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Abstract: Clustering is an unsupervised machine learning method with many practical applications
that has gathered extensive research interest. It is a technique of dividing data elements into clusters
such that elements in the same cluster are similar. Clustering belongs to the group of unsupervised
machine learning techniques, meaning that there is no information about the labels of the elements.
However, when knowledge of data points is known in advance, it will be beneficial to use a semi-
supervised algorithm. Within many clustering techniques available, fuzzy C-means clustering (FCM)
is a common one. To make the FCM algorithm a semi-supervised method, it was proposed in
the literature to use an auxiliary matrix to adjust the membership grade of the elements to force
them into certain clusters during the computation. In this study, instead of using the auxiliary
matrix, we proposed to use multiple fuzzification coefficients to implement the semi-supervision
component. After deriving the proposed semi-supervised fuzzy C-means clustering algorithm with
multiple fuzzification coefficients (sSMC-FCM), we demonstrated the convergence of the algorithm
and validated the efficiency of the method through a numerical example.

Keywords: clustering technique; fuzzy C-means clustering; semi-supervised clustering; fuzzification
coefficient; objective function

1. Introduction

Data clustering is a method that divides the elements of a data set into clusters such
that data elements in the same cluster have similar properties, and data elements in different
clusters have different properties [1,2]. Data clustering is an important pre-processing
step to produce initial knowledge, supporting the decision-making for the next processing
steps. In the current clustering methods, Fuzzy C-means clustering (FCM) algorithm gives
relatively good results, taking advantage of the flexible nature of fuzzy logic [3]. In FCM,
a data element can flexibly choose a cluster to belong to, characterized by the membership
grade of the element in the cluster [4]. Specifically, the membership grade Uik of element i
belonging to cluster k has a value in the range from 0 to 1, and the larger the Uik value, the
more likely element i belongs to cluster k [5,6].

Clustering belongs to the class of unsupervised learning methods in which there is
no given information about the labels of the data elements, dissimilar to classification
methods. However, there are also cases in which knowledge of certain data can be known
in advance; then, it becomes semi-supervised fuzzy clustering. For a semi-supervised
clustering problem, there are often two goals: (i) clustering and labeling the data, and (ii)
improving the quality of clustering based on the existing knowledge about the data [7–11].
The first goal is clustering, as defining cluster labels for the data remains the primary goal.
With semi-supervision, the structure of the clusters and the cluster centers must still be
clearly distinguished. The second goal is to improve the clustering quality based on the
existing knowledge. The clustering quality can be evaluated from the clustering label. Of
the two objectives, if more attention goes toward clustering labeling, then more supervisory
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knowledge needs to be introduced, and the clustering results will be expected to be better.
The disadvantage of this method is that certain measures of “similarity” may not be better,
but this is acceptable when there are data points that are “shaped” by the knowledge;
hence, the ability to update the cluster center is also improved [12]. There is knowledge
about data that can be considered to be relatively accurate. It will be known to a degree in
advance if a data element should or should not belong to a certain cluster. Such factors are
dependent on the related expertise of the person conducting the clustering [13].

Yasunori et al. [14] proposed to improve the FCM algorithm by adding an auxiliary
supervisory matrix, representing the supervised membership grade, into the objective
function. Although the authors did not outline a specific method to determine the value of
the supervisory matrix, the study made it clear that semi-supervised fuzzy clustering is
completely feasible. The authors called this algorithm semi-supervised standard Fuzzy
C-means clustering (sSFCM). This algorithm is mainly based on the approach that the
supervised data point must belong to a certain cluster. The membership grade on that
cluster then must be larger than the value in other unsupervised clusters.

The FCM method uses an exponential parameter m, also known as the fuzzification
coefficient, in the objective function, which adjusts the membership grade Uik of element
i belonging to cluster k. In the standard FCM algorithm, the value of parameter m is
selected from the beginning, for example, m = 2. In recent years, there have been studies
that extended the selection of parameter m as an interval [m1, m2] or a fuzzy value that,
when reducing the type, would essentially be the selection of different m ∈ [m1, m2] values,
applied to each iteration [15]. The extension to use multiple fuzzification coefficients m
instead of only one value in FCM was presented in [16]. When assigning each data point an
appropriate fuzzification coefficient m based on the density of that point to the surrounding
points, the clustering quality was improved.

This study is based on the concept of utilizing multiple fuzzification coefficients to
apply to semi-supervised fuzzy clustering. When placing a supervised element i into cluster
k, the appropriate fuzzification coefficient mik can be selected, which will be different from
other fuzzification coefficients. This affects the calculation of Uik which increases, and at
the same time, Uikˆmik changing also affects the determination of cluster k center. Similarly,
when preventing a supervised element i from being in cluster k, its parameter mik will be
different from other mij values. The adjustment of the fuzzification coefficient is similar
to using the auxiliary matrix similar to other semi-supervised clustering methods, and it
is also needed to ensure the convergence of the clustering algorithm. The contribution
of this study is the proposal of a novel semi-supervised FCM algorithm using multiple
fuzzification coefficients (sSMC-FCM) as well as the method to determine the appropriate
fuzzification coefficient values for semi-supervision.

Section 2 of the paper outlines the FCM algorithm and the semi-supervised fuzzy
clustering algorithm using auxiliary matrices. Section 3 presents the novel sSMC-FCM
algorithm. Section 4 shows a numerical example using the proposed method and the
subsequent results, while Section 5 presents concluding remarks.

2. Preliminaries
2.1. Standard Fuzzy C-Means Clustering (FCM) Algorithm

The standard FCM algorithm attempts to divide a finite number of N data ele-
ments X = {X1, X2, . . . , XN} into C clusters based on some given criteria. Each element
Xi ∈ X, i = 1, 2, . . . , N, is a vector with D dimensions. The elements in X are divided into
C clusters with cluster centers V1, V2, . . . , VC in the centroid set V.

In FCM algorithm, U is a matrix that represents the membership of each element into
each cluster. Matrix U has certain characteristics as below:

• Uik is the membership grade of an element Xi in the cluster k with center Vk, where
1 ≤ i ≤ N; 1 ≤ k ≤ C;

• 0 ≤ Uik ≤ 1, 1 ≤ i ≤ N; 1 ≤ k ≤ C and ∑C
j=1 Uij = 1, for each Xi;

• The larger Uik is, the more element Xi belongs in cluster k.
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An objective function is defined such that the clustering algorithm must minimize the
objective function (1):

J(U, V) = ∑N
i=1 ∑C

k=1 Uik
mDik

2, (1)

where Dik
2 =
∣∣∣∣Xi −Vk

∣∣∣∣2 is the distance between two vectors Xi and Vk, and m is the
fuzzification coefficient of the algorithm.

Summary of steps for the standard FCM algorithm:
Input: the dataset X = {X1, X2, . . . , XN}.
Output: the partition of X into C clusters.

• Step 1: Initialize value for V, let l = 0, set ε > 0 and m > 1.
• Step 2: At the l − th loop, update U according to the formula:

Uik =

 C

∑
j=1

(
Dik
Dij

) 2
m−1
−1

(2)

• Step 3: Update V for the next step (l + 1), according to the formula:

Vk =
∑N

i=1 Uik
mXi

∑N
i=1 Uik

m
(3)

• Step 4: If
∣∣∣∣∣∣V(l) −V(l+1)

∣∣∣∣∣∣< ε , then go to Step 5; otherwise, let l := l + 1, and return
to Step 2.

• Step 5: End.

2.2. Semi-Supervised Standard Fuzzy C-Means Clustering (sSFCM) Algorithms

The semi-supervised fuzzy clustering method in [14] added a supervisory matrix U
that represents the supervision of an element forced to belong or to not belong in a cluster.
Uik > 0 when the supervised element i is placed into cluster k, and Uik = 0 when there
is no supervision. This additional supervised membership grade Uik was added to the
objective function to be minimized, and is shown as follows:

J(U, V) = ∑N
i=1 ∑C

k=1

∣∣Uik −Uik
∣∣mD2

ik, (4)

where ∑C
j=1 Uij = 1, ∑C

j=1 Uij ≤ 1, 0 ≤ Uik ≤ 1, for all 1 ≤ i ≤ N and 1 ≤ k ≤ C. The
sSFCM algorithm, shown below, works to minimize J(U, V) through many iterations.

Summary of steps for the sSFCM algorithm:
Input: the dataset X = {X1, X2, . . . , XN}, and the supervised membership grade U.
Output: the partition of X into C clusters.

• Step 1: Initialize value for V, let l = 0, set ε > 0 and m > 1.
• Step 2: At the l − th loop, update U according to the formula:

Uik = Uik +

(
1−

C

∑
j=1

Uij

) C

∑
j=1

(
Dik
Dij

) 2
m−1
−1

(5)

• Step 3: Update V for the next step (l + 1), according to the formula:

Vk =
∑N

i=1
∣∣Uik −Uik

∣∣mXi

∑N
i=1
∣∣Uik −Uik

∣∣m (6)

• Step 4: If
∣∣∣∣∣∣V(l) −V(l+1)

∣∣∣∣∣∣< ε , then go to Step 5; otherwise, let l := l + 1, and return
to Step 2.

• Step 5: End.

A numerical example of the sSFCM algorithm [14]:
A data set with 20 elements X = {X1, X2, . . . , X20}, Xi ∈ R2, as seen in Table 1, is to

be divided into two clusters. Implement the sSFCM algorithm with m = 2 for 3 cases:
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Table 1. Sample data set.

i (Xi1, Xi2) i (Xi1, Xi2) i (Xi1, Xi2) i (Xi1, Xi2)

1 (0, 4.5) 6 (3.5, 5.5) 11 (9, 0) 16 (10, 0)

2 (0, 5.5) 7 (5.25, 4.5) 12 (9, 2.5) 17 (10, 2.5)

3 (1.75, 4.5) 8 (5.25, 5.5) 13 (9, 5) 18 (10, 5)

4 (1.75, 5.5) 9 (7, 4.5) 14 (9, 7.5) 19 (10, 7.5)

5 (3.5, 4.5) 10 (7, 5.5) 15 (9, 10) 20 (10, 10)

• Case 1: unsupervised, Uik = 0, for all 1 ≤ i ≤ 20, 1 ≤ k ≤ 2 (standard FCM algorithm).
• Case 2: semi-supervised, attempting to place data points 9 and 10 into cluster 1,

U9,1 = U10,1 = 0.3, otherwise, Uik = 0.
• Case 3: semi-supervised, attempting to place data points 9 and 10 into cluster 1,

U9,1 = U10,1 = 0.6, otherwise, Uik = 0.

After clustering, we obtain matrices U for all 3 cases, as shown in Table 2.

Table 2. The resulting membership U for the 3 cases using the sSFCM algorithm.

i Unsupervised i ¯
U9,1 =

¯
U10,1 = 0.3 i ¯

U9,1 =
¯
U10,1 = 0.6

1 (0.91, 0.09) 1 (0.92, 0.08) 1 (0.92, 0.08)

2 (0.91, 0.09) 2 (0.92, 0.08) 2 (0.92, 0.08)

3 (0.98, 0.02) 3 (0.98, 0.02) 3 (0.98, 0.02)

4 (0.98, 0.02) 4 (0.98, 0.02) 4 (0.98, 0.02)

5 (0.97, 0.03) 5 (0.97, 0.03) 5 (0.97, 0.03)

6 (0.97, 0.03) 6 (0.97, 0.03) 6 (0.97, 0.03)

7 (0.68, 0.32) 7 (0.70, 0.30) 7 (0.72, 0.28)

8 (0.68, 0.32) 8 (0.70, 0.30) 8 (0.72, 0.28)

9 (0.19, 0.81) 9 (0.45, 0.55) 9 (0.69, 0.31)

10 (0.19, 0.81) 10 (0.45, 0.55) 10 (0.69, 0.31)

11 (0.28, 0.72) 11 (0.28, 0.72) 11 (0.28, 0.72)

12 (0.12, 0.88) 12 (0.12, 0.88) 12 (0.12, 0.88)

13 (0.00, 1.00) 13 (0.00, 1.00) 13 (0.00, 1.00)

14 (0.12, 0.88) 14 (0.12, 0.88) 14 (0.12, 0.88)

15 (0.28, 0.72) 15 (0.28, 0.72) 15 (0.28, 0.72)

16 (0.25, 0.75) 16 (0.25, 0.75) 16 (0.25, 0.75)

17 (0.11, 0.89) 17 (0.10, 0.90) 17 (0.10, 0.90)

18 (0.02, 0.98) 18 (0.01, 0.99) 18 (0.01, 0.99)

19 (0.11, 0.89) 19 (0.10, 0.90) 19 (0.10, 0.90)

20 (0.25, 0.75) 20 (0.25, 0.75) 20 (0.25, 0.75)

The clustering results indicate that sample points 9 and 10 belong to cluster 2 in case 1
and case 2 and to cluster 1 in case 3, showing the impact of the added semi-supervised com-
ponent in the sSFCM algorithm through the supervised membership grade U. Although in
case 2, the attempt to place points 9 and 10 in cluster 1 was not successful, the points were
much closer to cluster 1 compared to case 1.

In this study, instead of using the matrix U, we propose the use of multiple fuzzi-
fication coefficients as the mean to make the original unsupervised FCM algorithm a
semi-supervised one.
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3. Semi-Supervised Fuzzy C-Means Clustering Algorithm with Multiple Fuzzification
Coefficients (sSMC-FCM)
3.1. Derivation of the Proposed sSMC-FCM Algorithm

In this sub-section, we show the derivation of the proposed sSMC-FCM algorithm.
Each membership Uik can receive different fuzzification coefficients mik. The supervision
of element i to belong to cluster k is performed through adjusting mik. A formula for mik
can be given as follows, with exponential parameters M, M′ > 1:

• mij = M for all 1 ≤ j ≤ C, for unsupervised elements i.
• mik = M′, and mij = M for all j 6= k, for supervised elements i to belong to cluster k.

The approach to determine the exponential parameters M and M′ is discussed
in Section 3.2.

The objective function to be minimized in the sSMC-FCM algorithm is formulated
as follows,

J(U, V) =
N

∑
i=1

C

∑
k=1

Uik
mik Dik

2 (7)

where X = {X1, X2, . . . , XN} is the dataset, N is the number of elements, C is the number
of clusters, Uik is the membership grade of an element Xi in the cluster k with center Vk,
0 ≤ Uik ≤ 1, 1 ≤ i ≤ N, 1 ≤ k ≤ C, ∑C

j=1 Uij = 1, ∑N
i=1 Uik > 0, mik > 1 is the fuzzification

coefficient of Xi in cluster k, and Dik
2 =
∣∣∣∣Xi −Vk

∣∣∣∣2 is the distance between two vectors Xi
and Vk.

Let Y ⊂ {1, 2, . . . , N} × {1, 2, . . . , C} be the set of supervised elements, we have:

mij =


M , ∀k : (i, k) /∈ Y
M′ , (i, j) ∈ Y
M , ∃k : (i, k) ∈ Y ∧ j 6= k

(8)

To solve the optimization problem shown in Equation (7), we utilize the Lagrange
multiplier method. Let

L =
N

∑
i=1

C

∑
k=1

Uik
mik ||Xi −Vk||2 −

N

∑
i=1

λi

(
C

∑
k=1

Uik − 1

)
(9)

Moreover, with {
∂L

∂Uik
= 0, 1 ≤ i ≤ N, 1 ≤ k ≤ C

∂L
∂Vk

= 0, 1 ≤ k ≤ C

we can obtain Vk using

∂L
∂Vk

=
∂
[
∑N

i=1 Uik
mik (Xi −Vk)

2
]

∂Vk
= ∑N

i=1 Uik
mik ∗ 2 ∗ (Xi −Vk) ∗ (−1) = 0,

hence, we have

∑N
i=1 Uik

mik Xi = ∑N
i=1 Uik

mik Vk,

or

Vk =
∑N

i=1 Uik
mik Xi

∑N
i=1 Uik

mik
(10)

And next, we calculate Uik using

∂L
∂Uik

= mikUik
mik−1Dik

2 − λi = 0, (11)

which implies the following:

Uik =

(
λi

mikDik
2

) 1
mik−1

(12)

Combining with ∑C
j=1 Uij = 1, we consider the two following cases:

Case 1:
For unsupervised elements i, mij = M for all 1 ≤ j ≤ C, Equation (12) becomes:
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Uik =

(
λi

MDik
2

) 1
M−1

=

(
λi
M

) 1
M−1
(

1
Dik

2

) 1
M−1

=

(
λi
M

) 1
M−1
(

1
Dik

) 2
M−1

(13)

Since ∑C
j=1 Uij = 1, we have ∑C

j=1

(
λi

MDij
2

) 1
M−1

= 1, or
(

λi
M

) 1
M−1

∑C
j=1

(
1

Dij
2

) 1
M−1

= 1, or

(
λi
M

) 1
M−1

=
1

∑C
j=1

(
1

Dij
2

) 1
M−1

=
1

∑C
j=1

(
1

Dij

) 2
M−1

(14)

Replacing (14) into (13), we obtain

Uik =
1

∑C
j=1

(
Dik
Dij

) 2
M−1

=

 C

∑
j=1

(
Dik
Dij

) 2
M−1
−1

(15)

Case 2:
For supervised elements i to belong to cluster k, mik = M′ and mij = M for j 6= k,

Equation (11) becomes: {
M′Uik

M′−1Dik
2 = λi, and

MUij
M−1Dij

2 = λi, j 6= k

or

M′Uik
M′−1Dik

2 = M′Ui1
M′−1Di1

2 = . . . = M′Uij
M′−1Dij

2 = . . . = M′UiC
M′−1DiC

2

Combining with ∑C
j=1 Uij = 1, to calculate Uij, we need to solve the following:

M′Uik
M′−1Dik

2 = MUi1
M−1Di1

2 = . . . = MUij
M−1Dij

2 = . . . = MUiC
M−1DiC

2, j 6= k
C
∑

j=1
Uij = 1 f or all i

(16)

The steps to solve Equation (16) are shown through Equations (17)–(20) below. To
make the presentation of the derivation seamless, we first give the calculation formulas,
and the proof that this solution can solve Equation (16) will be presented in Section 3.2
with Proposition 1.

Specifically, we calculate dmin = min
j=1,...,C

{
Dij
}

, then:

dij =
Dij

dmin
, ∀j = 1, . . . , C (17)

Calculate µij =

(
1

Mdij
2

) 1
M−1

for all j 6= k (18)

Calculate µik which is a variable in
µik(

µik + ∑C
j=1,j 6=k µij

)M′−M
M′−1

=

(
1

M′dik
2

) 1
M′−1

(19)

Then normalize : Uij =
µij

∑C
l=1 µil

(20)

From there, we have the sSMC-FCM algorithm as follows.
Summary of steps for the proposed sSMC-FCM algorithm:
Input: the dataset X = {X1, . . . , XN}, the fuzzification coefficients M > 1 and

M′ > M, and the set of supervised elements Y ⊂ {1, 2, . . . , N} × {1, 2, . . . , C}.
Output: the partition of X into C clusters.

• Step 1: Initialize value for V, let l = 0, and set ε > 0.
• Step 2: At the l − th loop, update U according to Equation (15) for unsupervised

elements, or according to Equations (17)–(20) for supervised elements.
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• Step 3: Update V for the next step (l + 1), according to Equation (10), with mik
calculated using Equation (8).

• Step 4: If
∣∣∣∣∣∣V(l) −V(l+1)

∣∣∣∣∣∣< ε , then go to Step 5; otherwise, let l := l + 1, and return
to Step 2.

• Step 5: End.

The sSMC-FCM algorithm has similar steps to the FCM and sSFCM algorithms, but it
uses Equations (15) and (17)–(20) in Step 2 and Equations (8) and (10) in Step 3.

3.2. Determination of the Fuzzification Coefficients for Supervised Elements

In the proposed sSMC-FCM algorithm, when an element i is to be supervised, Uij will
be calculated according to Equations (17)–(20) in Step 2 of the algorithm. In this sub-section,
we will discuss these formulas in more detail, as well as how to determine the exponential
parameter M′ for the supervised elements.

Proposition 1. Uij calculated from Equations (17)–(20) satisfies Equation (16).

Proof of Proposition 1. From Equation (20), taking the sum of Uij, we can see that it
satisfies the condition of ∑C

j=1 Uij = 1 in Equation (16). �

Next, we calculate M′Uij
M′−1Dij

2 by gradually replacing from the formulas (20), (19),
(18), (17), as follows:

M′Uik
M′−1Dik

2 = M′
(

µik

∑C
l=1 µil

)M′−1
(dikdmin)

2

= M′


(

1
M′dik

2

) 1
M′−1

(
µik+∑C

j=1,j 6=k µij

)M′−M
M′−1

∑C
l=1 µil


M′−1

(dikdmin)
2

= M′


(

1
M′dik

2

) 1
M′−1

(
∑C

j=1 µij

)M′−M
M′−1

∑C
l=1 µil


M′−1

dik
2dmin

2

= M′
1

M′dik
2

(
∑C

j=1 µij

)M′−M

(∑C
l=1 µil)

M′−1 dik
2dmin

2 = dmin
2

(∑C
l=1 µil)

M−1

(21)

Similarly, calculate MUij
M−1Dij

2 for all j 6= k

MUij
M−1Dij

2 = M
(

µij

∑C
l=1 µil

)M−1
(dijdmin)

2

= M


(

1
Mdij

2

) 1
M−1

∑C
l=1 µil


M−1

dij
2dmin

2 = dmin
2

(∑C
l=1 µil)

M−1

(22)

From (21) and (22), it can be seen that M′Uik
M′−1Dik

2 = MUi1
M−1Di1

2 = . . . =
MUij

M−1Dij
2 = . . . = MUiC

M−1DiC
2 for all j 6= k. Therefore, combining with ∑C

j=1 Uij = 1,
Equation (16) is satisfied, and Proposition 1 is proven.

We can hence apply Equations (17)–(20) in Step 2 of the proposed algorithm.
Next, we investigate how to determine the exponential parameter M′. We will utilize

Proposition 2 after proving it.

Proposition 2. The function f (x) =
(

1
ax

) 1
x−1 with a ≥ 1 is an increasing function when x > 1.
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Proof of Proposition 2. Consider the function f (x) =
(

1
ax

) 1
x−1

= eln(( 1
ax )

1
x−1 ) = e

1
x−1 ln( 1

ax ),
Calculate its derivative:

f ′(x) = e
1

x−1 ln( 1
ax ).
((

1
x−1

)′
ln
(

1
ax

)
+
(

1
x−1

)
ln
(

1
ax

)′)
= e

1
x−1 ln( 1

ax ).
(

−1
(x−1)2 (−1)ln(ax) +

(
1

x−1

)
1
1
ax

(
1
ax

)′)
= e

1
x−1 ln( 1

ax ).
(

ln(ax)
(x−1)2 − 1

x(x−1)

)
= e

1
x−1 ln( 1

ax ). xln(ax)−x+1
x(x−1)2

For x > 1, a ≥ 1, in f ′(x), we have e
1

x−1 ln( 1
ax ) > 0, xln(ax)− x + 1 ≥ xlnx − x + 1,

and x(x− 1)2 > 0. For g(x) = xlnx − x + 1, we have g′(x) = lnx + x
x − 1 = lnx > 0

for all x > 1. Therefore, g(x) is an increasing function in the range [1,+∞), and thus,
g(x) > g(1) = 0, and hence, xln(ax) − x + 1 ≥ xlnx − x + 1 > 0. Overall, all the
components of f ′(x) are greater than 0. Therefore, f ′(x) > 0, or f (x) is an increasing
function, for all x > 1. �

Applying Proposition 2 to the following formula used to calculate M′ for the super-

vised elements, f (M′) =
(

1
M′dik

2

) 1
M′−1 , where dik

2 ≥ 1, M′ > 1, we see that this function is

an increasing function. Therefore, as M′ increases, the membership grade Uik increases. Set-
ting the supervision for an element corresponds to selecting a larger fuzzification coefficient
M′ for that element compared to other fuzzification coefficients.

Then, Proposition 3 is utilized to guide the determination of parameter M′.

Proposition 3. Let Uik be the membership grade of element Xi in its semi-supervise placement
into cluster k according to Equations (17)–(20) with a given parameter M and a to-be-determined
parameter M′. Let U′ ik be the membership grade of element Xi in its unsupervised placement into
cluster k according to Equation (15). With α ∈ (0, 1), we have Uik ≥ α if the following equation
is satisfied:

M′αM′−1 ≤ M

(
1− α
1

U′ ik
− 1

)M−1

(23)

Proof of Proposition 3. From Equation (15), we have

U′ ik =
1

∑C
j=1

(
Dik
Dij

) 2
M−1

=
1(

Dik
Dik

) 2
M−1

+ ∑C
j=1,j 6=k

(
Dik
Dij

) 2
M−1

=
1

1 + ∑C
j=1,j 6=k

(
Dik
Dij

) 2
M−1

From Equation (17), we have dik
dij

= Dik
Dij

, hence, U′ik =
1

1+∑C
j=1,j 6=k

(
dik
dij

) 2
M−1

.

Substitute into (23), we have the equivalent

M′αM′−1 ≤ M(1− α)M−1(
∑C

j=1,j 6=k

(
dik
dij

) 2
M−1
)M−1 =

(1− α)M−1

dik
2

(
∑C

j=1,j 6=k

(
1

Mdij
2

) 1
M−1
)M−1

or,

1
M′dik

2 ≥
αM′−1

(1− α)M−1

 C

∑
j=1,j 6=k

(
1

Mdij
2

) 1
M−1
M−1

Substitute in µij from Equation (18), we have 1
M′dik

2 ≥ αM′−1

(1−α)M−1

(
∑C

j=1,j 6=k µij

)M−1
.

Substitute 1
M′dik

2 in the above with Equation (19), we have
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µik
M′−1(

µik + ∑C
j=1,j 6=k µij

)M′−M ≥
αM′−1

(1− α)M−1

(
C

∑
j=1,j 6=k

µij

)M−1

(24)

Next, from Equation (20), we have Uik = µik

∑C
j=1 µij

= µik
µik+∑C

j=1,j 6=k µij
, hence

∑C
j=1,j 6=k µij =

µik
Uik
− µik, which is substituted into Equation (24) to have

µik
M′−1(

µik
Uik

)M′−M ≥
αM′−1

(1− α)M−1

(
µik(1−Uik)

Uik

)M−1

Since M′ > M, and from the above, we have µik
M−1Uik

M′−M ≥ αM′−1µik
M−1

(1−α)M−1

(
1−Uik

Uik

)M−1
.

Since µik is to be solved in Equation (19), µik > 0, and the above can be simplified into
Uik

M′−MUik
M−1

(1−Uik)
M−1 ≥ αM′−1

(1−α)M−1 or

Uik
M′−1

(1−Uik)
M−1 ≥

αM′−1

(1− α)M−1 (25)

Therefore, if Equation (23) is satisfied, then Equation (25) is also satisfied.

Consider the function f (x) = xM′−1

(1−x)M−1 with x ∈ (0, 1) we have its derivative

f ′(x) = (M′−1)xM′−2(1−x)M−1−xM′−1(M−1)(1−x)M−2(−1)
(1−x)2(M−1)

= (1−x)M−2xM′−2((M′−1)(1−x)+x(M−1))
(1−x)2(M−1)

= xM′−2(M′−M′x+Mx−1)
(1−x)M

Since M′ > M, and from the above derivative, with x ∈ (0, 1), we have

M′ −M′x + Mx− 1 ≥ M′ −M′x + Mx−M = M′(1− x)−M(1− x) =
(

M′ −M
)
(1− x) > 0

Since xM′−2 > 0 and (1− x)M > 0, hence, f ′(x) > 0, and therefore, f ′(x) is an
increasing function. Equation (25) has the form of f (Uik) ≥ f (α), so then Uik ≥ α. �

From Proposition 3, Equation (23) demonstrates an approach to determine parameter
M′. The right-hand side of (23) is a value that can be calculated knowing M, α, and the
distances, while the left-hand side of (23) is a decreasing function as M′ increases. From
this, we can start at M′ = M, and then increase M′ value and check simultaneously until
Equation (23) is satisfied to solve for M′.

Example: Given the data set from Table 1, the element X9 has U91 = 0.189, with
M = 2. If we want to apply supervision such that U91 ≥ 0.5 to put X9 into cluster 1, then
from Equation (20), we need to determine M′ such that the condition 0.5M′−1M′ ≤ 0.233 is
satisfied. For M′ = 2, 0.5M′−1M′ = 1, and hence it does not satisfy the condition. We will
have to increase the value of M′ to decrease the value of 0.5M′−1M′ to satisfy the condition.
Through certain iterations, we obtain M′ = 5.582, and 0.5M′−1M′ = 0.233, which satisfies
the condition, and effectively places X9 into cluster 1.

A point that can be further discussed is that in Step 2 of the sSMC-FCM algorithm,
it is necessary to solve Equation (19) to obtain µik. In Equation (19), its right-hand side
has a value in the range [0,1]. Set A = ∑C

j=1,j 6=k µij, b = M′−M
M′−1 , with b < 1, the left-

hand side of this equation has the form of f (x) = x
(x+A)b , which has the derivative of

f ′(x) = (x+A)b−xb(x+A)b−1

(x+A)2b = x+A−xb
(x+A)b+1 = (1−b)x+A

(x+A)b+1 > 0 for x > 0. From this, we can see

that the left-hand side of Equation (19) is an increasing function, while the right-hand side
has a value in the range [0,1]. Therefore, we can use an approximation method to obtain
µik, starting from µik = 0, and then increasing gradually to determine the solution.
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4. Numerical Examples

To evaluate the proposed algorithm, we use the same numerical example shown in
Section 2.2. A data set with 20 elements X = {X1, X2, . . . , X20}, Xi ∈ R2, as seen in Table 1,
is to be divided into two clusters. Implement the sSMC-FCM algorithms with M = 2 for
the following 3 cases:

• Case 1: unsupervised, M′ = M = 2 (standard FCM algorithm).
• Case 2: semi-supervised, attempting to place data points 9 and 10 into cluster 1,

M′ = 4, M = 2.
• Case 3: semi-supervised, attempting to place data points 9 and 10 into cluster 1,

M′ = 8, M = 2.

The Euclidian distance was used in the calculations and results in this work. Table 3
shows membership matrices U for each case, as the results of clustering.

Table 3. The resulting membership U for the 3 cases using the sSMC-FCM algorithm.

i Unsupervised i M
′
=4 i M

′
=8

1 (0.91, 0.09) 1 (0.92, 0.08) 1 (0.92, 0.08)

2 (0.91, 0.09) 2 (0.92, 0.08) 2 (0.92, 0.08)

3 (0.98, 0.02) 3 (0.98, 0.02) 3 (0.98, 0.02)

4 (0.98, 0.02) 4 (0.98, 0.02) 4 (0.98, 0.02)

5 (0.97, 0.03) 5 (0.98, 0.02) 5 (0.98, 0.02)

6 (0.97, 0.03) 6 (0.98, 0.02) 6 (0.98, 0.02)

7 (0.68, 0.32) 7 (0.71, 0.29) 7 (0.71, 0.29)

8 (0.68, 0.32) 8 (0.71, 0.29) 8 (0.71, 0.29)

9 (0.19, 0.81) 9 (0.43, 0.57) 9 (0.60, 0.40)

10 (0.19, 0.81) 10 (0.43, 0.57) 10 (0.60, 0.40)

11 (0.28, 0.72) 11 (0.28, 0.72) 11 (0.28, 0.72)

12 (0.12, 0.88) 12 (0.12, 0.88) 12 (0.12, 0.88)

13 (0.00, 1.00) 13 (0.00, 1.00) 13 (0.00, 1.00)

14 (0.12, 0.88) 14 (0.12, 0.88) 14 (0.12, 0.88)

15 (0.28, 0.72) 15 (0.28, 0.72) 15 (0.28, 0.72)

16 (0.25, 0.75) 16 (0.25, 0.75) 16 (0.25, 0.75)

17 (0.11, 0.89) 17 (0.11, 0.89) 17 (0.10, 0.90)

18 (0.02, 0.98) 18 (0.01, 0.99) 18 (0.01, 0.99)

19 (0.11, 0.89) 19 (0.11, 0.89) 19 (0.10, 0.90)

20 (0.25, 0.75) 20 (0.25, 0.75) 20 (0.25, 0.75)

From the results in Table 3, we have the following observations:

• As M′ increases, the membership grades of the supervised elements increase. Initially,
with no supervision, data points 9 and 10 were placed into cluster 2. With supervision
and M′ = 4, their membership grades increased but not enough to move into cluster
1, while with M′ = 8, these two data points were successfully placed into cluster 1;

• In general, the sSMC-FCM algorithm converges after a similar number of iterations
to the standard FCM algorithm. For instance, with ε = 10−3, it required about
10 iterations;

• When M′ is changed, the cluster centers change to suit the supervised elements. For
instance, case 1 has cluster centers V1 = (2.719, 5.000), V2 = (9.018, 5.000), case 2 has
cluster centers V1 = (2.735, 5.000), V2 = (9.200, 5.000), and case 3 has cluster centers
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V1 = (2.714, 5.000), V2 = (9.303, 5.000). We can observe that, from case 1 to 2, the
cluster center V2 moves further away from data points 9 and 10;

• Compared to the sSFCM algorithm, we can see that the matrices U in the case of
M′ = 4, M = 2 using the sSMC-FCM algorithm shown in Table 3 are similar to the
corresponding matrices U in the case of U9,1 = U10,1 = 0.3 using the sSFCM algorithm
shown in Table 2. Both cases were able to increase the membership grade of the points
to belong to cluster 1 but were not successfully in moving the points into cluster 1;

• In future works, it is possible to expand on other different representations for the
fuzzification coefficients, combining with hedge algebra [17–19] in new representations
and calculations.

5. Conclusions

In this study, we developed a novel clustering algorithm, called sSMC-FCM, based
on the standard FCM algorithm, adding the semi-supervision aspect through the use of
multiple fuzzification coefficients or also known as exponential parameters. In the sSMC-
FCM algorithm, we allow the data elements to have different fuzzification coefficients,
instead of only one such as in the standard FCM method. The expansion from hard
clustering to fuzzy clustering involves the addition of fuzzification coefficients; hence, the
determination of the fuzzification coefficient values is an interesting topic to be further
researched. In this study, we derived the novel sSMC-FCM algorithm and proved three
propositions to show the convergence of the algorithm and to explain how to determine the
fuzzification coefficients and demonstrated the efficiency of the algorithm using a numerical
example. The proposed algorithm added supervision in the normally unsupervised FCM
clustering algorithm. This method can be applied in practical problems such as remote
sensing image segmentation, when knowing an image is certainly of an image type such
as a lake, but due to image noises and the unsupervised approach, the attribute features
may cause that image to be perceived as another image type, such as clouds, leading to
undesirable results. With the proposed semi-supervised method, we should be able to
place the image into the knowingly correct image type as desired.
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