpenAI Gym and showed an increased
performance in terms of a 3–19% increased overall mean reward of the best-performing
configurations. By the investigation of different state encodings, query methods and IER
modes, we were able to show that using only synthetic experiences and querying from the
distribution created by the policy can assist the learner in terms of performance and speed.

As of yet, the proposed approach is limited to discrete and nondeterministic en-
vironments. We plan to develop the IER further to solve more complex problems (in-
creased/continuous state and action space) as well. To achieve this, a solution for the
unknown follow-up state is needed, which could also be interpolated or even predicted by
a state-transition function that is learned in parallel. Here, the work from [18] could serve
as a possible approach to begin with. A simple, yet nevertheless, more complex problem
because of its continuity that is beyond the domain of grid worlds is the MountainCar
problem. Other, more complex interpolation techniques have to be examined to adapt
our IER approach in this environment. Furthermore, at last, the impact of interpolated
experiences on more sophisticated Experience Replay mechanisms, such as Hindsight ER
and Prioritized ER, have to be investigated as well.

Author Contributions: Conceptualization, W.P.v.P. and A.S.; methodology, W.P.v.P. and A.S.; soft-
ware, W.P.v.P.; validation, W.P.v.P. and A.S.; resources, J.H.; writing—original draft preparation,
W.P.v.P.; writing—review and editing, A.S. and J.H.; visualization, W.P.v.P.; supervision, J.H. and A.S.;
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RL Reinforcement Learning
DQN Deep Q-Network
ER Experience Replay
IC Interpolation Component
MLI Machine Learning Interface
SP Sampling Points
IER Interpolated Experience Replay
VE State Vector Encoding
CE Coordinates Encoding
LKE Local Knowledge Encoding
R Random
PD Policy Distribution
LS Last State
LS-OnPol Last State-On Policy Action Selection
SMZ Synthetic Min Size Zero
SMERS Synthetic Min Size Equals Real Size
OIER Only Use Interpolated Buffer

Algorithms 2021, 14, 226 17 of 23

Appendix A

Table A1. A summary of the results of experiment 1 with state-encoding VE. Bold mean entries show a better performance in
comparison to the corresponding baseline; bold IER-Query-texpl entries indicate statistically significant superior performance
compared to the baseline.

IER-Query-texpl Mean ±1SD p-Value p-Value
Shapiro–Wilk Mann–Whitney-U

baseline-500 0.4111 ±0.2629 1.9602 × 10 −38

SMZ-R-500 0.3983 ±0.2529 4.4099 × 1042 0.0286
SMZ-PD-500 0.3885 ±0.254 5.5603 × 10−42 0.0045
SMZ-LS-500 0.423 ±0.2694 2.2323 × 10−42 0.0017
MSERS-R-500 0.4007 ±0.2577 2.2673 × 10−42 0.1916

MSERS-PD-500 0.4252 ±0.2862 2.6488 × 10−40 3.6207 × 10−12

MSERS-LS-500 0.4015 ±0.2603 5.7874 × 10−43 0.4342
OIER-R-500 0.4222 ±0.2696 3.5167 × 10−41 0.0004

OIER-PD-500 0.4011 ±0.2624 1.058 × 10−42 0.3721
OIER-LS-500 0.3685 ±0.2414 2.906 × 10−40 2.4301 × 10−25

OIER-LS-OnPol-500 0.2825 ±0.1881 1.4649 × 10−38 1.0855 × 10−79

baseline-750 0.3484 ±0.3100 1.2353 × 10−39

SMZ-R-750 0.3713 ±0.3160 3.8829 × 10−39 3.4641 × 10−13

SMZ-PD-750 0.316 ±0.2757 2.3740 × 10−39 1.4685 × 10−9

SMZ-LS-750 0.3862 ±0.341 7.0165 × 10−40 8.3487 × 10−20

MSERS-R-750 0.3706 ±0.3208 2.1825 × 10−39 1.0342 × 10−16

MSERS-PD-750 0.3583 ±0.3198 1.4494 × 10−39 9.3729 × 10−12

MSERS-LS-750 0.3319 ±0.2962 1.6246 × 10−38 0.0014
OIER-R-750 0.3691 ±0.3212 1.3013 × 10−39 1.4234 × 10−16

OIER-PD-750 0.3396 ±0.2971 9.2585 × 10−40 1.9481 × 10−6

OIER-LS-750 0.3329 ±0.2858 9.8819 × 10−40 7.0010 × 10−8

OIER-LS-OnPol-750 0.2734 ±0.2473 4.6952 × 10−40 1.0123 × 10−16

baseline-1k 0.2564 ±0.2981 1.5026 × 10−40

SMZ-R-1k 0.2666 ±0.2910 6.691 × 10−39 0.1832
SMZ-PD-1k 0.2514 ±0.2894 3.7812 × 10−40 0.2072
SMZ-LS-1k 0.2676 ±0.3107 3.6418 × 10−40 0.1699

MSERS-R-1k 0.2574 ±0.2866 6.8941 × 10−39 0.0011
MSERS-PD-1k 0.2395 ±0.2892 1.0053 × 10−40 0.0044
MSERS-LS-1k 0.2728 ±0.3076 5.3421 × 10−40 1.3641 × 10−5

OIER-R-1k 0.2567 ±0.2878 1.1493 × 10−39 0.4688
OIER-PD-1k 0.2747 ±0.3084 1.1251 × 10−39 3.7636 × 10−5

OIER-LS-1k 0.2481 ±0.28 2.0074 × 10−38 0.3419
OIER-LS-OnPol-1k 0.2416 ±0.2769 1.2080 × 10−39 0.001

Table A2. A summary of the results of experiment 2 with state-encoding CE. Bold mean entries show a better performance in
comparison to the corresponding baseline; bold IER-Query-texpl entries indicate statistically significant superior performance
compared to the baseline.

IER-Query-texpl Mean ±1SD p-Value p-Value
Shapiro–Wilk Mann–Whitney-U

baseline-500 0.4677 ±0.3060 5.3488 × 10−42

SMZ-R-500 0.4180 ±0.2747 2.6105 × 10−40 3.2958 × 10−47

SMZ-PD-500 0.4579 ±0.2998 1.3438 × 10−42 4.33597 × 10−10

SMZ-LS-500 0.4722 ±0.2930 2.3623× 10−42 0.0002

Algorithms 2021, 14, 226 18 of 23

Table A2. Cont.

IER-Query-texpl Mean ±1SD p-Value p-Value
Shapiro–Wilk Mann–Whitney-U

MSERS-R-500 0.4394 ±0.2895 1.8445 × 10−41 8.3967 × 10−34

MSERS-PD-500 0.4885 ±0.3116 3.6434 × 10−43 1.5353 × 10−27

MSERS-LS-500 0.4759 ±0.3092 9.9072 × 10−43 1.3453 × 10−6

OIER-R-500 0.4186 ±0.2725 1.1939 × 10−41 1.1663 × 10−49

OIER-PD-500 0.4983 ±0.3252 2.13 × 10−43 6.0368 × 10−53

OIER-LS-500 0.4896 ±0.3102 1.7278 × 10−42 7.0417 × 10−23

OIER-LS-OnPol-500 0.469 ±0.3161 1.4621 × 10−41 5.8208 × 10−11

baseline-750 0.3661 ±0.3128 2.003 × 10−39

SMZ-R-750 0.3218 ±0.2880 5.0337 × 10−40 1.3713 × 10−24

SMZ-PD-750 0.3750 ±0.3182 2.5529 × 10−40 0.4158
SMZ-LS-750 0.3733 ±0.3167 9.6999 × 10−40 0.0290
MSERS-R-750 0.3339 ±0.2926 1.4778 × 10−38 4.0643 × 10−17

MSERS-PD-750 0.3779 ±0.3227 5.3906 × 10−40 2.2138 × 10−8

MSERS-LS-750 0.3776 ±0.3188 2.1208 × 10−39 2.1575 × 10−6

OIER-R-750 0.301 ±0.2628 1.9892 × 10−39 9.0174 × 10−25

OIER-PD-750 0.3894 ±0.3408 3.4510 × 10−40 5.8499 × 10−10

OIER-LS-750 0.3791 ±0.3269 6.819 × 10−40 5.6256 × 10−9

OIER-LS-OnPol-750 0.3816 ±0.3273 6.0862 × 10−40 2.0991 × 10−13

baseline-1k 0.2533 ±0.2875 5.5541 × 10−40

SMZ-R-1k 0.2344 ±0.2604 3.9105 × 10−39 0.0076
SMZ-PD-1k 0.2619 ±0.2921 1.6130 × 10−39 0.3994
SMZ-LS-1k 0.2607 ±0.2928 7.2215 × 10−40 0.0418
MSERS-R-1k 0.2333 ±0.2630 3.5365 × 10−39 0.0006

MSERS-PD-1k 0.2688 ±0.3001 9.5744 × 10−40 0.0643
MSERS-LS-1k 0.2707 ±0.2975 2.713 × 10−39 0.0389

OIER-R-1k 0.2263 ±0.2497 8.275 × 10−39 2.8409 × 10−5

OIER-PD-1k 0.2704 ±0.3023 7.0418 × 10−40 0.0974
OIER-LS-1k 0.2656 ±0.2965 6.2867 × 10−40 0.1209

OIER-LS-OnPol-1k 0.2607 ±0.3011 3.7218 × 10−40 0.2205

Table A3. A summary of the results of experiment 3 with state-encoding LKE. Bold mean entries show a better perfor-
mance in comparison to the corresponding baseline; bold IER-Query-texpl entries indicate statistically significant superior
performance compared to the baseline.

IER-Query-texpl Mean ±1SD p-Value p-Value
Shapiro–Wilk Mann–Whitney-U

baseline-500 0.3562 ±0.2503 4.8159 × 10−37

SMZ-PD-500 0.2846 ±0.1859 1.6391 × 10−38 9.4865 × 10−40

SMZ-LS-500 0.4072 ±0.2648 2.4074 × 10−42 5.5843 × 10−25

MSERS-PD-500 0.3092 ±0.204 1.5363 × 10−35 5.3745 × 10−22

MSERS-LS-500 0.3916 ±0.2606 7.8533 × 10−41 1.4450 × 10−8

OIER-PD-500 0.3551 ±0.2352 1.5954 × 10−37 0.0227
OIER-LS-500 0.3944 ±0.2625 5.9815 × 10−39 1.5320 × 10−21

OIER-LS-OnPol-500 0.4132 ±0.2709 5.2100 × 10−39 6.4966 × 10−39

Algorithms 2021, 14, 226 19 of 23

Table A3. Cont.

IER-Query-texpl Mean ±1SD p-Value p-Value
Shapiro–Wilk Mann–Whitney-U

baseline-750 0.2711 ±0.2533 1.1861 × 10−38

SMZ-PD-750 0.2719 ±0.2376 5.9007 × 10−38 0.4458
SMZ-LS-750 0.3081 ±0.2714 1.3309 × 10−39 4.3008 × 10−15

MSERS-PD-750 0.2378 ±0.2043 1.5783 × 10−37 2.2868 × 10−6

MSERS-LS-750 0.3093 ±0.2739 1.3558 × 10−39 1.1416 × 10−15

OIER-PD-750 0.2871 ±0.2489 1.0186 × 10−36 8.4356 × 10−6

OIER-LS-750 0.3182 ±0.2764 6.2019 × 10−38 1.4543 × 10−16

OIER-LS-OnPol-750 0.3228 ±0.2846 1.6222 × 10−39 7.6106 × 10−27

baseline-1k 0.1952 ±0.2354 1.1519 × 10−40

SMZ-PD-1k 0.1776 ±0.1993 1.5132 × 10−39 0.1629
SMZ-LS-1k 0.2141 ±0.2424 5.4984 × 10−40 3.4358 × 10−5

MSERS-PD-1k 0.1700 ±0.1927 1.5335 × 10−39 0.4497
MSERS-LS-1k 0.224 ±0.2619 1.7365 × 10−40 3.2996 × 10−8

OIER-PD-1k 0.1785 ±0.2049 1.2643 × 10−38 0.3646
OIER-LS-1k 0.2099 ±0.2354 4.9194 × 10−38 0.0042

OIER-LS-OnPol-1k 0.2311 ±0.2670 4.4815 × 10−40 5.0054 × 10−6

Appendix B

Figure A1. The results for the IER mode: R and texpl = 500. state encoding: VE. state encoding: CE.

Figure A2. The results for the IER mode: PD and texpl = 500. state encoding: VE. state encoding: CE.

Algorithms 2021, 14, 226 20 of 23

Figure A3. The results for the IER mode: LS and texpl = 500. state encoding: VE. state encoding: CE.

Figure A4. The results for the IER mode: R and texpl = 750. state encoding: VE. state encoding: CE.

Figure A5. The results for the IER mode: PD and texpl = 750. state encoding: VE. state encoding: CE.

Figure A6. The results for the IER mode: LS and texpl = 750. state encoding: VE. state encoding: CE.

Algorithms 2021, 14, 226 21 of 23

Figure A7. The results for the IER mode: R and texpl = 1000. state encoding: VE. state encoding: CE.

Figure A8. The results for the IER mode: PD and texpl = 1000. state encoding: VE. state encoding: CE.

Figure A9. The results for the IER mode: LS and texpl = 1000. state encoding: VE. state encoding: CE.

Figure A10. The results and state encoding for: LKE and IER mode: PD. texpl = 500. texpl = 750.

Algorithms 2021, 14, 226 22 of 23

Figure A11. The results for state encoding: LKE. IER mode: PD and texpl = 1000. IER mode: LS and
texpl = 500.

Figure A12. The results for state encoding: LKE and IER mode: LS. texpl = 750. texpl = 1000.

References
1. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized Experience Replay. arXiv 2015, arXiv:1511.05952.
2. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529. [CrossRef] [PubMed]
3. Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong, R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, P.; Zaremba, W.

Hindsight Experience Replay. In Advances in Neural Information Processing Systems 30; Curran Associates, Inc.: Red Hook, NY,
USA, 2017; pp. 5048–5058.

4. Lin, L.J. Self-improving reactive agents based on reinforcement learning, planning and teaching. Mach. Learn. 1992, 8, 293–321.
[CrossRef]

5. Tsitsiklis, J.N.; Roy, B.V. An analysis of temporal-difference learning with function approximation. IEEE Trans. Autom. Control
1997, 42, 674–690. [CrossRef]

6. Zhang, S.; Sutton, R.S. A Deeper Look at Experience Replay. arXiv 2017, arXiv:1712.01275.
7. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv, 2016,

arXiv:1606.01540.
8. Pilchau, W.B.P.v.; Stein, A.; Hähner, J. Bootstrapping a DQN replay memory with synthetic experiences. In Proceedings of

the 12th International Joint Conference on Computational Intelligence (IJCCI 2020), Budapest, Hungary, 2–4 November 2020.
[CrossRef]

9. McClelland, J.L.; McNaughton, B.L.; O’Reilly, R.C. Why there are complementary learning systems in the hippocampus and
neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 1995, 102, 419.
[CrossRef] [PubMed]

10. O’Neill, J.; Pleydell-Bouverie, B.; Dupret, D.; Csicsvari, J. Play it again: Reactivation of waking experience and memory. Trends
Neurosci. 2010, 33, 220–229. [CrossRef] [PubMed]

11. Lin, L.J. Reinforcement Learning for Robots Using Neural Networks; Technical report; Carnegie-Mellon Univ Pittsburgh PA School of
Computer Science: Pittsburgh, PA, USA, 1993.

12. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
13. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
14. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M.A. Playing Atari with Deep

Reinforcement Learning. arXiv 2013, arXiv:1312.5602.

http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1007/BF00992699
http://dx.doi.org/10.1109/9.580874
http://dx.doi.org/10.5220/0010107904040411
http://dx.doi.org/10.1037/0033-295X.102.3.419
http://www.ncbi.nlm.nih.gov/pubmed/7624455
http://dx.doi.org/10.1016/j.tins.2010.01.006
http://www.ncbi.nlm.nih.gov/pubmed/20207025
http://dx.doi.org/10.1007/BF00992698

Algorithms 2021, 14, 226 23 of 23

15. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. In Proceedings of the 4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, 2–4 May 2016.

16. De Bruin, T.; Kober, J.; Tuyls, K.; Babuška, R. The importance of experience replay database composition in deep reinforcement
learning. In Proceedings of the Deep Reinforcement Learning Workshop, Montréal, QC, Canada, 11 December 2015.

17. Bruin, T.d.; Kober, J.; Tuyls, K.; Babuška, R. Improved deep reinforcement learning for robotics through distribution-based
experience retention. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Daejeon, Korea, 9–14 Octomber 2016; pp. 3947–3952, ISSN 2153-0866. [CrossRef]

18. Jiang, W.; Hwang, K.; Lin, J. An Experience Replay Method based on Tree Structure for Reinforcement Learning. IEEE Trans.
Emerg. Top. Comput. 2019, 9, 972–982. [CrossRef]

19. Gu, S.S.; Lillicrap, T.; Turner, R.E.; Ghahramani, Z.; Schölkopf, B.; Levine, S. Interpolated policy gradient: Merging on-policy and
off-policy gradient estimation for deep reinforcement learning. arXiv 2017, arXiv:1706.00387.

20. Stein, A.; Rauh, D.; Tomforde, S.; Hähner, J. Augmenting the Algorithmic Structure of XCS by Means of Interpolation. In
Architecture of Computing Systems—ARCS 2016; Hannig, F., Cardoso, J.M.P., Pionteck, T., Fey, D., Schröder-Preikschat, W., Teich, J.,
Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 348–360.

21. Stein, A.; Tomforde, S.; Rauh, D.; Hähner, J. Dealing with Unforeseen Situations in the Context of Self-Adaptive Urban Traffic
Control: How to Bridge the Gap? In Proceedings of the 2016 IEEE International Conference on Autonomic Computing (ICAC),
Wuerzburg, Germany, 17–22 July 2016.

22. Stein, A.; Rauh, D.; Tomforde, S.; Hähner, J. Interpolation in the eXtended Classifier System: An architectural perspective. J. Syst.
Archit. 2017, 75, 79–94. [CrossRef]

23. Stein, A.; Menssen, S.; Hähner, J. What about Interpolation? A Radial Basis Function Approach to Classifier Prediction Modeling
in XCSF. In Proceedings of the Genetic and Evolutionary Computation Conference GECCO ’18, Kyoto, Japan, 15–19 July 2018;
Association for Computing Machinery: New York, NY, USA, 2018; pp. 537–544. [CrossRef]

24. Stein, A.; Eymüller, C.; Rauh, D.; Tomforde, S.; Hähner, J. Interpolation-based classifier generation in XCSF. In Proceedings of the
2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 3990–3998. [CrossRef]

25. Friedman, J.H.; Bentley, J.L.; Finkel, R.A. An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math.
Softw. (TOMS) 1977, 3, 209–226. [CrossRef]

26. Whitehead, S.D.; Ballard, D.H. Learning to perceive and act by trial and error. Mach. Learn. 1991, 7, 45–83. [CrossRef]

http://dx.doi.org/10.1109/IROS.2016.7759581
http://dx.doi.org/10.1109/TETC.2018.2890682
http://dx.doi.org/10.1016/j.sysarc.2017.01.010
http://dx.doi.org/10.1145/3205455.3205599
http://dx.doi.org/10.1109/CEC.2016.7744296
http://dx.doi.org/10.1145/355744.355745
http://dx.doi.org/10.1007/BF00058926

	Introduction
	Background
	Experience Replay
	Deep Q-Learning

	Related Work
	Interpolated Experience Replay
	Problem Description
	Averaging Rewards
	Interpolation Component

	Evaluation
	State Encodings
	Query Methods
	IER Modes
	Hyperparameter
	Experiments
	Experimental Results
	Interpretation

	Conclusions and Future Work
	
	
	References

