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Abstract: This paper revisits the dynamic MV portfolio selection problem with cone constraints in
continuous-time. We first reformulate our constrained MV portfolio selection model into a special
constrained LQ optimal control model and develop the optimal portfolio policy of our model. In
addition, we provide an alternative method to resolve this dynamic MV portfolio selection problem
with cone constraints. More specifically, instead of solving the correspondent HJB equation directly,
we develop the optimal solution for this problem by using the special properties of value function
induced from its model structure, such as the monotonicity and convexity of value function. Finally,
we provide an example to illustrate how to use our solution in real application. The illustrative
example demonstrates that our dynamic MV portfolio policy dominates the static MV portfolio policy.

Keywords: dynamic portfolio selection; mean-variance model; strategy constraint; continuous-time

1. Introduction

The classical static mean-variance (MV) model was pioneered by Markowitz [1] more
than sixty years ago, which laid the foundation of modern financial theory. However,
such a static policy is not a good choice since the investor usually needs to adjust his/her
portfolio policy to achieve better performance according to updated information. Due
to the non-separability of the variance term in the language of dynamic programming,
this problem is not trivial analytically. In 2000, the static MV model was extended to the
multi-period setting by Li and Ng [2] and to the continuous-time setting by Zhou and Li [3]
by using the proposed embedding method. From then on, the past decades have witnessed
significant progress on the dynamic MV portfolio selection analysis by leaps and bounds;
see, for example, Zhu et al. [4], Bielecki et al. [5], He et al. [6], Gao et al. [7], Gao et al. [8],
Zhou et al. [9], Cui et al. [10] and Strub et al. [11].

One prominent attraction of the dynamic MV portfolio selection models is their explicit
portfolio policy, which can be derived by using the embedding method and dynamic pro-
gramming approach. However, in real portfolio management, some constraints on portfolio
strategy are inevitable; e.g., the investor is usually subject to some limits of consideration of
the risk or economic regulations. Generally speaking, when we consider the strategy con-
straints, they usually destroy the advantages of the MV model. That is to say, under such
cases, it is hard to obtain the closed form of a portfolio policy except in a few special cases.
To address this issue, Li et al. [12] adopted the viscosity solution of the partial differential
equation and successfully characterized the analytical solution of the continuous-time MV
portfolio selection problem with no-shorting constraints. Cui et al. [13] considered the
discrete-time version of this type of problem with no-shorting constraints and solved it by
using dynamic programming. Gao et al. [14] developed the optimal portfolio policy for
the dynamic MV portfolio selection model with a cardinality constraint with respect to
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the active periods of time. Wu et al. [15] investigated the stochastic linear-quadratic (LQ)
optimal control problem with the linear control constraints, which can be regarded as a
generalization of dynamic MV portfolio selection with no-shorting constraints. In addition,
some promising results have emerged recently for dynamic MV portfolio selection with
some other constraints, such as no bankruptcy constraints (see, e.g., Zhu et al. [4] and
Bielecki et al. [5]).

This paper studies the dynamic MV portfolio selection problem with cone constraints
in continuous-time. As for the discrete-time versions of problems of this type with cone
constraints, Cui et al. [16] investigated them in detail and solved them by using dynamic
programming. The revealed optimal portfolio policy is a piece-wise affine function of
current wealth level and can be computed efficiently by solving two important equations
offline. Wu et al. [15] further verified this significant result by utilizing the state separation
property induced from its structure. As for the continuous-time versions of problems of this
type, Hu and Zhou [17] solved them by using the backward stochastic differential equation
approach. More specifically, they introduced two extended stochastic Riccati equations
(ESREs) and characterized the optimal portfolio policy by using the solutions of these two
ESREs. However, their work did not demonstrate how to construct these two ESREs by
using the special structure of a model rather than by suspecting them. Generally speaking,
this task has not been accomplished. Recently, Wu et al. [18] proposed an important state
separation theorem and answered this question under the framework of the stochastic LQ
control problem with linear control constraints.

This paper revisits the dynamic MV portfolio selection problem with cone constraints
in continuous-time. The contributions of our work are several. Firstly, we reformulated our
dynamic MV portfolio selection model into a special stochastic LQ optimal control model
and used the results derived in [18] to develop the optimal portfolio policy of our model.
Secondly, we created an alternative method to resolve this dynamic MV portfolio selection
problem with cone constraints. More specifically, instead of solving the correspondent HJB
equation directly, we developed the optimal solution for this problem by using the special
properties of value function induced from its model structure, such as the monotonicity
and convexity of value function. This alternative method offers a new way of thinking
under the constrained mean-risk framework and can be extended to solve another portfolio
selection models with cone constraints. Finally, we have provided an example to illustrate
how to use our solution in real applications according to real market data. The illustrative
example demonstrates that our dynamic MV portfolio policy dominates the static MV
portfolio policy.

The remainder of this paper is organized as follows. Section 2 provides the basic
formulation of the continuous-time MV portfolio selection model with cone constraints.
Section 3 presents the analytical solution of our model. Section 4 offers an alternative
approach to solving this problem. Section 5 provides some examples to show that how to
use our solution scheme in real applications. Finally, Section 6 concludes the whole paper
and provides some further extensions. The symbol 1 denotes the indicator function and
the symbol I denotes the identity matrix. All lemmas and theorems have been proofed in
the Appendix A.

2. Problem Formulation

In this work, we consider a financial market consisting of one risk-free asset and n
risky assets, which can be traded continuously within time horizon [0, T]. We assume that
all randomness is modeled by a complete filtrated probability space (Ω,F , {Ft}t≥0,P), on
which Ft-adapted n-dimensional Brownian motion W(t) := (W1(t), · · · , Wn(t)) is defined.
Denote Ft as the augmented σ-algebra generated by W(t), which implies the information
set available at time t, t ∈ [0, T]. L2

F (0, T;R) is the set of R-valued, Ft-adapted and square
integrable stochastic processes.



Algorithms 2021, 14, 252 3 of 13

The price of the risk-free asset is S0(t), which is governed by the following equation:{
dS0(t) = r(t)S0(t)dt, t ∈ [0, T],
S0(0) = s0 > 0,

(1)

where r(t) > 0 is the risk-free return rate. The price of n risky assets satisfy the SDE:{
dSi(t) = Si(t){µi(t)dt + ∑n

j=1 σij(t)dW j(t)},
Si(0) = si > 0

(2)

where µi(t) > 0 and σij(t) are the appreciation rate and volatility coefficient, respectively.
Let µ(t) :=

(
µ1(t), · · · , µn(t)

)′ and

σ(t) :=

 σ11(t) · · · σ1n(t)
· · · · · · · · ·

σn1(t) · · · σnn(t)

,

for all t ∈ [0, T]. We assume that r(t), µ(t) and σ(t) are the deterministic functions of
time and they are bounded for t ∈ [0, T]. We also assume the following nondegeneracy
condition holds for some constant δ > 0,

σ(t)σ(t)′ ≥ δI, t ∈ [0, T].

An investor enters the market with initial wealth x0 and allocates this wealth contin-
uously during the invest horizon [0, T]. The total wealth at time t is denoted as x(t) and
the portfolio decision vector is denoted as u(t):=

(
u1(t), · · · , un(t)

)′, which represents the
allocations of the wealth in n risky assets. The wealth level x(t) evolves according to the
following SDE (e.g., see Zhou et al. [3]):dx(t) =

(
r(t)x(t) + b(t)′u(t)

)
dt + u(t)′σ(t)dW(t), t ∈ [0, T],

x(0) = x0 > 0,
(3)

where b(t) :=
(
b1(t), · · · , bn(t)

)′
=
(
µ1(t) − r(t), · · · , µn(t) − r(t)

)′ is the excess return
rate vector. We also assume the following condition holds.

Assumption 1. There exists some i∗ ∈ {1, · · · , n} such that bi∗(t) > 0.

Assumption 1 says that the return rates of some risky assets should be greater than
the return rate of the risk-free asset, which is reasonable in real markets.

Motivated by the restrictions on real investments, we consider the following constraint
for the portfolio decision vector:

H(t)u(t) ≥ 0, t ∈ [0, T], (4)

where H(t) ∈ Rk×n is the deterministic matrix for t ∈ [0, T]. The above constraint is known
as the convex cone constraint, which includes various portfolio constraints as its special
cases, e.g., the no-shorting constraint ( [12]). In the following, we use Var[x]:=E[(x−E[x])2]
to denote the variance of some random variable x. The investor adopts the following
dynamic MV portfolio decision model to guide his investment:

(PMV) : min
{u(t)}|Tt=0

Var[x(T)] +
∫ T

0
E[u(t)′R(t)u(t)]dt

(s.t.) E[x(T)] = d,

{x(t), u(t)} satisfies (3) and (4).
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where d is expected terminal wealth level. Usually, we set d > x0e
∫ T

0 r(s)ds; i.e., the target
expected terminal wealth should be greater than that obtained by investing all into the
risk-free account. In model (PMV), the penalty term u(t)′R(t)u(t) is used to control the
risk exposure in the risky assets (The penalty term u(t)′R(t)u(t) can be used to adjust
the amount invested in risky assets. Hence, it can help control the risky exposure in the
risky assets). It is worthwhile to mention that our model is more general than the one
studied in the current literature; e.g., the work [12] only involved the no-shorting constraint
(In [12], some additional assumptions were needed; e.g., they assumed µi(t) > r(t) for all
i = 1, · · · , n. This assumption is crucial to obtain their results. However, in our model, we
can relax said assumption to Assumption 1) and [17] did not consider the penalty term
u(t)′R(t)u(t) in their model.

3. Solution Scheme for Problem (PMV)

To solve problem (PMV), we first reformulate it as a special case of the LQ control
problem (PT

LQ) investigated in [18] and use the solution provided in Section 3 of [18] to
solve a constrained dynamic MV portfolio selection problem (PMV). We utilize the embed-
ding technique introduced by Li et al. [2] to overcome the difficulties of the inseparability
of variance term in the sense of dynamic programming. We consider the following aux-
iliary problem (P̂MV(λ)) by introducing the Lagrange multiplier λ ∈ R for constraint
E[x(T)] = d:

(P̂MV(λ)) : min
{u(t)}|Tt=0

E[(x(T)− λ)2] +
∫ T

0
E[u(t)′R(t)u(t)]dt− (λ− d)2

(s.t.) {x(t), u(t)} satisfies (3) and (4).

We define the discount factor as

ρ(t) := e−
∫ T

t r(s)ds,

for t ∈ [0, T] and construct a new state variable z(t) as z(t) := x(t)− λρ(t). Replacing the
state variable in (P̂MV(λ)) yields the following problem:

(PMV(λ)) : min
{u(t)}|Tt=0

E[z(T)2] +
∫ T

0
E[u(t)′R(t)u(t)]dt

(s.t.) dz(t) =
(
r(t)z(t) + b(t)′u(t)

)
dt + u(t)′σ(t)dW(t).

Obviously, this problem is a special case of problem (PT
LQ) by setting A(t) = r(t),

B(t) = b(t), C(t) = 0n×1, D(t) = σ(t), q(t) = 0, S(t) = 0n×1, for t ∈ [0, T) and q(T) = 1.
Thus, similarly to equations (6) and (7) in [18], we introduce the following two ODEs for
the two unknown functions Ĝmv(·) : R→ R and Ḡmv(·) : R→ R:

˙̂Gmv(t) = −2Ĝmv(t)r(t)− min
K: H(t)K≥0

f̂ mv(t, K, Ĝmv(t)),

˙̄Gmv(t) = −2Ḡmv(t)r(t)− min
K: H(t)K≥0

f̄ mv(t, K, Ḡmv(t)),

where Ĝmv(T)=Ḡmv(T) = 1, and

f̂ mv(t, K, G) = 2Gb(t)′K + K′
(

Gσ(t)σ(t)′ + R(t)
)

K, (5)

f̄ mv(t, K, G) = −2Gb(t)′K + K′
(

Gσ(t)σ(t)′ + R(t)
)

K. (6)

Furthermore, the functions Ĝmv(·) and Ḡmv(·) have the following properties.
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Lemma 1. For any t ∈ [0, T], the following inequalities hold true:

Ĝmv(t)ρ(t)2 ≤ 1, (7)

Ḡmv(t)ρ(t)2 < 1. (8)

Note that, in Lemma 1, the strict inequality only holds for (8). Such a result plays an
important role in the following.

The following result characterizes the solution of problem (PMV).

Theorem 1. The associated optimal portfolio policy of problem (PMV) is given by

u∗(t) =

{
K̂mv(t)(x(t)− λ∗ρ(t)) if x(t)− λ∗ρ(t) ≥ 0,
−K̄mv(t)(x(t)− λ∗ρ(t)) if x(t)− λ∗ρ(t) < 0,

(9)

where

K̂mv(t) = arg min
K:H(t)K≥0

f̂ mv(t, K, Ĝmv(t)), (10)

K̄mv(t) = arg min
K:H(t)K≥0

f̄ mv(t, K, Ḡmv(t)). (11)

Moreover, the optimal Lagrange multiplier λ∗ is

λ∗ =
d− x0Ḡmv(0)ρ(0)
1− Ḡmv(0)ρ(0)2 . (12)

Usually, the investor is interested in the MV efficient frontier, i.e., the Parato optimal set
of expected terminal wealth d and the associated minimum variance Var[x(T)]. Substituting
λ∗ back into v(P̂MV(λ)) yields the semi-analytical expression of the MV efficient frontier
as follows:

Var[x∗(T)] =v(P̂MV(λ
∗)−

∫ T

0
E[(u∗(t))′R(t)u∗(t)]dt

=
Ḡmv

0 ρ(0)2

1− Ḡmv
0 ρ(0)2

(
E[x∗(T)]− x0ρ(0)

)2 −
∫ T

0
E[(u∗(t))′R(t)u∗(t)]dt, (13)

with E[x∗(T)] ≥ x0ρ(0)−1. Note that the second term can be evaluated by the Monte Carlo
simulation method after computing all K̄mv(t) and K̂mv(t).

4. An Alternative Method for Problem (PMV) without the Penalty Term

In this section, we provide an alternative method to resolve this dynamic MV portfolio
selection problem with cone constraints. Consider the following portfolio selection problem
(AMV) without the penalty term u(t)′R(t)u(t); i.e.,

(AMV) : min
{u(t)}|Tt=0

Var[x(T)]

(s.t.) E[x(T)] = d,

{x(t), u(t)} satisfies (3) and (4).

Clearly, this problem was investigated in detail in [17]. Instead of using the compli-
cated backward stochastic differential equation method (BSDE), we solve this problem by
using some properties induced from the special structure of model. Firstly, we consider the
following auxiliary problem (ÂMV(λ)) by introducing the Lagrange multiplier λ ∈ R for
constraint E[x(T)] = d:
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(ÂMV(λ)) : min
{u(t)}|Tt=0

E[(x(T)− λ)2]

(s.t.) {x(t), u(t)} satisfies (3) and (4).

Define the value function of problem (ÂMV(λ)) at any time t ∈ [0, T] as follows:

V(t, x) := min
{H(s)u(s)≥0}|Ts=t

Et[(x(T)− λ)2]

(s.t.) dx(s) =
(

r(s)x(s) + b(s)′u(s)
)

dt + u(s)′σ(s)dW(s), s ∈ [t, T].

From the classical optimal control theory (see, e.g., [19,20]), the value function V(t, x)
satisfies the following Hamilton–Jacobi–Bellman (HJB) equation:

Vt(t, x) + inf
u(t):H(t)u(t)≥0

{1
2

Vxx(t, x)u(t)′σ(t)σ(t)′u(t) + Vx(t, x)[r(t)x + b(t)′u(t)]} = 0,

(14)

with the boundary condition V(T, x) = (x − λ)2. By Theorem 1 in [18], we have the
following important result.

Theorem 2. While Vxx(t, x) 6= 0, the infimum in the HJB Equation (14) can be obtained as
follows:

u∗(t) =
Vx(t, x)
Vxx(t, x)

K̂(t)1 Vx(t,x)
Vxx(t,x)

≥0
+
∣∣∣ Vx(t, x)
Vxx(t, x)

∣∣∣K̄(t)1 Vx(t,x)
Vxx(t,x)

<0
,

where the K̂(t) and K̄(t) are optimal solutions of the following problems:

min
K(t):H(t)K(t)≥0

1
2

K(t)′σ(t)σ(t)′K(t) + b(t)′K(t) and min
K(t):H(t)K(t)≥0

1
2

K(t)′σ(t)σ(t)′K(t)− b(t)′K(t),

respectively.

Proof. As for getting the result using Theorem 1 in [18], we leave the proof for the interested
readers.

Before we go further, we need the following result.

Lemma 2. The value function V(t, ·) is convex on R, strictly decreasing on (−∞, λρ(t)] and
strictly increasing on (λρ(t),+∞), for each fixed t ∈ [0, T].

From Theorem 2 and Lemma 2, we can obtain the optimal portfolio policy of problem
(AMV). Before we go further, we must introduce the following two ODEs for the two
unknown functions F̂(·) : R→ R and F̄(·) : R→ R:

˙̂F(t) = −2F̂(t)r(t)− min
L: H(t)L≥0

f̂ (t, L, F̂(t)),

˙̄F(t) = −2F̄(t)r(t)− min
L: H(t)L≥0

f̄ (t, L, F̄(t)),

with the boundary condition F̂(T)=F̄(T) = 1 and

f̂ (t, L, F) = 2Fb(t)′L + L′
(

Fσ(t)σ(t)′
)

L,

f̄ (t, L, F) = −2Fb(t)′L + L′
(

Fσ(t)σ(t)′
)

L.
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Theorem 3. The optimal portfolio policy of problem (AMV) is characterized by

u∗(t) =

{
L̂(t)(x(t)− λ∗ρ(t)) if x(t)− λ∗ρ(t) ≥ 0,
−L̄(t)(x(t)− λ∗ρ(t)) if x(t)− λ∗ρ(t) < 0,

(15)

where the parameters L̂(t) and L̄(t) are

L̂(t) = arg min
L:H(t)L≥0

f̂ (t, L, F̂(t)),

L̄(t) = arg min
L:H(t)L≥0

f̄ (t, L, F̄(t)).

Moreover, the optimal Lagrange multiplier λ∗ is,

λ∗ =
d− x0 F̄(0)ρ(0)
1− F̄(0)ρ(0)2 .

5. An Illustrative Example

Here we consider an example of the MV portfolio selection model. We used the
financial indices of six industrial sectors in U.S stock market as the risky assets, namely,
the sectors of toys and recreation, communication, ship building, coal, gold, and industrial
mining. The detailed instructions of these industrial indices and historical data can be
found in http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_
48_ind_port.html (accessed on 18 August 2021). Based on the historical data of monthly
return from January 2008 to December 2013, we could estimate the parameters of average
return rate and volatility; e.g., we set µ(t) = µ̄ and σ(t) = σ̄ for all t ∈ [0, T] with

µ̄ =
(

0.0321 0.0123 0.0217 0.0217 0.0282 0.0146
)

and

σ̄ =



0.0845 0.0062 0.0166 0.0069 0.0087 0.0068
0.0062 0.0327 0.0148 0.0124 0.0067 0.0054
0.0166 0.0148 0.0589 0.0271 0.0204 0.0088
0.0069 0.0124 0.0271 0.1015 0.0215 0.0501
0.0087 0.0067 0.0204 0.0215 0.0609 0.0120
0.0068 0.0054 0.0088 0.0501 0.0120 0.1313

.

Differently from the MV portfolio model studied in [12], in which the no-shorting
constraints were imposed in all risky assets, our model allows the no-shorting constraints to
only be imposed on some of the assets; i.e., we set no-short constraints u2(t) ≥ 0, u3(t) ≥ 0,
u4(t) ≥ 0 and u6(t) ≥ 0 for t ∈ [0, T]. The remaining assets had no constraints; i.e., u1(t)
and u5(t) were free of constraints. These constraints can be easily represented in matrix
formulation H(t)u(t) ≤ 0, i.e., by setting the diagonal elements of H(t) to be −1 except
the first and fifth elements, and setting all the other elements to be 0. We also assumed that
there is a risk-free asset with the monthly return rate being 0.25%. The investor entered
market with initial wealth x0 = 100 and hoped for the (expected) terminal wealth level
d = 130, with the investment horizon being T = 12 months. We also included a penalty
matrix for the portfolio: R(t) = 10−2I for all t ∈ [0, T].

Based on Theorem 1, we can compute the optimal Lagrangian multiplier as λ∗ = 189.78,
and the optimal portfolio policy is

u∗(t) =

K̂mv(t)
(

x(t)− 189.78× e0.0025(t−T)
)

if x(t)− 189.78× e0.0025(t−T) ≥ 0,

−K̄mv(t)
(

x(t)− 189.78× e0.0025(t−T)
)

if x(t)− 189.78× e0.0025(t−T) < 0.

where K̂mv(t) and K̄mv(t) are plotted in Figure 1 for t ∈ [0, T].

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_48_ind_port.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_48_ind_port.html
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Figure 1. The outputs of K̂mv(t) and K̄mv(t).

We used the buy-and-hold portfolio policy as a benchmark; i.e., we treated the total
T = 12 month as the one-period static MV portfolio selection model. All the constraints
and parameters were set to be same as our dynamic MV portfolio selection model (PMV).
Solving the problem provided us the buy-and-hold portfolio policy. Figure 2 plots the real-
izations of the wealth processes generated by our model (PMV) and the static benchmark
for the identical sample path of the price process. Figure 2 shows that our model performed
better than the static benchmark model. To compare the performances of these two models,
we plotted the mean-variance efficient frontier of the terminal wealth x(T) for two models
in Figure 3. The efficient frontier describes the Parato optimal set of the mean and standard
deviation of the wealth. In this example, the efficient frontier was plotted in the following
way. We varied the expected terminal wealth level d and computed the correspondent
optimal portfolio. Once we had the portfolio, we could compute the standard deviation of
the terminal wealth. More specifically, we first simulated 100,000 sample paths for each
return of risky assets, respectively. Then, we could compute the corresponding realized
portfolio policy and realized terminal wealth. According to the realized terminal wealth,
we could compute the expected value and standard deviation of terminal wealth. Figure 3
shows that our dynamic MV portfolio policy achieved a lower level of risk than the static
MV portfolio policy for the same level of expected terminal wealth.
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6. Conclusions

This paper revisited the dynamic MV portfolio selection problem with cone constraints
in continuous-time. By reformulating our dynamic MV portfolio selection model into
a special stochastic LQ optimal control model, we successfully developed the optimal
portfolio policy for our model. Moreover, we provided an alternative method to resolve
this dynamic MV portfolio selection problem with cone constraints. More specifically,
instead of solving the correspondent HJB equation directly, we developed the optimal
solution for this problem by using the special properties of value function induced from its
model structure, such as the monotonicity and convexity of value function. This alternative
method offers a new way of thinking under the constrained mean-risk framework and can
be extended to solve another portfolio selection models with cone constraints. Finally, our
illustrative example demonstrated that our dynamic MV portfolio policy dominates the
static MV portfolio policy. For example, our dynamic MV portfolio policy achieved a lower
level of risk than the static MV portfolio policy for the same level of expected terminal
wealth. Moreover, our model performed better than the static benchmark model in terms
of the realized wealth processes.

One possible future study will be to extend our results to the stochastic control problem
with partial moments as the objective function, which has various applications in portfolio
management, such as the mean-downside-risk portfolio optimization model. Moreover, it
would also be significant to extend our results to the dynamic portfolio problem with no
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bankruptcy constraint and other trading constraints, such that our model becomes easier
to be applied to real portfolio management.
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Appendix A

Appendix A.1. The Proof of Lemma 1

Proof. We first consider Ĝmv(t). Since K(t) = 0 is a feasible solution of f̂ mv(t, K(t), Ĝmv(t)),
we obtain

min
K(t):H(t)K(t)≥0

f̂ mv(t, K(t), Ĝmv(t)) ≤ f̂ mv(t, 0, Ĝmv(t)) = 0.

Thus, it has ˙̂Gmv(t)≥−2Ĝmv(t)r(t) which leads to the following inequality:∫ T

t

1
Ĝmv(t)

dĜmv(t) ≥ −
∫ T

t
2r(s)ds ⇒ 1− Ĝmv(t)e−2

∫ T
t r(s)ds ≥ 0,

Similarly, we can prove that 1− Ḡmv(t)ρ(t)2 ≥ 0. Now, we show that

1− Ḡmv(t)ρ(t)2 6= 0.

If 1− Ḡmv(t)ρ(t)2=0, it has

min
H(t)K(t)≥0

f̄ mv(t, K(t), Ḡmv(t)) = 0,

which is contradict to the fact

min
H(t)K(t)≥0

f̄ mv(t, K(t), Ḡmv(t)) < 0

according to expression (6) and under the Assumption 1.

Appendix A.2. The Proof of Theorem 1

Proof. By applying Theorem 2 in [18], we obtain the optimal policy of problem (PMV(λ))
for any fixed λ:

u∗(t) =

{
K̂mv(t)z(t) if z(t) ≥ 0,
−K̄mv(t)z(t) if z(t) < 0.

(A1)
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The remaining task is to identify the optimal Lagrangian multiplier λ∗. From Theorem 2
in [18], it not hard to derive the optimal value of problem (PMV(λ)) for any fixed λ as

v(PMV(λ)) =

{
Ĝmv(0)(x0 − λρ(0))2 − (λ− d)2 if x(0)− λρ(0) ≥ 0,
Ḡmv(0)(x0 − λρ(0))2 − (λ− d)2 if x(0)− λρ(0) < 0,

Then, the optimal Lagrangian multiplier λ∗ can be identified by maximizing
λ∗ = maxλ∈Rn v(PMV(λ)). According to (7) and (8), we can find that v(PMV(λ)) is a
piece-wise concave function with respect to λ. Therefore, the optimal Lagrangian mul-
tiplier λ∗ can be derived as (12). The optimal portfolio decision (9) can be achieved by
replacing z(t) with x(t) in (A1).

Appendix A.3. The Proof of Lemma 2

Proof. Firstly, we will prove the convexity of the value function V(t, x). Let (X1(t), u1(t))
and (X2(t), u2(t)) be any different admissible pairs. We define (X̃(t), ũ(t)) = (aX1(t) +
(1− a)X2(t), au1(t) + (1− a)u2(t)), for any 0 < a < 1. It is easily to verify that (X̃(t), ũ(t))
satisfies H(t)ũ(t) ≥ 0. That is to say, (X̃(t), ũ(t)) is an admissible pair. Therefore,

V(t, X̃(t)) = V(t, aX1(t) + (1− a)X2(t))

≤ Et[(aX1(T) + (1− a)X2(T)− λ)2]

≤ aEt[(X1(T)− λ)2] + (1− a)Et[(X2(T)− λ)2],

where the last inequality holds true due to the convexity of square function. Since
(X1(t), u1(t)) and (X2(t), u2(t)) were chosen arbitrarily, we can find that

V(t, aX1(t) + (1− a)X2(t)) ≤ aV(t, X1(t)) + (1− a)V(t, X2(t)).

Therefore, the convexity of V(t, x) can be established.
Secondly, before we show that V(t, x) is strictly decreasing on (−∞, λρ(t)] and is

strictly increasing on [λρ(t),+∞), we need show that the value function V(t, x) = 0 while
x = X(t) = λρ(t). Indeed, we assume that X(t) = λρ(t). After that, we could obtain
X(T) = λ if taking u(t) = 0. Therefore, we have

V(t, λρ(t)) ≤ E[X(T)− λ]2 = 0.

Based on the non-negative of square function, we could obtain the result that
V(t, λρ(t)) = 0.

Finally, we will focus on proving V(t, x) is strictly increasing on [λρ(t),+∞), the other
part is similar. For any Xb(t) > Xa(t) ≥ X0(t) = λρ(t), there exists k such that

Xa(t) = kXb(t) + (1− k)X0(t)

where k ∈ [0, 1). Thus, based on the convexity of V(t, x), we have

V(t, Xa(t)) ≤ kV(t, Xb(t)) + (1− k)V(t, X0(t)) ≤ kV(t, Xb(t)) < V(t, Xb(t)),

where the second inequality is from the fact that V(t, λρ(t)) = 0 and the last inequality
is according to the assumption that k ∈ [0, 1). This result implies that V(t, x) is strictly
increasing in [λρ(t),+∞), which completes the proof.
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Appendix A.4. The Proof of Theorem 3

Proof. Combining Theorem 2 and Lemma 2, we could easily obtain the optimal solution
for the HJB Equation (14) as follows:

u∗(t) =
Vx(t, x)
Vxx(t, x)

L̂(t)1 Vx(t,x)
Vxx(t,x)

≥0
+
∣∣∣ Vx(t, x)
Vxx(t, x)

∣∣∣L̄(t)1 Vx(t,x)
Vxx(t,x)

<0

=
Vx(t, x)
Vxx(t, x)

L̂(t)1x(t)−λρ(t)≥0 +
∣∣∣ Vx(t, x)
Vxx(t, x)

∣∣∣L̄(t)1x(t)−λρ(t)<0, (A2)

where Vxx(t, x) 6= 0. Indeed, if we let Vxx(t, x) = 0, it has Vx(t, x) = constant. However,
this result conflicts with Lemma 2, since V(t, x) is strictly decreasing on (−∞, λρ(t)] and
strictly increasing on (λρ(t),+∞), for each fixed t ∈ [0, T].

Recall that if there are no strategy constraints, the optimal solution for the HJB
Equation (14) is

u∗(t) = −[σ(t)σ(t)′]−1b(t)
Vx(t, x)
Vxx(t, x)

.

Thus, if we define

B(t) =σ(t)σ(t)′ L̂(t)1 Vx(t,x)
Vxx(t,x)

≥0
+ [−σ(t)σ(t)′ L̄(t)]1 Vx(t,x)

Vxx(t,x)
≤0

=σ(t)σ(t)′ L̂(t)1x(t)−λρ(t)≥0 + [−σ(t)σ(t)′ L̄(t)]1x(t)−λρ(t)<0,

it is not hard to see that solving the HJB Equation (14) is equivalent to solve the following
auxiliary HJB equation without strategy constraints{

Vt + infu(t){ 1
2 Vxxu(t)′σ(t)σ(t)′u(t) + Vx[r(t)x + u(t)′B(t)]} = 0

V(T, x) = (x− λ)2 (A3)

More specifically, the solution of (A3) is equal to the one of (14). In fact, the solution to
the HJB Equation (A3) is also the value function associated with the following problem:

(Āmv(λ)) min
{u(t)}T−1

t=0

E[x(T)− λ]2

(s.t.) dx(t) = (r(t)x(t) + B(t)′π(t))dt + u(t)′σ(t)dW(t).

This problem has been widely studied in the literature and can be solved by the
stochastic optimal control or martingale method (see, [3,5]). The optimal portfolio policy of
problem (Āmv(λ)) is

u∗B(t) = −[σ(t)σ(t)′]−1B(t)′[x(t)− λρ(t)].

Therefore, the optimal control of mean-variance problem with cone constraints
is (15).
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