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Abstract: This paper addresses the problem of identifiability of nonlinear polynomial state-space
systems. Such systems have already been studied via the input-output equations, a description that,
in general, requires differential algebra. The authors use a different algebraic approach, which is
based on distinguishability and observability. Employing techniques from algebraic geometry such
as polynomial ideals and Gröbner bases, local as well as global results are derived. The methods are
illustrated on some example systems.
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methods; Lie derivative

1. Introduction

Dynamical systems are usually described by a set of differential or differential-
algebraic equations. These mathematical models may originate from physical laws and the
known structure of that system. Such models include physical parameters, which are either
known to high precision such as natural constants or depend on the geometry. Typically,
some further parameter values can be measured directly, such as masses or resistance
values. Contrary to that, some models are described by a parametric ansatz to reflect the
system dynamics by rather simple but sufficiently accurate equations. A typical example
of the latter parameters are friction coefficients, which are determined from experiments of
the dynamical system. The estimation of these unknown parameters from measured data
is called parameter, process or system identification [1,2].

The problem of parameter identification is that it asks for the determination of the
model parameters from the systems input-output behaviour in order to get concrete values
for a particular system instance. There is a wide range of literature on identification
methods, e.g., see [1–7] and references cited there. The identified parameter values may
be used to implement a precise simulation model to predict the model’s behaviour or to
design open-loop and closed-loop control devices.

Should it be necessary to determine unknown parameters experimentally, then the
question immediately arises as to what extent this is possible at all. This problem leads
directly to the question of the identifiability of the concerned parameters [8,9]. Roughly
speaking, a model is identifiable, if the unknown parameters can uniquely be determined
experimentally. This problem has two aspects, namely the question whether the measured
data contains enough information and the question whether the systems structure allows
the experimental determination [1,9]. The first question concerns the excitation of the
model with appropriate test signals [10]. This paper addresses the second question with
the focus on nonlinear systems.

The topic has developed the branches of structural and practical identifiability [11].
Structural identifiability asks for the feasibility to compute the parameters from the input-
output behaviour of the mathematical model without noise or uncertainties. This is
often not useful if the identification problem is ill-conditioned. Practical identifiability
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also addresses the quality of the measurements and its implication on the quality of the
identified parameters.

Identification and identifiability are related to several other problems in control theory.
The most obvious connection is to observer design and observability, which concerns the
estimation of the system’s state [9,12–15]. In [16,17], the authors carry out the identification
by means of adaptive control. The combination with the previous approach results in
adaptive observes [18,19]. A further relation concerns the field of fault detection, i.e., the
detection of changing system properties over the time, see [14,20].

In the literature, identifiability is defined in different ways depending on the
context [1,9,20]. As this article deals with structural algebraic methods, the definitions
that seem most common are used herein. Note that what is called locally identifiability
herein is sometimes referred to as structural identifiability, see [21]. The algebraic identifi-
ability approaches mostly examine the differential input-output relations by eliminating
the state variables over a differential ring [22–25]. This leaves one with a set of equations
of the known input and output trajectories and the parameters. Identifiability then asks
for the solvability for the parameters. This elimination can be done over the differential
polynomial ring using the well-known Ritt algorithm [26].

This article considers a method that does not rely on a differential ring and can de-
termine the identifiability using computations in the ordinary polynomial ring [27–29]
alone. The computation in this simpler domain comes at the cost of more variables
that are required to formulate the problem. This approach is based on an observability
criterion [30–32] and is extended to an identifiability criterion for polynomial systems. [A
note to the difference and extension from the observability criterion as suggested by revier-
wer 1 and reviewer 3 point 1.] In contrast to the observability test, the distinguishability is
concerned differently for state variables and parameters. This will be translated into the
algebraic context.

As suggested by the academic editor, a note to the polynomial system class is inserted.
Many chemical reactions or biological systems are described by such polynomial differential
equations. Even for linear electrical networks, the physical parameters, such as resistance
and capacitance, usually appear in products, yielding polynomials of the parameters in the
differential equations. Some other systems can be recast into a polynomial form using an
embedding into a higher-dimensional space. Those embeddings can be handled as well.

The paper structures as follows: In Section 2, we provide the required mathematical
preliminaries. The main results are stated in Section 3. Our approach is illustrated on
several example systems in Section 4. Finally, the results obtained will be discussed in
Section 5.

2. Preliminaries

Let Θ ⊆ Rs be a semi-algebraic set of parameter-tuples, i.e., a subset of Rs described
by a boolean combination of polynomial equations and inequalities. For each parameter-
tuple p ∈ Θ, consider a real-analytic manifoldMp ⊆ Rn and the dynamic system

ẋ = f0(x; p) +
m

∑
k=1

fk(x; p)uk (1a)

yk = hk(x; p), k = 1, . . . , l (1b)

with vector fields f0, fk :Mp → TMp and real-analytic scalar fields hk :Mp → R.
Herein, x, u, and y denote the system state, input, and output, respectively. Furthermore,
the parametric manifoldMp is the real variety of a polynomial ideal

〈
c1, . . . , cj

〉
⊂ R[x, p],

and the components of f0, fk as well as hk are polynomials in R[x, p].
In the context of parameter identification, the system state is usually extended to

contain the parameters too, which obey the simple differential equation:

ṗ = 0. (1c)
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One has to ensure that the initial value p(0) ∈ Θ is chosen such thatMp is a manifold.
Note thatMp may be singular for some p /∈ Θ. This allows to consider identifiability as a
special case of observability, where a subset p of the extended system state (x; p) is to be
determined from the input and output trajectories.

For nonlinear systems, observability is defined using the concept of the indistinguisha-
bility of states: Two system states x, x̄ ∈ Mp are said to be distinguishable if and only if
there exits an interval [0, T[ with T > 0 and a piecewise constant input u : [0, T[→ Rm

such that the output trajectories h(x(t); p) of Equation (1) corresponding to initial condi-
tions x(0) = x and x(0) = x̄, respectively, differ in that interval. Contrarily, if the output
trajectories are identical, the states are called indistinguishable.

This can also be applied to the extended state (x; p) or formulated for distinguishability
in the parameters only, if the initial condition x(0) is known, as opposed to the observability
case, where the parameters are supposed to be known.

2.1. Differential Equations and Their Flow

Consider an autonomous system first, i.e., the vector field in Equation (1a) does
not depend on an input u. The flow ϕt :Mp →Mp of Equation (1a) is the general solu-
tion x(t) = ϕt(x0) of Equation (1a) at time t with initial value x(0) = x0. Since the vector
field in Equation (1a) is a polynomial in x and, therefore, is locally Lipschitz continuous,
the Picard–Lindelöff Theorem ensures that the flow ϕt(x0) is locally analytic in t. The
same holds for the output trajectories yk(t) = hk(ϕt(x0)). This allows to expand the output
trajectories in terms of their Lie series

yk(t) =
∞

∑
i=0

ti

i! Li
f0

hk(x(0); p), k = 1, . . . , l,

where Li
f h denotes the i-th Lie derivative of h along the vector field f , defined by

L f h(x) = dh
dx (x) f (x)

L0
f h(x) = h(x)

Li+1
f h(x) = L f Li

f h(x),

see [33]. For notational conveniance, we use the same notation for a vector of scalar fields.
In this case, the Lie derivative of a vector of scalar fields yields a vector of scalar fields
again, where the (usual) Lie derivative is applied to each vectorial component [34]. This is
not to be confused with the Lie derivative of a vector field defined in a different way.

If the system is forced by piecewise constant inputs

uk(t) = ui
k ∈ R for Ti ≤ t < Ti+1 = Ti + τi+1

with T0 = 0, τi > 0, k = 1, . . . , m, one may write

f i = f0 +
m

∑
k=1

fkui
k

and gets

x(TN) = ϕ
f N

τN ◦ · · · ◦ ϕ
f 1

τ1 (x(0))

for the solution of Equation (1a) at time TN , which is the composition of the flows. Here,
there are different flows depending on the current vector field.

2.2. Ideals and Varieties

The succeeding sections will make use of polynomial ideals and their corresponding
varieties. Therefore, the required concepts used herein are briefly introduced as well.
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Consider the commutative multivariate polynomial ring R[x1, . . . , xn] = R[x] in the vari-
ables x1, . . . , xn. An ideal I ⊆ R[x] is a special subset of this ring satisfying the conditions
1. 0 ∈ I
2. a, b ∈ I =⇒ a + b ∈ I
3. a ∈ I, c ∈ R[x] =⇒ ca ∈ I.

Thus, an ideals contains an infinite number of polynomials, let alone the trivial
ideal {0}. Nonetheless, Hilbert’s basis theorem asserts that these ideals can be represented
using a finite polynomial set G = {g1, . . . , gs} ⊂ R[x], a so-called basis, by

I = 〈g1, . . . , gs〉 = {a1g1 + · · ·+ asgs | a1, . . . , as ∈ R[x]}.

There are different bases that represent the same ideal, possibly with a different
number of generators. Ideals can be compared by computing a so-called standard basis
or Gröbner basis. A reduced Gröbner basis is unique for a given monomial ordering, and
there is an algorithm to compute them. On the other hand, one can easily verify whether
a polynomial is contained in an ideal given a Gröbner basis of that ideal. This allows
deciding subset relations of ideals (and thus also their equality).

The common real zero set V = varR(I) ⊆ Rn of all polynomials in an ideal I ⊆ R[x]
is called the real variety of that ideal. This mapping from ideals to varieties is not bijective.
Consider, for example, the ideals 〈x〉,

〈
x2〉 ⊆ R[x] over the univariate ring, which are

different, but whose real varieties {0} ⊆ R coincide. Given a real variety V ⊆ Rn, there
is, however, an ideal Id(V) ⊆ R[x] containing all polynomials that vanish on V. Such an
ideal is called real, and there is a one-to-one correspondence between real ideals and real
varieties. This real ideal is the superset of all ideals whose polynomials evaluate to zero
on the real variety and is called the real radical of that ideals. The real radical radR(I) of
an ideal I can also be computed algebraically [29, p. 85]. One can also consider the set
of polynomials in R[x] that vanish on a set W ⊆ Rn, which is not a real variety. These
polynomials will then have additional zeros

W ⊆ varR(Id(W)) = W ⊆ Rn.

This variety W is called the Zariski closure of W, the smallest variety containing W.
Like the real radical, there is a correspondence of geometric set operations on the

varieties and operations on the ideals, which make it possible to handle these operations
algebraically.

The intersection V ∩W of real varieties corresponds to the sum I + J of the ideals I
and J:

varR(I + J) = varR(I) ∩ varR(J).

The sum is defined as the set of all polynomials contained in I or J and is also an ideal.
For the union of varieties, one has

varR(I ∩ J) = varR(I) ∪ varR(J),

where

I ∩ J = {g | g ∈ I ∧ g ∈ J}

is the intersection of the ideals.
The difference set V \W of two varieties V and W is, in general, not a variety anymore.

As an example, consider in R1 the varieties V = R and W = {0} with corresponding real
ideals 〈0〉 and 〈x〉, respectively. There is no ideal with real variety V \W. However, there
is an algebraic counterpart to the Zariski closure of the difference set:

varR(I : J∞) = varR(I) \ varR(J)

with the saturation ideal
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I : J∞ =
{

g | ghN ∈ I for some N and all h ∈ J
}

.

A real variety might allow to be written as a union of varieties. Such a decoposition

V = V1 ∪ · · · ∪Vs

is said to be irreducible if the varieties cannot be docomposed further and are not subsets
of each other. To this decomposition as a union corresponds a decomposition of the ideal,
written as an intersection of prime ideals.

2.3. Indistinguishability of States

First consider an autonomous system

ẋ = f (x), y = h(x) (2)

with f :M→ TM, h :M→ Rl , where the system state and parameters are condensed in
the variables x ∈ M for a moment. As previously noted, two system states x, x̄ ∈ M are
said to be distinguishable if and only if there exits an interval [0, T] such that the output
trajectories h(x(t)) corresponding to initial conditions x(0) = x and x(0) = x̄, respectively,
differ in that interval.

As the output trajectories are locally analytic, there is a one-to-one correspondence
between the trajectory and the coefficients of the Lie-series. Thus, the distinguishability
can be equivalently expressed in terms of the observability map

q(x) =


h(x)

L f h(x)
L2

f h(x)
...


as follows: Two states x, x̄ ∈ Mp are indistinguishable if and only if

q(x) = q(x̄) =⇒ x = x̄. (3)

This formula, however, is to some extend unsatisfying as it contains an infinite number
of equations. In [32], this problem has been handled for the case of polynomial vector fields
and output maps. The key of this approach is to use two copies of Equation (2) with a
vector field

F :M×M→ T(M×M)

F(x, x̄) = f (x) ∂
∂x + f (x̄) ∂

∂x̄

and output map
H(x, x̄) = h(x)− h(x̄).

This way the components of the residuum observability map

Q(x, x̄) = q(x)− q(x̄) (4)

are precisely the Lie derivatives Li
F H(x, x̄), i = 0, 1, 2, . . .. The common zero-set of Q is

an algebraic variety; thus, the set of polynomials in R[x, x̄] that vanish on that variety is
finitely generated by Hilbert’s basis theorem. This polynomial ideal is generated by the
polynomials Hk ∈ R[x, x̄], k = 1, . . . , l as well as their (higher-order) Lie derivatives along
the vector field F. As LF is a derivative operator LF : R[x, x̄]→ R[x, x̄], a generating set
for the ideal generated by the components of the extended observability map Q can be
computed in a finite number of steps, see [31,32,35].

A very simple yet computationally suboptimal algorithm starts with a generating set

G0 = {H1, . . . , Hl}
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of the output maps and iteratively adds their (extended) Lie derivatives along F:

Gk+1 = Gk ∪
{

Lk
F H1, . . . , Lk

F Hl

}
.

The such generated ideals form an ascending chain

〈G0〉 ⊆ 〈G1〉 ⊆ · · · ⊆ 〈GN〉 = 〈GN+1〉 = · · ·
def
= L∞

F〈G0〉 (5)

that terminates after a finite number of steps by the ascending chain condition, yielding
a finite generating set GN . Now, Equation (3) can be written using a finite number of
atomic formulas: ∧

g∈GN ,〈GN〉=L∞
F 〈G0〉

g(x, x̄) = 0 =⇒ x = x̄.

2.4. The Nonautonomous Case

If the vector field depends on an input, two states are called indistinguishable if and
only if the corresponding output trajectories are equal for all piecewise constant inputs.
Using a similar notation

ẋ = f0(x) +
m

∑
k=1

fk(x)uk

y = h(x)

with condensed state and parameters in the variables x and a piecewise constant input

u(t) = ui ∈ Rm for Ti ≤ t < Ti+1 = Ti + τi

with T0 = 0, τi > 0, and corresponding vector fields

f i = f0 +
m

∑
k=1

fkui
k,

one can expand the output trajectory with initial value x0 locally for sufficiently small τi:

y(TN) = ∑
k∈ZN

≥0

τk1
1 · · · τ

kN
N

k!
LkN

f N · · ·L
k1
f 1 h(x0),

see [36]. As indistinguishable initial conditions yield the same output trajectory for any
input, all coefficients in this Lie series, i.e., all mixed Lie derivatives must be equal. Thus,
the polynomials that vanish on indistinguishable pairs are contained in the ideal

I0 = 〈H1, . . . , Hl〉

closed under all derivative operators LF with F of the form

F(x, x̄) = f i(x) ∂
∂x + f i(x̄) ∂

∂x̄

parameterized by an input ui ∈ Rm. Since the Lie derivative is a linear operator, it suffices
to close the ideal under the finitely many operators LFk with

Fk(x, x̄) = fk(x) ∂
∂x + fk(x̄) ∂

∂x̄ , k = 0, 1, . . . , m.

Again, this can be done by computing a chain

I0 ⊆ I1 ⊆ · · · ⊆ IN = IN+1 = · · ·

of ideals, where
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Ik+1 = Ik +
〈
LF0 g, LF1 g, . . . , LFm g | g ∈ Ik

〉
.

We will write the stabilized ideal as

LF0,F1,...,Fm〈H1, . . . , Hl〉.

3. Observability and Identifiability

In this section, observability and identifiability of systems of Equation (1) is discussed
using the notation introduced in Section 2. Furthermore, instead of writing LF0,F1,...,Fm I for
the stabilized Lie derivative of an ideal I with respect to all vector fields Fk, we write F for
the linear span of the latter vector fields and LF for the corresponding operator acting on
ideals. This clearly includes the autonomous case, where the space F is one-dimensional,
i.e., spanned by the single vector field F0.

3.1. Global Identifiability and Observability

We discuss the most general case with an extended state z = (x, x̄; p, p̄) containing
two copies of the state and parameter tuple first. The space Z =Mp ×M p̄ ×Θ2 of the
extended states is a semi-algebraic set; thus, its Zariski closure is the real variety of an
ideal Z. This ideal is generated by all equations governing the manifoldsMp andM p̄
and possibly the parameter space Θ2 if the parameters are not independent of each other.
Within the set of extended states, one may identify equal extended states, e.g., the subset

J =
{

z = (x, x̄; p, p̄) ∈ Z =Mp ×M p̄ ×Θ2 | x = x̄ ∧ p = p̄
}

(6)

of equal states and parameters for each system copy. The main question is if that set of
equal extended states matches the set I ⊆ Z of indistinguishable states. As the equal
states are obviously indistinguishable, one has I ⊇ J , and it suffices to test if the reverse
inclusion holds.

Assume for a moment that J in Equation (6) is a real variety, i.e., the parameter set Θ
is an algebraic yet not semi-algebraic set. This means that the space Z of extended states
is the real variety of a real ideal Z and that the varieties in Equation (6) correspond to a
real ideal

J = Z+ 〈x1 − x̄1, . . . , xn − x̄n, p1 − p̄1, . . . , ps − p̄s〉 ⊂ R[x, x̄, p, p̄].

Furthermore the set I of indistinguishable states equals the real variety of the stabi-
lized ideal L∞

F 〈H1, . . . , Hl〉 of the extended output maps, where F is the linear span of the
extended vector fields

Fk(x, x̄; p, p̄) = fk(x; p) ∂
∂x + fk(x̄; p̄) ∂

∂x̄ . (7)

The equality of the indistinguishable and equal states can be tested by comparing the
corresponding real ideals

I = Z+ radR(L∞
F 〈H1, . . . , Hl〉) (8)

and J. Note that the ideal sum with Z is neccesary to restrict the states to the manifold they
are contained in.

In many cases, the parameter space is not algebraic because of physical restrictions,
e.g., a mass is usually restricted to positive values. In this case, Z is taken to be the real ideal
corresponding to the Zariski closure of Z . Then, however, the variety varR(I) may contain
irreducible components that do not respect these restrictions, e.g., lie in a plane where the
mass vanishes. In such cases, the comparison of the ideals I and J is not sufficient to test
global identifiability.

Therefore, we compute the decomposition of I into its minimal associated primes

I = I1 ∩ · · · Ik
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and check if the corresponding irreducible varieties lie in the extended state and
parameter space:

∃x, x̄, p, p̄ : (x, x̄, p, p̄) ∈ Z ∩ varR(Ii) , i = 1, . . . , k. (9)

The set can be described by a boolean combination of equations and inequalities. Note
that the equations are the collections of the form g(x, x̄, p, p̄) = 0 with all polynomials g
in the generators of Ii ⊇ Z. The quantified Equation (9) can always be transformed into
a quantifier-free formula [37,38]. If the quantifier-free equivalent to Equation (9) is FALSE
for some Ii, then the corresponding real variety varR(Ii) is disjoint from the admissible
extended state and parameter space Z , and we set Îi = 〈1〉. Otherwise, i.e., the quantifier-
free equivalent is TRUE, there are indistinguishable tuples in Z , and we set Îi = Ii. We
collect all these components and write

Î =
k⋂

i=1

Îi.

The real variety varR
(
Î
)

is then the Zariski closure of the indistinguishable
states I ⊆ Z .

Using this notation, we are able to express the global identifiability as follows: The
system in Equation (1) is globally identifiable and globally observable if and only if Î = J.
Note that if the system is globally identifiable and observable, this holds for any initial
condition of the system state x.

With small variations on the ring and the ideals, other properties can be tested as well:

3.2. Global Identifiability with Known Initial Conditions

The question arises if the parameters can be distinguished from the output trajectories
if the system is known to be in a definite state, which usually simplifies the identification
problem. There is only a small modification necessary compared to the general case,
namely that the indistinguishable states are intersected with the plane x = x̄. This can be
accomplished by substituting Equation (8) with

I = Z+ radR(L∞
F 〈H1, . . . , Hl〉) + 〈x1 − x̄1, . . . , xn − x̄n〉.

Note that one cannot easily get rid of the copied state variables x̄ until this point as
these are required to distinguish the system copies when taking the Lie derivatives with
respect to Equation (7), where the different parameters matter. The remaining test can be
applied as in the general case before.

3.3. Global Identifiability

When one wants to decide if a system is identifiable without bothering if the initial
condition can be restored from the output trajectory, the statement at the end of Section 3.1
is too restrictive. However, instead of comparing the sets I and J that contain the full
extended state, one may compare these sets in their projections on the parameter plane

{(x, x̄, p, p̄) ∈ Z | x = x̄ = 0}.

This corresponds algebraically to the comparison of the elimination ideals

Î∩R[p, p̄], J∩R[p, p̄].

The system is globally identifiable if and only if these ideals are equal, regardless of
the initial condition.

3.4. Global Identifiability of a Particular Parameter

The statement that a system is not identifiable is not always satisfying. In some
cases, only a subset of the parameters can be identified. Thus, it makes sense to test the
identifiability for each parameter pi. This can be accomplished by computing further elimi-
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nations as in the preceding section, namely by comparing the elimination ideals Î∩R[pi, p̄i]
and J∩R[pi, p̄i].

3.5. Global Observability

For the observability test, the parameters are assumed to be known. Therefore, the ex-
tended state space is restricted to Z =M2

p ×Θ 3 z = (x, x̄, p). We identify equal extended
states by

J = {z = (x, x̄; p) ∈ Z | x = x̄},

i.e., by equal ordinary state. Thus, the corresponding ideal to the Zariski closure
thereof reads

J = Z+ 〈x1 − x̄1, . . . , xn − x̄n〉 ⊂ R[x, x̄; p].

The ideal generated by the extended output maps is closed under the Lie derivatives
with respect to the vector fields

Fk(x, x̄; p) = fk(x; p) ∂
∂x + fk(x̄, p) ∂

∂x̄ .

This differs only in the part in direction ∂
∂x̄ , which is evaluated at the same parameter p.

Using the same notation, the system is globally observable if and only if Î = J. This holds
for all admissible parameters.

In addition, the parameter subset for the given global observability can be computed
by solving the quantifier elimination problem

∀x, x̄ : (x, x̄; p) ∈ Z ∧
(
(x, x̄; p) ∈ varR(I) =⇒ x = x̄

)
.

3.6. Locally Identifiability

For some systems, there might be initial conditions that prevent the unique identi-
fication of parameters from the corresponding output trajectories. Common examples
are equilibria of autonomous systems. The method described herein allows computing
such subsets when the indentifiability is not given. Apart from those subsets, the map
between the initial state and parameter (x; p) and the output trajectory may still be injective
within a neighbourhood of a point (x0, p0). This means that varieties varR

(
Î
)
= I and J

and the Zariski closures of indistinguishable and equal extended states, respectively, are
equal in an open neighbourhood of a point z0 = (x0, x0; p0, p0) ∈ Z . The equality in this
neighborhood can be tested geometrically by removing all irreducible components of the
indistinguishable set I that are not contained in this neighborhood. On the other hand, the
points z0, where the varieties are not equal, are easily found as they are either contained in
more than one irreducible component of I or such a component strictly contains J , i.e.,
has a higher dimension.

Recall that the Zariski closure of the indistinguishable extended states is given
by varR

(
Î
)
, where

Î = Î1 ∩ · · · ∩ Îk ⊆ J

and all ideals Îi are relatively prime. If there are some Îi that are strictly contained in J, the
system is at no point locally observable or identifiable. Instead, there may be a locally or
globally identifiable subspace. Otherwise, one of the prime components in the minimal
decomposition must equal J (because the indistinguishable states always include the equal
ones). In this case, the not locally observable points z0 are found by intersecting J with the
corresponding real varieties varR

(
Îi
)

different from the one of the equal extended states.
Note that the extended point z0 includes two copies of the same original point (x0; p0),
which is just a projection of the latter.

While there were different definitions for equal and indistinguishable pairs for dif-
ferent global problems in the preceding sections, the same can be used to discuss local
properties, as described herein. Note that for the identifiability test for all or a subset of
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the parameters, as described in Sections 3.3 and 3.4, the projection has to be done for each
irreducible variety independently.

4. Examples
4.1. The Van der Pol Oscillator

The Van der Pol oscillator is considered with an increasing number of parameters. In
its simplest form, the equations of motion read

ẋ1 = x2

ẋ2 = −x1 − εx2

(
x2

1 − 1
)

y = x1

where ε ∈ Θ = R is a parameter. The chain of ideals defined by Equation (5) starting
with 〈x1 − x̄1〉 generated by the extended output map stabilizes after the fifth Lie derivate
with respect to the parametric vector field. This stabilized ideal is already real and reads

I = 〈x1 − x̄1, x2 − x̄2, x1(ε− ε̄), x2(ε− ε̄)〉

and can be written as an intersection

〈x1, x2, x̄1, x̄2〉 ∩ 〈x1 − x̄1, x2 − x̄2, ε− ε̄〉

of prime ideals. The latter of these ideals corresponds to equal states and parameters, i.e.,
the ideal J. The first one describes the not identifiable part, which consists of the (sole)
equilibrium (x1, x2) = (0, 0) for each system copy. Thus, the system is locally identifiable
except at the equilibrium, where the output trajectory is identically zero for all parameters ε.

The system is modified to include two parameters and reads

ẋ1 = x2

ẋ2 = −x1 − x2

(
ax2

1 − b
)

further on, while the output map is preserved. The chain of ideals generated by Lie
derivatives of the extended output map stabilizes after the seventh Lie derivative has been
added. This ideal is not yet radical. However, the radical takes a similar form

I = 〈x1, x2, x̄1, x̄2〉 ∩
〈

x1 − x̄1, x2 − x̄2, a− ā, b− b̄
〉

as for the previous system. Again, the parameters are structurally identifiable, and the
equilibrium is the only exceptional point.

If an additional parameter c is included such that

ẋ1 = x2

ẋ2 = −cx1 − x2

(
ax2

1 − b
)

,

Lie derivatives up to order nine are required until the chain of ideals stabilizes.
The radical of the stabilized Lie derivative can be written as an intersection of five
irreducible components:
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I = 〈x1, x2, x̄1, x̄2〉
∩
〈

x1 − x̄1, x2 − x̄2, a− ā, b− b̄, c− c̄
〉

∩
〈

x1 − x̄1, x2 − x̄2, a, ā, x1(c− c̄)− x2(b− b̄), x1x2b̄− x2
1 c̄− x2

2,

x2(bb̄− b̄2 − c + c̄)− x1 c̄(b− b̄), bcb̄− cb̄2 − b2 c̄ + bb̄c̄− c2 + 2cc̄− c̄2
〉

∩
〈

x1 − x̄1, x2 − x̄2, b, b̄, ax2
2 + c, āx2

2 + c̄, ac̄− āc
〉

∩ 〈x1 − x̄1, x2 − x̄2, c, c̄〉

The first two components are similar to the previous cases. As the ideal J occurs in the
second prime component, the system is locally identifiable again, except at the equilibrium.
The remaining three components describe other constellations for that local identifiability
fails. As can be seen, these correspond to degenerate parameter constellations a = 0, b = 0,
or c = 0, respectively.

4.2. The Lotka–Volterra Model

We consider the Lotka–Volterra system given by

ẋ1 = ax1 − bx1x2

ẋ2 = −cx2 + dx1x2

y = x1

with measurement of the prey population x1. The parameters (a, b, c, d) ∈ Θ = R4
+ are

all positive.
As the system is autonomous, there is a single extended vector field. Evaluating

the ideal defined by Equation (8) yields an ideal with 18 prime components. We have
used a more efficient method to compute the minimal associated primes of the stabilized
chain directly, as evaluating the chain of ideals defined by Equation (5) using the simple
algorithm was not possible in reasonable time. Thus, we do not know up to which order
Lie derivatives are required to stabilize the chain.

Most of these corresponding varieties of the prime ideals lie in a plane where at least
one parameter equals zero. These components can be removed since they do not lie in the
parameter space. The remaining components read

Î1 = 〈x1, x̄1〉
Î2 = 〈x1 − x̄1, x2, x̄2, a− ā〉
Î3 =

〈
x1 − x̄1, bx2 − b̄x̄2, a− ā, c− c̄, d− d̄

〉
Î4 =

〈
x1 − x̄1, dx1 − c, d̄x̄1 − c̄, bx2 − a, b̄x̄2 − ā

〉
.

As one can see, the ideal

J =
〈

x1 − x̄1, x2 − x̄2, a− ā, b− b̄, c− c̄, d− d̄
〉

is not under these primes, which means that the system is not locally identifiable. However,
the component Î3 suggests that at least a subset of the parameters are locally identifiable.
Indeed, eliminating the state (x1, x2), the parameter b and their copies yields

Î3 ∩R[a, c, d; ā, c̄, d̄] = J∩R[a, c, d; ā, c̄, d̄] =
〈

a− ā, c− c̄, d− d̄
〉
.

This means that the parameters a, c, and d are locally identifiable, while b is not.
The not locally observable points include the degenerate case x1 = 0, where not one

parameter can be identified at all due to Î1. The other degenerate case x2 = 0 is also special.
Eliminating all variables except a and ā in Î2 and Î3 yields 〈a− ā〉; thus, a is identifiable
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on this line. However, only Î3 equals 〈c− c̄〉 or
〈
d− d̄

〉
when eliminating all but these

variables, respectively. This shows that parameters c and d are not local identifiable
at x2 = 0. Another point for that identification fails for all parameters is the nontrivial
equilibrium, indicated by Î4. Note that one still can get the ratio of the parameters c and d;
however, these identifiable functions are beyond the scope of this article.

4.3. Van de Vusse Reaction

An interesting nonautonomous example is the isothermal Van de Vusse reaction [39–41]
described by

ẋ1 = −k1x1 − k3x2
1 + (c− x1)u

ẋ2 = k1x1 − k2x2 − x2u,

where the state variables x1 and x2 describe concentrations in the reactor. The control
input u is a normalized inlet flow rate. The reaction rates k1, k2, and k3 as well as the inlet
concentration c are positive parameters. We assume a measurement y = x1 of the reactant
concentration.

The chain (5) of ideals stabilizes after including the sixth Lie derivative with respect to
both the drift and control vector field. Writing the radical of the latter as an intersection of
irreducible ideals yields 19 components. Most of them contain the reaction rates k1 or k3 or
the inlet concentration c (or the parameters k̄1, k̄3, and c̄ or the system copy). Removing
these components obviously violates the parameter space and results in an ideal〈

x1 − x̄2, x2 − x̄2, k1 − k̄1, k2 − k̄2, k3 − k̄3, c− c̄
〉
∩〈

k3k̄2
1 − k2

1k̄3, k3k̄1 c̄ + k2
1, k1c− k̄1 c̄, k3c + k1, k̄3 c̄ + k̄1, x1 − c, x2 − x̄2, k2 − k̄2, x̄1 − c̄

〉
.

containing only two irreducible components. The second ideal still has generators that take
only positive values in the whole parameter space. Thus, the only remaining component
is the ideal corresponding to equal states and parameters, asserting that this system is
globally identifiable and also globally observable.

5. Discussion

The problem of deciding global or local identifiability of a system has been addressed
by viewing the parameters as additional state variables and testing the observability of
these. In contrast to the ordinary observability problem, various kinds of state variables
exist in the extended system that may be handled differently. Algebraic criteria for global
and local identifiability, with or without known initial conditions, have been given. These
can be tested for each individual physical parameter. For locally yet not globally identifiable
or observable systems, the critical points in the state and parameter space can be computed
as well. This information may be used to select appropriate initial conditions or input
signals for identification experiments, such that these points are avoided. Furthermore,
parameter constellations that prevent their identification can be computed in advance.

The approach used herein differs from algebraic methods for identifiability tests that
eliminate the system state. While our method introduces additional variables, we can
entirely avoid calculations in a differential ring. Nonetheless, computations in the ordinary
or differential polynomial ring may require a large computational effort even for systems
that appear very simple, as the expressions swell very quickly. Which criterion performs
better may depend on the system itself as well as on the underlying algorithms used. In
addition, the monomial ordering as well as the ranking of the differential monomials have
a high impact on the computation time and size of the intermediate results. No comparison
of the different approaches has been carried out until this point.

Currently, the manageable systems must allow a state-space representation with a
polynomial vector field in both the state and the parameters, as opposed to the differential-



Algorithms 2021, 14, 255 13 of 14

algebraic methods that naturally support rational vector fields, and can thus handle a
greater system class. One can possibly overcome this limitation.
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21. Nŏmcová, J. Structural Identifiability of polynomial and rational systems. Math. Biosci. 2010, 223, 83–96. [CrossRef] [PubMed]
22. Xia, X.; Hong, C.H. Identifiability of Nonlinear Systems With Application to HIV/AIDS Models. IEEE Trans. Autom. Control

(TAC) 2003, 48, 330–336. [CrossRef]
23. Miao, H.; Xia, X.; Perelson, A.S.; Wu, H. On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics. Soc.

Ind. Appl. Math. (SIAM) 2011, 53, 3–39. [CrossRef] [PubMed]
24. Ovchinnikov, A.; Pogudin, G.; Thomson, P. Parameter identifiability and input-output equations. Appl. Algebra Eng. Commun.

Comput. (AAECC) 2021. [CrossRef]
25. Hong, H.; Ovchinnikov, A.; Pogudin, G.; Yap, C. Global Identifiability of Differential Models. Commun. Pure Appl. Math. 2020,

73, 1831–1879. [CrossRef]
26. Ritt, J.F. Differential Algebra; Colloquium Publications; American Mathematical Society: Providence, RI, USA, 1950; Volume 33
27. Cox, D.A.; Little, J.; O’Shea, D. Ideals, Varieties, and Algorithms, 4th ed.; Springer International Publishing: Basel, Switzerland, 2015.
28. Becker, T.; Weispfenning, V. Gröbner Bases, 2nd ed.; Springer: New York, NY, USA, 1998.
29. Bochnak, J.; Coste, M.; Roy, M. Real Algebraic Geometry; Springer: Berlin/Heidelberg, Germany, 1998.
30. Tibken, B. Observability of nonlinear systems—An algebraic approach. In Proceedings of the 2004 43rd IEEE Conference on

Decision and Control (CDC), Nassau/Paradise Island, Bahamas, 14–17 December 2004; Volume 5, pp 4824–4825.

http://doi.org/10.1051/cocv:2003008
http://dx.doi.org/10.1214/aoms/1177729837
http://dx.doi.org/10.1016/j.coisb.2021.03.005
http://dx.doi.org/10.1115/1.2835177
http://dx.doi.org/10.1109/9.467673
http://dx.doi.org/10.1016/S1474-6670(17)58699-1
http://dx.doi.org/10.1080/00207720802298715
http://dx.doi.org/10.1016/S0167-6911(00)00065-7
http://dx.doi.org/10.1016/j.mbs.2009.11.002
http://www.ncbi.nlm.nih.gov/pubmed/19913563
http://dx.doi.org/10.1109/TAC.2002.808494
http://dx.doi.org/10.1137/090757009
http://www.ncbi.nlm.nih.gov/pubmed/21785515
http://dx.doi.org/10.1007/s00200-021-00486-8
http://dx.doi.org/10.1002/cpa.21921


Algorithms 2021, 14, 255 14 of 14

31. Kawano, Y.; Ohtsuka, T. Global observability of polynomial systems. In Proceedings of the SICE Annual Conference 2010, Taipei,
Taiwan, 18–21 August 2010; pp. 2038–2041

32. Gerbet, D.; Röbenack, K. On Global and Local Observability of Nonlinear Polynomial Systems: A Decidable Criterion. Automa-
tisierungstechnik 2020, 68, 395–409. [CrossRef]

33. Lee, J.M. Introduction to Smooth Manifolds; Graduate Texts in Mathematics; Springer: New York, NY, USA, 2006; Volume 218.
34. Kwatny, H.G.; Blankenship, G.L. Nonlinear Control and Analytical Mechanics: A Computational Approach; Birkhäuser: Boston, MA,

USA, 2000.
35. Gerbet, D.; Röbenack, K. Proving Asymptotic Stability with LaSalle’s Invariance Principle: On the Automatic Computation of

Invariant Sets Using Quantifier Elimination. In Proceedings of the International Conference on Control, Decition and Information
Technologies (CoDIT’20), Prague, Czech Republic, 29 June–2 July 2020; Volume 1, pp. 306–311 [CrossRef]

36. Röbenack, K. Computation of multiple Lie derivatives by algorithmic differentiation. J. Comput. Appl. Math. 2008, 213, 454–464.
[CrossRef]

37. Tarski, A. A Decision Method for a Elementary Algebra and Geometry; Project rand; Rand Corporation: Santa Monica, CA, USA, 1948
38. Seidenberg, A. A New Decision Method for Elementary Algebra. Ann. Math. 1954, 60, 365–374. [CrossRef]
39. van de Vusse, J. Plug-flow type reactor versus tank reactor. Chem. Eng. Sci. 1964, 19, 994–997. [CrossRef]
40. Doyle III, F.J.; Ogunnaike, B.A.; Pearson, R.K. Nonlinear Model-based Control Using Second-order Volterra Models. Automatica

1995, 31, 697–714. [CrossRef]
41. Wu, W. Stable inverse control for nonminimum-phase nonlinear processes. J. Process. Control 1999, 9, 171–183. [CrossRef]

http://dx.doi.org/10.1515/auto-2020-0027
http://dx.doi.org/10.1109/CoDIT49905.2020.9263958
http://dx.doi.org/10.1016/j.cam.2007.01.036
http://dx.doi.org/10.2307/1969640
http://dx.doi.org/10.1016/0009-2509(64)85109-5
http://dx.doi.org/10.1016/0005-1098(94)00150-H
http://dx.doi.org/10.1016/S0959-1524(98)00030-4

	Introduction
	Preliminaries
	Differential Equations and Their Flow
	Ideals and Varieties
	Indistinguishability of States
	The Nonautonomous Case

	Observability and Identifiability
	Global Identifiability and Observability
	Global Identifiability with Known Initial Conditions
	Global Identifiability
	Global Identifiability of a Particular Parameter
	Global Observability
	Locally Identifiability

	Examples
	The Van der Pol Oscillator
	The Lotka–Volterra Model
	Van de Vusse Reaction

	Discussion
	References

