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Abstract: The need for accurate tourism demand forecasting is widely recognized. The unreliability
of traditional methods makes tourism demand forecasting still challenging. Using deep learning
approaches, this study aims to adapt Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-
LSTM), and Gated Recurrent Unit networks (GRU), which are straightforward and efficient, to
improve Taiwan’s tourism demand forecasting. The networks are able to seize the dependence of
visitor arrival time series data. The Adam optimization algorithm with adaptive learning rate is used
to optimize the basic setup of the models. The results show that the proposed models outperform
previous studies undertaken during the Severe Acute Respiratory Syndrome (SARS) events of 2002–
2003. This article also examines the effects of the current COVID-19 outbreak to tourist arrivals to
Taiwan. The results show that the use of the LSTM network and its variants can perform satisfactorily
for tourism demand forecasting.
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1. Introduction

Perishability is one of the most important characteristics of the tourism industry,
making the need for accurate tourism demand (TD) forecasting crucial [1]. Governments
and organizations always need to accurately estimate the expected TD in order to make
valid policy planning, tactical and operational decisions [2,3]. Accurate TD forecasting
can effectively boost economic development and employment [4]; hence, the need for
accurate TD forecasting is widely recognized [5]. Quantitative TD forecasting techniques
can be divided into time series models, econometric approach and artificial intelligence
(AI) techniques [6]. However, no single technique outperforms others on all scenarios in
terms of accuracy.

Time series models have been very popular for TD forecasting, and their advantage
lies in the validity and efficiency of autoregressive integrated moving average (ARIMA)
and its variants [7]. Most ARIMA variants are subject to some limitations, such as the
assumption of a linear relation between future and past time step values, and the number
of observations [8]. Therefore, when solving complex nonlinear problems, the estimates
obtained may be inaccurate.

Econometric methods can determine the cause-and-effect relation between TD de-
pendent variables and independent variables [9]. However, most econometric models
have several limitations. For instance, the independent variables are either exogenous or
endogenous, and are decided in advance before the modelling process [10].

AI techniques including machine learning and deep learning are becoming increas-
ingly popular in TD forecasting [11,12]. Among the AI techniques, artificial neural networks
(ANN) provide a potential alternative for solving complex nonlinear problems. Numerous
studies showed that ANNs generally outperformed other methods [3,5,13–16]. In general,
AI technology can approximate arbitrarily complex nonlinear dynamic systems without
any initial or extra information about data such as distribution. This brings considerable
benefits and simplifications to modelling, but on the other hand, AI techniques hardly
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provide any information about potential determinism or even process understanding.
However, since we are interested in TD patterns rather than physical processes, this model
property is not the main disadvantage.

With the advancement of ANNs, researchers find that deep learning methods, espe-
cially recurrent neural network (RNN) architectures, are more suitable than feedforward
neural networks in dealing with the complexity of time series [17]. However, RNN training
has the problem of vanishing gradients, so various variants of RNN models have been
proposed, such as long short-term memory (LSTM), bidirectional long short-term memory
(Bi-LSTM) and gated recurrent unit (GRU). The aforementioned networks are different
from other methods in that they back-propagate through immediate historical data and
current data, and are more suitable for detecting development trends. The architecture
of these networks overcame the weaknesses of traditional RNNs in capturing long-term
dependencies, as shown by Bengiot et al. [18]. With this feature, these networks have been
widely used to solve time series forecasting problems [11,19–25].

According to Annual Survey Report on Visitors Expenditure and Trends in Taiwan, the
total revenue of international tourism increased from US$5936 million in 2008 to US$14,411
million in 2019. In recent years, international tourism has become a key service industry in
Taiwan. Since 2008, Taiwan’s international tourism revenue has exceeded domestic tourism
revenue. If this momentum can be maintained, it will contribute to the development of the
tourism industry and economic growth in the future.

The outstanding application results of LSTM networks and its variants in different
fields show that they can not only seize the changing data trend, but also describe the
dependence of time series data. Therefore, this research tries to use an LSTM network and
its variants to predict Taiwan’s TD.

The number of passengers is still the most popular TD measure over last decades.
Since the time series model only requires historical observation of a variable, the cost of
data collection and model estimation is low. Hence, this study adapts an LSTM network
and its variants to forecast Taiwan’s TD. In order to validate the model, a data set including
the severe acute respiratory syndrome (SARS) outbreak threatening tourism demand from
November 2002 to June 2003 was used to compare the prediction results of the models
reported in the other papers. In view of the strong autoregressive pattern of the number
of tourists [26], data from the SARS outbreak was used to train the network to predict the
impact of the current COVID-19 epidemic on the number of tourists in Taiwan.

The remainder of this paper is organized as follows. Section 2 describes the LSTM,
Bi-LSTM, and GRU networks. Section 3 presents data description. Section 4 describes the
results and discussion for TD forecasting before our conclusions are provided in Section 5.

2. Methods
2.1. LSTM Network

In RNN, the output can be given back to the network as input, thereby creating a loop
structure. RNNs are trained through backpropagation. In the process of backpropagation,
RNN will encounter the problem of vanishing gradient. We use the gradient to update the
weight of the neural network. The problem of vanishing gradient is when the gradient
shrinks as it propagates backwards in time. Therefore, the layers that obtain small gradients
will not learn, butwill instead cause the network to have short-term memory.

The LSTM network was introduced by Hochreiter and Schmidhuber [27] to alleviate
the problem of vanishing gradients. LSTMs can use a mechanism called gates to learn
long-term dependencies. These gates can learn which information in the sequence is
important to keep or discard. LSTMs have three gates: input, forget and output. Figure 1a
shows the architecture of LSTM cell [22,28,29]. The horizontal line between Ct−1 and Ct
is called the cell state. This is the core of the LSTM model, where pointwise addition
and multiplication are performed to add or delete information from the memory. These
operations are performed using the input and forget gate of the LSTM block, which also
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contains the output “tanh” activation function. The computations inside the LSTM neurons
are shown as follows [27]:

Forget gate:
ft = σ

(
W f · [ht−1, xt] + b f

)
(1)

Input gate:
it = σ(Wi · [ht−1, xt] + bi) (2)

Output gate:
ot = σ(Wo · [ht−1, xt] + bo) (3)

Process input:
C̃t = tanh(WC · [ht−1, xt] + bC) (4)

Cell update:
Ct = ft × Ct−1 + it × C̃t (5)

Output:
ht = ot ∗ tanh(Ct) (6)

where σ refers to sigmoid function, ht−1 represents the output of pervious cell state, xt
represents the input of current cell state, W f , Wi, Wo and b f , bi, bo are the weight matrices
and bias of the forget, input and output gates, respectively. WC and bC are the weights and
bias of the cell state, and “·” means point-wise multiplication. ot is used to evaluate which
part of the cell state to be exported, and ht calculates the final outputs.

2.2. Bi-LSTM Network

Figure 1b shows the general structure of Bi-LSTM network. One input sequence is
processed from right to left, and the other is processed from left to right. This structure
allows the model to learn the input sequence in both directions. The interpretations of
the forward and backward LSTM network output are combined to generate predictions
at the next time step. By using time series data and its reverse copy to make predictions,
it can provide supplementary context for the model to learn problems faster and more
effectively [30].

Hai et al. [21] surveyed different variants of LSTM (Vanilla, Stacked, Bi-directional),
which were applied to the stock prices of 20 companies on the VN Index Stock Exchange
during the five-year period from 2015 to 2020. The results show that the most accurate
model is Bi-LSTM.
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Figure 1. Structure of network according to Ko et al. [22], Graves [28] and Olah [29]. Figure 1. Structure of network according to Ko et al. [22], Graves [28] and Olah [29].
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2.3. GRU Network

The GRU network proposed by Cho et al. [31] is a modified LSTM model with two
gates, so that each cyclic unit can adaptively seize the dependencies of different time scales.
Different from the LSTM network, the GRU structure is not so uncomplicated, but its
usefulness has not been reduced, and sometimes even a little better than LSTM [32].

GRU eradicates the cell state and applies the hidden state to transmit information.
Another distinction between GRU and LSTM is that the forget gate and input gate in LSTM
are combined into an update gate. Figure 1c shows the architecture of GRU cell. The
mathematical operations inside the GRU neurons are shown as follows [31]:

Reset gate:
rt = σ(Wr · [ht−1, xt] + br) (7)

Update gate:
zt = σ(Wz · [ht−1, xt] + bz) (8)

Process input:
h̃t = tanh

(
Wh̃ · [rt × ht−1, xt] + bh̃

)
(9)

Output:
ht = (1− zt)× ht−1 + zt × h̃t (10)

where br is the bias vector of the reset gate. Its function is the same as that in the LSTM,
that is, the smaller rt is, the less information passes. bz and bh̃ are the bias of the update
gate and cell state, respectively. Wr, Wz and Wh̃ are the weight matrices of the reset gate,
update gate, and cell state, respectively.

Mean squared error was used as the loss function and “Adam” optimizer [33] was
used to find the optimum weights for the networks. All the models were implemented
using Keras in Python [34], and a Tensorflow backend [35]. In this study, during the
training stage, all possible configurations of manually defined parameter subsets were
tried to choose parameters for the network.

The data was normalized to be between 0 and 1. After using LSTM, Bi-LSTM and GRU
models to make predictions, the predicted data was inverted and restored to the original
state. Equation (11) describes the function used in this study to normalize the dataset:

x′t =
xt − xmin

xmax − xmin
(11)

where xt is the input time series, x′t is the normalized time series, and xmin and xmax are
the minimum and maximum values of the time series respectively.

In order to evaluate the forecasting performances of the model, the root mean squared
error (RMSE) was used:

RMSE =

√√√√ 1
M

M

∑
m=1

(ym − y∗m)
2 (12)

where ym and y∗m are the observed and predicted values, respectively; M is the number of
data samples.

3. Data

The forecast target is the number of tourists visiting Taiwan each month. The data
obtained from the official website (https://stat.taiwan.net.tw/inboundSearch (accessed on
17 July 2021)) of Taiwan Tourism Bureau, Ministry of Transportation and Communications
extend from January 1984 to May 2021. This study uses two series datasets to verify the
feasibility and effectiveness of the proposed forecasting models. Series 1 is split into a
training dataset, covering the period from January 1984 to August 1998, and testing dataset,
for the period from September 1998 to September 2005, as shown in Figure 2. The training
and testing ratio is a ratio of 70:30. Series 2 is divided into training dataset, covering the

https://stat.taiwan.net.tw/inboundSearch
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period from January 1984 to March 2010, and testing dataset, for the period from April
2010 to May 2021 (Please see in Table S1), as shown in Figure 3.
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The period of testing dataset of data series 1 covered the SARS outbreak, which had
a great impact on Taiwan’s TD [36]. The period of testing dataset of data series 2 covers
the outbreak of COVID-19. The significance of this research lies in the model’s ability to
predict time series of catastrophic events, such as the SARS and COVID-19 outbreaks.

4. Results and Discussion
4.1. Series 1

The LSTM, Bi-LSTM, and GRU networks yielded RMSEs of 29,537, 30,264, and 30,531
for the testing dataset, respectively. The results are compared with those of the previous
fuzzy time series studies [37–39], as shown in Table 1. RMSE of Huarng et al. [39] is smaller
than those of Chen [37] and Huarng et al. [38]. The RMSEs for the period from May 2000
to September 2005 obtained by Huarng et al. [39], LSTM, Bi-LSTM, and GRU are 30,789,
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31,182, 34,872, and 34,770 respectively. The actual and various predicted tourist numbers
of Taiwan from May 2000 to September 2005 are depicted in Figure 4. Considering the
SARS period only (November 2002 to June 2003), the RMSEs for Huarng et al. [39], LSTM,
Bi-LSTM, and GRU are 61,863, 59,276, 59,480 and 59,369 respectively. These RMSEs are
almost twice the corresponding RMSEs of the entire period, indicating that TD forecasting
during this period is difficult. However, the RMSEs of this study achieved 4% better error
rates than that of the aforementioned research, indicating that the prediction model can be
used to predict time series with catastrophic events. The comparison results show that the
LSTM model is slightly better than that of the Bi-LSTM, and GRU in terms of RMSE. The
RMSEs for the entire period, including the SARS period, are compared in Table 1.

The reported fuzzy time series models have achieved successful prediction results
under the modelling frameworks. However, the models have a potential vulnerability
(without long-term dependency). Due to the lack of “memory” functions in the structure,
the model is more sensitive to short-term relationships than long-term dependencies, and
cannot capture some important recurring features. Furthermore, deep learning approaches
are non-parametric and are more generalizable without fuzzification and de-fuzzification.

Table 1. Comparison of forecast.

Month Actual Huarng et al. [39] LSTM Bi-LSTM GRU

May-00 216,692 219,138 209,198 207,674 206,979
Jun-00 225,069 217,519 208,465 206,980 206,283
Jul-00 217,302 224,546 215,417 213,552 212,875

Aug-00 220,227 219,122 208,971 207,459 206,763
Sep-00 221,504 220,453 211,399 209,754 209,065
Oct-00 249,352 221,995 212,459 210,756 210,070
Nov-00 232,810 247,299 235,545 232,562 231,973
Dec-00 228,821 235,712 221,837 219,618 218,966
Jan-01 199,800 230,085 218,529 216,493 215,828
Feb-01 234,386 222,144 204,655 203,378 202,671
Mar-01 251,111 232,287 233,190 230,340 229,739
Apr-01 235,251 249,710 249,466 245,695 245,187
May-01 227,021 238,079 234,424 231,505 230,910
Jun-01 239,878 228,914 228,374 225,793 225,169
Jul-01 218,673 238,869 239,059 235,879 235,309

Aug-01 224,208 240,966 221,670 219,460 218,807
Sep-01 193,254 224,076 228,381 225,799 225,175
Oct-01 192,452 215,560 208,305 206,830 206,132
Nov-01 190,500 193,244 205,900 204,556 203,851
Dec-01 210,603 191,470 209,408 207,872 207,177
Jan-02 217,600 208,926 230,045 227,370 226,754
Feb-02 233,896 217,268 209,218 207,693 206,997
Mar-02 281,522 232,541 222,738 220,469 219,820
Apr-02 245,759 279,376 262,144 257,641 257,220
May-02 243,941 267,961 232,569 229,753 229,149
Jun-02 241,378 244,875 231,063 228,331 227,720
Jul-02 234,596 242,421 228,939 226,326 225,705

Aug-02 246,079 236,270 223,318 221,017 220,371
Sep-02 233,613 245,205 232,834 230,003 229,401
Oct-02 258,360 236,077 222,503 220,247 219,598
Nov-02 255,645 256,345 243,001 239,598 239,051
Dec-02 285,303 256,724 240,755 237,478 236,918
Jan-03 238,031 283,235 265,265 260,579 260,181
Feb-03 259,966 240,587 226,166 223,707 223,073
Mar-03 258,128 258,138 244,330 240,851 240,312
Apr-03 110,640 259,062 242,809 239,417 238,868
May-03 40,256 111,762 120,256 123,504 122,983
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Table 1. Cont.

Month Actual Huarng et al. [39] LSTM Bi-LSTM GRU

Jun-03 57,131 41,693 61,741 68,211 68,356
Jul-03 154,174 55,717 75,754 81,435 81,375

Aug-03 200,614 155,234 156,490 157,801 157,099
Sep-03 218,594 198,470 195,112 194,353 193,627
Oct-03 223,552 217,083 210,043 208,473 207,780
Nov-03 241,349 223,489 214,158 212,362 211,682
Dec-03 245,682 239,859 228,915 226,304 225,682
Jan-04 212,854 245,725 232,505 229,693 229,089
Feb-04 221,020 235,124 205,278 203,968 203,262
Mar-04 239,575 220,528 212,057 210,376 209,689
Apr-04 229,061 238,021 227,445 224,915 224,287
May-04 232,293 231,267 218,728 216,681 216,017
Jun-04 258,861 232,482 221,409 219,213 218,559
Jul-04 243,396 256,818 243,416 239,989 239,444

Aug-04 253,544 246,198 230,611 227,905 227,292
Sep-04 245,915 252,812 239,016 235,838 235,268
Oct-04 266,590 247,735 232,698 229,875 229,272
Nov-04 270,553 264,855 249,808 246,017 245,512
Dec-04 276,680 270,632 253,084 249,105 248,621
Jan-05 244,252 276,447 258,146 253,875 253,425
Feb-05 257,340 266,528 231,321 228,575 227,965
Mar-05 298,282 256,305 242,157 238,802 238,249
Apr-05 269,513 296,152 275,967 270,648 270,336
May-05 284,049 291,862 252,225 248,295 247,805
Jun-05 293,044 282,861 264,230 259,605 259,199
Jul-05 268,269 292,460 271,650 266,588 266,240

Aug-05 281,693 290,673 251,196 247,326 246,829
Sep-05 270,700 280,606 262,286 257,774 257,354

RMSE (May-00~Sep-05) 30,789 31,182 34,872 34,770
RMSE (Nov-02~Jun-03) 61,863 59,276 59,480 59,369
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4.2. Series 2

The RMSEs for the testing dataset of the LSTM, Bi-LSTM and GRU networks are
100,410, 102,754 and 105,768, respectively, showing that they have similar performance.
Even so, the LSTM model has slightly higher accuracy compared to Bi-LSTM and GRU.
The model training vs. validation loss and actual data vs. prediction are depicted in
Figures 5–10. The aforementioned networks successfully identify the future trends and can
emulate instances of extreme arrival dips.
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SARS and COVID-19 are two catastrophic events that profoundly affect the world’s
TD [40]. Polyzos et al. [41] used the data from the SARS epidemic outbreak to train an
LSTM network, similar to the approach of Law et al. [11]. In the first training phase, the
error is returned to the network to calibrate the model. In addition, errors will continue to
be used in the gates of the network. Moreover, the LSTM network does not react to the lags
between events in the time series. Therefore, when we try to derive unknown prediction
models, the LSTM algorithm works better than other ANNs (such as hidden Markov,
support vector regression, etc.) or other prediction techniques (such as ARIMA) [11].
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5. Conclusions

The purpose of this study is to adapt an LSTM network and its variants to improve
Taiwan’s TD forecasting. The results show that the proposed models are more simple
and effective than others to forecast nonlinear data with shocks. These techniques reveal
adequate to other catastrophic situations that can affect the tourism industry.

To overcome statistical complexities through analysing time series, this study empiri-
cally analyses the accuracy of LSTM, Bi-LSTM and GRU models applied in Taiwan’s TD
forecasting with shocks—namely, the SARS epidemic and the COVID-19 pandemic. The
forecasting models of deep learning perform better than the other three fuzzy time series
models when considering the period of catastrophic events. The results show that the
use of the LSTM network and its variants can be applied to the arrival time series, given
its strong autoregressive nature, using a calibration network with training data from a
similar a past event—namely, the SARS epidemic. From the global error perspective, the
performance of the LSTM model is slightly better than those of the Bi-LSTM and GRU in
terms of the RMSE value.

In other destinations with similar techniques, Polyzos et al. [41] employed an LSTM
network to forecast the effect of the current pandemic COVID-19 outbreak on the arrivals
of Chinese tourists to the USA and Australia. Kulshrestha et al. [42] ascertained the validity
of the Bayesian Bi-LSTM model using the TD data of Singapore. Therefore, the robustness
of TD forecasting using an LSTM network and its variants is not country-specific.

However, the proposed models are unable to interpret TD from the economic per-
spective, and therefore provide little help in policy evaluation. Incorporating additional
explanatory variables such as weather data and search engine data [11,43] is promising to
increase the accuracy of TD forecasting. Therefore, establishing a comprehensive ability to
summarize variables selection should be the research direction going forward.
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