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Abstract: This paper combines the interval analysis tools with the nonlinear model predictive control
(NMPC). The NMPC strategy is formulated based on an uncertain dynamic model expressed as
nonlinear ordinary differential equations (ODEs). All the dynamic parameters are identified in a
guaranteed way considering the various uncertainties on the embedded sensors and the system’s
design. The NMPC problem is solved at each time step using validated simulation and interval
analysis methods to compute the optimal and safe control inputs over a finite prediction horizon.
This approach considers several constraints which are crucial for the system’s safety and stability,
namely the state and the control limits. The proposed controller consists of two steps: filtering and
branching procedures enabling to find the input intervals that fulfill the state constraints and ensure
the convergence to the reference set. Then, the optimization procedure allows for computing the
optimal and punctual control input that must be sent to the system’s actuators for the pendulum
stabilization. The validated NMPC capabilities are illustrated through several simulations under the
DynIbex library and experiments using an inverted pendulum.

Keywords: validated NMPC; ordinary differential equations; interval analysis; uncertain dynamic
model

1. Introduction

Despite their maturing technology, robotic solutions still face many challenges re-
lated mainly to their design and control techniques. In practical applications, control of
automated devices is often formulated depending on the nature of the operational task
for which they are designed. Several research works have been realized in the past few
years to develop optimal and reliable controllers, ensuring various reliability goals. For
instance, authors in [1] investigated enhancing the reliability of control systems by using
multiple controllers for a given plant, which is a delicate way to improve the reliability
in control structures subject to both the controllers and plant failures. In [2], a design
approach of reliable centralized and decentralized controllers is proposed, such that the
resulting control systems remain stable and accurate despite sensor or actuator distur-
bances. Moreover, reliable H-infinity controllers for linear systems were designed in [3], in
such a way that they ensure the asymptotic stability of the control systems, mainly when
perturbations occur in some control components (sensors and actuators). These classical
control strategies are generally designed based on dynamic and/or kinematic models and
simplified control schemes. However, the drawback of these deterministic approaches
is the lack of techniques to prove the robustness analysis of such controllers to different
uncertain parameters in the plant.

Significant advances in stabilizing uncertain systems with parametric uncertainties
have been recently treated in a very different way. Among the techniques used to achieve
this end, interval analysis methods (IA) can provide guaranteed solutions to deal with
complex nonlinear problems and to manage various uncertainties involved in the hardware
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and software parts of the automated device [4]. Indeed, IA tools turn out to be more
promising and reliable to handle all the noises and uncertainties in the experimental
and theoretical data, contrary to these classical approaches that are generally based on
simplified models with deterministic values. IA methods are extremely popular in several
research fields due to their efficiency and reliability in order to achieve a robust control in
the presence of model uncertainties [5,6] or for state estimation [7]. For example, a robust
controller based on interval arithmetic for constrained discrete-time nonlinear systems with
additive uncertainties is presented in [5]. In addition, authors in [6] developed a robust
feedback controller synthesis such that all the unknown parameters are assumed to vary
between known bounds. This controller guarantees at each time step that the closed-loop
system behavior is greater than the lower bound of the set-point interval and is lower than
its upper bound.

Model-based Predictive Control (MPC) methodology (also known as the receding
horizon control or the moving horizon control) has become a powerful control technique
widely used in a large number of areas (e.g., the automotive industry and chemical pro-
cesses [8]). There are several reasons for this: (i) its capability to anticipate the future
on the reference trajectory (i.e., future changes in set-point), and (ii) its ability to handle
nonlinearities of multi-variable systems as well as all the system’s constraints, i.e., input
and state limits. The primary purpose of the linear and nonlinear MPC is to apply a plant
model to predict its behavior along a receding horizon. At each sampling time, the MPC
technique computes the optimal control input that minimizes some cost functions and
fulfills all the safety constraints (e.g., actuators position, speed, and acceleration bounds).
Overall, it has been proven that the MPC technique is much more practical and sophisti-
cated to solve linear and nonlinear control problems [9–13]. Amongst the existing works,
a real-time constrained MPC with safety and stability constraints is proposed in [9,10],
where all the constraints are expressed as inequalities with respect to the optimization
variable. Furthermore, a linear time-varying MPC method is designed in [12,13]. It is based
on the online exact linearization of the nonlinear model so as to formulate the optimization
problem completely as a Quadratic Program (QP). It can be easily handled by linear solvers
to decrease the computational complexity. Nevertheless, they assume that uncertainties,
related to the system’s modeling and the degree of correctness of measurements, are omit-
ted. Consequently, a control strategy in a guaranteed way is required to ensure robustness
toward all the uncertainties occurring in dynamic parameters’ estimation.

Currently, many researchers apply IA methods to synthesize a guaranteed linear or
nonlinear MPC controllers [14,15]. These guaranteed methods allow the calculation of
smooth and safe input intervals over the prediction horizon, i.e., the control vector is
expressed here as an interval-vector (or a box that is the Cartesian product of intervals).
Appendix A gives a brief presentation outlining different IA tools. For instance, authors
in [14] use IA methods to build a new nonlinear MPC law considering the discrete system.
It is based on forward-backward contraction using a dynamic model to compute feasible
and admissible inputs. This method allows authors to calculate a validated control for an
inverse pendulum system. Other techniques include the adjoint method for sensitivity
analysis enabling the handling of the rate of change of the system dynamics considering the
control variable [6,16–18]. Otherwise, this last approach is used to calculate the derivative of
dynamics with respect to the input variable that must be limited between some bounds. In
addition, a robust and guaranteed MPC of constrained discrete-time nonlinear systems with
additive uncertainties is designed in [6,17] to quantify different uncertainties. Moreover, a
branch-and-bound algorithm was applied in [15] to synthesize a NMPC controller. This
combinatorial optimization algorithm is promising but needs high computation time to
obtain optimal solutions. In addition, a reliable nonlinear MPC via interval arithmetic
is developed in [19]. This algorithm uses validated simulation and branching methods
to create input interval-vectors (or input boxes) and respect the system’s constraints by
consecutive bisection of the initial feasible boxes of actuator’s inputs.
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Contributions : This paper focuses on developing a new validated and reliable nonlinear
model predictive control (NMPC), which is more specifically designed using an uncertain
mathematical model. It encompasses two main research dimensions. (i) This paper is an
extension of our previous work introduced in [20] that aims to identify in a guaranteed
way the inertial and frictional parameters of our new inverted pendulum (manufactured
in our lab and shown in Figure 1). The IA and set-inversion tools have been deployed
to express all the needed parameters as intervals instead of constants’ values so that the
coverage ratio between the physical reality and the mathematical model is significant.
(ii) The second contribution lies in the synthesis of a validated NMPC strategy relying on
the previous guaranteed identification to compute smooth and safe input intervals. These
approaches have been investigated through various simulations with uncertain high-order
ordinary differential equations (ODEs) describing the system’s behavior. The validated
simulations are performed using our DynIbex (DynIbex Library: https://perso.ensta-paris.
fr/chapoutot/dynibex/ (accessed on 19 August 2021)) library (a sophisticated solver of
ODEs using Runge–Kutta schemes [21]) and several experiments on the actual nonlinear
inverted pendulum.
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Figure 1. (Left) Definition of links frame (configuration y1 = y3 = 0◦); (Right) representation of
the real rotary inverted pendulum manufactured in our laboratory (S0: pendulum housing, S1:
horizontal arm, S2: pendulum arm, S3: balancing mass).

The remainder of this paper is organized as follows: firstly, an overview of the
direct dynamic model of our inverted pendulum is presented in Section 2. Secondly,
Section 3 introduces the guaranteed NMPC approach based on IA. Thirdly, simulation and
experimental results and discussions are reported in Section 4, on which the guaranteed
identification results using the SIVIA algorithm (Set-Inversion Via Interval Analysis [7]) are
recapped, and the capabilities of the proposed controller are illustrated via the nonlinear
inverted pendulum. Finally, Section 5 closes the paper by summarizing the contribution
and providing an overview of the future work.

2. Background of Dynamic Modeling of the Inverted Pendulum
2.1. Robotic Device

The inverted pendulum is a simple system with two serial rotational joints (active and
passive). We have designed and manufactured one in our laboratory (see Figure 1). Our
experimental device is equipped with a brushless DC motor to actuate the first joint and
two incremental encoders to measure the rotational angles of both the motor shaft and the
passive joint. Its kinematics is sketched in Figure 1. This device must be identified and
stabilized in a validated and guaranteed way, considering all the errors and uncertainties
related to the system modeling and data measurements.

https://perso.ensta-paris.fr/chapoutot/dynibex/
https://perso.ensta-paris.fr/chapoutot/dynibex/
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2.2. Dynamic Modeling of the Inverted Pendulum

The Euler–Lagrange equation is a systematic method used here to express the system’s
equations of motion, describing various nonlinear derivatives to get the ODEs (for more
details, see [22]). After going through this process, the nonlinear equations of a direct
dynamic model for rotary nonlinear inverted pendulum are given by

ẏ1 = y2,

ẏ2 =
1
∆

{
− µ3 cos(y3)

[
µ1 sin(y3) cos(y3)y2

2 + Γ2 − µg sin(y3)
]
+

µ4
[
µ3 sin(y3)y2

4 − µ1 sin(2y3)y2y4 + Γ1
]}

,

ẏ3 = y4,

ẏ4 =
1
∆

{[
µ1 sin(y3)

2 + µ2
][

µ1 cos(y3) sin(y3)y2
2 + Γ2 − µg sin(y3)

]
−

µ3 cos(y3)
[
µ3 sin(y3)y2

4 − 2µ1 cos(y3) sin(y3)y2y4 + Γ1
]}

,

(1)

where y1 and y2 indicate, respectively, the angular position and velocity of the rotative arm.
Likewise, y3 and y4 are the angular and speed variables of the pendulum arm. We draw all
these agreements as y = [y1, y2, y3, y4] ∈ R4 referring to the state vector. Γi is the torque
applied at the joint i, which depends on the viscous friction variables, and

∆ = −µ2
3 cos(y3)

2 + µ1µ4 sin(y3)
2 + µ2µ4,

µ1 = l2
p

[mp

4
+ M

]
, µ2 = l2

a [mp + M] +
Jm

N2
g
+ Ja,

µ3 = lpla

[mp

2
+ M,

]
, µ4 = l2

p

[mp

4
+ M

]
+ Jp, µg =

[mp

2
+ M

]
lpg,

where ma and Ja denote the horizontal arm’s mass and its inertia, respectively—similarly
for the pendulum arm with the mass mp and inertia Jp. M is the mass of the load attached
to the pendulum arm, Jm is the DC motor inertia, and Ng its gear ratio. la, lp, and r0 are
the device’s dimensional parameters (as defined in Figure 1), and g is the gravitational
acceleration.

Since the second joint is passive, Γ2 can only be written as a function of friction condi-
tions. The relationship between friction and velocity is well modeled in the literature [20].
In this paper, we use a simple friction model, in which it is related to the viscous terms,
which are proportional to the joint speed: Γ1

Γ2

 =

 τ − fv1y2

− fv2y4

, (2)

where τ is the motor’s torque and fvi is the viscous Coulomb friction coefficient of the joint
i. These coefficients are often considered as constant values in the majority of literature
works. Here, the main goal is to identify them in a guaranteed way by reducing the error
between the theoretical model output and measured data output, i.e., they must belong to
specific subsets consistent with the model and sensors’ outputs. The guaranteed estimated
parameters are reported in [20] and outlined in Table 1.
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Table 1. Identified inertial and frictional parameters of the inverted pendulum.

Symbol Measurement Unit Interval Enclosure

µ1 kg·m2 [9.63318e−4; 1.22604e−3]
µ2 kg·m2 [2.19585e−3; 2.79471e−3]
µ3 kg·m2 [7.227e−4; 8.833e−4]
µ4 kg·m2 [

1.08271e−3; 1.37799e−3]
µg kg·m2·s−2 [6.24299e−2; 8.44641e−2]
fv1 N·m·s·rad−1 [0.043012; 0.13002]
fv2 N·m·s·rad−1 [0.000454; 0.001174]

2.3. Torque, Speed, and Acceleration Computation

Because our experimental datasets have noises, the recorded signals are consequently
processed by applying an eighth-order low-pass Butterworth filter. The input of the
system (torque signal) and the joints’ velocity and acceleration are required to stabilize the
nonlinear inverted pendulum. The speed and acceleration are computed using a non-causal
derivative filter. The function firpm of Matlab allows us to synthesize this kind of filter to
determine the suitable filter’s parameters (impulse response coefficients). The second stage
is the actual application of the designed filter to the joints’ positions (y1 and y3), using
filtfilt command, enabling to process a data in both the forward and reverse directions
(zero-phase distortion).

On the other hand, the torque generated at the base of the rotary arm (i.e., at the load
gear) can be expressed as a function of the angular velocity (input variable) denoted u
as below:

τ =
NmNgηmηg(u0 − u)

Rv
(3)

where Nm and Ng are respectively the motor and gear ratios, ηm and ηg are the motor
and gearbox efficiencies, u and u0 are the instantaneous and no-load angular velocities,
respectively, and Rv is the motor speed-torque constant.

3. Guaranteed Controller Design via Validated Simulation

In this section, a validated Nonlinear Model Predictive Control (NMPC) is devel-
oped to stabilize the inverted pendulum in the upright position considering the system’s
constraints and uncertainties. Firstly, we give a general overview of the validated nu-
merical integration methods in Section 3.1. Secondly, we present the validated NMPC in
Section 3.2.

3.1. Validated Numerical Integration

The dynamic model given by Equation (1) can simply be written by this nonlinear
ODEs:

ẏt = f(t, yt, ut) (4)

At each validated numerical integration, we assume that ut is constant to compute
corresponding tight enclosures of the state variable. We are now considering an Initial
Value Problem for ODEs (IVP-ODEs) over the time interval t ∈ [0, T],

ẏt = f(t, yt, ut)
y0 ∈ [y0] ⊆ Rn

ut ∈ [u] ⊆ Rm
(5)

where the sets [y0] and [u], both expressed as boxes, are respectively the initial condition
related to the initial state vector and the considering input interval. This IVP-ODE has a
unique solution yt(t; y0, ut) at t > 0 since f : R×Rn ×Rm → Rn is continuous in t and
Lipschitz in yt, but, for our purpose, we assume f to be smooth enough, i.e., of class Ck.
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Compared to the classical numerical integration for the IVP-ODE problem, validated
approaches consist of solving this problem in a complete and validated way (i.e., each
actual guaranteed solution is rigorously returned and enclosed in a tight interval). These
methods are generally based on Taylor series [23] or Runge–Kutta methods [21]. Basically,
the main principle of the validated methods is to obtain the tight enclosure of the IVP-
ODEs problem. As presented in [23], the purpose of a validated numerical algorithm
is to solve Equation (5) so as to get a sequence of boxes [y0], . . . , [yn] at time iterations
t0 = 0 < . . . < tn = T and at given input boxes [u0], . . . , [un]. It is achieved in such a way
that the inclusion function verifies

[
yj+1

]
⊇ [f]

(
tj,
[
yj
]
, [uj]

)
, ∀j ∈ [0, n]. Such approaches

work in two stages at each integration step to compute the guaranteed solutions. They are
summarized as:

i Computation of a prior enclosure of the solution
[
ỹj+1

]
, such that f

(
tj,
[
yj
]
, [uj]

)
∈[

ỹj+1
]

for all t in the time interval t ∈ [tj, tj+1]. This stage enables proving the
existence and the uniqueness of the solution.

ii Computation of a tight enclosure of state variable [yj+1] at time instance tj+1, such
that f

(
tj+1,

[
yj
]
, [uj]

)
∈
[
yj+1

]
. It uses the solution

[
ỹj+1

]
to bound the truncation

error, i.e., the distance between the exact and the numerical solutions.

The tight and prior enclosures calculated along one integration step between tj and
tj+1 (of size hj = tj+1 − tj > 0) can be visualized in Figure 2.

Figure 2. Prior and tight enclosures computed along one iteration using validated methods.

3.2. Validated Nonlinear Model Predictive Control

The purpose of this section is to apply the validated simulation algorithm presented in
the previous section to compute a solution satisfying the NMPC constraints and minimizing
an interval cost function.

The validated NMPC aims to stabilize the nonlinear inverted pendulum in the upright
position. It is based on interval analysis tools to compute guaranteed control variables over
the receding horizon using the validated numerical integration method of the IVP-ODEs
problem (5). The control intervals are calculated such that the convergence to the set-point
interval is ensured (i.e., yi → [yr], ∀i), and all the state and input constraints are satisfied
(i.e., yi ∈ [yi] and uj ∈ [uj], ∀i, j). The validated NMPC is decomposed into two steps:

• The IVP-ODEs problem (5) is simulated in a complete and validated way starting
from the initial domain of inputs referring to the actuators’ saturation. Then, for each
tested input set, we check if the constraints on state variables are respected using
validated simulation and branching methods (Branch-and-Prune algorithm).
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• Since safe inputs are computed over a finite time horizon, the optimal controller box is
calculated by minimizing the interval objective function, optimizing the error between
the predicted outputs and the reference set, and the norm of the inputs.

3.2.1. Filtering and Branching Procedures

The validated NMPC strategy should provide an optimal input box at each time-step
k. This latter can be denoted as [U]?k = [u]?k × [u]?k+1 × . . .× [u]?k+Np−1, where Np is the
number of input samples generated over the prediction horizon. Branching procedure
allows us to generate safe input intervals [U]?k over the prediction horizon that satisfies
all the state constraints and convergence to the reference interval [yr]. Therefore, the
system can be described using a simple interval notation by the following constraint
differential equation:

ẏt = f(t, yt, ut),
s.t. : ut ∈ U, ∀t ≥ 0

yt ∈ Y, ∀t ≥ 0
(6)

where U and Y are respectively the input and state variables saturation. They can be
written as

U = {ut ∈ Rm | umin ≤ ut ≤ umax} and Y = {yt ∈ Rn | ymin ≤ yt ≤ ymax} (7)

where umin and umax are the admissible domain bounds for the control variable. Similarly,
ymin and ymax are those of the state components.

Starting from the current state boxes [yt] computed at time t and input feasible domain
[uk] = [umin, umax], the computation of a new state domain [yt+Tc ] is performed by the
validated simulation algorithm, where Tc denotes the sampling time of the control signal,
and then the horizon time Tp = Tc × Np. This strategy bisects the initial domain [uk] on the
left and right intervals that reduces the width of the initial interval [uk]. For each bisected
input interval, the validated simulation algorithm provides a state domain of which the
safety and convergence criteria are verified, as can be seen in this equation:

[f](t, [uk], [yt]) = [yt+Tc ] and [yt+Tc ] ⊆ [ymin, ymax] (8)

The filtering and branching algorithm is given in Algorithm 1. The function bisect-
check is a pruning function that performs a bisection procedure of the initial input interval
if its width exceeds some tolerance tol value. One side of bisected intervals is kept by
considering these criteria: (i) A branch leading to unsafe state is avoided (i.e., [yt+Tc ] *
[ymin, ymax]); and (ii) a branch leading to a state far from the reference interval [yr] or
partially a cost greater than the other branch is eliminated (see interval optimization in
Section 3.2.2). Moreover, the function Test sensitivity() enables us to simulate the adjoint

function x(u) =
∂y
∂u

expressing the rate of variation of the state concerning the control
variable. Its derivative can be derived as below:

ẋ =
∂f
∂y
× x +

∂f
∂u

(9)

Using the Test sensitivity() function, it returns the Boolean formula:{
∃ε > 0, 0 ∈ x([uk]) AND x([uk]) * [−ε, ε]

}
OR

{
∃τ ∈ [t, t + Tc], y(τ) * Y

}
(10)

Sensitivity analysis allows for checking if the computed input [uk] is leading the
system to move in forward and backward directions at the same time, as can be seen by the
first part of the Boolean expression. The second part of this formula enables us to verify if
the state constraints are respected. Since the safe inputs’ intervals are computed using the
validated simulation, the interval cost function is optimized to calculate its sub-optimal
solution. The optimization part is detailed in the next section.
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Algorithm 1 Filtering and branching

Require: [y0], [yr], Tc, Np, tol
while not success do

while k ≤ Np do
if w([uk]) > tol then

[uk] = bisect-check([uk]left, [uk]right)
end if
[yt+Tc

] =Simulation([yt], [uk], Tc)
if [yt+Tc

] ⊆ [yr] then
k = k + 1, [yt] = [yt+Tc

], t = t + Tc
success = true

else
if Test sensitivity() then

if w([uk]) > tol then
[uk] = bisect-check([uk]left, [uk]right)

else
success = f alse

end if
else

[yt] = [yt+Tc
]

k = k + 1, t = t + Tc
success = true

end if
end if

end while
end while

3.2.2. Interval Cost Function Formulation

Since the feasible intervals of inputs are computed fulfilling different constraints, the
optimization procedure is required to find the optimal control box and then the punctual
input that we inject into the actuator’s control unit u1. The continuous cost function can be
expressed over the prediction horizon Tp = Tc × Np as

J(yt, ut) =
∫ t+Tp

t
F(y(τ), u(τ))dτ (11)

where F is in general a quadratic function that minimizes the norm of the inputs and the
error between the predicted outputs y and the reference yr. F can be expressed in the
following quadratic form:

F(y(τ), u(τ)) = (y(τ)− yr)
TQ(y− y(τ)r) + u(τ)TRu(τ) (12)

where Q and R are both positive semi-definite weighting matrices.
The continuous objective function (11) then takes the form

J(yt, ut) =
∫ t+Tp

t

[
(y(τ)− yr)

TQ(y(τ)− yr) + u(τ)TRu(τ)
]
dτ

=
Np

∑
k=1

∫ t+kTc

t+(k−1)Tc

[
(y(τ)− yr)

TQ(y(τ)− yr)
]
dτ +

Np

∑
k=1

∫ t+kTc

t+(k−1)Tc

u(τ)TRu(τ)dτ

(13)

The purpose is to express the cost function (13) in a discrete form using interval
analysis methods. Since the control signal is constant along the input sampling period
[t + (k− 1)Tc, t + kTc], the second integral can be simplified as

J(yt, ut) =
Np

∑
k=1

∫ t+kTc

t+(k−1)Tc

[
(y(τ)− yr)

TQ(y(τ)− yr)
]
dτ + Tc

Np

∑
k=1

[
uT

k Ruk

]
(14)
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A validated simulation method generates a list of tight enclosures’ [y0], [y1], . . . , [yn]
solutions of the IVP-ODEs (5) from the initial conditions [y0] and [u0]. Therefore, each
solution y can be enclosed into a box thanks to the validated methods (i.e., ∀t ∈ [t + (k−
1)Tc, t + kTc], y(t) ∈ [yt]). Hence, one useful consequence of the Rectangle Property is
that it allows us to bound the first integral of the cost (14) between two bounds as can be
defined below:

Np

∑
k=1

∫ t+kTc

t+(k−1)Tc

[
(y(τ)− yr)

TQ(y(τ)− yr)
]
dτ ∈ Tc

Np

∑
k=1

[
([yt]− yr)

TQ([yt]− yr)
]

(15)

By exploiting (15), the interval cost function can be approximated as

J(yt, ut) ∈ Tc

Np

∑
k=1

[
([yt]− yr)

TQ([yt]− yr) + [uk]
TR[uk]

]
≤ ub

{
Tc

Np

∑
k=1

[
([yt]− yr)

TQ([yt]− yr) + [uk]
TR[uk]

]} (16)

where ub signifies the upper bound of the interval (lb denotes its lower bound).
Algorithm 2 recaps the optimization procedure to determine the inputs boxes allowing

for minimizing the cost function (16). It returns the sub-optimal solutions that minimize
the formulated cost function. It is based on consecutive bisections of the first input interval
[u1] until achieving a small width value tol. The punctual and guaranteed input value u1
that we send to the DC motor represents the smaller value of the upper and lower bound
of this interval.

Algorithm 2 Optimization

Require: [y], [u1], [u2], . . . , [uNp ], tol
while w([u1]) ≥ tol do

[U]left = [u1]left × [u2]× . . .× [uNp ]

[U]right = [u1]right × [u2]× . . .× [uNp ]

if J([y], [U]left) ≥ J([y], [U]right) then
[U]? = [U]right

else
[U]? = [U]left

end if
end while
u1 = min{lb([u1]), ub([u1])}
send(u1)

To summarize, the proposed approach is focused on two main stages :

Algorithm 1:
returns the safe input tubes (Np intervals) that allow for respecting the state con-
straints. This algorithm uses the validated simulation methods to compute the
guaranteed inputs. As already mentioned, we assume that the input interval [ut]
is constant for each validated simulation to calculate the state tubes equivalent to
each input interval. If the state limits are not fulfilled, the bisection procedure of
the control interval is performed, and validated simulations are re-started.

Algorithm 2:
Because of the guaranteed input tubes (Np intervals), the optimization algorithm is
started to compute the sub-optimal input interval that minimizes as much as we
can the formulated interval cost-function. It is based on the consecutive bisections
of the guaranteed interval [u1] computed by the first algorithm.
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4. Experiment Results

The control framework introduced in this paper is applied for the stabilization of the
nonlinear inverted pendulum shown in Figure 1. The pendulum is actuated by a DC motor
whose angular speed is the input variable. It is controlled using a Phidget Motor Control.
This control card is connected to the laptop via a USB cable to control the motor’s velocity,
using C language.

To evaluate the validated NMPC, we will initially summarize in Section 4.1 the guar-
anteed identification results and its validation using the identified subsets of parameters. In
the second place, we will validate the proposed controller in Section 4.2 through simulation
tests and then experiments using the inverted pendulum.

4.1. Guaranteed Dynamic Model Identification

The guaranteed identification of dynamic parameters p = [µ1, µ2, µ3, µ4, µg, fv1 , fv2 ] ∈
Rnp=7 as can be seen by the dynamic model (1) was proposed in [20]. These parameters
are estimated as intervals instead of real numbers to account for all the uncertainties and
errors related to the sensors measurements and the system modeling. The identification
approach is based on the IA and set-inversion techniques (SIVIA algorithm) to determine
the feasible sets of coefficients [7]. A brief resume of the SIVIA algorithm principle is given
in Appendix A. The feasible sets of all the dynamic parameters are recapped in Table 1.

The DC motor and gearbox are of type MDP-Maxon, and their characteristics are
provided by the manufacturer. Here is a recap of their properties: the motor inertia
Jm = 9.06e−7 kg·m2, its no-load speed u0 = 11,700 tr·min−1, the slope speed-torque
Rv = 34,000 tr·min−1·N−1·m−1, the motor and gearbox efficiencies ηm = 90.6% and
ηg = 90%, and gear ratios Nm = 5.2 and Ng = 5.

To demonstrate the usefulness of our identification, we can solve in a complete and
validated way the IVP-ODEs (5) using the identified parameters. The set of possible tight
enclosures [y1], . . . , [yn] at a sequence of time-instants t1, . . . , tn are calculated. To do so,
our library DynIbex is employed to solve this IVP-ODEs [21]. Furthermore, the guaranteed
identification is compared to the traditional least square method identification (LSMI)
(where the dynamic parameters are estimated as constant values) to show its efficiency.
Figure 3 shows the measured pendulum angle y3 (black lines), as well as the ones calculated
with the identified parameters with LSMI (red lines) and IA (blue lines) approaches. All the
model validation tests are conducted under the same settings and conditions (e.g., same
initial conditions [y0] and [u0], same inputs, etc.). The simulation duration is fixed to be 4 s
and the precision of 10−7. We can notice that the simulated tubes of the pendulum angle y2
given by the sophisticated solver DynIbex, using IA and LSMI parameters, are quite similar
to the real measured pendulum angle. Nonetheless, the simulated y2 with IA parameters
comply as closely as possible with the measured one at different initial conditions. All this
is due to the fact that all the system variables are taken here as intervals characterizing
different uncertainties.

In order to emphasize the potential capabilities of the predicted model, the associated
coverage rates can be computed. We evaluate the number of cases where the measurements
data are included in the simulated tubes, and then the percentage of inclusion is calculated
for each tested scenario. In other words, it is calculated by checking at each time step
whether the time variable related to the measurement is included in the simulated time
interval ti ∈ [ti]. If so, we inspect if the corresponding measure yi is included in the simu-
lated tube [yi] given by the DynIbex library. Then, the coverage rate can be approximated
to be Nq

Nt
× 100, where Nt is the number of times that each sampled time is incorporated in

the simulated time interval, and Nq is the one related to the second condition regarding
yi. The computed values are recapped in Table 2. By the way, this criterion is too strict
to test, which explains the small calculated percentages. This is due to the timing lag
between the measurement and the estimated model. Even with this issue, the coverage
ratios obtained using IA parameters indicate a good match with the measurements process.
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It also confirms that the model is estimated with high precision when the uncertainties
are considered.

Figure 3. Open-Loop validation of the dynamic model under DynIbex library. Comparison between
the real and simulated pendulum angular position (represented as tubes) at different initial con-
ditions: (a) y0 = [0, 0,−100◦, 0]T and u0 = 0 rad·s−1; (b) y0 = [0, 0, 50◦, 0]T and u0 = 0 rad·s−1;
(c) y0 = [0, 0,−90◦, 0]T and u0 = 40 rad·s−1 and (d) y0 = [0, 0,−45◦, 0]T and u0 = 25 rad·s−1.

Table 2. Degree of coverage between the model and physical reality.

Scenario (a) (b) (c) (d)

With IA parameters 46% 61% 38% 25%
With LSMI parameters 41% 34% 20% 21%

Overall, the experimental results provided by the guaranteed identification of inertial
and frictional parameters are more relevant than those obtained by the classical LSMI.
Indeed, the estimation approach based on IA and set inversion techniques allows us to suc-
cessfully identify these coefficients as intervals considering all the errors and uncertainties
related to the sensors and the system modeling. Despite its proven effectiveness to more
closely approximate the model output to the actual system’s behavior, it still has some
drawbacks. The main ones are related globally to the computation time, which depends
mainly on the number of parameters and the initial domain. This issue can be enhanced
with a contraction approach [24].

4.2. NMPC Results
4.2.1. Simulation Results

In the simulations, the parameters of this proposed validated NPMC are tuned as:
prediction horizon Np = 10, control sampling time Tc = 16 ms and the final time of
the simulation Tf = 0.3 s. The safety saturation on state variables are: y1 ∈ [−2π; 2π],
y2 ∈ [−52.4 rad·s−1; 52.4 rad·s−1], y3 ∈ [−2π; 2π], y4 ∈ [−100 rad·s−1; 100 rad·s−1], and
the DC motor’s torque constraints are τ ∈ [−8.05 N·m; 8.05 N·m]. The reference interval
of the desired pendulum arm is yr ∈ [π − 0.1; π + 0.1]. The tolerance parameter applied
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for the bisection procedure is adjusted as tol = 0.25. Since the filtering and branching
algorithm begins from the admissible input domain [−8.05 N·m; 8.05 N·m], it can lead to
approximately 6410 branches with Np = 10. The interval cost function is computed only in
the optimization process using these weighting matrices Q = diag[1000, 1000, 1000, 1000]
and R = 1.

Several software tools have been developed to simplify the resolution of the validated
NMPC strategy via interval analysis. These tools are globally in the form of libraries to
be integrated into a program (e.g., DynIbex library [21], Numerica [25] or RealPaver [26]).
However, it has been shown that these solvers are not much more practical due to their
high computation time. In other words, the fast convergence of this kind of solvers is not
guaranteed over a finite time (i.e., extreme long response time to get the solution of the
problem). That’s why the real-time validation of this guaranteed approach is not easy to
realize. To do so, it is divided into two steps: a numerically offline calculation of the input
variables via validated simulations and then the injection of these inputs into the physical
pendulum.

Two scenarios have been executed with different initial conditions on the angular
pendulum position [y3ini ] to discuss the capabilities of the proposed controller. Figure 4a–c
display the results of the first scenario starting from [y3ini ] = [0◦; 0◦] and Figure 5a–c
show those of the second one starting from [y3ini ] = [149◦; 150◦]. As can be seen from
Figure 4a, the pendulum arm starts from the downward position, and it is stabilized via
the validated NMPC in its vertical position interval [yr] with a small settling-time (around
tr5% ≈ 0.18 s). Similarly, the simulation has also been executed when the initial position
is close to the desired position π. The generated enclosures of the inverted pendulum
position are plotted in Figure 5a. As the previous results, the validated NMPC succeeds in
stabilizing the pendulum feasibly in its terminal position.

Figure 4. Validated NMPC results starting from [y3ini ] = [0◦; 0◦] : (a) pendulum angle tubes; (b) the
corresponding pendulum speed tubes; (c) safe and optimal input Intervals [u1].

On the other hand, the calculated tubes of the pendulum’s velocity are depicted in
Figures 4b and 5b. As can be noticed in both of these scenarios, the validated velocity
respects the imposed constraints and stagnate around zero when the pendulum reaches its
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final desired position. In addition, the torques applied by the DC motor for each tested
scenario are shown in Figures 4c and 5c. The relationship between the motor’s velocity and
torque is given by Equation (3). In the first case, a strong input variable with the bang-bang
process is applied to enable the pendulum to catch the equilibrium and stabilize in its
terminal reference interval (see Figure 4c). Since the pendulum is stabilized, the torque
applied by the system’s actuator changes the sign to maintain the reference interval. In
the second case, the actuator applies maximum inputs for a short time to try to reach the
desired interval (see Figure 5c). All the calculated torques fulfill the system’s intrinsic
constraints.

Figure 5. Validated NMPC results starting from [y3ini ] = [149◦; 150◦]: (a) pendulum angle tubes;
(b) the corresponding pendulum speed tubes; (c) safe and optimal input Intervals [u1].

4.2.2. Experimental Validation Using the Inverted Pendulum

To further show the usefulness of the proposed controller, it is tested on the experimen-
tal platform (Figure 1). As mentioned before, the real-time implementation of the validated
strategy cannot be accomplished due to the high computation time of interval methods. In
addition, we are currently working to improve this point by adopting parallel computation
and relaxation methods. Consequently, we inject the computed input components into the
control part of the pendulum that must somehow behave as the simulated model. Indeed,
the dynamic model is proven to be as close as possible to the system’s actual behavior (see
Section 4.1).

Figure 6 shows the measured pendulum angle for the tested scenarios, starting from 0◦

and 150◦. The stabilization is performed in an open-loop by incorporating the simulated in-
put data into the DC motor controller (the computed inputs are drawn in Figures 4c and 5c).
Compared to the simulation results, the calculated control inputs stabilize the inverted
pendulum in the steady-state regime. The second scenario gives coherent results enabling
the pendulum to be stabilized around the target position π thanks to the validated NMPC
(see Figure 6 (Right)). However, for the first scenario (starting from 0◦), we have some
synchronization problems between the DC motor sampling period (around 0.028 s) and
the sampling horizon of the NMPC method Tc. This is due to the lack of good deeds
that the system’s actuator executes at the right moment and its sensibility to weak signals
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that destabilize it. Despite these issues, the proposed NMPC enables the system to reach
another equilibrium position around π/2 (see Figure 6 (Left)), so we will try to handle this
issue separately.

Figure 6. Experimental validation results starting from 0◦ (Left) and from 150◦ (Right).

To sum up, the validated NMPC seems more promising for enabling the system to
successfully converge to the reference target with high accuracy and small settling time. The
imposed state and control bounds are respected, critical, and necessary for the pendulum’s
stability and safety. Nevertheless, the computation time of the domain [uk] is remarkable
due to a large number of bisections of the initial input domain and the high computation
time required by validated simulations.

5. Conclusions and Future Works

The research presented in this paper focuses on developing a reliable and validated
nonlinear model predictive control (NMPC), which is more specifically designed using
an uncertain mathematical model. The proposed controller is based on validated simu-
lation mixed with interval analysis techniques to handle the system’s nonlinearities and
uncertainties. Two different procedures are employed: branching procedure to calculate
the valid input intervals from an uncertain nonlinear model, allowing the convergence to
the set-point interval and the system constraints’ insurance. From the generated branches,
the optimization procedure is applied to determine the sub-optimal control variable. The
efficiency and robustness of the proposed method are validated through numerical and
experimental tests using a new nonlinear inverted pendulum.

As regards ongoing works, we will focus on studying two issues: firstly, the com-
putational complexity improvement of the validated simulation methods by taking into
consideration contraction methods and parallel computing strategies; secondly, the projec-
tion of the validated NMPC on a complex mechatronic system (ROV—Remotely Operated
underwater Vehicle). It allows us to perform some tasks (trajectory tracking) in the aquatic
environment while respecting all the system’s constraints. In addition, another relevant
aspect enabling completing a system’s autonomy is online estimation of the model’s pa-
rameters via nonlinear observers and interval methods with respect to the environmental
conditions, e.g., aerodynamic coefficients. This issue allows for reaching high accuracy and
stability of the trajectory tracking task.
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Appendix A

In this appendix, we remind readers about some mathematical notions related to IA,
used particularly to solve linear and/or nonlinear problems in a guaranteed way. For
further details on this subject, we encourage the readers to refer to [4,7].

Appendix A.1. Interval Analysis: The Main Notations and Definitions

• A scalar interval of R is denoted as [x] = [x; x] where x is the lower bound and x is
the upper bound. Any interval of R is finite, closed, and connected subsets.

• An interval vector, or a box [X] of Rn is a Cartesian product of n intervals, i.e., [X] =
[x1]× . . .× [xn]. The set of all boxes of Rn is denoted by IRn.

• The width w([X]) of a box [X] is the length of its largest side.
• The interval function [ f ] from IRn to IRm, is an inclusion function of f if ∀[X] ∈

IRn, [ f ]([X]) ⊇ { f (x), x ∈ [X]}.
• A subpaving of Rn is a list of non-overlapping boxes of Rn, enabling for bracketing

any compact set between a list of inner and outer subpavings.

Appendix A.2. Set Inversion and SIVIA Algorithm for Parameters Estimation

If f : Rn → Rm and Y ⊂ Rm. A set inversion problem is described by the reciprocal
image of a set Y by the function f that can be written as

P = {p ∈ Rn | f (p) ∈ Y} = f−1(Y) (A1)

The set P should be computed in a guaranteed way relying on the IA tools.
For this purpose, the SIVIA algorithm is an effective set-inversion problem solver via

IA [7]. It allows us to get the set P in an effective and a guaranteed way, through successive
and recursive bisections of the prior interest domain. To obtain the feasible set P, three
kinds of union boxes can be distinguished:

1. The feasible subpavings that belong to the set P and satisfy this implication test
[ f ]([p]) ⊂ Y ⇒ [p] ⊂ P (denoted [pi] in Figure A1);

2. The infeasible subpavings that make the empty intersection with P, i.e., [ f ]([p])∩Y =
∅⇒ [p] ∩ P = ∅ (denoted [po] in Figure A1);

3. The undetermined subpavings (or penumbra) for which nothing can be decided and
will be bisected, except if their width is too small (denoted [pu] in Figure A1).

[f ]

Parameters space Datasets space

p1 y1

p2 y2

P? Y

[pi]

[po]

[pu]

[f ]([pu])

[f ]([pi])

[f ]([po])

Figure A1. Illustration of the principal of the set inversion problem—Inclusion tests: infeasible (blue),
undetermined (green), feasible (red).
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