
algorithms

Article

Improved Duplication-Transfer-Loss Reconciliation with
Extinct and Unsampled Lineages

Samson Weiner 1 and Mukul S. Bansal 1,2,*

����������
�������

Citation: Weiner, S.; Bansal, M.S.

Improved Duplication-Transfer-Loss

Reconciliation with Extinct and

Unsampled Lineages. Algorithms

2021, 14, 231. https://doi.org/

10.3390/a14080231

Academic Editor: Frank Werner

Received: 27 May 2021

Accepted: 2 August 2021

Published: 5 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science & Engineering, University of Connecticut, Storrs, CT 06269, USA;
samson.weiner@uconn.edu

2 Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
* Correspondence: mukul.bansal@uconn.edu

Abstract: Duplication-Transfer-Loss (DTL) reconciliation is a widely used computational technique
for understanding gene family evolution and inferring horizontal gene transfer (transfer for short)
in microbes. However, most existing models and implementations of DTL reconciliation cannot
account for the effect of unsampled or extinct species lineages on the evolution of gene families, likely
affecting their accuracy. Accounting for the presence and possible impact of any unsampled species
lineages, including those that are extinct, is especially important for inferring and studying horizontal
transfer since many genes in the species lineages represented in the reconciliation analysis are likely
to have been acquired through horizontal transfer from unsampled lineages. While models of DTL
reconciliation that account for transfer from unsampled lineages have already been proposed, they
use a relatively simple framework for transfer from unsampled lineages and cannot explicitly infer
the location on the species tree of each unsampled or extinct lineage associated with an identified
transfer event. Furthermore, there does not yet exist any systematic studies to assess the impact
of accounting for unsampled lineages on the accuracy of DTL reconciliation. In this work, we
address these deficiencies by (i) introducing an extended DTL reconciliation model, called the DTLx
reconciliation model, that accounts for unsampled and extinct species lineages in a new, more functional
manner compared to existing models, (ii) showing that optimal reconciliations under the new DTLx
reconciliation model can be computed just as efficiently as under the fastest DTL reconciliation
model, (iii) providing an efficient algorithm for sampling optimal DTLx reconciliations uniformly
at random, (iv) performing the first systematic simulation study to assess the impact of accounting
for unsampled lineages on the accuracy of DTL reconciliation, and (v) comparing the accuracies of
inferring transfers from unsampled lineages under our new model and the only other previously
proposed parsimony-based model for this problem.

Keywords: Duplication-Transfer-Loss reconciliation; extinct and unsampled lineages; algorithms;
horizontal gene transfer

1. Introduction

Understanding how genes and species evolve is fundamental to our understanding of
biology. In microbes, gene families evolve through complex evolutionary processes such
as gene duplication, horizontal gene transfer (or simply transfer for short), homologous
recombination, gene loss, and speciation. Duplication-Transfer-Loss (DTL) reconciliation is
one of the most powerful computational techniques for studying microbial gene family
evolution and for inferring evolutionary events such as transfer and gene duplication.
Indeed, DTL reconciliation has been rigorously studied over the last several years [1–18]
and several different DTL reconciliation models and algorithms have been developed.
At a fundamental level, algorithms for DTL reconciliation take as input a gene tree (i.e.,
evolutionary tree for a gene family) and a species tree (i.e., evolutionary tree for the
corresponding collection of species) and reconcile any topological differences between the

Algorithms 2021, 14, 231. https://doi.org/10.3390/a14080231 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a14080231
https://doi.org/10.3390/a14080231
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14080231
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14080231?type=check_update&version=2

Algorithms 2021, 14, 231 2 of 23

two by invoking gene duplication, transfer, gene loss, and speciation. Thus, the output is
an embedding of the gene tree into the species tree, showing how that gene family evolved
inside the species (or branches) represented in the species tree.

It is common knowledge that the vast majority of species that have ever existed on
Earth have gone extinct without leaving any known surviving descendants. Furthermore,
only a fraction of the existing microbial species diversity of Earth has ever been described
and only a small subset of this diversity is represented in genetic sequence databases.
Accounting for the presence and possible impact of such unsampled species lineages is
important for understanding microbial gene family evolution and studying transfer since
many genes in the species lineages represented in the reconciliation analysis are likely to
have been acquired through transfer from unsampled lineages, including those that have
gone extinct [10]. However, most models of DTL reconciliation, such as those implemented
in Mowgli [3], CoRe-PA [19], Jane [20], AnGST [5], RANGER-DTL [7,17], Notung [8],
PRIME-DLTRS [14], EUCALYPT [21], eMPRess [22], etc., do not explicitly account for the
potential impact of unsampled lineages on evolutionary histories of gene families.

To the best of our knowledge, only two DTL reconciliation models currently exist
that explicitly account for the impact of unsampled lineages: the probabilistic DTL rec-
onciliation framework introduced by Szollosi et al. [10] and the parsimony-based model
implemented in the software ecceTERA [16]. The model of Szollosi et al. [10] was used to
demonstrate that a large fraction of detectable transfers are likely acquired from unsampled
lineages. However, the underlying evolutionary model on which the probabilistic model
of Szollosi et al. [10] is based makes several simplifying assumptions, for example, the
assumption of an identical rate of transfer between any two species. The parsimony-based
model of ecceTERA [16] addresses some of these limitations. In ecceTERA, transfers from
unsampled lineages are modeled by adding a single lineage to the species tree (as an extra
branch attached to the root of the species tree) such that this additional lineage represents
all unsampled lineages. In particular, transfers can occur to or from this additional lin-
eage, representing transfers to or from unsampled lineages, respectively. Among other
limitations, this setup makes it difficult to infer the “location” on the species tree of an
unsampled donor of a transfer and to customize transfer event costs based on phyloge-
netic distance. Furthermore, and perhaps most importantly, there has never been any
systematic evaluation of the accuracy of transfers inferred as transferred from unsampled
lineages or of the impact of accounting for transfers from unsampled lineages on overall
reconciliation accuracy.

In this work, we introduce an extended DTL reconciliation model, building upon
the widely-used parsimony-based DTL reconciliation framework of Bansal et al. [7,11],
that accounts for unsampled species lineages in a more effective and useful manner than
ecceTERA. The new model, which we refer to as the DTLx reconciliation model, has several
important advantages over the model implemented in ecceTERA (and also the model
implemented in [10]): First, our new model explicitly infers the location on the species
tree of each unsampled lineage associated with an identified transfer event. Second, our
model allows greater flexibility in assigning event costs to different types of transfer events
(e.g., those from unsampled lineages), allowing for the costs to be fine tuned to the specific
dataset or evolutionary scenario under consideration. Furthermore, third, the new model
makes it possible to use variable transfer event costs based on the phylogenetic distance
between donor and recipient species even when the donor is an unsampled species; this is
important since transfers happen more frequently between more closely related species [23].
As an additional minor contribution, the DTLx reconciliation model also models transfer-
loss events, which are currently only modeled in two other parsimonious DTL reconciliation
frameworks, Mowgli [3] and ecceTERA [16].

We show how to compute optimal (most parsimonious) reconciliations under the DTLx
reconciliation model in O(mn) time, where m and n denote the number of leaves in the
gene tree and species tree, respectively, matching the time complexity of the fastest known
algorithms for any DTL reconciliation model. We provide an O(mn2)-time algorithm

Algorithms 2021, 14, 231 3 of 23

for sampling optimal reconciliations uniformly at random under the DTLx reconciliation
model, thus making it possible to efficiently sample from the space of all optimal DTLx
reconciliations, and perform the first systematic simulation study to assess the impact of
accounting for unsampled lineages on the accuracy of DTL reconciliation. We also compare
the accuracies of inferring transfers from unsampled lineages under our new model and
the model implemented in ecceTERA (currently the only other parsimony-based model
that accounts for unsampled lineages). Importantly, our experimental results, on both
simulated and real data, suggest that models that account for unsampled lineages have
only a small impact on overall reconciliation accuracy and that there is a clear trade-off
between precision and recall of correctly detecting transfers from unsampled lineages.
Encouragingly, we also find that DTLx reconciliation is capable of identifying at least
some transfers from unsampled lineages with reasonable confidence and that it is able to
identify the phylogenetic placement of the unsampled donors of such transfer events with
high accuracy.

Our implementation of the DTLx reconciliation model is freely available open-source
as the program RANGER-DTLx, downloadable from https://compbio.engr.uconn.edu/
software/RANGER-DTLx/ (accessed on 3 August 2021).

The remainder of the manuscript is organized as follows: We provide basic preliminaries
and introduce and formally define the DTLx reconciliation model in the next section. Our
algorithms for computing and sampling optimal DTLx reconciliations appear in Section 3.
Experimental results appear in Section 4 and concluding remarks in Section 5.

2. Definitions and Preliminaries

We follow basic definitions and notation from [7,11]. Given a tree T, we denote its node,
edge, and leaf sets by V(T), E(T), and Le(T), respectively. If T is rooted, the root node
of T is denoted by rt(T), the parent of a node v ∈ V(T) by paT(v), its set of children by
ChT(v), and the (maximal) subtree of T rooted at v by T(v). If two nodes in T have the
same parent, they are called siblings. The set of internal nodes of T, denoted I(T), is defined
to be V(T) \ Le(T). We define ≤T to be the partial order on V(T) where x ≤T y if y is a
node on the path between rt(T) and x. The partial order ≥T is defined analogously, that
is, x ≥T y if x is a node on the path between rt(T) and y. We say that v is an ancestor of
u, or that u is a descendant of v if u ≤T v (note that, under this definition, every node is a
descendant as well as an ancestor of itself). We say that x and y are incomparable if neither
u ≤T v nor v ≤T u. Given a nonempty subset L ⊆ Le(T), we denote by lcaT (L) the least
common ancestor (LCA) of all the leaves L in tree T; that is, lcaT (L) is the unique smallest
upper bound of L under ≤T. Given x, y ∈ V(T), x→T y denotes the unique path from x to
y in T. Throughout this work, unless otherwise stated, the term “tree” refers to a rooted
binary tree.

Throughout this work, we use G and S to denote the input gene tree and species tree,
respectively. We assume that each leaf of the gene tree G is labeled with the species from
which that gene was sampled. This labeling defines a leaf-mapping LG,S : Le(G)→ Le(S)
that maps a leaf node g ∈ Le(G) to that unique leaf node s ∈ Le(S), which has the same
label as g. We will implicitly assume that LG,S(g) is well defined. Note that a gene tree
may have more than one gene sampled from the same species, i.e., gene trees can be
multi-labeled. We also point out that “species” in a species tree can, in fact, also represent
distinct strains or genomes from the same species.

2.1. DTL Reconciliation

Given a rooted gene tree and a rooted species tree, Duplication-Transfer-Loss (DTL)
reconciliation shows how the gene tree evolved within the species tree through speciation,
gene duplication, transfer, and gene loss. Essentially, DTL reconciliation maps each node
of the gene tree to a node or edge on the species tree and designates each internal node of
the gene tree as representing either a speciation, duplication, or transfer event.

https://compbio.engr.uconn.edu/software/RANGER-DTLx/
https://compbio.engr.uconn.edu/software/RANGER-DTLx/

Algorithms 2021, 14, 231 4 of 23

Computed DTL reconciliations can sometimes be time-inconsistent in that one or more
inferred transfers may be inconsistent with any valid dating of the internal nodes of the
species tree. The problem of finding an optimal time-consistent DTL reconciliation is NP-
hard [4,24] and, consequently, DTL reconciliation algorithms often seek an optimal, not
necessarily time-consistent, DTL reconciliation [4,5,7,11,13]. However, it is possible to
perform additional filtering of computed optimal DTL reconciliations so that any time-
inconsistent reconciliations are suppressed [8,21]. Time-consistent DTL reconciliations
can also be computed efficiently if the input species tree can be fully dated [3,25]. In this
work, we focus on computing optimal, not necessarily time-consistent, reconciliations with
undated species trees, but the same techniques also extend to reconciliations with dated
species trees.

Almost all existing DTL reconciliation models have some implicit limitations in how
they handle transfer events. For example, nearly all DTL reconciliation models implicitly
assume that transfer events are additive, i.e., that the transferred gene inserts itself as
a new gene in the recipient species instead of replacing an existing homologous gene.
Extensions of the DTL model that simultaneously model both additive and replacing
transfers, referred to as the DTLR reconciliation model have also been proposed [26,27],
but the problem of inferring optimal reconciliations under such models is known to be
NP-hard [26,27]. Likewise, almost all existing DTL reconciliation models, except for [10,16],
assume that transfer events only occur between branches, or species, represented on the
given species tree. Thus, they often cannot correctly account for transfers from unsampled
species lineages.

In the following, we introduce an extended version of the DTL reconciliation model
that can explicitly model two additional types of transfer events, as defined below. Our
approach builds upon initial ideas first briefly mentioned (but not further developed,
formalized, implemented, or tested), in a previous 2012 paper [7].

Definition 1 (Transfer-Loss (TL)). A transfer-loss (TL) event occurs when the descendants of
the donor species lose all copies derived from the transferred gene.

Figure 1 provides an illustration of a TL event and a detailed discussion occurs in
Section 2.2 below. As noted earlier, TL events were also explicitly defined and handled
in [3,16].

(a) (b)
Figure 1. Illustration of the difference between (a) a standard transfer event and (b) a TL event.

Definition 2 (Transfer from unsampled lineage (TX)). A transfer from unsampled lineage
(TX) event occurs when the donor species is not represented in the species tree.

In this work, unsampled lineages are representative any lineage not present in the
species tree, including those that are extinct. We refer to transfer events that are neither TL
events nor TX events as T events. Thus, T represents the “standard” transfer event type
that is modeled by default in existing DTL reconciliation models.

Algorithms 2021, 14, 231 5 of 23

2.2. Transfer-Loss Events

As shown in Figure 1, a TL event is equivalent to a standard transfer event with the
exception that the donor lineage thereafter loses all copies derived from the gene that
was transferred. TL events were first defined by Doyon et al. and implemented in their
DTL reconciliation framework and software Mowgli [3]. The software ecceTERA [16] later
inherited the same reconciliation framework. No other parsimony-based DTL reconciliation
framework can currently handle TL events. Note that TL events do not represent a distinct
biological event type; instead, they are simply standard transfer events followed later by
one or more loss events that result in the donor lineage losing all copies derived from
the gene that was transferred. Thus, the only reason to explicitly define TL events and
distinguish them from standard transfer events is that most DTL reconciliation models and
algorithms are not able to correctly handle evolutionary scenarios involving TL events.
This difficulty in handling TL events stems from the fact that TL events are unary; unlike
standard transfer events, they do not result in a bifurcation in the gene tree topology. Thus,
there does not exist any node in the input gene tree that can represent a TL event. However,
the DTL reconciliation model can be easily adapted to allow for TL events by explicitly
augmenting edges in the input gene tree with additional nodes, referred to as hidden nodes.
Each such hidden node simply subdivides the edge that they are augmented to, resulting
in a non-binary node with a single child. This property allows hidden nodes to represent
possible TL events, as the unary property is kept intact. More formally:

Definition 3 (Augmented gene tree and hidden nodes). Given a gene tree G, an augmented
gene tree G′ is defined to be the tree obtained from G by (i) selecting a subset of edges A ⊆ E(G),
and (ii) subdividing each edge in A by a hidden node such that each edge (g, g′) ∈ A is replaced
by the two edges (g, h) and (h, g′), where h is a new hidden node.

Figure 2 shows an example of an augmented gene tree. The hidden nodes in an aug-
mented gene tree can be used to represent TL events. Thus, under the DTLx reconciliation
framework, the reconciled gene tree is in fact a reconciled augmented gene tree, where each
hidden node shown on that augmented gene tree represents a TL event.

(a) (b)
Figure 2. An example gene tree (a) and a possible augmented version with hidden nodes in blue (b).

2.3. Transfers from Unsampled Lineages

In most cases, it is difficult or impossible to achieve complete taxon sampling for the
group of species under consideration. Unsampled taxa/lineages in the species tree can
affect the accuracy of DTL reconciliation since transfers may have occurred from unsampled
to sampled lineages. Even with complete taxon sampling, the species represented on a
species tree are only those that have surviving descendant species. It is well-understood
that the vast majority of species that have ever existed have gone extinct without leaving
surviving descendants. This is depicted in Figure 3a. It is reasonable to expect that such
extinct species lineages would have engaged in gene transfer with the species that are
represented in the “visible” species tree [10]. However, conventional DTL reconciliation
algorithms do not explicitly model transfers from such unsampled lineages (with the
exception of [10,16], which include a simple mechanism to allow for such transfers).

Algorithms 2021, 14, 231 6 of 23

We will show how transfers from unsampled species can be detected and correctly
handled by appropriately augmenting the input species tree with additional edges that
represent unsampled lineages and then leveraging TL events to allow for transfers from
these additional edges to the rest of the species tree. Formally, we define the augmented
species tree, denoted S′, as follows:

Definition 4 (Augmented species tree and extra nodes, leaves, and edges). Given the species
tree S, the augmented species tree S′ is defined to be the tree obtained from S by (i) subdividing
each edge in E(S) by a new extra node such that each edge (s, s′) ∈ E(S) is replaced by the two
edges (s, e) and (e, s′), where e is the new extra node, and connecting e by an edge to a new extra
leaf, and (ii) creating a new root node r and connecting r by an edge to rt(S) and by another
edge to a new extra leaf. Each edge of S′ connecting an extra node with an extra leaf is called an
extra edge.

Figure 3c show an example of an augmented species tree. We use X (S′) to denote the
set of all extra leaves in S′. The extra edges in S′ represent unsampled lineages and the new
DTLx model allows for transfers to originate from these extra edges of S′, and any transfer
that originates at an extinct edge is labeled as a TX event.

(a) (b) (c)
Figure 3. Representation of unsampled lineages on the species tree. (a) Illustration of the “coral” of
life based on drawings by Darwin, where black lines represent lineages leading to extant species, and
grey lines represent potential unsampled species; adapted from [28]. (b) Input species tree before
augmentation. (c) Augmented species tree. Extra nodes are in green and extra leaves are in white.
Leaves labeled A-D represent extant species. Unsampled lineages are represented by the edges
connecting extra nodes and extra leaves.

2.4. DTLx Reconciliation

A DTLx reconciliation of G and S shows how a suitably augmented version G′ of G
evolved inside the augmented species tree S′ through speciation, gene duplication, transfer,
TL, TX, and loss events. A formal definition of DTLx reconciliation appears below and it
specifies what constitutes a biologically valid DTLx reconciliation of G and S.

Definition 5 (DTLx Reconciliation). A DTLx reconciliation for G and S is an eleven-tuple
〈L, G′, S′,M, Σ, ∆, Θ, ΘL, ΘX, Ξ, τ〉, where L : Le(G) −→ Le(S) represents the leaf mapping
from G to S, G′ denotes the augmented gene tree, S′ denotes the augmented species tree, M:
V(G′) → V(S′) maps each node of G′ to a node of S′, the sets Σ, ∆, Θ, ΘL, and ΘX partition
I(G′) into speciation, duplication, T, TL, and TX events, respectively; Ξ is the subset of E(G′) that
represents transfer edges, and τ : Θ ∪ΘL ∪ΘX −→ V(S′) specifies the recipient species for each
transfer event, subject to the following constraints:

Augmented gene tree constraint

1. G can be obtained from G′ by suppressing each node of G′ with exactly one child.

Mapping constraints

2. If g ∈ Le(G′), thenM(g) = L(g).

Algorithms 2021, 14, 231 7 of 23

3. If g ∈ I(G) ∩ I(G′) (i.e., g is not a hidden node of G′) and g′ and g′′ denote the children of g
in G′, then,

(a) M(g) 6<S′ M(g′), andM(g) 6<S′ M(g′′),
(b) At least one ofM(g′) andM(g′′) is a descendant ofM(g).

4. If g ∈ I(G′) \ I(G) (i.e., g is a hidden node of G′) and g′ denotes it’s unique child, thenM(g)
andM(g′) are incomparable.

Event constraints

5. Given any edge (g, g′) ∈ E(G′), (g, g′) ∈ Ξ if and only ifM(g) andM(g′) are incompara-
ble.

6. If g ∈ I(G) ∩ I(G′) and g′ and g′′ denote the children of g in G′, then,

(a) g ∈ Σ only ifM(g) = lca(M(g′),M(g′′)) andM(g′) andM(g′′) are incompara-
ble,

(b) g ∈ ∆ only ifM(g) ≥S′ lca(M(g′),M(g′′)),
(c) g ∈ Θ if and only if either (g, g′) ∈ Ξ or (g, g′′) ∈ Ξ,
(d) If g ∈ Θ and (g, g′) ∈ Ξ, thenM(g) and τ(g) must be incomparable andM(g′)

must be a descendant of τ(g), i.e.,M(g′) ≤S′ τ(g).

7. If g ∈ I(G′) \ I(G) and g′ denotes it’s unique child, then,

(a) g ∈ ΘL ∪ΘX , and (g, g′) ∈ Ξ
(b) M(g) and τ(g) are incomparable, andM(g′) ≤S′ τ(g)
(c) g ∈ ΘX if and only ifM(g) ∈ X (S′).

Constraint 1 specifies how the gene tree can be augmented with hidden nodes so that
any inferred TL and TX events can be shown in the final reconciliation. Constraint 2
ensures that the mapping M is consistent with the leaf-mapping L. Because Le(G′) is
equivalent to Le(G), the leaf mappings of G′ into S′ must be equivalent to those of G into S.
Constraints 3a and 4 impose onM the temporal constraints implied by S′. Constraint 3b
implies that any non-hidden internal node in G′ may represent at most one transfer event.
Constraint 5 determines the edges of G′ that are T, TL, or TX edges. Constraints 6a–c state
the conditions under which a non-hidden internal node of G′ may represent a speciation,
duplication, and transfer, respectively. Constraint 6d specifies which species may be
designated as the recipient species for any given T event. Constraint 7a ensures that only
those hidden nodes that represent a valid TL or TX event can appear in G′. Constraint 7b
specifies which species may be designated as the recipient species for any given TL or
TX event. Finally, Constraint 7c differentiates TL from TX events and requires that any
TX event must originate along an extra edge (representing unsampled lineages) of the
augmented species tree.

Figure 4 shows examples of DTLx reconciliations and illustrates how allowing for TL
and TX events can lead to improved reconciliations.

Given a DTLx reconciliation α, one can directly count the minimum number of gene
losses implied by α similarly as under the DTL reconciliation model [7], but with two
additional considerations: First, any losses associated with TL and TX events (i.e., asso-
ciated with hidden nodes of G′) must be appropriately counted. Furthermore, second,
losses must be counted using the original, unaugmented species tree S, rather than using
S′, except in cases where a gene tree node maps to an extra leaf. Specifically, to count
the minimum number of losses that occur along an edge (g, g′) of the gene tree, we must
count the number of non-extra species lineages in the species tree that branch off from the
pathM(g)→S′ M(g′), and also account for any extra edges along the path. To facilitate
this counting, we define the loss-distance between two nodes x, y ∈ V(S′), where y ≤S′ x,
denoted dS′(x, y), as follows:

Algorithms 2021, 14, 231 8 of 23

dS′(x, y) =


0, if x = y,
|{e : e ∈ E(S) and e fully or partially overlaps with the path x →S′ y}|, if y 6∈ X (S′)
|{e : e ∈ E(S) and e fully or partially overlaps with the path x →S′ y}|+ 1, otherwise

For example, in the species tree S′ shown in Figure 4f, dS′(n2, B) = 4 and dS′(n2, e2) = 2.

Figure 4. Impact of TL and TX events on optimal DTLx reconciliations. (a) and (b) are the input
gene tree G and input species tree S, respectively. (c) An augmented version of G containing a
single hidden node as required by the reconciliations shown in Parts (e,f). (d) An optimal DTL
reconciliation of G and S illustrating how the gene tree (blue lines) may have evolved within the
species tree (tubes) without the use of TL or TX events. This DTL reconciliation invokes two transfer
events and two losses. All reconciliations shown in this figure use event costs of 1, 2, 3, 4, and 3 for
losses, duplications, transfers, TL, and TX events, respectively. Thus, we get a total reconciliation
cost of 8 for this optimal DTL reconciliation. (e) An optimal reconciliation of G and S that uses TL
events but not TX events. This reconciliation utilizes the hidden node h1 in G′ to facilitate a TL event
from species E to species B. It invokes one transfer event and one TL event, for a total reconciliation
cost of 7. (f) An optimal DTLx reconciliation of G and S. This DTLx reconciliation utilizes the hidden
node h1 in G′ to facilitate a TX event. It invokes one transfer event and one TX event, for a total
reconciliation cost of 6. Accordingly, the reconciliation shown in (f) makes use of an extra leaf and
extra node on S′ (dotted green tube).

Algorithms 2021, 14, 231 9 of 23

Definition 6 (Losses). Given a DTLx reconciliation α = 〈L, G′, S′,M, Σ, ∆, Θ, ΘL, ΘX, Ξ, τ〉
for G and S, let g ∈ V(G′) and {g′, g′′} = Ch(g) if g ∈ I(G) ∩ I(G′), and {g′} = Ch(g)
otherwise. The minimum number of losses Lossα(g) at node g (or, more accurately, the minimum
number of losses incurred along the child edge(s) of g) is defined to be:

• dS′(M(g),M(g′)) + dS′(M(g), (M(g′′))− 2, if g ∈ Σ;
• dS′(M(g),M(g′)) + dS′(M(g),M(g′′)) if g ∈ ∆;
• dS′(M(g),M(g′′)) + dS′(τ(g),M(g′)) if (g, g′) ∈ Ξ and g ∈ Θ, and;
• dS′(τ(g),M(g′) if (g, g′) ∈ Ξ, and g ∈ ΘL or g ∈ ΘX .

The total number of losses associated with reconciliation α, denoted Lossα, is defined to be
∑g∈I(G′) Lossα(g).

Note that the implicit gene loss (of the donor’s copy of the gene) associated with TL
or TX events is not counted in the definition of losses above. Instead, TL and TX events
can be assigned a higher event cost than a standard transfer event (see next paragraph) to
account for these implicit losses.

In the DTLx reconciliation framework, each event other than speciation (which is
considered a null event) is assigned a positive cost. Let P∆, PΘ, PTL, PTX, and Ploss denote
the costs associated with duplication, transfer, TL, TX, and loss events, respectively. The
reconciliation cost of a DTLx reconciliation α of G and S is then defined as follows.

Definition 7 (Reconciliation cost). Given a DTLx reconciliation α = 〈L, G′, S′,M, Σ, ∆, Θ,
ΘL, ΘX, Ξ, τ〉 for G and S, the reconciliation cost associated with α is the total cost of all events
invoked by α. Specifically, the reconciliation cost is given by P∆ × |∆|+ PΘ × |Θ|+ PTL × |ΘL|+
PTX × |ΘX |+ Ploss × Lossα.

Given G and S, along with specific event costs, the computational objective is to find a
DTLx reconciliation of G and S with minimum reconciliation cost (i.e., a most parsimonious
DTLx reconciliation of G and S). This yields the following problem statement.

Problem 1 (Optimal DTLx reconciliation (O-DTLx) problem). Given G and S, along with P∆,
PΘ, PTL, PTX, and Ploss, the O-DTLx problem is to find a DTLx reconciliation for G and S with
minimum reconciliation cost.

It is well-understood that there can exist a very large number of optimal DTL reconcilia-
tions for any given gene tree and species tree and that this number can grow exponentially
in the sizes of the input trees [11,12]. One of the most efficient and widely used approaches
for handling multiple optima and exploring the diversity of optimal reconciliations is
to generate optimal reconciliations uniformly at random from the space of all optimal
reconciliations [11,17]. Such random sampling for the efficient exploration of the space of
multiple optima and makes it possible to distinguish well-supported and poorly-supported
aspects of an optimal reconciliation. This motivates the following problem statement.

Problem 2 (Optimal DTLx reconciliation sampling (O-DTLx-Sampling) problem). Given
G and S, along with P∆, PΘ, PTL, PTX, and Ploss, let O denote the set of all optimal DTLx
reconciliations for G and S (i.e., with minimum reconciliation cost). The O-DTLx-Sampling
problem is to compute an optimal DTLx reconciliation from O in such a way that each DTLx
reconciliation in O has an equal probability of being computed.

We provide efficient algorithms for both the above problems in the following section.

3. Materials and Methods

Our algorithms for computing and sampling optimal DTLx reconciliations build upon
corresponding dynamic programming algorithms for computing and sampling optimal
DTL reconciliations as described in [7,11]. These algorithms for DTL reconciliation perform

Algorithms 2021, 14, 231 10 of 23

a nested post-order traversal of the gene tree and species tree and compute, at each step,
an optimal solution to a subproblem. Specifically, given any g ∈ V(G) and s ∈ V(S), the
subproblem c(g, s) is defined to be cost of an optimal DTL reconciliation of the subtree
G(g) with S under the constraint that g maps to s. As shown in [7], optimal solutions for
these subproblems can be efficiently computed based on previously computed optimal
solutions for smaller subproblems, and the final optimal reconciliation cost for G and S is
then simply mins∈V(S) c(rt(G), s).

Adapting this approach to computing DTLx reconciliations requires several modi-
fications and extensions to the basic dynamic programming framework. In particular,
(i) hidden nodes in the augmented gene tree must be handled differently in the dynamic
programming framework than the other nodes, (ii) mappings to extra leaves in the species
tree must be handled differently than mappings to other nodes, and (iii) the new evolution-
ary events TL and TX must be integrated into the cost calculations performed within the
dynamic programming framework.

Recall that a DTLx reconciliation of G and S is a reconciliation between an augmented
gene tree G′ and the augmented species tree S′. Accordingly, our algorithms for computing
optimal DTLx reconciliations perform a nested post order traversal of a fully augmented
gene tree, denoted G′′, and the augmented species tree S′. This fully augmented gene tree is
defined as follows:

Definition 8 (Fully augmented gene tree). Given a gene tree G, the fully augmented gene
tree, denoted G′′, is defined to be the tree obtained from G by subdividing each edge in E(G) by
a hidden node such that each edge (g, g′) ∈ E(G) is replaced by the two edges (g, h) and (h, g′),
where h is a new hidden node.

The fully augmented gene tree G′′ thus contains all possible hidden nodes and allows
the algorithms to consider the possibility of TL and TX events occurring along each edge
of G. Hidden nodes of G′′ that are not ultimately labeled as representing a TL or TX event
are suppressed to yield the final augmented gene tree G′.

Next, we present our algorithm for the O-DTLx problem.

3.1. An O(mn)-Time Algorithm for O-DTLx

Following along the lines of the previous dynamic programming framework described
above, we define the core subproblem of dynamic programming algorithm as follows:
Given any g ∈ V(G′′) and s ∈ V(S′), we define c(g, s) to be cost of an optimal DTLx
reconciliation of the subtree G′′(g) with S′ under the constraint that g maps to s. Note that
the hidden nodes of G′′ that are not used in a DTLx reconciliation do not contribute to
the reconciliation cost of that reconciliation. These unused hidden nodes can therefore be
trimmed out at the end to yield the final augmented gene tree G′. Thus, in accordance with
the definition of DTLx reconciliation, the optimal reconciliation cost of reconciling G and S
is given by mins∈V(S′) c(rt(G′′), s).

For each non-hidden internal node g of G′′, i.e., if g ∈ I(G′′) ∩ I(G), we also define the
following restricted subproblems: (i) cΣ(g, s) denotes the cost of an optimal reconciliation
of G′′(g) with S′ under the constraint that g maps to s and g ∈ Σ. (ii) c∆(g, s) denotes the
cost of an optimal reconciliation of G′′(g) with S′ under the constraint that g maps to s and
g ∈ ∆. Furthermore, (iii) cΘ(g, s) denotes the cost of an optimal reconciliation of G′′(g) with
S′ under the constraint that g maps to s and g ∈ Θ.

Recall that only the hidden nodes of G′′ can represent TL and TX events. Accordingly,
for each hidden node g of G′′, i.e., if g ∈ I(G′′) \ I(G), we define the following restricted
subproblems: (i) cΘL(g, s) denotes the cost of an optimal reconciliation of G′′(g) with S′

under the constraint that g maps to s and g ∈ ΘL. (ii) cΘX (g, s) denotes the cost of an
optimal reconciliation of G′′(g) with S′ under the constraint that g maps to s and g ∈ ΘX .

Algorithms 2021, 14, 231 11 of 23

The algorithm executes a nested post order traversal of G′′ and S′ to compute the value
of c(g, s) for each g and s. The base cases for the dynamic programming table are initialized
as follows:

c(g, s) =

{
0 if g ∈ Le(G′′) and s = L(g),
∞ if g ∈ Le(G′′) and s 6= L(g).

(1)

For internal nodes of G′′, c(g, s) can be computed based on the values of the restricted
subproblems, defined above, as follows:

c(g, s) =

{
min{cΣ(g′, s), c∆(g′, s), cΘ(g′, s), cΘL(g, s), cΘX (g, s)} if g ∈ I(G′′) \ I(G),
min{cΣ(g, s), c∆(g, s), cΘ(g, s)} otherwise,

(2)

where g′ denotes the unique child of g in the case where g is a hidden node (i.e., g ∈
I(G′′) \ I(G)).

Note that, when g ∈ I(G′′) ∩ I(G), the value of c(g, s) is the minimum of the restricted
subproblem values computed at g and g′. Essentially, if c(g, s) equals cΣ(g, s), c∆(g, s), or
cΘ(g, s), then it means that the hidden node g is not required (i.e., it need not represent any
event) in an optimal reconciliation corresponding to that value of c(g, s).

For each g and s, optimal values for the applicable restricted subproblems represented
by cΣ(g, s), c∆(g, s), cΘ(g, s), cΘL(g, s), and cΘX (g, s) can be computed based on previously
computed values of c(·, ·) as shown below. For ease of presentation and to help compute
these values more efficiently, we also define, for each g ∈ V(G′′) and s ∈ V(S′), the
following:

in(g, s) = min
x∈V(S′(s))

{Ploss · dS′(s, x) + c(g, x)}

out(g, s) = min
x∈V(S′) incomparable to s

c(g, x)

inAlt(g, s) = min
x∈V(S′(s))

c(g, x).

Now, consider any g ∈ I(G′′) ∩ I(G), and let {g′, g′′} = ChG′′(g). If s 6∈ Le(S′) then let
{s′, s′′} = ChS′(s). Then,

cΣ(g, s) =

{
∞ if s ∈ Le(S′),
min{in(g′, s′) + in(g′′, s′′), in(g′′, s′) + in(g′, s′′)} otherwise,

(3)

c∆(g, s) =

{
P∆ + c(g′, s) + c(g′′, s) if s ∈ Le(S′),
P∆ + in(g′, s) + in(g′′, s) otherwise,

(4)

and

cΘ(g, s) =

{
∞ if s = rt(S′),
PΘ + min{in(g′, s) + out(g′′, s), in(g′′, s) + out(g′, s)} otherwise.

(5)

Similarly, if g ∈ I(G′′) \ I(G), i.e., g is a hidden node, and g′ represents the unique child
of g in G′′, then,

cΘL(g, s) =

{
∞ if s = rt(S′) or s ∈ X (S′),
PTL + out(g′, s) otherwise,

(6)

and

cΘX (g, s) =

{
∞ if s = rt(S′) or s 6∈ X (S′),
PTX + out(g′, s) otherwise,

(7)

Algorithms 2021, 14, 231 12 of 23

The O-DTLx problem can now be easily solved using dynamic programming based on
Equations (1)–(7). The pseudocode given in Algorithm 1, i.e., Algorithm Compute-O-DTLx,
shows how this can be done within O(mn) time by efficiently computing the values of
in(·, ·), out(·, ·), and inAlt(·, ·).

Observe that Algorithm 1 only computes the optimal reconciliation cost. However,
as with any dynamic programming algorithm, it is straightforward to compute an actual
reconciliation that achieves this optimal reconciliation cost through backtracking. Further-
more, observe that it is trivial to “trim down” any reconciliation of G′′ and S′ constructed
through backtracking by simply removing any hidden node in G′′ that is not assigned a TL
or TX event in that reconciliation. This would yield the augmented gene tree G′, along with
its reconciliation with S′, as required by the definition of DTLx reconciliation (Definition 5).

Theorem 1. The O-DTLx problem can be solved in O(mn) time, where m = | Le(G)| and
n = | Le(S)|.

Proof. It suffices to show that Algorithm 1 correctly computes the value of c(g, s), for each
g ∈ V(G′) and s ∈ V(S′), within O(mn) time.

Correctness: We will show that the values of in(g, s), inAlt(g, s), out(g, s), cΣ(g, s), c∆(g, s),
cΘ(g, s), cΘL(g, s), and cΘX (g, s) are computed correctly for each g and s where applicable.
For each g ∈ Le(G′), consider the values of in(g, s), inAlt(g, s), out(g, s) and c(g, s). These
values are assigned correctly in accordance with their definitions during the execution of
the ‘for’ loop in Steps 8–11. These values serve as the base case of our inductive argument.

Consider the case when g ∈ I(G′′) \ I(G), and g′ = Ch(g). By the induction hypothesis,
we may assume that the values of in(g′, x), inAlt(g′, x), and c(g′, x) have been computed
correctly for each x ∈ V(S′). Given the values of inAlt(g′, x), the values of out(g′, x) must
also be computed correctly during the execution of the ‘for’ loop in Steps 33–35. Observe
that the values of cΘL(g, s), cΘX (g, s), and c(g, s), for any s ∈ V(S′), are computed using
these previously computed values in accordance with Equations (2), (6), and (7), which, in
turn, are based directly on the definitions of the corresponding events given in Definition 5.
Thus, these values are all computed correctly. Once the values c(g, s) are computed correctly,
the remaining values of in(g, s), inAlt(g, s), and out(g, s) would also be assigned correctly
in Steps 18–22 and Steps 33–35, in accordance with their definitions.

Now, consider the case when g ∈ I(G′′) ∩ I(G), and {g′, g′′} = Ch(g). By the induc-
tion hypothesis, we may again assume that the values of in(g′, x), in(g′′, x), inAlt(g′, x),
inAlt(g′′, x), c(g′, x), and c(g′′, x) have been computed correctly for each x ∈ V(S′). Given
the values of inAlt(g′, x) and inAlt(g′′, x), the values of out(g′, x) and out(g′′, x) must also
be computed correctly during the execution of the ‘for’ loop in Steps 33–35. Observe that
the values of cΣ(g, s), c∆(g, s), cΘ(g, s), and c(g, s), for any s ∈ V(S′), are computed using
these previously computed values in accordance with Equations (2)–(5), which, in turn, are
based directly on the definitions of the corresponding events given in Definition 5. Thus,
these values are all computed correctly. Once the values c(g, s) are computed correctly, the
remaining values of in(g, s), inAlt(g, s) and out(g, s) would also be assigned correctly in
Steps 28–32 and Steps 33–35, in accordance with their definitions.

Induction completes the proof.
Time complexity: The time complexity of the Algorithm is dominated by the nested ‘for’

loops in Steps 12 through 35 that perform the nexted post-order traversal of the gene and
species tree. It is easy to verify that each step within these nested ‘for’ loops requires only
O(1) time. Thus, the time complexity of Algorithm 1 is O(mn).

Algorithms 2021, 14, 231 13 of 23

Algorithm 1 Compute-O-DTLx(G, S,L, PΣ, P∆, PΘ, PTL, PTX, Ploss)

1: Initialize G′′ and S′ as outlined earlier.
2: for each g ∈ V(G′′) and s ∈ V(S′) do
3: Initialize c(g, s), in(g, s), out(g, s), and inAlt(g, s) to ∞.
4: if g ∈ I(G′′) ∩ I(G) then
5: Initialize cΣ(g, s), c∆(g, s), and cΘ(g, s) to ∞.
6: if g ∈ I(G′′) \ I(G) then
7: Initialize cΘL(g, s) and cΘX (g, s) to ∞.

8: for each g ∈ Le(G′′) do
9: Initialize c(g,L(g)) to 0

10: For each s ≥S′ L(g), initialize in(g, s) to Ploss · dS′(s,L(g)) and inAlt(g, s) to 0.
11: For each s ∈ V(S′) incomparable to L(g), assign out(g, s) = 0.
12: for each g ∈ I(G′′) in post-order do
13: for each s ∈ V(S′) in post-order do
14: if g ∈ I(G′′) \ I(G) then
15: Let g′ denote the unique child of g in G′′.
16: Compute cΘL(g, s) and cΘX (g, s) according to Equations (6) and (7), respectively.
17: Compute c(g, s) according to Equation (2).
18: if s ∈ Le(S′) then
19: in(g, s) = inAlt(g, s) = c(g, s).
20: else
21: inAlt(g, s) = min{c(g, s), inAlt(g, s′), inAlt(g, s′′)}.
22: If s is an extra node then in(g, s) = min{c(g, s), in(g, s′) + Ploss, in(g, s′′) +

Ploss}. If s is not an extra node then in(g, s) = min{c(g, s), in(g, s′), in(g, s′′)}.
23: if g ∈ I(G′′) ∩ I(G) then
24: Let {g′, g′′} = ChG′(g).
25: If s 6∈ Le(S′) then let {s′, s′′} = ChS′(s).
26: Compute cΣ(g, s), c∆(g, s), and cΘ(g, s) according to Equations (3), (4), and (5),

respectively.
27: Compute c(g, s) according to Equation (2).
28: if s ∈ Le(S′) then
29: in(g, s) = inAlt(g, s) = c(g, s).
30: else
31: inAlt(g, s) = min{c(g, s), inAlt(g, s′), inAlt(g, s′′)}.
32: If s is an extra node then in(g, s) = min{c(g, s), in(g, s′) + Ploss, in(g, s′′) +

Ploss}. If s is not an extra node then in(g, s) = min{c(g, s), in(g, s′), in(g, s′′)}.
33: for each s ∈ I(S′) in pre-order do
34: Let {s′, s′′} = ChS′(s).
35: out(g, s′) = min{out(g, s), inAlt(g, s′′)}, and out(g, s′′) =

min{out(g, s) inAlt(g, s′)}.
36: Return mins∈V(S′)c(rt(G′′), s).

3.2. An O(mn2)-Time Algorithm for O-DTLx-Sampling

As with any dynamic programming algorithm, Algorithm 1 can be easily extended to
keep track of all optimal choices at each step of the algorithm and to use these optimal
choices to (1) compute all possible optimal reconciliations, and/or (2) perform probabilistic
backtracking to sample from the space of optimal reconciliations uniformly at random.
Since there is often a very large number of optimal reconciliations [11,12], making it
infeasible to enumerate all possible optimal reconciliations in practice, we will show
how to perform probabilistic backtracking to sample from the space of optimal DTLx
reconciliations uniformly at random. Our sampling algorithm builds on the very similar
sampling algorithm previously developed for DTL reconciliation [11] and implemented
in RANGER-DTL 2.0 [17]. Given the similarity with [11], here we only provide a high

Algorithms 2021, 14, 231 14 of 23

level description of the overall approach, focusing primarily on describing the handling of
hidden nodes and TL and TX events.

The key idea that enables uniform random sampling is to keep track of the number of
optimal DTLx reconciliations associated with each subproblem. Accordingly, we define
the following: Given any g ∈ V(G′′) and s ∈ S′, let N(g, s) denote the number of optimal
reconciliations for G′′(g) and S′ such that g maps to s. Thus, N(g, s) is the number of distinct
DTLx reconciliations of G′′(g) and S′, under the constraint that g maps to s, that have a
reconciliation cost of exactly c(g, s). These N(g, s) values can be easily computed alongside
the corresponding c(g, s) values using the same overall dynamic programming framework
as in Algorithm 1.

Analogous to cΣ(g, s), c∆(g, s), and cΘ(g, s), we define, for each non-hidden internal
node g of G′′ (i.e., g ∈ I(G′′) ∩ I(G)), NΣ(g, s), N∆(g, s), and NΘ(g, s). Similarly, analogous
to cΘL(g, s) and cΘX (g, s), we define, for each hidden node g of G′′ (i.e., g ∈ I(G′′) \ I(G)),
NΘL(g, s) and NΘX (g, s).

The dynamic programming table for N(·, ·) can be initialized as follows for each g ∈
Le(G′′):

N(g, s) =

{
1 if g ∈ Le(G′′) and s = L(g),
0 if g ∈ Le(G′′) and s 6= L(g).

(8)

It is easy to see that, for internal nodes of G′′, N(·, ·) can be computed based on the
values of the restricted counts defined above as follows:

N(g, s) =

{
∑x∈{Σ,∆,Θ} where cx(g′ ,s)=c(g,s) Nx(g′, s) + ∑x∈{ΘL ,ΘX} where cx(g,s)=c(g,s) Nx(g, s) if g ∈ I(G′′) \ I(G),

∑x∈{Σ,∆,Θ} where cx(g,s)=c(g,s) Nx(g, s) otherwise,
(9)

where g′ denotes the unique child of g in the case where g is a hidden node (i.e., g ∈
I(G′′) \ I(G)).

Now, for any g ∈ I(G′′) ∩ I(G), the values of NΣ(g, s), N∆(g, s), and NΘ(g, s) can be
computed exactly as described in [11] for DTL reconciliation. It therefore suffices to show
how to compute the values NΘL(g, s) and NΘX (g, s) when g is a hidden node.

Suppose g ∈ I(G′′) \ I(G), i.e., g is a hidden node, and g′ represents the unique child
of g in G′′. For any s ∈ V(S′), let A denote the set of all mappings of g′ that are optimal
for cΘL(g, s), i.e., for any x ∈ A we must have cΘL(g, s) = PTL + c(g′, x). Likewise, let B
denote the set of all mappings of g′ that are optimal for cΘX (g, s), i.e., for any x ∈ B we
must have cΘX (g, s) = PTX + c(g′, x). The values of NΘL(g, s) and NΘX (g, s) can then be
computed as follows:

NΘL(g, s) = ∑
x∈A

N(g′, x), (10)

and
NΘX (g, s) = ∑

x∈B
N(g′, x). (11)

Together with the equations for NΣ(g, s), N∆(g, s), and NΘ(g, s) from [11],
Equations (8)–(11) make it possible to compute all N(g, s) values alongside those of c(g, s)
using the same nested post-order traversal used in Algorithm 1. However, as also described
in [11], to compute the N(g, s) values, we need to keep track of all optimal mappings for
the child/children of g that yield the optimal reconciliation cost at g. Thus, it is not possible
to use the speedups enabled by precomputing the required values of in(·, ·), inAlt(·, ·),
and out(·, ·), leading to an increased overall time complexity of O(mn2) [11]. Furthermore,
once all the N(·, ·) values have been computed, it is straightforward to perform a proba-
bilistic backtracking procedure, completely analogous to the one described in [11] for DTL
reconciliation, to sample from the space of all optimal DTLx reconciliations for G and S
uniformly at random. Thus, we have the following theorem.

Algorithms 2021, 14, 231 15 of 23

Theorem 2. The O-DTLx-Sampling problem can be solved in O(mn2) time, where m = | Le(G)|
and n = | Le(S)|.

3.3. Assigning Event Costs for TL and TX
Based on analyses of simulated and biological datasets, DTL reconciliation often uses

default event costs of 1, 2, and 3 for losses, duplications, and transfers, respectively, [5,16,17].
For TL events, it makes sense to use a cost equal to PΘ + Ploss since a TL event implies one
transfer and at least one loss. For TX events, a cost equal to that of a transfer event may be
appropriate, since each TX event implies one transfer but not necessarily any other events
(besides extinction or non-sampling). However, depending on the specific dataset being
analyzed, e.g., based on the approximate age of the root of the species tree or on the extent
of incomplete taxon sampling, it may make sense to assign a slightly higher cost for TX
events, such as a cost equal to PΘ + Ploss.

Theoretically, observe that if PTX = PΘ then, for every optimal DTLx reconciliation that
invokes a transfer event, there exists a distinct and equally optimal DTLx reconciliation
in which that transfer event is substituted by an equivalent TX event. Thus, assigning
PTX to be strictly greater than PΘ may make it easier to distinguish between transfer and
TX events.

4. Results

To assess the accuracy and impact of our new DTLx reconciliation framework, we
implemented our ODTLx-Sampling algorithm and applied it to both simulated and real
datasets. We describe the results of this experimental evaluation below.

4.1. Results on Simulated Datasets

We used simulated datasets to systematically evaluate the accuracy of DTLx reconcil-
iations and to compare its accuracy and functionality against ecceTERA, the only other
parsimony-based reconciliation model that handles TL and TX events. Our implementa-
tion is built upon the open-source RANGER-DTL software package [17] and we refer to
the new software implementation as RANGER-DTLx.

We used the recently developed phylogenetic tree simulation software ZOMBI [29] to
evolve simulated gene trees with known ground-truth evolutionary histories containing
explicit transfers from extinct lineages. ZOMBI tracks species lineages that eventually
go extinct and allows for such lineages to participate in horizontal gene transfer events
before going extinct. In our analysis, we simulated two datasets, each consisting of 500
gene tree/species tree pairs. Note that each of these 500 pairs consist of a unique (i.e.,
different) species tree and gene tree, where each of the species trees has exactly 50 taxa. The
specific parameters used to generate the datasets are shown in Table 1. Notably, Dataset-
2 has a higher rate of transfers and more TX events in the gene trees due to a higher
extinction rate. For increased realism, the transfer rate was split evenly between additive
and replacing transfers.

Table 1. Parameter settings used to generate simulated datasets using Zombi.

Gene Tree Parameters Species Tree Parameters

Dataset Duplication Rate Transfer Rate Loss Rate Birth Rate Extinction Rate # Taxa (Leaves)

1 0.022 0.04 0.01 0.1 0.025 50
2 0.020 0.06 0.008 0.1 0.032 50

The final gene trees, obtained after pruning out all gene lineages with no surviving gene
descendants, had, on average, 152.5 leaves, 11.6 duplications, 18.1 transfers, 3.0 TX events,
and 121.7 speciations for Dataset-1, and 180.3 leaves, 10.5 duplications, 26.7 transfers,
5.7 TX events, and 142 speciations for Dataset-2. For reference, the unpruned gene trees
showed on average, for Dataset-1, 16.1 losses and 42 extinctions, and for Dataset-2, 24.2

Algorithms 2021, 14, 231 16 of 23

losses and 67.4 extinctions. Thus, Datasets 1 and 2 correspond to low and moderate rates,
respectively, of the relevant evolutionary events.

We used these two simulated datasets to address the following three questions: (i)
Does using DTLx reconciliation, i.e., RANGER-DTLx, improve upon the overall accuracy
of DTL reconciliation in the presence of TX events? (ii) How well do RANGER-DTLx
and ecceTERA detect TX events? Furthermore, (iii) How do RANGER-DTLx and ec-
ceTERA compare in their ability to detect the phylogenetic location of the extinct donor of
a TX event?
Comparing accuracies of DTL and DTLx reconciliation. Since both RANGER-DTLx and ec-
ceTERA can account for additional evolutionary scenarios that cannot be correctly handled
in traditional DTL reconciliation, it is reasonable to expect that both RANGER-DTLx and
ecceTERA should result in greater overall reconciliation accuracy than traditional DTL rec-
onciliation. We therefore applied RANGER-DTLx, ecceTERA, and RANGER-DTL (which
implements the traditional DTL reconciliation framework) to both simulated datasets
and evaluated the overall accuracies of the resulting reconciliations. Note that, for a fair
comparison, we only compared reconciliation accuracy across the nodes present on the
input gene trees, without inclusion of any hidden nodes inferred by RANGER-DTLx.

For an inferred reconciliation α, let Σα, ∆α, Θα,Mα, and τα denote the sets of speciation
nodes, duplication nodes, standard transfer nodes, mappings for internal nodes of G, and
transfer recipients for standard transfers, respectively. The sets ΣT , ∆T , ΘT ,MT , and τT are
defined analogously for the ground truth reconciliation β. Overall accuracy is quantified
through the following three metrics:

Event accuracy =
|Σα ∩ Σβ|+ |∆α ∩ ∆β|+ |Θα ∩Θβ|

| I(G)|

Mapping accuracy =
|{g : Mα(g) =Mβ(g)}|

| I(G)|

Recipient accuracy =
|{g : g ∈ Θα ∩Θβ and τα(g) = τβ(g)}|

|Θα ∩Θβ|

To account for multiple optimal reconciliations, we used the standard approach of
assigning the most well supported mapping and event type for each of the three meth-
ods/software. Specifically, 100 random optimal reconciliations were sampled for each gene
tree/species tree pair, for both RANGER-DTLx and RANGER-DTL, and each gene tree
node was assigned the most frequently observed mapping and event type among the 100
samples [11]. A similar procedure was followed for ecceTERA, but based on the reconcilia-
tion graph computed by ecceTERA [12], rather than on uniform random sampling.

Recall that, unlike ecceTERA, our DTLx reconciliation framework allows for indepen-
dent assignment of TL and TX event costs. We therefore tried two different costs for TX
events in all our experiments: 3 and 4. We fixed the cost of a TL event at 4. The costs
for other events were fixed as follows for all three methods: Loss cost = 1, duplication
cost = 2, and transfer cost = 3, which correspond to the defaults used in RANGER-DTL
and ecceTERA. Based on these costs, ecceTERA automatically assigns TL events a cost of
4 (equivalent to one transfer plus one loss), and TX events a cost of 3 (equivalent to one
transfer event).

The results of our analysis appear in Table 2. As the table shows, RANGER-DTL,
RANGER-DTLx with TX cost 4, and ecceTERA have nearly indistinguishable reconciliation
accuracies across both datasets, while RANGER-DTLx with TX cost 3 shows slightly
worse event and mapping accuracies but slightly better recipient accuracy. These results
suggest that models that account for TL and TX events may not result in improved overall
reconciliation accuracy compared to traditional DTL reconciliation, at least for low to
moderate rates of TX events as in our datasets. Importantly, these results also show that
allowing for TL and TX events does not worsen reconciliation accuracy, even when the
rate of TX events is low (Dataset-1).

Algorithms 2021, 14, 231 17 of 23

Table 2. Overall reconciliation accuracy. Average reconciliation accuracy, in terms of mapping
accuracy and event assignment accuracy, is shown for each method. Event/mapping accuracy for
a given input gene tree is calculated as the total number of correct events/mappings divided by
the total number of internal nodes in that gene tree. The table also shows the accuracy of inferred
recipients for transfer events. This recipient accuracy for each gene tree is calculated as the total
number of correctly identified recipients divided by the total number of correctly identified transfers.
Results are averaged across the 500 gene tree/species tree pairs in each dataset.

Dataset-1

Event Accuracy Mapping Accuracy Recipient Accuracy

RANGER-DTL 0.961 0.937 0.682
RANGER-DTLx, PTX = 4 0.961 0.939 0.697
RANGER-DTLx, PTX = 3 0.917 0.895 0.716

ecceTERA 0.961 0.937 0.704

Dataset-2

Event Accuracy Mapping Accuracy Recipient Accuracy

RANGER-DTL 0.944 0.912 0.623
RANGER-DTLx, PTX = 4 0.944 0.912 0.637
RANGER-DTLx, PTX = 3 0.894 0.861 0.670

ecceTERA 0.945 0.910 0.650

Accuracy of TX event detection. Next, we assessed how well RANGER-DTLx and ecceTERA
can infer ground-truth TX events. We labelled transfers from unsampled lineages as
ground truth TX events if, in the event log generated by ZOMBI, the gene survives in an
extant lineage but the original copy goes extinct. While the original name of the internal
gene tree node representing the extinct gene is absent from the input gene tree, we can
verify if either method correctly detects this transfer by looking for a TX event with the
same recipient as the ground truth transfer.

We first assessed how well TX events were detected, in terms of precision and recall,
in a single random optimal reconciliation computed by each method. Table 3 shows the
results of this analysis, which reveals several interesting insights. First, and perhaps most
strikingly, we find that none of the methods shows high precision in detecting TX events,
with ecceTERA and RANGER-DTLx with TX cost 3 both showing 10% precision in the two
datasets, and RANGER-DTLx with TX cost 4 showing much higher, but still relatively low,
precision of 17.24% in Dataset-1 and 29.41% in Dataset-2. Second, we find that RANGER-
DTLx with TX cost 3 and ecceTERA, despite using effectively the same event costs, differ
dramatically in the number of TX events they infer. For example, for Dataset-1, ecceTERA
infers only 413 TX events across all 500 gene trees with recall and precision of 2.61% and
9.44%, respectively, and RANGER-DTLx with TX cost 3 infers 4515 TX events with recall
and precision of 30.12% and 9.97%. Furthermore, third, these results show that there is a
clear tradeoff between sensitivity and precision of TX event inference and suggest that
RANGER-DTLx with TX cost 4 should be the method of choice for TX event inference if
precision is more important than recall, while RANGER-DTLx with TX cost 3 should be
used if recall is more important than precision. This experiment also highlights the utility
of allowing for a user-specifiable cost for TX events as permitted under our model but not
under ecceTERA.

Algorithms 2021, 14, 231 18 of 23

Table 3. Accuracy of TX event detection. The precision and recall for TX events inferred by each
method are shown. A single optimal reconciliation is used per gene tree, and results are aggregated
across all 500 gene tree/species tree pairs in each dataset.

Dataset-1 Dataset-2

TXs Returned Recall Precision TXs Returned Recall Precision

RANGER-DTLx, PTX = 4 29 0.33% 17.24% 51 0.52% 29.41%
RANGER-DTLx, PTX = 3 4515 30.12% 9.97% 6740 29.94% 12.73%

ecceTERA 413 2.61% 9.44% 668 3.16% 13.62%

We also assessed if inferred TX events that have higher support (i.e., are inferred in at
least some fraction of all optimal reconciliations for that gene tree) are more likely to be
correct (i.e., show higher precision). Figure 5 shows the results of this analysis. These results
suggest that higher support values do tend to result in greater precision. More precisely,
we find that RANGER-DTLx with TX cost 3 and ecceTERA both shown similar trends in
precision, with precision on Dataset-1 increasing from a low of about 0.1 for all inferred TX
events irrespective of support to a high of about 0.18 if only considering TX events with
100% support, and precision on Dataset-2 increasing from about 0.1 for all inferred TX
events irrespective of support to a high of approximately 0.25 if only considering TX events
with 100% support. However, as expected, the increase in precision comes at the expense
of recall (Table 4). For example, on Dataset-2, RANGER-DTLx with TX cost 3 infers a total
of 14,134 distinct TX events with support > 0 among 100 optimal reconciliation samples
but only 940 of these have 100% support, and the corresponding numbers for ecceTERA
are 12,884 and 2088, respectively. Remarkably, as Figure 5 shows, RANGER-DTLx with TX
cost 4 achieves a precision of almost 50% on Dataset-1 and over 40% on Dataset-2 when
using a support threshold of about 55%. However, as Table 4 shows, the number of TX
events inferred at that support level by RANGER-DTLx with TX cost 4 is relatively small.
The small number of these events likely explains the drop in precision for RANGER-DTLx
with TX cost 4 as the support threshold in increased past ∼60.

(a). Dataset-1
Figure 5. Cont.

Algorithms 2021, 14, 231 19 of 23

(b). Dataset-2
Figure 5. Impact of increasing support values on TX event accuracy. The support for an event is
defined as the percentage of optimal solution space that the event appears in.

Table 4. Number of TX events inferred by the different methods, along with their precision, are
shown for different minimum support value cutoffs. Results are aggregated across all 500 gene
tree/species tree pairs in each dataset and presented in the form a/b, where b is the total number of
distinct TX events inferred across 100 randomly sampled optimal reconciliations for RANGER-DTLx
and across the entire optimal solution space for ecceTERA for each gene tree, and a is the number of
these TX events that are correct.

Dataset-1 Dataset-2

Support RANGER-
DTLx,

PTX = 4

RANGER-
DTLx,

PTX = 3

ecceTERA RANGER-
DTLx,

PTX = 4

RANGER-
DTLx,

PTX = 3

ecceTERA

>0 14/77 857/9688 926/9285 34/128 1475/14,134 1554/12,884
≥25% 12/61 818/7869 885/8825 27/84 1416/11,141 1511/12,252
≥50% 4/10 445/4036 725/6977 13/34 874/5807 1257/9492
≥75% 1/5 191/1018 242/1427 8/24 473/1932 582/2651
=100% 1/5 91/503 199/1140 7/23 248/940 468/2088

Phylogenetic placement of TX event donors. Identifying the locations on the species tree of
unsampled lineages that served as donors for TX events can offer important insights regard-
ing major unsampled species lineages and can help to better understand the evolutionary
histories of gene families. By design, RANGER-DTLx identifies a specific edge/lineage in
the species tree where any given TX event originates from. However, ecceTERA handles
TX events by introducing a single unsampled branch existing outside of the species tree,
which represents all unsampled lineages on the species tree and serves as the donor of
all TX events. This makes it difficult to infer the location of unsampled donor lineages
on the species tree using ecceTERA. To assess the accuracy of RANGER-DTLx in identi-
fying/placing the unsampled species donor on the species tree, we used all TX events
(across all 100 samples, regardless of support) inferred by RANGER-DTLx that mapped to
the correct recipient species and computed the distance on the species tree between the
inferred location of the donor and the actual location of the donor (as given by Zombi).
This distance is defined as the number of edges between the inferred donor lineage and
the true lineage on the full species tree (including extinct lineages) as simulated by Zombi.
As Table 5 shows, RANGER-DTLx performs remarkably well at inferring the location of
the unsampled species donor on the species tree, identifying the exact location for almost
half the TX events when the TX event cost is 3. Results are worse for RANGER-DTLx with
TX cost 4, but this is likely due to small sample sizes. These results also show that even
when the donor lineage is not identified exactly, the inferred placement is often close to

Algorithms 2021, 14, 231 20 of 23

the actual placement of the unsampled donor. For completeness, results are also shown
for ecceTERA and, as expected, the performance of ecceTERA is much worse than that of
RANGER-DTLx, both for exact matches and average distance.

Table 5. Accuracy of placing unsampled species donors on the species tree. All TX events inferred by each method,
regardless of support, for which the recipient species was identified correctly were used for this analysis. The inferred
unsampled donor is considered an exact match if the location of the donor lineage on the species tree is the same as the true
location of the donor. Numbers for TX events considered and exact matches are aggregated across all 500 gene tree/species
tree pairs in each dataset. The distance between the inferred and true locations of the donor is defined to be the number
of edges between the inferred donor lineage and the true lineage on the full species tree (including extinct lineages) as
simulated by Zombi.

Dataset-1 Dataset-2

TX Considered Exact Matches Average Distance # TX Considered Exact Matches Average Distance

RANGER-DTLx Cost 4 14 3 (21.4%) 1.71 34 13 (38.2%) 2.17
RANGER-DTLx Cost 3 857 473 (55.2%) 1.52 1475 689 (46.7%) 2.03

ecceTERA 926 23 (2.5%) 4.90 1554 36 (2.8%) 6.21

4.2. Biological Data

We also applied RANGER-DTLx to a real biological dataset of over 4500 gene trees
from 100 broadly sampled, predominantly microbial, species [5]. Specifically, this dataset
consisted of 4547 TreeFix-DTL-corrected gene trees [30] rooted using the OptRoot method
implemented in RANGER-DTL 2.0 [17]. We partitioned this dataset into three subsets based
on the number of taxa present in the gene trees: less than 50 taxa, between 50–100 taxa, and
more than 100 taxa. These subsets represent 76.4% (3474), 16.8% (765), and 6.8% (308) of
the total number of gene trees, respectively.

We measured the impact, in practice, of allowing for TL and TX events by (i) counting
the number of gene trees for which the cost of an optimal reconciliation decreases when
TL and TX are allowed, and (ii) counting the number of gene trees for which the cost of an
optimal reconciliation does not decrease but for which there exist optimal reconciliations
that invoke TL or TX events. We found that only 28 gene trees showed a reduction in
reconciliation cost when reconciled using RANGER-DTLx with a TX cost of 4 as compared
to using RANGER-DTL. This number increases to 76 when a smaller TX cost of 3 is used.
However, as Table 6 shows, 50.7% of the gene trees, and nearly all of the gene trees with at
least 50 leaves, had more optimal reconciliations even when using RANGER-DTLx with the
higher TX cost of 4. This is a result of some (but not all) of the co-optimal reconciliations
invoking TL and/or TX events. These results suggest that while TL and TX events clearly
lead to more parsimonious reconciliations in some cases for many gene trees it may be
difficult to confidently infer if TL and TX events have in fact occurred.

Table 6. Number of biological dataset gene trees that result in additional co-optimal reconciliations
invoking TL and/or TX events. These results are based on event costs of 1, 2, 3, 4, and 4, for losses,
duplications, transfers, TL, and TX, respectively.

Dataset Size Total # Gene Trees Gene Trees with Additional Co-Optimal Solutions

<50 taxa 3474 1350 (38.9%)
50–100 taxa 765 667 (87.2%)
>100 taxa 308 292 (94.8%)

Runtime analysis. We also compared the runtimes of ecceTERA (undated version), RANGER-
DTL, and RANGER-DTLx. Average runtimes for these methods on the three subsets of the
biological dataset are shown in Table 7. As the table shoes, RANGER-DTL and ecceTERA
are both extremely efficient, averaging a runtime of smaller than 1 s on all three subsets. As
expected, given the increased complexity of the model, RANGER-DTLx takes longer than

Algorithms 2021, 14, 231 21 of 23

RANGER-DTL and ecceTERA on all three subsets but still remains highly efficient and
scalable, averaging just a few seconds on even the subset with the largest gene trees. All
timed experiments were run using a single core on a 2.8 GHz × 4 Intel Core i7 processor
with 16 GB of RAM.

Table 7. Runtime comparison on the biological dataset.

Dataset Size RANGER-DTL RANGER-DTLx ecceTERA

<50 leaves <1 s 2.5 s <1 s
50–100 leaves <1 s 12.4 s <1 s
>100 leaves <1 s 24.5 s <1 s

5. Discussion and Conclusions

In this work, we introduced an extension of the classical DTL reconciliation model,
called the DTLx reconciliation model, that accounts for extinct or unsampled species
lineages and allows for TL and TX events. The resulting method, RANGER-DTLx, handles
these additional evolutionary events in a more functional manner compared to ecceERA,
the only other parsimony-based model that also handles these events, while matching
the time complexity of the fastest known algorithms for DTL reconciliation. Perhaps
the most important contribution of this work is our systematic evaluation of the impact
of accounting for TL and TX events and unsampled lineages on the accuracy of DTL
reconciliation and of our ability to correctly detect TX events. This evaluation, using
both simulated and biological data, reveals many new insights that are important for
understanding and interpreting microbial gene family evolution and that can inform
the development of more sophisticated reconciliation models: First, we find that DTLx
reconciliation (i.e., both RANGER-DTLx and ecceTERA) does not noticeably result in
improved overall reconciliation accuracy compared to the simpler DTL reconciliation
model. Second, we find that there is a very clear tradeoff between the precision and recall
of TX event detection, with precision remaining below 50% for even the most restrictive
selection of TX events and generally staying below 20% for non-negligible values (say,
>0.3) of recall. Furthermore, third, our results on the biological dataset indicate that
while allowing for TL and TX events leads to more parsimonious reconciliations in some
cases, for the majority of gene trees TL and TX events lead to co-optimal reconciliations
that can make it difficult to confidently infer if TL and TX events have, in fact, occurred.
Nonetheless, we do find that DTLx reconciliation is indeed capable of identifying at least
some TX events with reasonable confidence and that RANGER-DTLx is actually able
to find the phylogenetic placement of the unsampled donor of a TX event with fairly
high accuracy.

Our experimental results suggest that it may be possible to use RANGER-DTLx to
identify and locate major unsampled lineages on the tree of life and it would be interesting
to further explore this application of the new DTLx reconciliation model. Several aspects
of the proposed model could also be improved or evaluated further. In particular, though
the proposed DTLx reconciliation model uses an undated species tree, the model can be
easily extended to work with fully dated species trees. It is possible that the use of dated
species trees may help to improve the precision and recall of TX event inference and this
possibility should be explored further. In particular, the use of a dated species tree can
help identify transfers that appear to be going forward in time (i.e., where the recipient
of a transfer event appears to be more recent than its donor), suggesting the presence of
TX events. Likewise, though RANGER-DTLx allows for the use of distance-dependant
transfer costs, we did not evaluate the impact of using this feature in our current study.
Using distance-dependent transfer costs (including TL and TX costs) may help to improve
TX inference accuracy. Finally, our experimental study suggests that precise detection of
TX events may be difficult to achieve using phylogenetic reconciliation alone, and that

Algorithms 2021, 14, 231 22 of 23

additional techniques may be needed to more accurately detect and account for TX events
in microbial gene family evolution.

Author Contributions: Conceptualization, M.S.B.; Methodology, M.S.B. and S.W.; Software, S.W.;
Validation, M.S.B. and S.W.; Formal Analysis, M.S.B. and S.W.; Investigation, S.W.; Resources, M.S.B.;
Data Curation, M.S.B. and S.W.; Writing—Original Draft Preparation, S.W.; Writing—Review &
Editing, M.S.B.; Visualization, S.W.; Supervision, M.S.B.; Project Administration, M.S.B.; Funding
Acquisition, M.S.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by US National Science Foundation grants MCB 1616514
and IES 1615573 to M.S.B.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Our software implementation is freely available open-source as the
program RANGER-DTLx from https://compbio.engr.uconn.edu/software/RANGER-DTLx/ (ac-
cessed on 3 August 2021). The simulated and real datasets used in this study are freely available
from the same URL.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, and in the decision to publish the results.

References
1. Tofigh, A. Using Trees to Capture Reticulate Evolution: Lateral Gene Transfers and Cancer Progression. Ph.D. Thesis, KTH Royal

Institute of Technology, Stockholm, Sweden, 2009.
2. Gorbunov, K.Y.; Liubetskii, V.A. Reconstructing genes evolution along a species tree. Molekuliarnaia Biologiia 2009, 43, 946–958.

[CrossRef] [PubMed]
3. Doyon, J.P.; Scornavacca, C.; Gorbunov, K.Y.; Szöllosi, G.J.; Ranwez, V.; Berry, V. An Efficient Algorithm for Gene/Species Trees

Parsimonious Reconciliation with Losses, Duplications and Transfers. In Research in Computational Molecular Biology—Comparative
Genomics; Tannier, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2010, Volume 6398, pp. 93–108.

4. Tofigh, A.; Hallett, M.T.; Lagergren, J. Simultaneous Identification of Duplications and Lateral Gene Transfers. IEEE/ACM Trans.
Comput. Biol. Bioinform. 2011, 8, 517–535. [CrossRef]

5. David, L.A.; Alm, E.J. Rapid evolutionary innovation during an Archaean genetic expansion. Nature 2011, 469, 93–96. [CrossRef]
6. Chen, Z.Z.; Deng, F.; Wang, L. Simultaneous Identification of Duplications, Losses, and Lateral Gene Transfers. IEEE/ACM Trans.

Comput. Biol. Bioinform. 2012, 9, 1515–1528. [CrossRef]
7. Bansal, M.S.; Alm, E.J.; Kellis, M. Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer

and loss. Bioinformatics 2012, 28, 283–291. [CrossRef]
8. Stolzer, M.; Lai, H.; Xu, M.; Sathaye, D.; Vernot, B.; Durand, D. Inferring duplications, losses, transfers and incomplete lineage

sorting with nonbinary species trees. Bioinformatics 2012, 28, 409–415. [CrossRef]
9. Szollosi, G.J.; Boussau, B.; Abby, S.S.; Tannier, E.; Daubin, V. Phylogenetic modeling of lateral gene transfer reconstructs the

pattern and relative timing of speciations. Proc. Natl. Acad. Sci. USA 2012, 109, 17513–17518. [CrossRef]
10. Szollosi, G.J.; Tannier, E.; Lartillot, N.; Daubin, V. Lateral Gene Transfer from the Dead. Syst. Biol. 2013, 62, 386–397. [CrossRef]
11. Bansal, M.S.; Alm, E.J.; Kellis, M. Reconciliation Revisited: Handling Multiple Optima when Reconciling with Duplication,

Transfer, and Loss. J. Comput. Biol. 2013, 20, 738–754. [CrossRef] [PubMed]
12. Scornavacca, C.; Paprotny, W.; Berry, V.; Ranwez, V. Representing a Set of Reconciliations in a Compact Way. J. Bioinform. Comput.

Biol. 2013, 11, 1250025. [CrossRef] [PubMed]
13. Libeskind-Hadas, R.; Wu, Y.C.; Bansal, M.S.; Kellis, M. Pareto-optimal phylogenetic tree reconciliation. Bioinformatics 2014,

30, i87–i95. [CrossRef] [PubMed]
14. Sjostrand, J.; Tofigh, A.; Daubin, V.; Arvestad, L.; Sennblad, B.; Lagergren, J. A Bayesian Method for Analyzing Lateral Gene

Transfer. Syst. Biol. 2014, 63, 409–420. [CrossRef]
15. Scornavacca, C.; Jacox, E.; Szöllosi, G.J. Joint amalgamation of most parsimonious reconciled gene trees. Bioinformatics 2015,

31, 841–848. [CrossRef]
16. Jacox, E.; Chauve, C.; Szollosi, G.J.; Ponty, Y.; Scornavacca, C. ecceTERA: Comprehensive gene tree-species tree reconciliation

using parsimony. Bioinformatics 2016, 32, 2056. [CrossRef]
17. Bansal, M.S.; Kellis, M.; Kordi, M.; Kundu, S. RANGER-DTL 2.0: Rigorous reconstruction of gene-family evolution by duplication,

transfer and loss. Bioinformatics 2018, 34, 3214–3216. [CrossRef]
18. Kordi, M.; Bansal, M.S. Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees. IEEE/ACM

Trans. Comput. Biol. Bioinform. 2019, 16, 1077–1090. [CrossRef]

https://compbio.engr.uconn.edu/software/RANGER-DTLx/
http://doi.org/10.1134/S0026893309050197
http://www.ncbi.nlm.nih.gov/pubmed/19899641
http://dx.doi.org/10.1109/TCBB.2010.14
http://dx.doi.org/10.1038/nature09649
http://dx.doi.org/10.1109/TCBB.2012.79
http://dx.doi.org/10.1093/bioinformatics/bts225
http://dx.doi.org/10.1093/bioinformatics/bts386
http://dx.doi.org/10.1073/pnas.1202997109
http://dx.doi.org/10.1093/sysbio/syt003
http://dx.doi.org/10.1089/cmb.2013.0073
http://www.ncbi.nlm.nih.gov/pubmed/24033262
http://dx.doi.org/10.1142/S0219720012500254
http://www.ncbi.nlm.nih.gov/pubmed/23600816
http://dx.doi.org/10.1093/bioinformatics/btu289
http://www.ncbi.nlm.nih.gov/pubmed/24932009
http://dx.doi.org/10.1093/sysbio/syu007
http://dx.doi.org/10.1093/bioinformatics/btu728
http://dx.doi.org/10.1093/bioinformatics/btw105
http://dx.doi.org/10.1093/bioinformatics/bty314
http://dx.doi.org/10.1109/TCBB.2017.2710342

Algorithms 2021, 14, 231 23 of 23

19. Merkle, D.; Middendorf, M.; Wieseke, N. A parameter-adaptive dynamic programming approach for inferring cophylogenies.
BMC Bioinform. 2010, 11, S60. [CrossRef] [PubMed]

20. Conow, C.; Fielder, D.; Ovadia, Y.; Libeskind-Hadas, R. Jane: A new tool for the cophylogeny reconstruction problem. Algorithms
Mol. Biol. 2010, 5, 16. [CrossRef] [PubMed]

21. Donati, B.; Baudet, C.; Sinaimeri, B.; Crescenzi, P.; Sagot, M.F. EUCALYPT: Efficient tree reconciliation enumerator. Algorithms
Mol. Biol. 2015, 10, 3. [CrossRef] [PubMed]

22. Santichaivekin, S.; Yang, Q.; Liu, J.; Mawhorter, R.; Jiang, J.; Wesley, T.; Wu, Y.C.; Libeskind-Hadas, R. eMPRess: A systematic
cophylogeny reconciliation tool. Bioinformatics 2020, btaa978. [CrossRef] [PubMed]

23. Williams, D.; Gogarten, J.P.; Papke, R.T. Quantifying Homologous Replacement of Loci between Haloarchaeal Species. Genome
Biol. Evol. 2012, 4, 1223–1244. [CrossRef]

24. Ovadia, Y.; Fielder, D.; Conow, C.; Libeskind-Hadas, R. The Cophylogeny Reconstruction Problem Is NP-Complete. J. Comput.
Biol. 2011, 18, 59–65. [CrossRef]

25. Libeskind-Hadas, R.; Charleston, M. On the Computational Complexity of the Reticulate Cophylogeny Reconstruction Problem.
J. Comput. Biol. 2009, 16, 105–117. [CrossRef]

26. Hasić, D.; Tannier, E. Gene tree reconciliation including transfers with replacement is NP-hard and FPT. J. Comb. Optim. 2019, 38,
502–544. [CrossRef]

27. Kordi, M.; Kundu, S.; Bansal, M.S. On Inferring Additive and Replacing Horizontal Gene Transfers Through Phylogenetic
Reconciliation. In Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health
Informatics, Niagara Falls, NY, USA, 7–10 September 2019; pp. 514–523. [CrossRef]

28. Zhaxybayeva, O.; Gogarten, J.P. Horizontal gene transfer, gene histories, and the root of the tree of life. In Planetary Systems and
the Origins of Life; Pudritz, R., Higgs, P., Stone, J., Eds.; Cambridge Astrobiology; Cambridge University Press: Cambridge, UK,
2007; pp. 178–192. [CrossRef]

29. Davín, A.A.; Tricou, T.; Tannier, E.; de Vienne, D.N.; Szollosi, G.J. Zombi: A phylogenetic simulator of trees, genomes and
sequences that accounts for dead linages. Bioinformatics 2019, 36, 1286–1288. doi:10.1093/bioinformatics/btz710. [CrossRef]
[PubMed]

30. Bansal, M.S.; Wu, Y.C.; Alm, E.J.; Kellis, M. Improved gene tree error correction in the presence of horizontal gene transfer.
Bioinformatics 2015, 31, 1211–1218. [CrossRef] [PubMed]

http://dx.doi.org/10.1186/1471-2105-11-S1-S60
http://www.ncbi.nlm.nih.gov/pubmed/20122236
http://dx.doi.org/10.1186/1748-7188-5-16
http://www.ncbi.nlm.nih.gov/pubmed/20181081
http://dx.doi.org/10.1186/s13015-014-0031-3
http://www.ncbi.nlm.nih.gov/pubmed/25648467
http://dx.doi.org/10.1093/bioinformatics/btaa978
http://www.ncbi.nlm.nih.gov/pubmed/33216126
http://dx.doi.org/10.1093/gbe/evs098
http://dx.doi.org/10.1089/cmb.2009.0240
http://dx.doi.org/10.1089/cmb.2008.0084
http://dx.doi.org/10.1007/s10878-019-00396-z
http://dx.doi.org/10.1145/3307339.3342168
http://dx.doi.org/10.1017/CBO9780511536120.010
http://dx.doi.org/10.1093/bioinformatics/btz710
http://www.ncbi.nlm.nih.gov/pubmed/31566657
http://dx.doi.org/10.1093/bioinformatics/btu806
http://www.ncbi.nlm.nih.gov/pubmed/25481006

	Introduction
	Definitions and Preliminaries
	DTL Reconciliation
	Transfer-Loss Events
	Transfers from Unsampled Lineages
	DTLx Reconciliation

	Materials and Methods
	An O(mn)-Time Algorithm for O-DTLx
	An O(mn2)-Time Algorithm for O-DTLx-Sampling
	Assigning Event Costs for TL and TX

	Results
	Results on Simulated Datasets
	Biological Data

	Discussion and Conclusions
	References

