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Abstract

:

The conjugate gradient method is one of the most popular methods to solve large-scale unconstrained optimization problems since it does not require the second derivative, such as Newton’s method or approximations. Moreover, the conjugate gradient method can be applied in many fields such as neural networks, image restoration, etc. Many complicated methods are proposed to solve these optimization functions in two or three terms. In this paper, we propose a simple, easy, efficient, and robust conjugate gradient method. The new method is constructed based on the Liu and Storey method to overcome the convergence problem and descent property. The new modified method satisfies the convergence properties and the sufficient descent condition under some assumptions. The numerical results show that the new method outperforms famous CG methods such as CG-Descent 5.3, Liu and Storey, and Dai and Liao. The numerical results include the number of iterations and CPU time.
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1. Introduction


The optimization problem that we want to solve takes the following form:


   min f ( x )   ,   x ∈    ℝ n    ,   








where  f    :  ℝ n  → ℝ   is a continuous and differentiable function, and its gradient (  ∇ f ( x ) )   is available.     x 1  ∈    ℝ n      is an arbitrary initial point for new functions or non-standard functions. The CG method generates a sequence of iterates    x k   (vector) as follows:



Where    x k    is the current iteration and    α k  > 0   is a step size obtained from a line search


   x  k + 1   =  x k  +  α k   d k  , k = 1 ,    2 ,    … ,  



(1)




such as exact or inexact line search. The search direction    d k    in the CG method requests only the first derivative of the optimization function, and it is defined as follows:


    d k  =  {    −  g k  ,     −  g k  +  β k   d  k − 1   ,          if    k = 1 ,      if    k ≥ 2 ,     



(2)




where   g ( x ) = ∇ f ( x )  ,    g k  = g (  x k  )   and    β k    is known as the CG formula or CG parameter. To obtain the step size    α k   , we can use the following line searches:



Exact line search, which is given by the following equation


  f (  x k  +  α k   d k  ) = min f (  x k  + α  d k  ) , α ≥ 0 .  



(3)







However, Equation (3) is computationally expensive if the function has multiple local minima or stationary points.



Inexact line search, normally we use strong Wolfe–Powell (SWP) [1,2], which is defined as follows:


  f (  x k  +  α k   d k  ) ≤ f (  x k  ) + δ  α k   g k T   d k  ,  



(4)




and


  | g   (  x k  +  α k   d k  )  T   d k  | ≤ σ    |   g k T   d k   |  ,  



(5)




where   0 < δ < σ < 1  .



From Equation (4), we can note that


  f (  x k  +  α k   d k  ) − f (  x k  ) ≤ δ  α k   g k T   d k  ,  








i.e.,


  f (  x  k + 1   ) − f (  x k  ) ≤ δ  α k   g k T   d k  .  











If Equation (7) holds, then the following equation holds


  f (  x  k + 1   ) ≤ f (  x k  ) .  











Also, note that Equation (5) can be written as follows


  σ    g k T   d k  ≤ g   (  x k  +  α k   d k  )  T   d k  ≤ − σ    g k T   d k  .  











Another version of Wolfe–Powell (WP) line search is the weak Wolfe–Powell (WWP) line search, which is defined by Equation (4) and the following equation


  g   (  x k  +  α k   d k  )  T   d k  ≥ σ  g k T   d k   .     



(6)







The most famous classical formulas of the CG methods are Hestenses–Stiefel (HS) [3], Polak–Ribiere–Polyak (PRP) [4], Liu and Storey (LS) [5], Fletcher–Reeves(FR) [6], Fletcher (CD) [7], as well as Dai and Yuan (DY) [8], given as follows:


    β k  H S   =    g k T   y  k − 1      d  k − 1  T   y  k − 1       ,    β k  P R P   =    g k T   y  k − 1        ‖   g  k − 1    ‖   2      ,    β k  L S   = −    g k T   y  k − 1      d  k − 1  T   g  k − 1         β k  F R   =      ‖   g k   ‖   2       ‖   g  k − 1    ‖   2      ,    β k  C D   = −      ‖   g k   ‖   2     d  k − 1  T   g  k − 1       ,    β k  D Y   =      ‖   g k   ‖   2     d  k − 1  T   g  k − 1     ,   








where    y  k − 1   =  g k  −  g  k − 1    .



The first group of classical methods, i.e., (HS), (PRP), and (LS), are efficient. However, Powell [9] proposed a counterexample to show that there exists a non-convex function. PRP, HS, and LS fail to satisfy the convergence properties even when the exact line search is used. Powell suggested the importance to achieve the convergence properties of PRP, HS, and LS methods, where the methods should be non-negative. Gilbert and Nocedal [10] showed that non-negative PRP or HS, i.e.,    β k  =  max {   β k  H S    ,   0   }   , is convergent under special different line searches. The second group of classical CG methods, i.e., (FR), (PRP), (DY), are robust and converge. However, the group is not efficient.



The descent condition (downhill condition) performs an important ruling in the convergence of the CG method and its robustness, which is defined as follows


   g k T   d k  < 0 .  











Al–Baali [11] proposed another version of the descent condition called the sufficient descent condition, which plays a significant role in the convergence of the CG method. The author used Equation (7) to establish the convergence properties of    β k  F R    , which are defined as follows: There exists a constant   c > 0   such that


    g k T   d k  ≤ − c    ‖   g k   ‖   2    , ∀ k ∈ N .   



(7)







In this case, the function is quadratic, i.e.,   f ( x ) =  g T  x + ( 1 / 2 )  x T  H x   and the step size obtained by exact line search (3) indicates that the CG method satisfies the conjugacy condition, i.e.,    d i T  H  d j T  = 0 ,     ∀ i ≠ j  . Using the mean value theorem and exact line search of Equation (2), we can obtain    β k  H S    . From the quasi-Newton method, BFGS method, the limited memory (LBFGS) method, and using Equation (2), Dai and Liao [12] proposed the following conjugacy condition.


   d k T   y  k − 1   = − t  g k T   s  k − 1   ,  



(8)




where    s  k − 1   =  x k  −  x  k − 1   ,   and   t ≥ 0 ,   [12] use   t = 0.1   in the numerical experiments. In the case of   t = 0  , Equation (8) becomes the classical conjugacy condition. By using Equations (2) and (8), Dai and Liao [12] proposed the following CG formula


   β k  D L   =    g k T   y  k − 1      d  k − 1  T   y  k − 1     − t    g k T   s  k − 1      d  k − 1  T   y  k − 1     .  



(9)







However,    β k  D L     face the same problem as    β k  P R P     and    β k  H S    , i.e.,    β k  D L     is not non-negative in general. Thus, Dai and Liao [12] replaced Equation (9) by


   β k  D L +   = max {  β k  H S   , 0 } − t    g k T   s  k − 1      d  k − 1  T   y  k − 1     .  



(10)







Hager and Zhang [13,14] presented a modified CG parameter that satisfies the descent property for any inexact line search with    g k T   d k  ≤ − ( 7 / 8 )    ‖   g k   ‖   2   . This new version of the CG method is convergent whenever the line search satisfies the WP line search. This formula is given as follows:


   β k  H Z   =    max    {  β k N  ,    η k  }  



(11)




where    β k N  =  1   d k T   y k      (  y k  − 2  d k       ‖   y k   ‖   2     d k T   y k    )  T   g k   ,    η k  = −  1   ‖   d k   ‖     min {  η ,    ‖   g k   ‖  }    , and   η > 0   is a constant.



Note that if   t = 2      ‖   y k   ‖   2     s k T   y k     , then    β k N  =  β k  D Y   .   Zhang et al. [15] and Zhang and Xu [16] used Taylor’s series and presented the following modified secant relation:


    B k   s  k − 1   =   y ¯   k − 1     where     y ¯   k − 1   =  y  k − 1   +    ϑ  k − 1        ‖   s  k − 1    ‖   2     s k     and      ϑ  k − 1   = 6 (  f  k − 1   −  f k  ) + 3   (  g  k − 1   +  g k  )  T   s  k − 1   .   



(12)







From (12), Yabe and Takano [17] proposed the following formula:


    β k  Y T   =    g k T  (  z  k − 1   − t  s  k − 1   )    d  k − 1  T   z  k − 1       where    z  k − 1   =  y  k − 1   + ρ    ϑ  k − 1        ‖   s  k − 1    ‖   2     s k      and ρ ≥ 0 .   



(13)







Moreover, Razieh Dehghani et al. [18] proposed the following formula:


   β k  Y T   =    g k T  (  y  k − 1  *  − t  s  k − 1   )    d  k − 1  T   y  k − 1  *    .  



(14)







Jiang et al. [19] proposed the CG method by replacing    d  k − 1     by    g  k − 1     in    β k  H S     as follows:


   β k  J J S L   =    g k T   y  k − 1      g  k − 1  T   y  k − 1     .  











Furthermore, Wei et al. [20] proposed a non-negative formula, referred to as the WYL coefficient. It is defined as follows:


   β k  W Y L   =      ‖   g k   ‖   2  −    ‖   g k   ‖     ‖   g  k − 1    ‖     g k T   g  k − 1         ‖   g  k − 1    ‖   2     











This parameter is similar to the PRP coefficient, which possesses convergence with both an exact line and inexact line searches, providing a sufficient descent condition. Many modifications of the WYL coefficient have been suggested. The reader can refer to [21]. Here we mention some of them.


    β k  V H S   =      ‖   g k   ‖   2  −    ‖   g k   ‖     ‖   g  k − 1    ‖     g k T   g  k − 1       d  k − 1  T  (  g k   −  g  k − 1   )     and  β k  N P R P   =      ‖   g k   ‖   2  −    ‖   g k   ‖     ‖   g  k − 1    ‖     |   g k T   g  k − 1    |       ‖   g  k − 1    ‖   2    ,   








which were presented in [22,23], respectively.



Al-Baali et al. [24] proposed a new CG version called (G3TCG) that offers many selections of CG parameters. The same study [24] found that the G3TCG method is more efficient than    β k  H Z     in some cases and competitive in some other cases.



The convergence rate for the CG method is linear unless the iterative procedure is occasionally restarted at least every  n  iterations [25]. Beale [26] suggested the use of the two-term CG method instead of the steepest descent (SD) method (   d k  = −  g k  ,   ∀ k ≥ 1 )   as the restart search direction. He also extended this method to a three-term method as a non-restart direction. Furthermore, Powell [25] suggested restarting the search direction using Beale’s method if


   |   g k T   g  k − 1    |  > 0.2      ‖   g k   ‖   2  ,  








holds for every     n   iteration, whichever first occurs. Dai and Yuan [27] extended the Powell restart criteria (7) to the following form


    |   g k T   g  k − 1    |  > τ      ‖   g k   ‖   2  ,   … τ ∈ ( 0 ,   1 ) .   











Besides, Alhawarat et al. [28] presented the following simple formula


   β k  A Z P R P   =  {         ‖   g k   ‖   2  −  μ k   |   g k T   g  k − 1    |       ‖   g  k − 1    ‖   2     ,   if      ‖   g k   ‖  2  >  μ k   |   g k T   g  k − 1    |  ,     0 ,                           otherwise ,       



(15)




where    ‖ ⋅ ‖    represents the Euclidean norm and    μ k    is defined as follows:


   μ k  =    ‖   x k  −  x  k − 1    ‖     ‖   y k   ‖     











Lemma 3.1 in [28] shows that if Assumption 1 holds and the Beale–Powell restart condition is violated for non-restart search direction, then      ‖   g k   ‖   2  >  μ k   |   g k T   g  k − 1    |    holds.



Moreover, Kaelo et al. [29] proposed a non-negative CG formula with convergence properties, and compared the new formula with    β k  A Z P R P    , where the proposed method is given as follows:


   β k  P K T   =  {         ‖   g k   ‖   2  −  g k T   g  k − 1     max {  d  k − 1  T   y  k − 1   , −  g  k − 1  T   d  k − 1   }    ,   If   0  <  g k T   g  k − 1   <   ‖   g k   ‖  2           ‖   g k   ‖   2    max {  d  k − 1  T   y  k − 1   , −  g  k − 1  T   d  k − 1   }      ,   otherwise  .      











To solve non-linear monotone equations with convex constraints, [30] proposed using the Powell symmetrical technique to the Liu–Storey conjugate gradient method. The reader can refer to the references for more about non-linear monotone equations with convex constraints and their application [31,32,33,34].




2. The Proposed CG Formula and Its Motivation


The CG method with    β k  L S     cannot satisfy the decent condition. On the other hand,    β k  L S     comes from the group of efficient CG method as explained before to inherit the efficiency of    β k  L S    . To avoid the convergence problem, we use    β k  A Z P R P     in [19] and    β k  D L     in [12] to propose a new non-negative CG method that satisfies the sufficient descent condition with SWP line search. Moreover, convergence properties are achieved. The new formula is a modification of    β k  L S    ,   β k  D L    , and    β k  A Z P R P     defined as follows:


   β k  L S +   =  {    −      ‖   g k   ‖   2  −  μ k   |   g k T   g  k − 1    |     d  k − 1  T   g  k − 1        if      ‖   g k   ‖  2  >  μ k   |   g k T   g  k − 1    |  ,      β k  D L − H S                   otherwise       



(16)




where    ‖ ⋅ ‖    represents the Euclidean norm and


   β k  D L − H S   = −  μ k     g k T   s  k − 1      d  k − 1  T   y  k − 1     .  











The proposed method in Equation (16) has the following attitudes:




	
Satisfies the descent condition.



	
Satisfies the convergence properties.



	
Equation (16) is constructed based on    β k  L S     with restart condition to be non-negative and avoid the convergence problems.



	
Dai and Liao [12] suggest using   − t    (   g k T   s  k − 1   /  d  k − 1  T   y  k − 1    )    instead of steepest descent as a restart criterion, where Equation (16) is restarted by   −  μ k     (   g k T   s  k − 1   /  d  k − 1  T   y  k − 1    )   , more efficient than the steepest descent.



	
The numerical results demonstrate the efficiency and robustness of Equation (16) compared to the other CG methods, including CG-Descent, LS, and DL+.









3. Convergence Analysis of    β k  L S +    


In the analysis below, we obtain the stationary point from the convergence mean. In addition, if    g k  =   0 , then a stationary point has been obtained. Thus, we assume    g k  ≠   0  for all   k ≥ 1   in the subsequent analysis. For more about local and global minimum points, the reader can refer to the following useful references [35,36].



To satisfy the convergence analysis of the modified CG method, the following assumption is required.



Assumption 1. 

A. The level set   Φ = { x  |  f ( x ) ≤ f (  x 1  )   }   is bounded; that is, a positive constant  λ  exists such that


     ‖ x ‖  ≤ λ   , ∀ x ∈ Φ .    











B. In some neighborhood  Ρ  of  Φ  ,  f  is continuously differentiable, and its gradient is Lipschitz continuous; that is, for all   x , y ∈ Ρ ,   there exists a constant   L > 0   such that


    ‖  g ( x ) − g ( y )  ‖  ≤ L  ‖  x − y  ‖    











This assumption implies that there exists a positive constant   γ ¯   such that


     ‖  g ( x )  ‖  ≤  γ ¯    ,   ∀ x ∈ Ρ .    













The following algorithm (Algorithm 1) classifies the steps of the CG method to obtain the stationary point using Equation (16) and SWP line search.



	Algorithm 1. The steps to obtain the optimum point of optimization problem by using the CG method



	Step 1 Provide a starting point    x 1  .   Set the initial search direction    d 1  = −  g 1   . Let   k = 1  .



	Step 2 If a stopping criteria is satisfied, then stop.



	Step 3 Compute    d k    based on (2) with (16).



	Step 4 Compute    α k    using (4) and (5).



	Step 5 Update    x  k + 1   .   based on (1).



	Step 6 Set   k : = k + 1   and go to Step 2.








In the following section and subsections, we obtain the descent condition and the convergence property of Equation (16) with CG formula, the proof similar to that presented by [12].



3.1. The Descent Property of CG Method with    β k  L S +    


Theorem 1. 

Let the sequences  {  x k  }  and  {  d k  }  be obtained using (1), (2), and   β k  L S +    , where   α k   is computed using the SWP line search (4) and (5). If  σ ∈ ( 0 ,    1 2  ]  , then the descent condition given in (7) holds.





Proof. 

By multiplying (2) by    g k T  ,   we obtain


    g k T   d k  =  g k T  ( −  g k   +  β k   d  k − 1   ) = −    ‖   g k   ‖   2  +  β k   g k T   d  k − 1      = −    ‖   g k   ‖   2  +  (  −      ‖   g k   ‖   2  −  μ k   |   g k T   g  k − 1    |     d  k − 1  T   g  k − 1      )   g k T   d  k − 1   .   



(17)







By using the proof by induction technique, for   k = 1 ,   it is true, i.e.,    g    1   T   d 1  = −    ‖   g 1   ‖   2   . We now assume that it is true until   k − 1 ,   thus we can write Equation (16) as follows:


   β k  L S +   =   −    ‖   g k   ‖   2  +  μ k   |   g k T   g  k − 1    |     d  k − 1  T   g  k − 1     ≤   −    ‖   g k   ‖   2     d  k − 1  T   g  k − 1     +    μ k   |   g k T   g  k − 1    |     d  k − 1  T   g  k − 1     ≤   −    ‖   g k   ‖   2     d  k − 1  T   g  k − 1     =      ‖   g k   ‖   2       ‖   g  k − 1    ‖   2     











Divide both sides of Equation (18) by      ‖   g k   ‖   2    and using (5), we obtain


  − 1 + σ    g  k − 1  T   d  k − 1     | |  g  k − 1   |  | 2    ≤    g k T   d k    | |  g k  |  | 2    ≤ − 1 − σ    g  k − 1  T   d  k − 1     | |  g  k − 1   |  | 2    .  



(18)







Repeating the process for the left-hand side of Equation (18), we obtain


  − 1 +   ∑  j = 1   k − 1     σ j    = −   ∑  j = 0   k − 1     σ j    .  











Repeating the process for the right hand side of Equation (18) yields


  − 1 −   ∑  j = 1   k − 1     σ j    = − 2 +   ∑  j = 0   k − 1     σ j    .  











Thus, Equation (18) can be written as follows:


  −   ∑  j = 0   k − 1     σ j    ≤    g k T   d k    | |  g k  |  | 2    ≤ − 2 +   ∑  j = 0   k − 1     σ j     











Since


    ∑  j = 0   k − 1      ( σ )  j  <     1 −   ( σ )  k    1 − σ   ,  








hence


  −   1 −   ( σ )  k    1 − σ   ≤    g k T   d k    | |  g k  |  | 2    ≤ − 2 +   1 −   ( σ )  k    1 − σ   .  











When   σ ≤ 1 / 2  , we obtain     1 −   ( σ )  k    1 − σ   < 2  . Let   c = 2 −   1 −   ( σ )  k    1 − σ    , then


  c − 2 ≤    g k T   d k    | |  g k  |  | 2    ≤ − c .    



(19)







The proof is complete. □






3.2. The Convergence Property of the CG Method with    β k  L S +     to Obtain the Stationary Point


Theorem 2. 

Let Assumption 1 hold. Consider any form of (1) and (2), with the new formula (10), in which    α k    is obtained from the SWP line search (4) and (5) with   σ ≤ 1 / 2 .   Then,


     lim   inf     k → ∞      ‖   g k   ‖  = 0 .   













Proof. 

We will prove the theorem by contradiction. Assume that the conclusion is not true.



Then, a constant   ε > 0   exists such that


    ‖   g k   ‖  ≥ ε   ,   ∀ k ≥ 1 .   



(20)







Upon squaring both sides of (2), we obtain


     ‖   d k   ‖   2  =    ‖   g k   ‖   2  − 2  β k   g k T   d  k − 1   +  β k 2     ‖   d  k − 1    ‖   2  .  



(21)







Dividing Equation (21) by      ‖   g k   ‖   4    yields


       ‖   d k   ‖   2       ‖   g k   ‖   4    =  1     ‖   g k   ‖   2    −   2  β k   g k T   d  k − 1        ‖   g k   ‖   4    +    β k 2     ‖   d  k − 1    ‖   2       ‖   g k   ‖   4    .  











Using Equations (5) and (16), we now obtain


        ‖   d k   ‖   2       ‖   g k   ‖   4    ≤      ‖   d  k − 1    ‖   2       ‖   g  k − 1    ‖   4    +  1     ‖   g k   ‖   2    +   2 σ  |   g  k − 1  T   d  k − 1    |       ‖   g  k − 1    ‖   2     ‖   g k   ‖   2      ≤      ‖   d  k − 1    ‖   2       ‖   g  k − 1    ‖   4    +   1 + 2 σ ( 2 − c )      ‖  g k  ‖   2    .   



(22)







Repeating the process for (22) using the relationship    1   ‖   g 1   ‖    =  1   ‖   d 1   ‖      yields


       ‖   d k   ‖   2       ‖   g k   ‖   4    ≤ ( 1 + 2 σ ( 2 − c ) )   ∑  i = 1  k    1     ‖   g i   ‖   2       











From (20), we obtain


       ‖   g k   ‖   4       ‖   d k   ‖   2    ≥    ε 2    k ( 1 + 2 σ ( 2 − c ) )    











Therefore,


    ∑  k = 0  ∞        ‖   g k   ‖   4       ‖   d k   ‖   2    = ∞   .  








 □





Theorem 3. 

Suppose the sequences  {  x k  }  and  {  d k  }  are obtained by using (1), (2), and   β k  D L − H S    , where   α k   is computed via the SWP line search (4) and (5). Then, the descent condition holds.





Proof. 

Let


   β k  D L − H S   = −  μ k     g k T   s  k − 1      d  k − 1  T   y  k − 1     .  











By multiplying (2) by    g k T  ,   and substituting    β k  D L − H S    , we obtain


   g k T   d k  = −    ‖   g k   ‖   2  −  μ k     α  k − 1    g k T   d  k − 1      d  k − 1  T   y  k − 1      g k T   d  k − 1   .  










   g k T   d k  = −    ‖   g k   ‖   2  −  μ k     α  k − 1      ‖   g k T   d  k − 1    ‖   2     d  k − 1  T   y  k − 1     < 0  .     











This completes the proof. □





The condition in (23) is called Zoutendijk condition [37], acting as an important role in proving convergence properties of the CG method.



Lemma 1. 

Assume that Assumption 1 holds. Consider any form of (1) and (2) with step size    α k    satisfying the WWP line search, where the search direction    d k    is descent. Then, we have


     ∑  k = 0  ∞       (  g k T   d k  )  2       ‖   d k   ‖   2      < ∞ .   ···   



(23)









Moreover, (23) holds for exact and SWP line searches. Substituting (7) into (18), it follows that


    ∑  k = 0  ∞        ‖   g k   ‖   4       ‖   d k   ‖   2      < ∞ .   ···  



(24)







Theorem 4. 

Assume that Assumption 1 holds. Consider the conjugate gradient method in (1) and (2) with    β k  D L − H S     , where    d k    is a descent direction and    α k    is obtained by the strong Wolfe line search. Then, the     lim    inf      k → ∞    ‖   g k   ‖  = 0 .   





Proof. 

We will prove this theorem by contradiction. Suppose Theorem 4 is not true.



Then, a constant   ε > 0   exists such that


    ‖   g k   ‖  ≥ ε   ,   ∀ k ≥ 1 .   



(25)







By squaring both sides of (2), we obtain


       ‖   d k   ‖  2  =   ‖   g k   ‖  2  − 2  β k   g k T   d  k − 1   +  β k 2    ‖   d  k − 1    ‖  2           ≤   ‖   g k   ‖  2  + 2  |   β k   |   g k T   d  k − 1   +  β k 2    ‖   d  k − 1    ‖  2           ≤   ‖   g k   ‖  2  +  2 L     ‖   g k   ‖   ‖   s k   ‖    ( 1 − σ )  g  k − 1  T   d  k − 1      ( σ )   g  k − 1  T   d  k − 1   +  1   L 2         (   ( σ )   g  k − 1  T   d  k − 1    )   2     ‖   s  k − 1    ‖   2    ( 1 − σ )  g  k − 1  T   d  k − 1              ≤   ‖   g k   ‖  2  +  2 L     ‖   g k   ‖   ‖   s k   ‖    ( 1 − σ )   σ +  1   L 2         ( σ )   2     ‖   s  k − 1    ‖   2      ( 1 − σ )  2    .          ‖   d k   ‖   2       ‖   g k   ‖   4    ≤      ‖   g k   ‖   2       ‖   g k   ‖   4    +  2 L     ‖   g k   ‖   ‖   s k   ‖    ( 1 − σ )    ‖   g k   ‖   4    σ +  1   L 2       σ 2     ‖   s  k − 1    ‖   2      ( 1 − σ )  2     ‖   g k   ‖   4             ≤  1     ‖   g k   ‖   2    +  2 L     ‖   g k   ‖   ‖   s k   ‖    ( 1 − σ )    ‖   g k   ‖   4    σ +  1   L 2       σ 2     ‖   s  k − 1    ‖   2      ( 1 − σ )  2     ‖   g k   ‖   4    .               ≤  1     ‖   g k   ‖   2    +  2 L     ‖   s k   ‖    ( 1 − σ )    ‖   g k   ‖   3    σ +  1   L 2       σ 2     ‖   s  k − 1    ‖   2      ( 1 − σ )  2     ‖   g k   ‖   4    .      











Let


     ‖   g k   ‖   m  = min  {     ‖   g k   ‖   2  ,    ‖   g k   ‖   3  ,    ‖   g k   ‖   4   }  , m ∈ N  








then


       ‖   d k   ‖   2       ‖   g k   ‖   4    ≤  1     ‖   g k   ‖   m     (  1 +  2 L   λ  ( 1 − σ )   σ +  1   λ 2       σ 2   λ 2      ( 1 − σ )  2     )  .  











Also, let


  R =  (  1 +  2 L   Γ  ( 1 − σ )   σ +  1   λ 2       σ 2   Γ 2      ( 1 − σ )  2     )   








then


        ‖   d k   ‖   2       ‖   g k   ‖   4    ≤  R     ‖   g k   ‖   m    ≤ R   ∑  i = 1  k    1     ‖   g i   ‖   m              ‖   g k   ‖   4       ‖   d k   ‖   2    ≥    ε m    k R   .   











Therefore,


    ∑  k = 0  ∞        ‖   g k   ‖   4       ‖   d k   ‖   2    = ∞   .  











This result contradicts (24). Therefore,     lim   inf     k → ∞      ‖   g k   ‖  = 0 .  , completing the proof. □







4. Numerical Results and Discussion


To improve the efficiency of the proposed CG method, we modified Equation (16) as follows:


   β k  L S +   =  {    −      ‖   g k   ‖   2  −  |   g k T   g  k − 1    |     d  k − 1  T   g  k − 1        if      ‖   g k   ‖  2  >  |   g k T   g  k − 1    |      −      ‖   g k   ‖   2  −  μ k   |   g k T   g  k − 1    |     d  k − 1  T   g  k − 1        if      ‖   g k   ‖  2  >  μ k   |   g k T   g  k − 1    |      −  μ k     g k T   s  k − 1      d  k − 1  T   y  k − 1                      otherwise       











To analyze the efficiency of the new formula, we selected several test problems in Appendix A from CUTEr [38]. We compared the CG-Descent, LS, DL+ coefficients based on the CPU time and the number of iterations. We employed the modified CG descent 6.8 [39] with the SWP line search with   δ = 0.01  ,   σ = 0.1   and memory = 0 for LS, LS+, DL+ algorithms. To obtain the result of CG-Descent 5.3, we employ the CG-descent 6.3 with memory = 0. The norm of the gradient was employed as the stopping criterion, specifically    ‖   g k   ‖  ≤   10   − 6     for all algorithms. The host computer is an AMD A4 and 4GB of RAM. The results are shown in Figure 1 and Figure 2. Note that a performance measure introduced by Dolan and More [40] was employed. This performance measure was introduced to compare a set of solvers S on a set of problems  ρ . Assuming    n s    solvers and    n p    problems in S and  ρ , respectively, the measure    t  p , s     is defined as the computation time (e.g., the number of iterations or the CPU time) required for the solver  s  to solve the problem  p .



To create a baseline for comparison, the performance of the solver  s  on the problem  p  is scaled by the best performance of any solver in S on the problem using the ratio


   r  p , s   =    t  p , s     min {  t  p , s   : s ∈ S }    











Let the parameter    r M  ≥  r  p , s     for all   p ,   s   be selected. A further assumption made is that    r  p , s   =  r M    if and only if the solver  s  does not solve the problem  p . As we would like to obtain an overall assessment of the performance of a solver, we defined the following measure


   P s  ( t ) =  1   n p     size {  p ∈ ρ :  r  p , s   ≤ t }  











Thus,    P s  ( t )   is the probability for a solver   s ∈ S   that the performance ratio    r  p , s     is within a factor   t ∈ R   of the best possible ratio. Suppose we define the function    p s    as the cumulative distribution function for the performance ratio. In that case, the performance measure   P s  :   ℝ →[0,1] for a solver is non-decreasing and piecewise continuous from the right. The value of    p s  ( 1 )   is the probability that the solver achieves the best performance of all the solvers. In general, a solver with high values of    P s  ( t )  , which would appear in the upper right corner of the figure, is preferable.



Figure 1 shows that LS+ outperforms CG-Descent 5.3, LS, and DL+ in the number of iterations. It is worth noting that LS fails to obtain the stationary point for some functions. Thus, it solves around 95% of test functions. According to Figure 2, which presents the CPU time, we note that the LS+ also outperforms CG-Descent, LS, and DL+. Also, we can note that CG-Descent outperforms DL+ and LS+ in both figures. Thus, the proposed method is more efficient than DL+ and CG-Descent and more efficient and robust than the original LS. Also, it is worth noting that the proposed method can be extended to a three term CG method by using a modified DL+ CG formula, which is our new paper in near future.




5. Conclusions


In this paper, we proposed a modification of the Liu and Storey CG method that satisfies the following main challenges:




	
The proposed method is a non-negative two-term CG method.



	
The proposed method satisfies the descent condition.



	
The convergences properties are satisfied by obtaining the stationary point/s.



	
The modified method was restarted based on the suggestion presented by [12] instead of using the steepest descent, improving the efficiency of the proposed method.



	
The numerical results show that the new method outperformed CG-Descent, DL+, and LS in terms of the number of iteration and CPU time. Moreover, the modified method is more robust than the original LS.








In future, we will try to improve the line search to reduce the number of function evaluations and the number of gradient evaluations. As an application of the CG method in image restoration, the reader can refer to [41]. In addition, we will focus on some applications of the CG method, such as machine learning, deep learning, and image restoration. The proposed method is of great interest in solving nonlinear coefficient inverse problems for partial differential equations, for more, the reader can refer to the following references [42,43,44,45,46,47].
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Table A1. The set of test functions.






Table A1. The set of test functions.





	

	

	
LS+

	
CG-Descent




	
Function

	
Dimension

	
No. Iterations

	
No. of Function Evaluations

	
No.

Gradient Evaluations

	
CPU Time

	
No. Iterations

	
No. Function Evaluations

	
No. Gradient Evaluations

	
CPU Time






	
AKIVA

	
2

	
8

	
20

	
15

	
0.02

	
10

	
21

	
11

	
0.02




	
ALLINITU

	
4

	
11

	
28

	
20

	
0.02

	
12

	
29

	
18

	
0.02




	
ARGLINA

	
200

	
1

	
3

	
2

	
0.02

	
1

	
3

	
2

	
0.02




	
ARWHEAD

	
200

	
7

	
16

	
12

	
0.02

	
7

	
15

	
8

	
0.02




	
BARD

	
5000

	
14

	
36

	
25

	
0.02

	
16

	
33

	
17

	
0.02




	
BDQRTIC

	
3

	
140

	
299

	
256

	
0.44

	
136

	
273

	
237

	
0.58




	
BEALE

	
5000

	
12

	
30

	
22

	
0.02

	
15

	
31

	
16

	
0.02




	
BIGGS6

	
2

	
23

	
55

	
37

	
0.02

	
27

	
57

	
31

	
0.02




	
BOX3

	
6

	
10

	
23

	
14

	
0.02

	
11

	
24

	
13

	
0.02




	
BOX

	
3

	
7

	
24

	
20

	
0.11

	
8

	
25

	
19

	
0.08




	
BRKMCC

	
1000

	
5

	
11

	
6

	
0.02

	
5

	
11

	
6

	
0.02




	
BROWNAL

	
2

	
6

	
19

	
15

	
0.02

	
9

	
25

	
18

	
0.02




	
BROWNBS

	
200

	
12

	
27

	
19

	
0.02

	
13

	
26

	
15

	
0.02




	
BROWNDEN

	
2

	
16

	
38

	
31

	
0.02

	
16

	
31

	
19

	
0.02




	
BROYDN7D

	
4

	
66

	
120

	
90

	
0.31

	
1411

	
2810

	
1429

	
5.47




	
BRYBND

	
5000

	
38

	
99

	
69

	
0.2

	
85

	
174

	
90

	
0.38




	
CHAINWOO

	
5000

	
257

	
533

	
312

	
0.67

	
318

	
619

	
373

	
0.866




	
CHNROSNB

	
4000

	
298

	
596

	
317

	
0.02

	
287

	
564

	
299

	
0.02




	
CLIFF

	
50

	
9

	
43

	
36

	
0.02

	
18

	
70

	
54

	
0.02




	
COSINE

	
2

	
19

	
62

	
50

	
0.25

	
11

	
39

	
32

	
0.19




	
CRAGGLVY

	
10,000

	
91

	
182

	
142

	
0.37

	
103

	
197

	
147

	
0.45




	
CUBE

	
5000

	
17

	
43

	
30

	
0.02

	
32

	
77

	
47

	
0.02




	
CURLY10

	
2

	
56,628

	
77,977

	
92,037

	
202

	
47,808

	
67,294

	
76,156

	
173.7




	
CURLY20

	
10,000

	
78,784

	
101,319

	
135,082

	
426.97

	
66,587

	
89,245

	
110,540

	
383.94




	
CURLY30

	
10,000

	
84,712

	
111,549

	
142,856

	
637

	
79,030

	
102,516

	
134,682

	
639.63




	
DECONVU

	
10,000

	
181

	
415

	
235

	
0.02

	
400

	
801

	
401

	
0.02




	
DENSCHNA

	
63

	
6

	
16

	
12

	
0.02

	
9

	
19

	
10

	
0.02




	
DENSCHNB

	
2

	
6

	
18

	
15

	
0.02

	
7

	
15

	
8

	
0.02




	
DENSCHNC

	
2

	
11

	
36

	
31

	
0.02

	
12

	
26

	
14

	
0.02




	
DENSCHND

	
2

	
17

	
45

	
34

	
0.02

	
47

	
98

	
51

	
0.02




	
DENSCHNE

	
3

	
14

	
44

	
36

	
0.02

	
18

	
49

	
32

	
0.02




	
DENSCHNF

	
3

	
9

	
28

	
23

	
0.02

	
8

	
17

	
9

	
0.02




	
DIXMAANA

	
2

	
6

	
16

	
13

	
0.02

	
7

	
15

	
8

	
0.02




	
DIXMAANB

	
3000

	
8

	
19

	
13

	
0.02

	
6

	
13

	
7

	
0.02




	
DIXMAANC

	
3000

	
6

	
14

	
9

	
0.02

	
6

	
13

	
7

	
0.02




	
DIXMAAND

	
3000

	
11

	
26

	
17

	
0.02

	
7

	
15

	
8

	
0.02




	
DIXMAANE

	
3000

	
275

	
373

	
627

	
0.42

	
222

	
239

	
429

	
0.33




	
DIXMAANF

	
3000

	
44

	
140

	
106

	
0.06

	
161

	
323

	
162

	
0.13




	
DIXMAANG

	
3000

	
116

	
302

	
274

	
0.2

	
157

	
315

	
158

	
0.12




	
DIXMAANH

	
3000

	
446

	
695

	
1038

	
0.78

	
173

	
347

	
174

	
0.22




	
DIXMAANI

	
3000

	
525

	
670

	
1075

	
0.63

	
3856

	
3926

	
7644

	
4.25




	
DIXMAANJ

	
3000

	
59

	
166

	
117

	
0.08

	
327

	
655

	
328

	
0.36




	
DIXMAANK

	
3000

	
86

	
224

	
151

	
0.16

	
283

	
567

	
284

	
0.28




	
DIXMAANL

	
3000

	
62

	
175

	
127

	
0.08

	
237

	
475

	
238

	
0.2




	
DIXON3DQ

	
3000

	
333

	
401

	
725

	
0.78

	
10,000

	
10,007

	
19,995

	
19.12




	
DJTL

	
10,000

	
82

	
1203

	
1176

	
0.02

	
82

	
917

	
880

	
0.02




	
DQDRTIC

	
2

	
5

	
11

	
6

	
0.02

	
5

	
11

	
6

	
0.02




	
DQRTIC

	
5000

	
15

	
32

	
18

	
0.02

	
17

	
37

	
21

	
0.03




	
EDENSCH

	
5000

	
26

	
56

	
45

	
0.03

	
26

	
52

	
38

	
0.03




	
EG2

	
2000

	
6

	
13

	
7

	
0.02

	
5

	
11

	
6

	
0.02




	
EIGENALS

	
1000

	
9492

	
17,167

	
11,327

	
166

	
10,083

	
18,020

	
12,244

	
178.36




	
EIGENBLS

	
2550

	
24,630

	
49,386

	
24,810

	
373

	
15,301

	
30,603

	
15,302

	
237




	
EIGENCLS

	
2550

	
14,468

	
28,958

	
14,501

	
228.25

	
10,136

	
19,292

	
11,118

	
174.19




	
ENGVAL1

	
2652

	
22

	
47

	
35

	
0.05

	
27

	
50

	
36

	
0.06




	
ENGVAL2

	
5000

	
24

	
64

	
48

	
0.02

	
26

	
61

	
37

	
0.02




	
ERRINROS

	
3

	
3358

	
6774

	
3512

	
0.08

	
380

	
773

	
425

	
0.02




	
EXPFIT

	
50

	
10

	
27

	
21

	
0.02

	
13

	
29

	
16

	
0.02




	
EXTROSNB

	
2

	
2113

	
4570

	
2607

	
0.8

	
3808

	
7759

	
3982

	
1.25




	
FLETCBV2

	
1000

	
1

	
1

	
1

	
0.02

	
1

	
1

	
1

	
0.02




	
FLETCHCR

	
5000

	
264

	
517

	
287

	
0.09

	
152

	
290

	
176

	
0.05




	
FMINSRF2

	
1000

	
6

	
116

	
112

	
0.25

	
346

	
693

	
347

	
1.09




	
FMINSURF

	
5625

	
6

	
116

	
112

	
0.22

	
473

	
947

	
474

	
1.51




	
FREUROTH

	
5625

	
21

	
51

	
40

	
0.09

	
25

	
51

	
38

	
0.11




	
GENHUMPS

	
5000

	
2

	
109

	
108

	
0.28

	
6475

	
12,964

	
6493

	
20.11




	
GENROSE

	
5000

	
1149

	
2350

	
1244

	
0.25

	
1078

	
2167

	
1101

	
0.17




	
GROWTHLS

	
500

	
113

	
413

	
347

	
0.02

	
156

	
456

	
319

	
0.02




	
GULF

	
3

	
37

	
94

	
65

	
0.02

	
37

	
84

	
48

	
0.02




	
HAIRY

	
3

	
8

	
19

	
11

	
0.02

	
36

	
99

	
65

	
0.02




	
HATFLDD

	
2

	
15

	
43

	
35

	
0.02

	
20

	
43

	
24

	
0.02




	
HATFLDE

	
3

	
12

	
32

	
25

	
0.02

	
30

	
72

	
45

	
0.02




	
HATFLDFL

	
3

	
76

	
223

	
168

	
0.02

	
39

	
92

	
55

	
0.02




	
HEART6LS

	
3

	
391

	
1096

	
822

	
0.02

	
684

	
1576

	
941

	
0.02




	
HEART8LS

	
6

	
236

	
570

	
378

	
0.02

	
249

	
524

	
278

	
0.02




	
HELIX

	
8

	
26

	
59

	
37

	
0.02

	
23

	
49

	
27

	
0.02




	
HIELOW

	
3

	
13

	
31

	
21

	
0.05

	
14

	
30

	
16

	
0.02




	
HILBERTA

	
3

	
2

	
5

	
3

	
0.02

	
2

	
5

	
3

	
0.02




	
HILBERTB

	
2

	
4

	
9

	
5

	
0.02

	
4

	
9

	
5

	
0.02




	
HIMMELBB

	
10

	
4

	
18

	
18

	
0.02

	
10

	
28

	
21

	
0.02




	
HIMMELBF

	
2

	
22

	
56

	
40

	
0.02

	
26

	
60

	
36

	
0.02




	
HIMMELBG

	
4

	
8

	
23

	
17

	
0.02

	
8

	
20

	
13

	
0.02




	
HIMMELBH

	
2

	
5

	
13

	
9

	
0.02

	
7

	
16

	
9

	
0.02




	
HUMPS

	
2

	
85

	
371

	
319

	
0.02

	
52

	
186

	
144

	
0.02




	
JENSMP

	
2

	
15

	
52

	
46

	
0.02

	
15

	
33

	
22

	
0.02




	
JIMACK

	
2

	
8306

	
16,613

	
8307

	
1168.56

	
8314

	
16,629

	
8315

	
1182.25




	
KOWOSB

	
35,449

	
17

	
44

	
32

	
0.02

	
17

	
39

	
23

	
0.02




	
LIARWHD

	
4

	
16

	
49

	
40

	
0.05

	
21

	
45

	
25

	
0.03




	
LOGHAIRY

	
5000

	
43

	
155

	
127

	
0.02

	
27

	
81

	
58

	
0.02




	
MANCINO

	
2

	
11

	
23

	
12

	
0.08

	
11

	
23

	
12

	
0.08




	
MARATOSB

	
100

	
779

	
3264

	
2857

	
0.02

	
1145

	
3657

	
2779

	
0.02




	
MEXHAT

	
2

	
14

	
54

	
50

	
0

	
20

	
56

	
39

	
0.02




	
MOREBV

	
2

	
161

	
168

	
317

	
0.3

	
161

	
168

	
317

	
0.41




	
MSQRTALS

	
5000

	
1024

	
3224

	
6454

	
3232

	
2905

	
5815

	
2911

	
8.64




	
MSQRTBLS

	
1024

	
2414

	
4705

	
2548

	
7.53

	
2280

	
4525

	
2326

	
6.91




	
NCB20B

	
1024

	
3086

	
4922

	
6405

	
48.9

	
2035

	
4694

	
6006

	
46.36




	
NCB20

	
500

	
742

	
1712

	
1056

	
9.17

	
879

	
1511

	
1463

	
11.83




	
NONCVXU2

	
5010

	
-

	
-

	
-

	
-

	
6610

	
12,833

	
6999

	
15.89




	
NONDIA

	
5000

	
8

	
21

	
14

	
0.02

	
7

	
25

	
20

	
0.03




	
NONDQUAR

	
5000

	
-

	
-

	
-

	
-

	
1942

	
3888

	
1947

	
2.45




	
OSBORNEA

	
5000

	
67

	
167

	
115

	
0.02

	
94

	
213

	
124

	
0.02




	
OSBORNEB

	
5

	
58

	
132

	
82

	
0.02

	
62

	
127

	
65

	
0.02




	
OSCIPATH

	
11

	
296,950

	
712,333

	
463,338

	
2.09

	
310,990

	
670,953

	
367,325

	
2.08




	
PALMER1C

	
10

	
12

	
27

	
28

	
0.02

	
11

	
26

	
26

	
0.02




	
PALMER1D

	
8

	
10

	
24

	
23

	
0.02

	
11

	
25

	
25

	
0.02




	
PALMER2C

	
7

	
11

	
21

	
22

	
0.02

	
11

	
21

	
21

	
0.02




	
PALMER3C

	
8

	
11

	
21

	
21

	
0.02

	
11

	
20

	
20

	
0.02




	
PALMER4C

	
8

	
11

	
21

	
21

	
0.02

	
11

	
20

	
20

	
0.02




	
PALMER5C

	
8

	
6

	
13

	
7

	
0.02

	
6

	
13

	
7

	
0.02




	
PALMER6C

	
6

	
11

	
24

	
24

	
0.02

	
11

	
24

	
24

	
0.02




	
PALMER7C

	
8

	
11

	
20

	
20

	
0.02

	
11

	
20

	
20

	
0.02




	
PALMER8C

	
8

	
11

	
19

	
19

	
0.02

	
11

	
18

	
17

	
0.02




	
PARKCH

	
8

	
682

	
1406

	
1194

	
31.17

	
672

	
1385

	
1128

	
29.45




	
PENALTY1

	
15

	
25

	
80

	
64

	
0

	
28

	
69

	
44

	
0.02




	
PENALTY2

	
1000

	
192

	
228

	
366

	
0.03

	
191

	
221

	
354

	
0.05




	
PENALTY3

	
200

	
99

	
301

	
240

	
1.94

	
99

	
285

	
219

	
1.78




	
POWELLSG

	
200

	
34

	
80

	
54

	
0.05

	
26

	
53

	
27

	
0.02




	
POWER

	
5000

	
347

	
757

	
433

	
0.59

	
372

	
754

	
384

	
0.76




	
QUARTC

	
10,000

	
15

	
32

	
18

	
0.05

	
17

	
37

	
21

	
0.03




	
ROSENBR

	
5000

	
28

	
77

	
58

	
0.02

	
34

	
77

	
44

	
0.02




	
S308

	
2

	
7

	
21

	
17

	
0

	
8

	
19

	
12

	
0.02




	
SCHMVETT

	
2

	
201

	
549

	
773

	
2.44

	
43

	
73

	
60

	
0.23




	
SENSORS

	
5000

	
38

	
90

	
59

	
0.5

	
21

	
50

	
34

	
0.25




	
SINEVAL

	
100

	
52

	
145

	
105

	
0.02

	
64

	
144

	
88

	
0.02




	
SINQUAD

	
2

	
15

	
45

	
39

	
0.09

	
14

	
40

	
33

	
0.09




	
SISSER

	
5000

	
5

	
19

	
19

	
0.02

	
6

	
18

	
14

	
0.02




	
SNAIL

	
2

	
17

	
47

	
33

	
0.02

	
100

	
230

	
132

	
0.02




	
SPARSINE

	
2

	
18,177

	
18,446

	
36,089

	
71.8

	
18,358

	
18,647

	
36,431

	
73




	
SPARSQUR

	
5000

	
85

	
267

	
265

	
0.31

	
28

	
61

	
35

	
0.31




	
SPMSRTLS

	
10,000

	
209

	
428

	
223

	
0.5

	
203

	
412

	
210

	
0.59




	
SROSENBR

	
4999

	
9

	
22

	
15

	
0.02

	
11

	
23

	
12

	
0.02




	
STRATEC

	
5000

	
166

	
374

	
239

	
5.19

	
462

	
1043

	
796

	
19.98




	
TESTQUAD

	
10

	
1494

	
1501

	
2983

	
1.25

	
1577

	
1584

	
3149

	
1.52




	
TOINTGOR

	
5000

	
138

	
237

	
179

	
0.02

	
135

	
233

	
174

	
0.02




	
TOINTGSS

	
50

	
3

	
7

	
4

	
0.02

	
4

	
9

	
5

	
0.02




	
TOINTPSP

	
5000

	
114

	
243

	
176

	
0.02

	
143

	
279

	
182

	
0.02




	
TOINTQOR

	
50

	
29

	
36

	
53

	
0.02

	
29

	
36

	
53

	
0.02




	
TQUARTIC

	
50

	
13

	
43

	
36

	
0.03

	
14

	
40

	
27

	
0.03




	
TRIDIA

	
5000

	
781

	
788

	
1557

	
0.88

	
782

	
789

	
1559

	
0.84




	
VARDIM

	
5000

	
11

	
26

	
20

	
0.02

	
11

	
25

	
16

	
0.02




	
VAREIGVL

	
-

	
24

	
51

	
29

	
0.02

	
23

	
47

	
24

	
0.02




	
VIBRBEAM

	
50

	
135

	
337

	
267

	
0.02

	
138

	
323

	
199

	
0.02




	
WATSON

	
8

	
57

	
129

	
83

	
0.02

	
49

	
102

	
54

	
0.02




	
WOODS

	
12

	
23

	
55

	
36

	
0.02

	
22

	
51

	
30

	
0.06




	
YFITU

	
4000

	
69

	
200

	
157

	
0.02

	
84

	
197

	
118

	
0.02




	
ZANGWIL2

	
3

	
1

	
3

	
2

	
0.02

	
1

	
3

	
2

	
0.02
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Figure 1. Performance measure based on the number of iterations. 
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Figure 2. Performance measure based on the CPU time. 
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